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On Some Exponential Equations of
S. S. Pillai
Michael A. Bennett

Abstract. In this paper, we establish a number of theorems on the classic Diophantine equation of
S. S. Pillai, ax − by = c, where a, b and c are given nonzero integers with a, b ≥ 2. In particular, we
obtain the sharp result that there are at most two solutions in positive integers x and y and deduce a
variety of explicit conditions under which there exists at most a single such solution. These improve or
generalize prior work of Le, Leveque, Pillai, Scott and Terai. The main tools used include lower bounds
for linear forms in the logarithms of (two) algebraic numbers and various elementary arguments.

1 Introduction

In a series of papers in the 1930’s and 1940’s, S. S. Pillai [Pi1], [Pi2], [Pi3], [Pi4]
studied the Diophantine equation

ax − by = c(1.1)

in positive integers a, b, x and y, where c is a fixed nonzero integer. Indeed, his famous
conjecture that, for each such c, equation (1.1) has at most finitely many solutions in
integers a, b, x and y exceeding unity appears for the first time in [Pi2]. This remains
an outstanding open problem, though the case c = 1 (Catalan’s Conjecture) was
essentially solved by Tijdeman [Ti] (see Mignotte [Mi2] for an excellent survey of
recent developments on this front).

In this paper, we will address the rather more modest problem of equation (1.1)
when all three of a, b and c are fixed nonzero integers with a, b ≥ 2 (this is, in
fact, the situation considered by Pillai in [Pi1] and [Pi2]). Here, we can relax the
conditions on x and y to include the potential solutions x = 1 or y = 1. Already
in this case, from work of Polya [Po], it was known that equation (1.1) could possess
at most finitely many integral solutions. This result was subsequently quantified by
Herschfeld [He] (applying arguments of Pillai [Pi1]) who demonstrated that at most
nine pairs of positive (x, y) may satisfy (1.1), provided c is sufficiently large relative
to a and b and gcd(a, b) = 1. Subsequently, Pillai [Pi2] showed that this equation
has, again if c is sufficiently large and gcd(a, b) = 1, at most one such solution.
His proof of this result relies upon Siegel’s sharpening of Thue’s theorem on rational
approximation to algebraic numbers and is hence ineffective (in the sense that, a
priori, there is no way to quantify the term “sufficiently large”). With a modicum
of computation, we can, in fact, find a number of examples where there are two

Received by the editors October 5, 2000; revised February 12, 2001.
Supported in part by NSF Grant DMS-9700837.
AMS subject classification: Primary: 11D61, 11D45; secondary: 11J86.
c©Canadian Mathematical Society 2001.

897



898 Michael A. Bennett

solutions to (1.1) in positive integers x and y, corresponding to the following set of
equations:

3− 2 = 32 − 23 = 1

23 − 3 = 25 − 33 = 5

24 − 3 = 28 − 35 = 13

23 − 5 = 27 − 53 = 3

13− 3 = 133 − 37 = 10

91− 2 = 912 − 213 = 89

6− 2 = 62 − 25 = 4

15− 6 = 152 − 63 = 9

280− 5 = 2802 − 57 = 275

4930− 30 = 49302 − 305 = 4900

64 − 34 = 65 − 38 = 1215.

(1.2)

There exist no examples of triples (a, b, c) for which equation (1.1) has three pos-
itive solutions; this is the content of our first result:

Theorem 1.1 If a, b and c are nonzero integers with a, b ≥ 2, then equation (1.1) has
at most two solutions in positive integers x and y.

This theorem sharpens work of Le ([Le, Theorem 2]; see also Shorey [Sh]) who
obtained a similar result under the hypotheses min{a, b} ≥ 105, min{x, y} ≥ 2 and
gcd(a, b) = 1 (in case gcd(a, b) > 1, a like result is claimed in [Le], but no proof is
provided). We note that the condition min{x, y} ≥ 2 is actually very restrictive (as
is evident from the examples in (1.2)) and appears crucially in the arguments of [Le].
While Theorem 1.1 is essentially sharp, as indicated by (1.2), one might, in light of
Pillai’s work, believe that something rather stronger is true. We formulate this in the
following:

Conjecture 1.2 If a, b and c are positive integers with a, b ≥ 2, then equation (1.1)
has at most one solution in positive integers x and y, except for those triples (a, b, c)
corresponding to (1.2).

As evidence for this, we provide a number of results, the first two of which indicate
that Conjecture 1.2 is true if c is either “sufficiently large” or “sufficiently small”, with
respect to a and b. The first of these is an explicit version of the aforementioned
theorem of Pillai, valid additionally for pairs (a, b) which fail to be relatively prime
(we note that Pillai’s treatment of this latter situation in [Pi2] is inadequate).
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Theorem 1.3 If a, b and c are positive integers with a, b ≥ 2 and

c ≥ b2a2 log a (or, if a is prime, c ≥ ba),

then equation (1.1) has at most one solution in positive integers x and y.

We take this opportunity to observe that the exponents above are artifices of our
proof and may be somewhat reduced, via more precise application of lower bounds
for linear forms in logarithms of algebraic numbers.

If, instead, we suppose that c is suitably small, relative to a and b, elaborating an
argument of Terai [Te], we may derive a complementary result to Theorem 1.3. To
state our result concisely, we require some notation. Let us define, given a and b
integers exceeding unity, a0 to be the largest positive integral divisor of a satisfying
gcd(a0, b) = 1 and write

δ(a, b) =
log a0

log a
and δ∗(a, b) = max{δ(a, b), 1− δ(a, b)}.

Theorem 1.4 If a, b and c are positive integers with a, b ≥ 2, then equation (1.1) has
at most one solution in positive integers x and y with

by ≥ 6000 c1/δ∗(a,b).

Terai [Te, Theorem 3] obtained a result of this shape, under the additional as-
sumptions that (x, y) = (1, 1) is a solution of (1.1) and that gcd(a, b) = 1. His
stated constant is 1697 rather than 6000, which reflects both the further constraints
imposed and discrepancies between the lower bounds for linear forms in two loga-
rithms used in [Te] and in the paper at hand. We note that the constant 6000 may be
readily reduced by arguing somewhat more carefully.

In case c = 1, Conjecture 1.2 is a well known theorem of Leveque [Lev] (proved,
independently, by Cassels [Ca]). Terai (Theorem 4 of [Te]) considered the case c = 2
under the restrictive (and, as it transpires, unnecessary) condition that (x, y) = (1, 2)
is a solution to (1.1). In fact, one may derive an efficient procedure for testing the
validity of this conjecture for any fixed c, thereby generalizing Leveque’s theorem; for
small values, we have:

Theorem 1.5 If a, b and c are integers with a, b ≥ 2 and 1 ≤ c ≤ 100, then equa-
tion (1.1) has at most one solution in positive integers x and y, except for triples (a, b, c)
satisfying

(a, b, c) ∈ {(3, 2, 1), (2, 3, 5), (2, 3, 13), (4, 3, 13), (16, 3, 13),

(2, 5, 3), (13, 3, 10), (91, 2, 89), (6, 2, 4), (15, 6, 9)}.

In each of these cases, (1.1) has precisely two positive solutions.

Finally, if we restrict our attention to prime values of a (where we assume that c
is positive), we may verify Conjecture 1.2 for a number of fixed values of a. The first
result of this nature was obtained by Scott [Sc] in the case a = 2 (we will discuss this
in more detail in Section 2). We prove:
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Theorem 1.6 If a, b ≥ 2 and c are positive integers, with a prime and b ≡ ±1
(mod a), then (1.1) has at most one positive solution (x, y) unless

(a, b, c) ∈ {(3, 2, 1), (2, 3, 5), (2, 3, 13)}.

In each of these cases, there are precisely two such solutions.

An (almost) immediate corollary of this, which proves Conjecture 1.2 for a =
2n + 1 prime (i.e., for the Fermat primes; a presumably finite set), is the following:

Corollary 1.7 If a ∈ {3, 5, 17, 257, 65537} and b ≥ 2, then (1.1) has at most one
positive solution (x, y) unless (a, b, c) = (3, 2, 1), in which case there are two solutions
(x, y) = (1, 1) and (x, y) = (2, 3).

It appears to be difficult to prove Conjecture 1.2 for an infinite family of values
of a or, for that matter, for even a single fixed b. We note that Conjecture 1.2, in
the special case where (1.1) possesses a minimal solution (x, y) = (1, 1), has been
considered from a rather different viewpoint by Mignotte and Pethő [MP], moti-
vated by computations of Fielder and Alford [FA]. Additionally, results of Mordell
[Mo] and Pintér [Pin] on elliptic Diophantine equations may be recast as cases of
Conjecture 1.2, where we specify values of positive solutions (x1, y1) and (x2, y2) as
(x1, y1, x2, y2) = (1, 1, 2, 3) and (2, 1, 3, 2), respectively. Further, (1.1) is a simple ex-
ample of an S-unit equation. Though general bounds for the number of solutions to
such equations have reached an admirable state of refinement (see e.g. Beukers and
Schlickewei [BS]) or Shorey and Tijdeman [ShTi]), we feel there is still some merit in
careful examination of a restricted situation.

2 Elementary Results

Before we proceed with the proofs of our Theorems, we will mention a related result
due to Scott [Sc]. By applying elementary properties of integers in quadratic fields,
Scott proved the following (an immediate consequence of Theorems 3 and 4 of [Sc]):

Proposition 2.1 If b > 1 and c are positive integers and a is a positive rational prime,
then equation (1.1) has at most one solution in positive integers x and y unless either
(a, b, c) = (3, 2, 1), (2, 3, 5), (2, 3, 13) or (2, 5, 3), or a > 2, gcd(a, b) = 1 and the
smallest t ∈ N such that bt ≡ 1 (mod a) satisfies t ≡ 1 (mod 2). In these situations,
the given equation has at most two such solutions. If equation (1.1), with the above hy-
potheses, has distinct positive solutions (x1, y1) and (x2, y2), then y2− y1 ≡ 1 (mod 2),
unless (a, b, c) = (3, 2, 1), (2, 3, 5), (2, 3, 13), (2, 5, 3) or (13, 3, 10).

This result establishes Conjecture 1.2 in the case a = 2 and includes the pairs
(a, b) = (3, 2) and (2, 3) as special cases (Conjecture 1.2 for these pairs was an old
question of Pillai [Pi2], resolved via the theory of linear forms in logarithms of alge-
braic numbers by Stroeker and Tijdeman [StTi]; see also Chein [Ch] and Herschfeld
[He]). From Proposition 2.1, we can, in the proof of Theorem 1.1, restrict attention
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to those a that possess at least two distinct prime factors (so that a ≥ 6). For The-
orems 1.3, 1.4 and 1.5, we will also suppose that a ≥ 6, an assumption we will not
justify until Section 7 (the proof of Theorem 1.6 will not rely upon any prior results).
In all cases, we will henceforth assume, without loss of generality, that a and b are not
perfect powers and that c is positive.

3 Proof of Theorem 1.1

In this section, we will prove that equation (1.1) has at most two positive solutions
(x, y), provided a, b and c are positive integers with a, b ≥ 2. Let us suppose that, in
fact, there are three such solutions (xi , yi) in positive integers, where

x1 < x2 < x3 and y1 < y2 < y3.

We begin by noting that, for i = 1, 2, we have

yi+1xi − xi+1 yi > 0.(3.1)

To see this, observe that the function Ax − Bx is monotone increasing for x ≥ 1,
provided A > B > 1, and so

axi+1 − byi
xi+1

xi > c = axi+1 − byi+1 .

It follows that yi+1xi > yixi+1, as desired. Inequality (3.1), though extremely simple,
will prove to be of crucial importance in establishing a “gap principle” for the solu-
tions (xi , yi); i.e., a result which guarantees that these solutions do not lie too close
together. In the context of equation (1.1), this inequality occurs first in work of Terai
[Te].

We first suppose that gcd(a, b) > 1. There thus exists a prime p dividing a and b,
say with ordp a = α ≥ 1 and ord p b = β ≥ 1. Since

axi (axi+1−xi − 1) = byi (byi+1−yi − 1),

it follows that αxi = βyi for i = 1, 2, whereby

x1

y1
=

x2

y2
=
β

α
,

contradicting (3.1). We will therefore assume, for the remainder of this section, that
gcd(a, b) = 1.

Let us write
Λi = xi log a− yi log b,

whereby

eΛi − 1 =
c

byi

and so
log |Λi | < log

( c

byi

)
.
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We will use this inequality to show, at least for i ≥ 2, that |Λi| is “small”. From this,
we will (eventually) derive a contradiction. Arguing crudely, since x3 > x2 > x1, we
have

ax3 ≥ ax1+2 > a2c and ax2 ≥ ax1+1 > ac,

whence
axi

byi
=

axi

axi − c
<

ai−1

ai−1 − 1
for 2 ≤ i ≤ 3.

It follows that

byi < axi <
ai−1

ai−1 − 1
byi

and so

log |Λi | < log

(
min

{
ai−1c

(ai−1 − 1)axi
,

c

byi

})
(3.2)

for 2 ≤ i ≤ 3. Let us also note that

yi+1Λi − yiΛi+1 = (xi yi+1 − xi+1 yi) log a ≥ log a,

where the inequality follows from (3.1). Since Λi+1 > 0, we thus have

xi+1

log b
>

yi+1

log a
>

1

Λi
.(3.3)

The following is the Corollary to Theorem 2 of Mignotte [Mi]; here, h(α) denotes
the absolute logarithmic Weil height of α, defined, for an algebraic integer α, by

h(α) =
1

[Q(α) : Q]
log
∏
σ

max{1, |σ(α)|},

where σ runs over the embeddings of Q(α) into C.

Lemma 3.1 Consider the linear form

Λ = b2 logα2 − b1 logα2

where b1 and b2 are positive integers and α1, α2 are nonzero, multiplicatively indepen-
dent algebraic numbers. Set

D = [Q(α1, α2) : Q]/[R(α1, α2) : R]

and let ρ, λ, a1 and a2 be positive real numbers with ρ ≥ 4, λ = log ρ,

ai ≥ max{1, ρ| logαi| − log |αi | + 2Dh(αi)} (1 ≤ i ≤ 2)

and
a1a2 ≥ max{20, 4λ2}.
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Further suppose h is a real number with

h ≥ max

{
3.5, 1.5λ,D

(
log

(
b1

a2
+

b2

a1

)
+ logλ + 1.377

)
+ 0.023

}
,

χ = h/λ and υ = 4χ + 4 + 1/χ. We may conclude, then, that

log |Λ| ≥ −(C0 + 0.06)(λ + h)2a1a2,

where

C0 =
1

λ3



(

2 +
1

2χ(χ + 1)

)1

3
+

√
1

9
+

4λ

3υ

(
1

a1
+

1

a2

)
+

32
√

2(1 + χ)3/2

3υ2√a1a2






2

.

We apply this lemma to |Λ3| where, in the notation of Lemma 3.1, we have

D = 1, α1 = b, α2 = a, b1 = y3, b2 = x3

and, since we assume b ≥ 2 and a ≥ 6, may take

a1 = (ρ + 1) log b, a2 = (ρ + 1) log a.

Choosing ρ = 4.74, it follows that a1a2 ≥ max{20, 4λ2}. Let

h = max

{
9.365, log

(
x3

log b

)
+ 0.788

}
.

That this is a valid choice for h follows from the inequality

x3

log b
>

y3

log a
.

We will treat the two possible choices for h in turn. Suppose first that

h = log

(
x3

log b

)
+ 0.788

whereby we have

x3

log b
> 5308.(3.4)

If b = 2, from Proposition 2.1, we may assume that a ≥ 15, while, for b ≥ 3,
we may suppose that a ≥ 6. It follows that 1

a1
+ 1

a2
and 1

a1a2
are both maximal for

(a, b) = (15, 2) and hence, in Lemma 3.1, we have C0 < 0.615. Applying this lemma,
we conclude that

log |Λ3| > −22.24

(
log

(
x3

log b

)
+ 2.345

)2

log a log b.
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Combining this with (3.2), we find, since a ≥ 6, that

x3

log b
<

log c

log a log b
+

log(36/35)

log a log b
+ 22.24

(
log

(
x3

log b

)
+ 2.345

)2

.

Since (x1, y1) is a solution to equation (1.1), it follows that c < ax1 and so, in con-
junction with log a log b ≥ log 2 log 15, we have

x3 − x1

log b
< 0.01 + 22.24

(
log

(
x3

log b

)
+ 2.345

)2

.

From (1.1), we obtain

axi+1−xi ≡ 1 (mod byi ) and byi+1−yi ≡ 1 (mod axi )(3.5)

and, consequently,
ax3−x2 > by2 > by1 ax1 .

It follows that x3 − x1 > x1 and so

x3

log b
< 0.02 + 44.48

(
log

(
x3

log b

)
+ 2.345

)2

,

contradicting (3.4).
We therefore have that h = 9.365, whereby

x3

log b
< 5309.(3.6)

Since (3.2) and (3.3) yield

x3

log b
>

1

Λ2
>

by2

c
>

ax2 − ax1

c
> ax2−x1 − 1,

where the last two inequalities follow from ax2 − ax1 < by2 < ax2 and ax1 > c, we may
thus conclude that

ax2−x1 ≤ 5309.

Since a ≥ 6 and (via Proposition 2.1) ω(a) ≥ 2 (i.e., a possesses at least two distinct
prime factors), we are left to consider

x2 − x1 = 1 6 ≤ a ≤ 5308
x2 − x1 = 2 6 ≤ a ≤ 72
x2 − x1 = 3 6 ≤ a ≤ 15
x2 − x1 = 4 a = 6.

(3.7)

To deal with the remaining cases, we first note that, from (3.2), we have∣∣∣∣ log b

log a
−

xi

yi

∣∣∣∣ < c

yibyi log a
.(3.8)
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We may thus conclude that xi
yi

is a convergent in the simple continued fraction ex-

pansion to log b
log a , provided

c

yibyi log a
<

1

2y2
i

i.e., if

byi log a

cyi
> 2.

In particular, since (3.5) yields

byi+1−yi > axi > byi ,

we have

by3 log a

cy3
>

by3−y2+y1

y3
log a ≥

b
1
2 y3+ 1

2 +y1

y3
log a > 2,

where the last inequality follows from yi+1 ≥ 2yi + 1 (whereby y3 ≥ 7) and b ≥ 2.
Thus x3

y3
is a convergent in the simple continued fraction expansion to log b

log a . On the

other hand, if pr/qr is the r-th such convergent, then

∣∣∣∣ log b

log a
−

pr

qr

∣∣∣∣ > 1

(ar+1 + 2)q2
r

where ar+1 is the (r + 1)-st partial quotient to log b
log a (see e.g. [Kh]). It follows, then, if

x3
y3
= pr

qr
, that

ar+1 >
by3 log a

cy3
− 2 >

b
1
2 y3+ 1

2 +y1

y3
log a− 2.(3.9)

For each 1 ≤ x2 − x1 ≤ 4 and each a in the ranges given in (3.7) we compute, for
each b dividing ax2−x1 − 1, the initial terms in the infinite simple continued fraction
expansion to log b

log a . To carry out this calculation, we utilize Maple V and find, in all
cases except (a, b) = (3257, 148), (4551, 25) and (5261, 526), that the denominator
of the 19-th convergent to log b

log a satisfies q19 ≥ 5309 log a. Since 3257 and 5261 are

prime and 25 = 52, these cases are excluded by hypothesis. It follows from

y3

log a
<

x3

log b

and (3.6) that y3 < 5309 log a and so we necessarily have x3
y3
= pr

qr
with 1 ≤ r ≤ 18.
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The only a and b under consideration for which we find a partial quotient ak with
k ≤ 19 and ak ≥ 100000 are given in the following table

a b ak

1029 257 a4 = 146318
1837 204 a16 = 1859087
2105 526 a14 = 149863
2179 33 a8 = 169118
2194 731 a4 = 251316
3741 5 a14 = 197241
4348 621 a15 = 132488.

(3.10)

On the other hand, (3.9) implies, since b ≥ 2 (and a ≥ 15 if b = 2), that ar+1 >
100000 provided y3 ≥ 38. It follows that y3 ≤ 37 in all cases (since a much stronger
result is a consequence of (3.9) for those (a, b) listed in (3.10)). Since

y3

log a
> ax2−x1 − 1,

we have (ax2−x1 − 1) log a < 37, whereby 6 ≤ a ≤ 14 and x2 − x1 = 1 (whence
(a, b) ∈ {(6, 5), (10, 3), (14, 13)}). For these three cases, we find that qk ≥ 5309 log a
with k = 12, 9 and 9, respectively and the largest partial quotient under consideration
is a3 = 34 to log 13

log 14 . Together with (3.9), this contradicts

y3 ≥ 2y2 + 1 ≥ 4y1 + 3 ≥ 7,

completing the proof of Theorem 1.1.

4 Effective Pillai

One deficiency in the main theorem of Pillai [Pi2] is the ineffectivity stemming from
the application of Siegel’s Theorem. In this section, we will derive an effective (in-
deed, explicit) version, valid, additionally, for pairs (a, b) which fail to be relatively
prime.

We will have use of the following result (see Ribenboim [Ri, (C6.5), pp. 276–278]
for a proof); to state it, we require some notation. If gcd(a, b) = 1, define m(a, b)
and n(a, b) to be positive integers such that

bn(a,b) = 1 + lam(a,b)

with l an integer, gcd(l, a) = 1, m(a, b) ≥ 2 and n(a, b) minimal. That such m(a, b)
and n(a, b) exist follows from e.g. Ribenboim [Ri, (C6.5)]. We have

Lemma 4.1 Suppose that a and b are relatively prime integers with a, b ≥ 2. If
N,M ≥ 2 are positive integers with M ≥ m(a, b) and bN ≡ 1 (mod aM), then N is
divisible by n(a, b)aM−m(a,b).
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In essence, this follows from the well known fact that, if x and y are non-zero,
relatively prime integers and n > 1, then

gcd

(
x − y,

xn − yn

x − y

)
= gcd(x − y, n).

To apply this lemma, we require an upper bound for m(a, b).

Lemma 4.2 If a, b ≥ 2 are relatively prime integers, then

m(a, b) < φ(a2)
log b

log 2
,

where φ denotes Euler’s totient function.

Proof We follow work of Pillai [Pi2, see the erratum on p. 215]. Let us begin by
writing

a = pα1
1 pα2

2 · · · p
αr
r ,

where p1, . . . , pr are distinct primes and αi ∈ N, and choosing t1 ∈ N minimal such
that

bt1 ≡ 1 (mod a2).

We thus have
bt1 = 1 + M1 pβ1

1 pβ2
2 · · · p

βr
r as1

where s1 ≥ 2, M1 ∈ N, gcd(M1, a) = 1 and βi ≤ αi − 1 for at least one value of
1 ≤ i ≤ r. If r = 1 and a ≥ 3, it follows that

bt1 p
α1−β1
1 = 1 + M2as1+1

where gcd(M2, a) = 1, and so m(a, b) ≤ s1 + 1. By the definition of t1, we have
t1 ≤ φ(a2) and so, since as1 < bt1 ,

m(a, b) < φ(a2)
log b

log a
+ 1 < φ(a2)

log b

log 2
.

On the other hand, if a = 2, then necessarily β1 = 0 and so

m(a, b) = s1 < φ(a2)
log b

log 2
.

If r ≥ 2, then arguing as in (C6.5) of Ribenboim [Ri, see pp. 275–276], if k ∈ N is
minimal such that βi < kαi for 1 ≤ i ≤ r, we have

m(a, b) ≤ s1 + k + 1.

Suppose, without loss of generality, that (k− 1)α1 ≤ β1 < kα1, so that

as1 < (M1 pβ1
1 pβ2

2 · · · p
βr
r )−1bt1 < p−(k−1)α1

1 bt1 .
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From t1 ≤ φ(a2), we have

as1 < p−(k−1)α1
1 bφ(a2)

whereby
s1 log a + (k− 1)α1 log p1 < φ(a2) log b.

Since we assume that r ≥ 2, we thus have a ≥ 6, whence

s1 log 6 + (k− 1) log 2 < φ(a2) log b.

Using that s1 ≥ 2, we conclude that

m(a, b) ≤ s1 + k + 1 < φ(a2)
log b

log 2
,

as desired.

We will first prove Theorem 1.3 in the situation where δ(a, b) = 0. In this case,
something stronger is true.

Lemma 4.3 If a, b and c are positive integers with a, b ≥ 2 and δ(a, b) = 0, then
equation (1.1) has at most a single solution in positive integers (x, y).

Proof To prove this, note first that δ(a, b) = 0 implies gcd(a, b) > 1. If (1.1) has
two distinct positive solutions (say (x1, y1) and (x2, y2), with x2 > x1), then from

ax2 − by2 = ax1 − by1 = c > 0,

if p is a prime dividing gcd(a, b), with ord p a = α and ord p b = β, we have

x1α = y1β(4.1)

and, by (3.1),
x2α < y2β.

It follows that

ord p c = x2α.(4.2)

Since we have assumed that δ(a, b) = 0, every prime dividing a also divides gcd(a, b)
and thus ax2 divides c = ax1 − by1 , contradicting x2 > x1.

If δ(a, b) > 0, Theorem 1.3 is a consequence of the following result.

Proposition 4.4 If a, b and c are positive integers with a, b ≥ 2 and δ(a, b) > 0, then
equation (1.1) has at most a single solution in positive integers (x, y) with

x ≥
m(a0, b) + 5

δ(a, b)
.
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Proof The constant 5 on the right hand side of the above inequality may likely be
replaced by 0, with a certain amount of effort; we will not undertake this here. Since
δ(a, b) > 0, we have 2 ≤ a0 ≤ a. Let us suppose that we have two solutions to (1.1)
in positive integers, say (x1, y1) and (x2, y2), with

x2 > x1 =
m(a0, b) + k

δ(a, b)
,

where k ≥ 5. From the equation

ax1 (ax2−x1 − 1) = by1 (by2−y1 − 1),

it follows that
by2−y1 ≡ 1 (mod ax1

0 )

and so Lemma 4.1 implies that ax1−m(a0,b)
0 divides y2 − y1. Thus

y2 > a
m(a0 ,b)+k
δ(a,b) −m(a0,b)

0 = (a/a0)m(a0 ,b)ak ≥ a5.(4.3)

On the other hand, c < ax1 , so

log c < x1 log a =

(
m(a0, b) + k

)
log2 a

log a0
.

The first inequality in (4.3) thus implies that

y2 log b

log c
>

(a/a0)m(a0,b)ak log a0 log b(
m(a0, b) + k

)
log2 a

≥
ak log b(

m(a0, b) + k
)

log a
.

From Lemma 4.2, we have

m(a0, b) <
φ(a2

0) log b

log 2
<

a2
0 log b

log 2
≤

a2 log b

log 2

and so

y2 log b

log c
>

ak(
a2

log 2 + k
log b

)
log a

> 73,(4.4)

where the second inequality follows from k ≥ 5, a ≥ 6 and b ≥ 2. We will use
(4.3) and (4.4) to deduce absolute upper bounds upon a and y2, in conjunction with
Lemma 3.1.

Let us write
Λ2 = x2 log a− y2 log b,

where, in the notation of Lemma 3.1, we have

D = 1, α1 = b, α2 = a, b1 = y2, b2 = x2, a1 = (ρ + 1) log b, a2 = (ρ + 1) log a.
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Further, take ρ = 4.1 and

h = max

{
9, log

(
x2

log b

)
+ 0.9

}
.

As before, these are valid choices in Lemma 3.1. Suppose first that

h = log

(
x2

log b

)
+ 0.9,

whereby we have

x2

log b
> 3294.(4.5)

By Proposition 2.1 and our assumption that a ≥ 6, it follows that

1

a1
+

1

a2
and

1

a1a2

are both maximal for (a, b) = (6, 2) and hence, in Lemma 3.1, we have C0 < 0.87.
Applying this lemma, we conclude that

log |Λ2| > −24.2

(
log

(
x2

log b

)
+ 2.4

)2

log a log b.

Combining this with (3.2), we find, since a ≥ 6, that

x2

log b
<

log(6c/5)

log a log b
+ 24.2

(
log

(
x2

log b

)
+ 2.4

)2

.(4.6)

Since
x2

log b
>

y2

log a
>

73 log(c)

log a log b
,

where the latter inequality follows from (4.4), (4.6) thus implies (with a ≥ 6 and
b ≥ 2) that

x2

log b
< 0.2 + 24.6

(
log

(
x2

log b

)
+ 2.4

)2

which contradicts (4.5). We therefore have

y2

log a
<

x2

log b
< 3295.

From inequality (4.3), it follows that

a5

log a
< 3295.

Since a ≥ 6, this contradiction completes the proof of Proposition 4.4.
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We will now prove Theorem 1.3. As previously mentioned, the cases a = 3 and
a = 5 will be treated in Section 7. From Proposition 2.1, we therefore assume a ≥ 6.
If δ(a, b) = 0, then the desired conclusion is immediate from Lemma 4.3. Let us
suppose that a, b and c are positive integers with a, b ≥ 2, δ(a, b) > 0 and c ≥
b2a2 log a, for which equation (1.1) possesses distinct positive solutions (x1, y1) and
(x2, y2) (with x2 > x1). Since ax1 > c, we thus have x1 > 2a2 log b. On the other
hand, Lemma 4.2 gives

m(a0, b)

δ(a, b)
=

m(a0, b) log a

log a0
<

a2
0 log b log a

log 2 log a0
≤

a2 log b

log 2

and so

x1 −
m(a0, b)

δ(a, b)
>

(
2−

1

log 2

)
a2 log b.

Since a ≥ 6, b ≥ 2 and a0 ≥ 2, this last quantity exceeds 5 log a
log a0

, completing the proof
of Theorem 1.3, in case a is composite.

Let us now suppose that a ≥ 7 is prime, b ≥ 2 and c ≥ ba. Since δ(a, b) > 0,
it follows that gcd(a, b) = 1. We begin by calculating m(a, b) more precisely in this
situation. Choose n to be the smallest positive integer such that bn ≡ 1 (mod a) and
write bn = 1 + ja. If gcd( j, a) = 1, then

ban ≡ 1 + ja2 +

(
a

2

)
j2a2 (mod a3).

Since a > 2 is prime, it follows that ban ≡ 1 + ja2 (mod a3), whence

gcd

(
ban − 1

a2
, a

)
= 1

and therefore m(a, b) = 2. If, on the other hand, gcd( j, a) > 1 (so that a divides
j), then we can write bn = 1 + lam(a,b). Since n divides φ(a) = a − 1 and, via
Proposition 2.1, we may assume that n is odd, we have n ≤ a−1

2 and so

am(a,b) < bn ≤ b
a−1

2 .

It follows that

m(a, b) < max

{
2,

a− 1

2

log b

log a

}
.(4.7)

Now
a− 1

2

log b

log a
≥ 2

for a ≥ 7 prime, unless b = 2 and 7 ≤ a ≤ 17 or (a, b) = (7, 3). From Proposi-
tion 2.1, if (a, b) �= (7, 2), since ax1 > c ≥ ba, (4.7) implies that x1 > 2m(a, b) and
thus Lemma 4.1 yields

y2 > ax1−m(a,b) ≥ a
x1+1

2 .
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Applying the arguments immediately preceding and following (4.6), we obtain y2

log a <

3295. If a ≥ 47, this implies that x1 ≤ 4, contradicting x1 > 2m(a, b) ≥ 4. Similarly,
we have x1 ≤ 9 (if a = 7), x1 ≤ 7 (if 11 ≤ a ≤ 13), x1 ≤ 6 (if 17 ≤ a ≤ 19) and
x1 ≤ 5 (if 23 ≤ a ≤ 43). Since ax1 > c ≥ ba, we derive the inequalities b ≤ 12 (if
a = 7), b ≤ 4 (if a = 11), b ≤ 3 (if a = 13), b = 2 (if a = 17 or 19) and a contradic-
tion for larger values of a. After applying Proposition 2.1, we are left to consider only
the pairs (a, b) = (7, 11), (11, 3) and (13, 3). In each case, we have m(a, b) = 2 and
so the inequalities

ax1−m(a,b) < 3295 log a, ax1 > c ≥ ba and x1 ≥ 2m(a, b) + 1 = 5

lead to immediate contradictions. Finally, if we suppose that (a, b) = (7, 2), then

(−1)y1 ≡ (−1)y2 (mod 3),

which implies that y1 ≡ y2 (mod 2), contradicting Proposition 2.1.

5 Generalizing Terai

In [Te], Terai obtains a result which implies Conjecture 1.2 in case equation (1.1)
has the solution (x, y) = (1, 1) and (a, b, c) are relatively prime, positive integers
with a ≥ 2 and b ≥ 1697c. In this section, we will generalize this to include the
possibility that gcd(a, b) > 1 and eliminate any suppositions about the size of the
smallest solution (x, y).

Suppose that a, b and c are positive integers, with a, b ≥ 2, for which we have two
positive solutions (x1, y1) and (x2, y2) to (1.1), with x1 < x2 and

by2 > by1 ≥ 6000c1/δ∗(a,b),

where
δ∗(a, b) = max{δ(a, b), 1− δ(a, b)}.

Let us define, as in Section 1, a0 and b0 to be the largest positive integral divisors of
a and b, respectively, relatively prime to b and a, respectively. From (4.2) and the
arguments preceding it, we have that (a/a0)x2 divides c and so

c ≥ a(1−δ(a,b))x2 .

Since

ax1 > by1 > 6000c1/δ∗(a,b),(5.1)

it follows that

x1 >

(
1− δ(a, b)

)
δ∗(a, b)

x2.

From x2 > x1 and the definition of δ∗(a, b), we thus have δ(a, b) > 1/2 and so
δ∗(a, b) = δ(a, b). From (4.1),

(a/a0)x1 = (b/b0)y1
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and so by1 > 6000c, ax1 = by1 + c and ax2−x1 ≡ 1 (mod by1

0 ) together imply that

ax2−x1 > by1

0 >
6000

6001
ax1

0 =
6000

6001
aδ(a,b)x1 .

We may therefore conclude that

x2 >
(

1 + δ(a, b)
)

x1 −
log(6001/6000)

log a
.(5.2)

Since δ(a, b) > 1/2, a and b are necessarily multiplicatively independent and we
may again apply Lemma 3.1 to Λ2 = x2 log a− y2 log b, where we take

D = 1, α1 = b, α2 = a, b1 = y2, b2 = x2, a1 = (ρ + 1) log b, a2 = (ρ + 1) log a.

Choosing ρ = 4.7 and

h = max

{
9.45, log

(
x2

log b

)
+ 0.79

}
.

we argue as in Section 3 (with 1
a1

+ 1
a2

and 1
a1a2

maximal for (a, b) = (6, 2), whence
C0 < 0.65). Our conclusion is that, if

h = log

(
x2

log b

)
+ 0.79,

whence

x2

log b
> 5767,(5.3)

we have
x2

log b
<

log(6c/5)

log a log b
+ 23.1

(
log

(
x2

log b

)
+ 2.4

)2

.

From (5.1),
c < 6000δ(a,b)aδ(a,b)x1

and so, combining this with (5.2) and using that δ(a, b) > 1/2, we find that

x2

log b
−

log(6c/5)

log a log b
>

1

1 + δ(a, b)

x2

log b
,

whereby
x2

log b
< 23.1

(
1 + δ(a, b)

) (
log

(
x2

log b

)
+ 2.4

)2

.

Since δ(a, b) ≤ 1, this contradicts (5.3). It follows that

log

(
x2

log b

)
+ 0.79 < 9.45,
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or x2

log b
< 5768.

On the other hand, (3.2) and (3.3) imply that

x2

log b
>

1

Λ1
>

by1

c
> 6000,

which yields the desired contradiction.

6 Small Values of c

In this section, we will prove Conjecture 1.2 for all 1 ≤ c ≤ 100, including cases with
gcd(a, b) > 1. Our proof will, in contrast to those of Leveque [Lev] and Cassels [Ca]
for c = 1, rely upon lower bounds for linear forms in logarithms. It does not appear
to be a routine matter to extend their arguments to larger values of c.

Suppose first that gcd(a, b) = 1 and that we have two positive solutions (x1, y1)
and (x2, y2) to (1.1), with x1 < x2 and y1 < y2. Once again, applying Lemma 3.1 to

Λ2 = x2 log a− y2 log b,

we may choose ρ = 5.11 and

h = max

{
8.56, log

(
x2

log b

)
+ 0.773

}
.

If we have

h = log

(
x2

log b

)
+ 0.773,

then

x2

log b
> 2409(6.1)

and thus, since 1
a1

+ 1
a2

and 1
a1a2

are maximal for (a, b) = (7, 2), C0 < 0.556. Applying
Lemma 3.1, we conclude that

log |Λ2| > −22.997

(
log

(
x2

log b

)
+ 2.405

)2

log a log b.

Combining this with (3.2), we find, since a ≥ 6, that

x2

log b
<

log(6c/5)

log a log b
+ 22.997

(
log

(
x2

log b

)
+ 2.405

)2

.

From 1 ≤ c ≤ 100 and log a log b ≥ log 7 log 2, we thus have

x2

log b
< 3.715 + 22.997

(
log

(
x2

log b

)
+ 2.405

)2

,
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contradicting (6.1). It follows that

by1

c
<

x2

log b
< 2410.(6.2)

For each value of 1 ≤ c ≤ 100, this provides an upper bound upon by1 and, via
ax1 = by1 + c, upon ax1 . To complete the proof of Theorem 1.5 for relatively prime a
and b, we will argue as in Section 3. Let us first suppose that

by2 log a

cy2
> 2,

so that x2
y2

is a convergent in the simple continued fraction expansion to log b
log a , say

x2
y2
= pr

qr
. In fact, we must have x2 = pr and y2 = qr. If not, then gcd(x2, y2) = d > 1

and so, writing x2 = dx and y2 = dy,

ax2 − by2 = (ax − by) ·
d−1∑
i=0

aixb(d−i−1)y = c.

It follows that

d−1∑
i=0

aixb(d−i−1)y ≤ c.(6.3)

If x1 = 1, this is an immediate contradiction, since a > a − by1 = c. Similarly, if
x1 = 2, we have x2 ≥ 3 and so a(d−1)x > a2 − by1 . We may thus assume that x1 ≥ 3
(so that x2 ≥ 4). If d = 2 and x2 = 4, we have y2 ≥ 6, whereby inequality (6.3)
implies that a2 + b3 ≤ c ≤ 100. Since we assume that a and b are not perfect
powers, with gcd(a, b) = 1, Proposition 2.1 implies (a, b) = (7, 2), contradicting
0 < a4 − by2 ≤ 100. If d = 2 and x2 ≥ 6, then y2 ≥ 4 and so a3 + b2 ≤ 100,
contradicting a ≥ 6. Finally, if d ≥ 3 and x2 ≥ 4, then (d−1)x ≥ 3 and so a3 < 100,
again contradicting a ≥ 6.

We thus have

ar+1 >
by2 log a

cy2
− 2 =

bqr log a

cqr
− 2.(6.4)

For each pair (a, b) under consideration, we compute the initial terms in the contin-
ued fraction expansions to log b

log a via Maple V and check to see if there exists a conver-

gent pr/qr with pr < 2410 log b, pr ≥ 2, qr ≥ 3 and related partial quotient ar+1

satisfying (6.4). This is a relatively substantial calculation, as there are roughly seven
million pairs (a, b) to treat. We find that the numerators pr satisfy p16 > 2410 log b,
with precisely three exceptions corresponding to (a, b) = (98, 17), (108, 53) and
(165, 91). In the first of these, we have p18 > 2410 log b, while in the second and
third, we have p17 > 2410 log b. The largest partial quotient we encounter, associ-
ated with a convergent for which pr < 2410 log b, is a8 = 15741332, corresponding
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to (a, b) = (1968, 1937) (this contradicts (6.4), however). In fact, the only (a, b) not
excluded by Proposition 2.1 for which we find convergents and partial quotients sat-
isfying all the desired properties have either (pr, qr) = (2, 3) or are as given in the
following table:

a b r ar pr qr c
23 2 4 10 2 9 15, 17, 19, 21
45 2 3 30 2 11 29, 37, 41, 43
91 2 4 31 2 13 87, 89
13 3 4 79 3 7 10, 88
47 3 4 54 2 7 22, 38, 44

421 3 4 1034 2 11 94
56 5 4 228 2 5 11, 31, 51

130 7 4 175 2 5 93
6 11 3 21 4 3 95
3 13 3 79 7 3 14, 68, 74.

(6.5)

Since a theorem of Mordell [Mo] ensures that the Diophantine equation

a− b = a2 − b3

has precisely the solutions

(a, b) ∈ {(−14, 6), (−2, 2), (0,−1),(0, 0), (0, 1), (1,−1), (1, 0),

(1, 1), (3, 2), (15, 6)},

we may restrict attention to (a, b, c) in (6.5). It is easily checked that amongst these,
there exist positive integers x1 < pr and y1 < qr with

apr − bqr = ax1 − by1 > 0

only for (a, b, c) = (91, 2, 89) and (13, 3, 10).
Next suppose that

by2 log a

cy2
≤ 2.(6.6)

Since a ≥ 6, y2 ≥ 3 and 1 ≤ c ≤ 100, we thus have 2 ≤ b ≤ 7. More precisely, if
b = 7, it follows that y2 = 3 and y1 = 1, whereby ax1 divides 48. This implies that
c ≤ 41, contradicting (6.6). Similarly, if b = 6, y2 = 3, y1 = 1, 35 is divisible by ax1

and so c ≤ 29, again contrary to (6.6). If b = 5, y1 = 1, y2 = 3 or 4 and ax1 divides 24
or 124, respectively. We thus have ax1 ∈ {6, 12, 24} if y2 = 3 or ax1 ∈ {31, 62, 124},
if y2 = 4, in each case contradicting (6.6). If b = 3, then Proposition 2.1 implies that
we may assume a ≥ 10, so (6.6) and c ≤ 100 yield y2 ≤ 5, whence ax1 divides 8 (if
(y1, y2) = (1, 3)), 26 (if (y1, y2) = (1, 4) or (2, 5)) or 80 (if (y1, y2) = (1, 5)). The
first of these is excluded by Proposition 2.1, the second and third by inequality (6.6).
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If b = 2, a ≥ 7 and so y2 ≤ 10. It follows that ax1 divides 2y2−y1 − 1, where
2 ≤ y2 − y1 ≤ 9. From a ≥ 6 and

a2 ≤ ax2 ≤ 2y2 + 100 ≤ 1124,

whereby a ≤ 33, we have that ax1 is equal to one of 7 (with y2 − y1 ∈ {3, 6, 9}), 15
(y2 − y1 ∈ {4, 8}), 17 (y2 − y1 = 8), 21 (y2 − y1 = 6) or 31 (y2 − y1 = 5). The
cases ax1 = 17 and 21 immediately contradict (6.6). If ax1 = 7 then (6.6) implies
(y1, y2) = (1, 4) so that 7x2 = 21. Similarly, ax1 = 15 leads to 15x2 = 45 and ax1 = 31
implies 31x2 = 93. These contradictions complete the proof of Theorem 1.5 for pairs
(a, b) with gcd(a, b) = 1.

Finally, we turn our attention to triples (a, b, c) with gcd(a, b) > 1 and 1 ≤ c ≤
100. If the equation at hand has two positive solutions, then, from

ax1 (ax2−x1 − 1) = by1 (by2−y1 − 1),

if ord p a = α and ord p b = β, equations (4.1) and (4.2) are necessarily satisfied. For
fixed c, this yields bounds upon α and x2, and hence upon x1, y1 and β. Since

y2β ≥ x2α + 1,(6.7)

the equation

(by1 + c)
x2
x1 − by2 = c(6.8)

provides explicit bounds upon b and, via ax1 = by1 + c, upon a.
By way of example, we will give our arguments in detail for c = 4, 8 and 9, noting

that we need not consider squarefree values of c. If c = 4, then gcd(a, b) > 1 implies
gcd(a, b) = 2 and so, from (4.2), x2 = 2 and α = 1. Equation (4.1) thus implies that
x1 = y1 = β = 1 and so, from (6.7) and (6.8),

(b + 4)2 − b3 ≥ 4.

This implies that b ≤ 3. Since 2 divides b, it follows that b = 2. We thus have
2y2 = 32 and so y2 = 5, corresponding to 6− 2 = 62 − 25 = 4.

If c = 8, we have, if gcd(a, b) > 1, that gcd(a, b) = 2, x2α = 3 (so that x2 = 3 and
α = 1) and x1 ∈ {1, 2}. In the first case (where we have y1 = β = 1), we are led to

(b + 8)3 − b4 ≥ 8,

whereby b ≤ 7. Since ord2 b = β = 1, in this situation, we thus have b = 2 or b = 6,
whence 2y2 = 992 or 6y2 = 2736, both contradictions. If, instead, x1 = 2, then (4.1)
implies that y1β = 2. In case y1 = 1, we have, from y2 ≥ 2y1 + 1,

(b + 8)3/2 − b3 ≥ 8,
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and so b ≤ 3, contradicting β = 2. If y1 = 2, y2 ≥ 5 and

(b2 + 8)3/2 − b5 ≥ 8,

whence b ≤ 2 (so that b = 2). Since 12 is not a square, we conclude that equa-
tion (1.1) has at most one positive solution (x, y) provided c = 8 and gcd(a, b) > 1.

Similarly, if we consider c = 9 with gcd(a, b) > 1, then necessarily x1 = y1 =
α = β = 1 and x2 = 2, so that

(b + 9)2 − b3 ≥ 9.

This implies that b ≤ 6. Since 3 divides b, we are thus left with the cases b = 3 and
b = 6. In the former, (6.8) yields 3y2 = 135, a contradiction, while the latter leads
to 6y2 = 216; i.e., to the known example 15 − 6 = 152 − 63 = 9. Arguing similarly
for the remaining 36 non-squarefree values of c ≤ 100, we find no other additional
triples (a, b, c) for which (1.1) has two positive solutions and gcd(a, b) > 1. This
completes the proof of Theorem 1.5.

7 Prime Values of a

In the previous section, we studied the problem of deducing Conjecture 1.2 for fixed
values of c. Essentially, we used the fact that Theorem 1.4 enables one to bound a and
b explicitly in terms of c. If instead, we suppose that a is fixed (where c is positive),
we cannot usually obtain such bounds upon c, solely in terms of a. In the special case
where a = 2, however, Conjecture 1.2 is a consequence of Proposition 2.1. We will
now extend this to include all primes of the form a = 2n+1, for n ∈ N. Unfortunately,
this is, in all likelihood, just the set

a ∈ {3, 5, 17, 257, 65537}

(i.e., the known Fermat primes). From Proposition 2.1, if a is prime and s is the
smallest positive integer such that bs ≡ 1 (mod a), then Conjecture 1.2 obtains pro-
vided s is even. Theorem 1.6 will therefore follow from showing that a like conclusion
is valid for s = 1. We suppose, then, that a ≥ 3 is prime and b ≡ 1 (mod a). Fur-
ther, assume, as usual, that we have distinct positive solutions (x1, y1) and (x2, y2) to
(1.1), with x2 > x1. From Section 4, either b = 1 + ja with gcd( j, a) = 1 (whereby
n(a, b) = a and m(a, b) = 2) or b = 1 + lam(a,b) for some positive integer l with
gcd(l, a) = 1. In the first case, ax1 > by1 ≥ b > a and so x1 ≥ 2. Lemma 4.1 thus
implies that ax1−1 divides y2 − y1. In the second, since ax1 > b > am(a,b), we have
x1 ≥ m(a, b) + 1 and y2 − y1 divisible by ax1−m(a,b).

Arguing as in previous sections, we find, if x2 ≥ 2410 log b, that

x2

log b
<

log
(

ac/(a− 1)
)

log a log b
+ 22.997

(
log

(
x2

log b

)
+ 2.405

)2

.(7.1)

Since c < ax1 ,

log
(

ac/(a− 1)
)

log a log b
<

log(3/2)

log 3 log 7
+

x1

log b
< 0.19 +

x1

log b
.(7.2)
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Let us first suppose that b = 1 + ja with gcd( j, a) = 1 (so that we may write
y2 − y1 = tax1−1 for t a positive integer and x1 ≥ 2). If x1 = 2, then b ≥ 7, with
(7.1) and (7.2), contradicts x2 ≥ 2410 log b and hence

y2

log a
<

x2

log b
< 2410 or y2 < 2410 log a.(7.3)

From b > a, we have y1 = 1, 1 ≤ j ≤ a − 1 and, via Proposition 2.1, may assume
that y2 is even (so that t is odd). It follows that x2 is odd, since otherwise, writing
x2 = 2x and y2 = 2y,

a2 − b = a2x − b2y ≥ ax + by > a2.

We may thus restrict attention to those pairs (a, b) for which the smallest positive
integer s with as ≡ 1 (mod b) is odd. In particular, this enables us to suppose that
1 < j < a − 1, since as ≡ 1 (mod a2 − a + 1) implies s ≡ 0 (mod 6), while as ≡
1 (mod a + 1) implies s ≡ 0 (mod 2). Further, considering the equation

a2 − (1 + ja) = ax2 − (1 + ja)y2(7.4)

modulo 3 and modulo 8 implies that a �≡ 2 (mod 3), b �≡ 2 (mod 3) and either
a− j ≡ 1 (mod 8) or j ≡ −1 (mod 8). Similarly, working modulo a4, we find that

(1 + ta)

2
t j2a + 1 + t j ≡ 0 (mod a2).(7.5)

In particular, a divides 1 + t j and thus, since j < a − 1, it follows that t ≥ 3.
Inequality (7.3) thus yields ta < 2410 log a, whence 3 ≤ a ≤ 7121. For each prime a
between 3 and 7121, we search, via Maple V, for integers j and t (i.e., for quadruples
(a, b, c, y2)) which satisfy the above elementary constraints. We find none.

We argue similarly for larger values of x1, where we again deduce

ax1−1 < y2 < 2410 log a,(7.6)

so that 3 ≤ x1 ≤ 8 and 3 ≤ a ≤ 103. We search for quadruples (a, b, c, y2) satisfying
b = 1 + ja, y2 = y1 + tax1−1, c = ax1 − by1 and, analogous to (7.5),

(tax1−1 + 2y1 − 1)

2
t j2a + 1 + t j ≡ 0 (mod a2).

Here, j and t are integers with gcd( j, a) = 1, t odd and

1 ≤ j ≤ a
x1−y1

y1 , 1 ≤ t <
2410 log a

ax1−1
.

For each of these quadruples, we obtain congruence conditions upon x2 such that
ax2 = by2 + c, by considering the equation modulo m for m ∈ {3, 4, 5, 7, 11, 13}. In
conjunction with the fact that x2 ≡ x1 (mod s) where s is the smallest positive integer
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such that as ≡ 1 (mod b), these conditions lead to contradictions in all cases except
(a, b, c, y2) = (79, 243321, 249718, 6242). For this quadruple (a, b, c, y2), we have
by2 + c �≡ 0 (mod a6), and hence conclude as desired.

Now, let us turn our attention to those b ≡ 1 (mod a) of the form b = 1 + lam(a,b),
for l ∈ N with gcd(l, a) = 1. As mentioned previously, we may write x1 = m(a, b) + k
and y2 − y1 = tak, where k and t are positive integers and m(a, b) < log b

log a . Again, if
x2 ≥ 2410 log b, we have (7.1) and, from (7.2),

log
(

ac/(a− 1)
)

log a log b
< 0.19 +

x1

log b
< 0.19 +

1

log a
+

k

log b
.(7.7)

Since y2 > ak, b > am(a,b) and x2
log b >

y2

log a , we find that

x2 > m(a, b)ak.(7.8)

Combining (7.1), (7.7) and (7.8), from a ≥ 3, we find that x2 < 2410 log b, contrary
to our assumptions. It follows that necessarily y2 < 2410 log a.

Consider now equation (1.1), or, in our case,

am(a,b)+k − (1 + lam(a,b))y1 = ax2 − (1 + lam(a,b))y2 .(7.9)

Since (3.5) implies ax2−x1 > by1 , we have

x2 > (y1 + 1)m(a, b) + k ≥ 2m(a, b) + k,

and so, expanding (7.9) by the binomial theorem, we find that

am(a,b)+k +

y2∑
r=1

((
y2

r

)
−

(
y1

r

))
lrarm(a,b) ≡ 0 (mod a2m(a,b)+k).

Since y2 − y1 = tak, if α is the largest nonnegative integer such that aα divides r!, we

find that aβ divides
((y2

r

)
−
(y1

r

))
arm(a,b), for r ≥ 3, where

β ≥ rm(a, b) + k− α > rm(a, b) + k−
r

a− 1
> 2m(a, b) + k.

From (
y2

2

)
−

(
y1

2

)
=

(y1 + y2 − 1)

2
tak,

we conclude that

1 + tl ≡ 0 (mod am(a,b)).(7.10)

Further, b = 1 + lam(a,b) < ax1 = am(a,b)+k, whereby l < ak and so the above congru-
ence implies the inequality y2 − y1 + 1 > am(a,b). We conclude, therefore, that

amax{m(a,b),k} < y2 < 2410 log a,(7.11)
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whence 3 ≤ a ≤ 103, 1 ≤ k ≤ 7 and 2 ≤ m(a, b) ≤ 7.
To eliminate the remaining possibilities, we begin by supposing that 23 ≤ a ≤

103, whence, from (7.11), 1 ≤ k ≤ 2, m(a, b) = 2, and necessarily y1 = 1. Again,
since we may assume that y2 is even, necessarily x2 is odd. There are precisely 69
triples (a, t, l) for the primes a under consideration with t odd and satisfying (7.10)
and (7.11) (30 with k = 1 and 39 with k = 2). For the examples corresponding to
k = 1, we deduce a contradiction to the parity of x2 by considering the equation ax2 =
by2 + c modulo one of 3, 4, 5 or 7, unless (a, b, c, y2) = (59, 83545, 121834, 8556) or
(83, 385785, 186002, 10210), where a like contradiction is obtained modulo 13 and
11, respectively. For the examples with k = 2, we have that the smallest s ∈ N with
as ≡ 1 (mod b) is even (again, contrary to the fact that x2 is odd) for all but the case
(a, b, c, y2) = (23, 25393, 254448, 5820), which leads to a contradiction modulo 3.

We may thus suppose that 3 ≤ a ≤ 19. It is easy to see that we have y1 = 1 unless(
a,m(a, b), k

)
is in the set

{(3, 2, 3), (3, 3, 4), (5, 2, 3), (3, 2, 4), (3, 3, 5), (5, 2, 4), (3, 2, 5), (3, 2, 6), (3, 2, 7)}

in which case we can have y1 = 2 (or y1 = 3 if
(

a,m(a, b), k
)
= (3, 2, 5)). Again,

we use (7.10) and (7.11) to reduce the set of possible quadruples to a manageable
level and then eliminate those remaining with local arguments (though we could
just as easily check to see if, in any case, by2 + c is a perfect power). Considerations
modulo 3, 4, 5, 7, 8, 11 and 13 suffice to deal with all quadruples (a, b, c, y2) other
than (a, b, c, y2) = (5, 74376, 3749, 2626) and (17, 751401, 668456, 4914). For these
we obtain contradictions modulo 19 and 16, respectively. This completes the proof of
Theorem 1.6. Corollary 1.7 is now immediate upon noting, if a = 2k +1 is prime with
k ∈ N, that the desired result follows from Proposition 2.1, unless b ≡ 1 (mod a). In
this latter case, we apply Theorem 1.6 to obtain the stated conclusion.

8 Concluding Remarks

Arguments similar to those in this paper may be applied to sharpen results of Le [Le]
and Shorey [Sh] on the somewhat more general Diophantine equation

rax − sby = c,

where a, b, c, r and s are given positive integers (again, with a, b ≥ 2). It is also worth
noting that the finiteness of the list of exceptions to Conjecture 1.2 may be shown to
follow in somewhat nontrivial fashion from the abc-conjecture of Masser-Oesterlé.
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