
Discrete–Time Linear, Time Invariant Systems
and z–Transforms

Linear, time invariant systems

“Continuous–time, linear, time invariant systems” refer to circuits or processors that take one input

signal and produce one output signal with the following properties.

◦ Both the input and output are continuous–time signals.

◦ The system is linear. This means that if the input signals x1(t) and x2(t) generate the output signals

y1(t) and y2(t), respectively, and if a1 and a2 are constants, then the input signal a1x1(t) + a2x2(t)

generates the output signal a1y1(t) + a2y2(t).

◦ The system is time invariant. This means that if the input signal x(t) generates the output signal y(t),

then, for each real number s, the time shifted input signal x̃(t) = x(t − s) generates the time shifted

output signal ỹ(t) = y(t− s).

Example 1 A simple example of a continuous–time, linear, time invariant system is the RC lowpass filter

that is used, for example in amplifiers, to suppress the high frequency parts of signals. This is the electrical

circuit

+

−
x(t)

R

C
i(t)

+

−

y(t)

with the voltage source x(t) viewed as the input signal and the voltage y(t) across the capacitor viewed as

the output signal. If i(t) denotes the current in the circuit, the voltage across the resistor is Ri(t). If q(t)

denotes the charge on the capacitor, then the voltage across the capacitor is y(t) = q(t)
C . So by Kirchhoff’s

voltage law,

x(t) = Ri(t) + y(t)

Since i(t) = dq
dt (t) = C dy

dt (t), we have that

RC dy
dt (t) + y(t) = x(t) ⇒ dy

dt (t) +
1

RC y(t) = 1
RC x(t)

This first order constant coefficient linear ODE is easily solved by multiplying it by the integrating factor(1)

et/RC .

et/RC dy
dt (t) +

1
RC et/RCy(t) = 1

RC x(t)et/RC ⇒ d
dt

(

et/RCy(t)
)

= 1
RC x(t)et/RC

Change t to τ in this equation and integrate both sides from τ = −∞ to τ = t. Assuming that et/RCy(t)

tends to zero as t → −∞,

et/RCy(t) =

∫ t

−∞

1
RC x(τ)eτ/RCdτ ⇒ y(t) =

∫ t

−∞

1
RC x(τ)e(τ−t)/RCdτ

For each possible input signal x(t), this determines the corresponding output signal y(t). This rule is

obviously linear. To see that it is also time invariant, observe that the output signal that corresponds to the

(1) In general, multiplying the equation y′(t) + p(t)y(t) = g(t) by the integrating factor e
∫

p(t) dt turns

the left hand side into a perfect derivative.
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input signal x(t− s) is

∫ t

−∞

1
RC x(τ − s)e(τ−t)/RCdτ

τ ′=τ−s
=

∫ t−s

−∞

1
RC x(τ ′)e(τ

′+s−t)/RCdτ ′ = y(t− s)

as desired.

“Discrete–time, linear, time invariant systems” refer to linear, time invariant circuits or processors

that take one discrete–time input signal and produce one discrete–time output signal.

Example 2 Let x[n] denote the net deposit (i.e. the sum of all deposits minus the sum of all withdrawals)

to a bank account during month number n and let y[n] denote the balance in the account at the end of

month number n. We want to think of x[n] as the known input to the system. We wish to determine the

output y[n]. We start by setting up a equation that tells us about the time evolution of y[n]. At the end of

month n− 1, the balance is y[n− 1]. During month n we add x[n] to the account. During this same month

the bank adds some interest to the account. If the account pays r% interest per month compounded monthly

(say, for simplicity, on the balance at the end of the previous month), then the interest paid is r
100y[n− 1]

so that the balance at the end of month number n is

y[n] =
(

1 + r
100

)

y[n− 1] + x[n] (1)

If we started the account in month number N , we just make x[n] = y[n] = 0 for all n < N . To find y[N ], we

just need to set n = N :

y[N ] =
(

1 + r
100

)

y[N − 1] + x[N ] = x[N ]

since y[N − 1] = 0. Then to find y[N + 1], we just need to set n = N + 1:

y[N + 1] =
(

1 + r
100

)

y[N ] + x[N + 1] =
(

1 + r
100

)

x[N ] + x[N + 1]

Continuing in this way determines the output signal y[n] that corresponds to any given input signal x[n].

This is called iterating the equation (1).

Example 3 A second way that discrete–time systems arise is through discrete–time approximations to

continuous–time systems. Consider, for example, the RC circuit of Example 1. There, we saw that

dy
dt (t) +

1
RC y(t) = 1

RC x(t)

Of course this equation is so simple that we can easily solve it explicitly. But pretend that it is very

complicated and we wish to use a computer to solve it. Computers can only store a finite number of pieces

of data and can perform only a finite number of operations. So it is natural to approximate the continuous

time equation that we are really interested in by an equation that only involves a discrete family of times,

say separated by some fixed step size ∆ > 0. To do so we approximate

dy
dt (t) ≈

y(t)−y(t−∆)
∆

and then the differential equation becomes

y(t)−y(t−∆)
∆ + 1

RC y(t) = 1
RC x(t)
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Writing x[n] = x(n∆), y[n] = y(n∆) and substituting t = n∆, we get the difference equation

y[n]−y[n−1]
∆ + 1

RC y[n] = 1
RC x[n] ⇒

(

1 + ∆
RC

)

y[n] = y[n− 1] + ∆
RC x[n]

⇒ y[n] =
(

1 + ∆
RC

)−1(
y[n− 1] + ∆

RC x[n]
)

If we assume that in the far past, say for n smaller than some large negative N , both the input and output

signal are zero, then iterating this equation, just as in the last example, determines the output signal y[n]

that corresponds to any given input signal x[n].

The impulse response function

The analyses of continuous–time LTI systems and discrete–time LTI systems are rather similar,

but the discrete–time case involves fewer technicalities about convergence and so on, so we concentrate on

it. The first important fact concerning the behaviour of discrete–time LTI systems is that the response of

the system to any input is completely determined by its response to one special input, the unit impulse at

time 0. This special input is

δ[n] =

{

1 if n = 0
0 if n 6= 0

1

0 1 2 3 4−1−2−3−4 n

Let us denote by h[n] the output that results from the unit impulse at time 0. It is called the impulse

response of the system. We’ll now derive a formula that expresses the output generated by any input x[n]

in terms of h[n]. First suppose that we input a unit impulse

δk[n] =

{

1 if n = k

0 if n 6= k

at some time k 6= 0. Then since δk[n] = δ[n − k], the corresponding output is h[n− k] by time invariance.

The crucial observation is that any possible input signal x[n] is a linear combination

x[n] =

∞
∑

k=−∞

αkδk[n] (2)

of impulse functions. We just have to choose the coefficients to be αk = x[k]. To see that this is the case,

fix any n and consider the sum on the right hand side of (2). Because of the definition of δk[n] all of the

terms on the right hand side are exactly zero, with the single exception of the term with k = n, which is αn.

So the entire sum is αn, which agrees with x[n] provided αn = x[n]. We have already seen that the output

corresponding to δk[n] is h[n− k], so by linearity, the output corresponding to x[n] is

y[n] =

∞
∑

k=−∞

αkh[n− k] =

∞
∑

k=−∞

h[n− k]x[k] = (h ∗ x)[n] (3)

So as soon as we know the impulse response h[n], the output corresponding to the unit impulse input δ[n],

equation (3) gives the output corresponding to any input x[n].

Example 4 Consider the banking Example 2. To save writing, set a = 1 + r
100 so that

y[n] = ay[n− 1] + x[n]

When the input signal is the unit impulse δ[n], we are calling the output h[n] so that

h[n] = ah[n− 1] +

{

1 if n = 0
0 if n 6= 0

(4)
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Our first deposit was in month number 0, so x[n] = h[n] = 0 for all n < 0. Iterate (4), starting with n = 0.

n = 0 ⇒ h[0] = ah[−1] + 1 = 1

n = 1 ⇒ h[1] = ah[0] = a

n = 2 ⇒ h[2] = ah[1] = a2

n = 3 ⇒ h[3] = ah[2] = a3

and so on. The impulse response is

h[n] =

{

0 if n < 0
1 if n = 0
an if n > 0

}

= anu[n] where u[n] =
{

1 if n ≥ 0
0 if n < 0

For a general input x[n]

y[n] =

∞
∑

k=−∞

x[k]h[n− k] =

∞
∑

k=−∞

x[k]an−ku[n− k]

Since u[n− k] takes the value 0 for n− k < 0, i.e. k > n, and the value 1 for n− k ≥ 0, i.e., k ≤ n,

y[n] =

n
∑

k=−∞

x[k]an−k = an
n
∑

k=−∞

a−kx[k]

Exponential signals and the z–transform

The second important fact concerning the behaviour of discrete–time LTI systems is that all expo-

nential signals are eigenfunctions for all LTI systems. Here is what that means. If z is any fixed complex

number, then the signal x[n] = zn is called an exponential signal. If we feed this exponential signal into a

discrete–time LTI system with impulse response function h[n], the output is

y[n] =

∞
∑

k=−∞

h[k]x[n− k] =

∞
∑

k=−∞

h[k]zn−k = zn
∞
∑

k=−∞

h[k]z−k = H(z) zn

where

H(z) =

∞
∑

k=−∞

z−kh[k] (5)

is called the z–transform of the impulse response h[n]. So when any exponential signal x[n] = zn is fed into

any LTI system, it is just multiplied by a constant (independent of time, n) H(z). This multiplier, H(z) is

called the eigenvalue of the eigenfunction x[n] = zn.

The z–transform is in fact an extension of the discrete Fourier transform. If |z| = 1, then there is

a real number ω such that z = eiω and

H
(

eiω
)

=
∞
∑

k=−∞

(

eiω
)−k

h[k] =
∞
∑

k=−∞

e−iωkh[k] = ĥ(ω)

Example 5 An amplifier is one of the simplest LTI systems. The output generated for the input x[n] is

y[n] = Kx[n]
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where K is the amplification factor. In particular the impulse response function for this system is the output

resulting from the input signal δ[n], which is

h[n] = Kδ[n] =

{

K if n = 0
0 if n 6= 0

The z–transform of this impulse response function is

H(z) =
∞
∑

k=−∞

h[k]z−k = h[k]z−k
∣

∣

k=0
= K

since h[k] takes a nonzero value only for k = 0 and h[0] = K.

Example 6 A second very simple LTI system is a delay line, which simply delays a signal by m units of

time. The output generated for the input x[n] is

y[n] = x[n−m]

In particular, the impulse response function for this system is the output resulting from the input signal

δ[n], which is

h[n] = δ[n−m] = δm[n] =

{

1 if n = m

0 if n 6= m

The z–transform of this impulse response function is

H(z) =

∞
∑

k=−∞

h[k]z−k = h[k]z−k
∣

∣

k=m
= z−m

since h[k] takes a nonzero value only for k = m and h[m] = 1.

Example 7 Consider once again the banking Examples 2 and 4. We saw that the impulse response is

h[n] = anu[n] =

{

0 if n < 0
an if n ≥ 0

It has z–transform

H(z) =
∞
∑

k=−∞

z−kh[k] =
∞
∑

k=0

z−kak

Recalling that the geometric series
∞
∑

n=0
rn = 1

1−r , provided that |r| < 1,

H(z) = 1
1−z−1a = z

z−a

provided that |z−1a| < 1, or equivalently |z| > |a|. So, in this example, the sum defining the z–transform

H(z) converges only for |z| > |a|. This region is called the region of convergence(2), denoted ROC, of the

z–transform. In this example H(z) = z
z−a has a pole (i.e. a singularity) at z = a. The figure on the left

below is the graph of h[n]. The figure on the right shows the ROC and pole of H(z) in the case that a > 1.

(2) In general, the ROC for the z–transform of the impulse response function h[n] is the set of all

complex numbers z such that
∑∞

k=−∞ |h[k]| |z|−k is finite. Since this series depends only on |z|, the ROC is

always a union of circles |z| = r.
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The ROC is the shaded region. Note that, in this case, h[n] is growing exponentially as n → ∞ and the

corresponding pole of H(z) is outside the unit circle |z| = 1.

1

0 1 2 3 4−1−2−3−4

y = h[n]

n

1 a Re z

Im z

In our banking example we had a > 1. In other applications it is perfectly possible to have a < 1 or

even complex a. The next pair of figures below show h[n] and the ROC and pole of H(z) in the case that

0 < a < 1. In this case, h[n] is decaying exponentially as n → ∞ and the corresponding pole of H(z) is

inside the unit circle |z| = 1.

1

0 1 2 3 4−1−2−3−4

y = h[n]

n

1a Re z

Im z

Example 8 Consider

h[n] =
{

0 if n ≥ 0
−bn if n < 0

It has z–transform

H(z) =

∞
∑

k=−∞

z−kh[k] = −

−1
∑

k=−∞

z−kbk = −

∞
∑

m=1

zmb−m where m = −k

which is another geometric series with first term − z
b and ratio r = z

b . So it converges, if
∣

∣

z
b

∣

∣ < 1, or

equivalently |z| < |b|, to

H(z) = − z/b
1−z/b = z

z−b

In this example we get H(z) = z
z−b , like the H(z) of Example 7, but with a replaced by b. It has a pole at

z = b and a zero at z = 0. The locations of both zeros and poles of z–transforms are going to play big roles

in determining the stability properties of LTI systems. More about this later. This time the ROC is inside,

rather than outside, the circle containing the pole. Here are figures giving h[n] and the ROC, pole and zero

of H(z) for b < 1

0 1 2 3 4

−1−2−3−4

y = h[n]

n

1b
Re z

Im z
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and b > 1

0 1 2 3 4

−1−2−3−4

y = h[n]

n

1 b
Re z

Im z

The ROC being inside the pole signals that h[n] is zero for all large positive n’s. Then, a pole outside of

|z| = 1 signals exponential decay while a pole inside of |z| = 1 signals exponential growth, this time as

n → −∞.

Note that if the a of Example 7 is equal to the b of Example 8, then the two examples give the

identical algebraic formula for H(z). The lesson we learn from this is that different h[n]’s can give the

same algebraic formula for H(z). The algebraic formula for H(z) does not, by itself, determine the impulse

function h[n] uniquely. To recover h[n] we need some additional information, like the ROC. More about this

later.

Example 9 Now consider

h[n] =
{

an if n ≥ 0
−bn if n < 0

It has z–transform

H(z) =
∞
∑

k=−∞

z−kh[k] = −
−1
∑

k=−∞

z−kbk +
∞
∑

k=0

z−kak

We have already ready found that the second sum converges to z
z−a for |z| > |a| and the first sum converges

to z
z−b for |z| < |b|. So the two together converge to

H(z) = z
z−a + z

z−b = z(2z−a−b)
(z−a)(z−b)

for |a| < |z| < |b|. For this ROC to be nonempty we must have |a| < |b|. Here are figures giving h[n] and

the ROC, poles and zeros of H(z) for 0 < a < 1 < b.

1

0 1 2 3 4

−1−2−3−4

y = h[n]

n −1 a b
Re z

Im z

c© Joel Feldman. 2007. All rights reserved. April 4, 2007 Discrete–Time Linear, Time Invariant Systems and z–Transforms 7



Causal systems

An additional common property of LTI systems is called causality. A causal system is one that

does not respond until there is some input. In particular the response to a unit impulse may not start before

n = 0. That is, an LTI system is causal if and only if its impulse response function obeys

h[n] = 0 for all n < 0

For such a system, the output at time n

y[n] =
∞
∑

k=−∞

x[k]h[n− k] =
n
∑

k=−∞

x[k]h[n− k] since h[n− k] = 0 for all k > n

depends only on the input x[k] at times k ≤ n. In particular, if the input x[n] = 0 for all n < N , then the

corresponding output automatically also vanishes for n < N . As we would expect, the banking system of

Example 4 is causal.

For any causal LTI system

H(z) =

∞
∑

k=−∞

z−kh[k] =

∞
∑

k=0

z−kh[k] (6)

Then, as |z| increases, every single term in the sum gets smaller. Hence if the circle |z| = r0 is in the ROC,

then the entire exterior |z| ≥ r0 is automatically in the ROC as in Example 7. Furthermore, as |z| → ∞,

every term in (6) except for the k = 0 term converges to zero so that

lim
|z|→∞

H(z) = h[0]

It is possible to prove that if the z–transform H(z) obeys

◦ if the circle |z| = r0 is in the ROC, then the entire exterior |z| ≥ r0 is in the ROC and

◦ lim|z|→∞ H(z) exists

then there is a unique impulse response function h[n] whose z–transform is the given H(z) (with the same

ROC) and furthermore h[n] is causal.

Stable systems

By definition, an LTI system is stable if every bounded input necessarily generates a bounded

output. In general, if a bounded input x[n], obeying
∣

∣x[n]
∣

∣ ≤ B, is fed into an LTI with impulse response

h[n], the resulting output obeys

∣

∣y[n]
∣

∣ =

∣

∣

∣

∣

∞
∑

k=−∞

x[n− k]h[k]

∣

∣

∣

∣

≤

∞
∑

k=−∞

∣

∣x[n− k]
∣

∣

∣

∣h[k]
∣

∣ ≤ B

∞
∑

k=−∞

∣

∣h[k]
∣

∣

Hence any LTI system whose impulse response function is absolutely summable, i.e. whose impulse response

function obeys
∑∞

k=−∞

∣

∣h[k]
∣

∣ < ∞, is stable. Conversely, if
∑∞

k=−∞

∣

∣h[k]
∣

∣ = ∞, then the bounded input

x[n] =











h[−n]

|h[−n]|
if h[−n] 6= 0

0 if h[−n] = 0
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generates an output which at time 0 is

y[0] =

∞
∑

k=−∞

x[k]h[−k] =
∑

k with
h[−k] 6=0

h[−k]

|h[−k]|
h[−k

∣

∣ =

∞
∑

k=−∞

∣

∣h[−k]
∣

∣ = ∞

So an LTI system is stable if and only if its impulse response function is absolutely summable. For |z| = 1

∞
∑

k=−∞

∣

∣z−kh[k]
∣

∣ =

∞
∑

k=−∞

∣

∣h[k]
∣

∣

so an LTI system is stable if and only if the circle |z| = 1 is in the ROC for the z–transform of its impulse

response function. A causal LTI system is stable if and only if its ROC includes all of |z| ≥ 1. In particular

a causal, stable LTI system has no poles in |z| ≥ 1.

Example 10 The ROC for the banking Example 4 is |z| > |a|. So this system is stable when |a| < 1 and is

unstable when |a| ≥ 1. For a bank paying r% interest per unit time, which is compounded at the end of each

unit of time, a = 1 + r
100 . If r > 0 a single dollar deposited at time 0 generates an exponentially growing

balance, resulting in instability. If r = 0, a deposit of one dollar per unit time (that’s also a bounded input)

generates a linearly growing balance, again resulting in instability. On the other hand if the bank charges

you interest to store our money so that −100 < r < 0, then 0 < a < 1 and the system is stable.

Recovering the impulse response function from its z–transform

The z–transform is closely related to Fourier series and Fourier transforms. In fact, for z = eiω (i.e.

for z of modulus one)

H
(

eiω
)

=

∞
∑

n=−∞

e−iωnh[n] = ĥ(ω)

is exactly the Fourier transform ĥ(ω) of the discrete–time signal h[n], assuming that the ROC includes the

circle |z| = 1. This tells us how to recover h[n] if we are told what H(z) is and if we are told that the ROC

includes the circle |z| = 1:

h[n] = 1
2π

∫ π

−π

ĥ(ω)eiωn dω = 1
2π

∫ π

−π

H
(

eiω
)

eiωn dω

In the, rather common, event that H(z) is a rational function, meaning that it is the ratio of two

polynomials in z, there is a simpler technique that is based on the method of partial fractions from first year

calculus. The idea is to write H(z) as a sum of simple terms that can be handled by table lookup. It is rare

that one needs a larger table than

z–Transform Signal

1
zm δm[n] =

{

1 if n = m

0 otherwise

1
1−a/z ea[n] = anu[n] =

{

an if n ≥ 0
0 if n < 0

We saw these entries in Examples 6 and 7, respectively. Here we are assuming that the ROC is |z| > a, as

is the case if the system is causal. If the ROC is |z| < a, then we use Example 8 instead. Because of the
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prevalence of 1
z in this table, it is convenient to make the change of variables ζ = 1

z . If H(z) is a rational

function of z, then H
(

1
ζ

)

is a rational function of ζ. In terms of ζ, the lookup table is

z–Transform Signal

ζm δm[n] =
{

1 if n = m

0 otherwise

1
1−aζ ea[n] = anu[n]

{

an if n ≥ 0
0 if n < 0

Suppose that H
(

1
ζ

)

= N(ζ)
D(ζ) with N and D polynomials. The first step in the method of partial fractions is

to check that the degree of the numerator is strictly smaller than the degree of the denominator. If it isn’t,

use long division to rewrite
N(ζ)
D(ζ) = P (ζ) + R(ζ)

D(ζ)

with P and R polynomials and with the degree of R strictly smaller than the degree of D. See the notes

“Long Division” if you need a review.

The second step is to factor the denominator. Any polynomial, D(ζ), of degree p can be written

as a product

D(ζ) = a(ζ − r1) · · · (ζ − rp)

of linear factors. The constant a is the coefficient of ζp in D(ζ) and the constants r1, · · ·, rp are the roots of

D(ζ). If the p roots are all different, which is the only case that we shall consider, then the rational function
R(ζ)
D(ζ) can be written

R(ζ)
D(ζ) =

c1
ζ−r1

+ c2
ζ−r2

+ · · ·+
cp

ζ−rp
(7)

A simple way to determine the coefficient, for example, c2 is to multiply both sides of (7) by ζ − r2

(ζ − r2)
R(ζ)
D(ζ) = c1

ζ−r2
ζ−r1

+ c2 + c3
ζ−r2
ζ−r3

+ · · ·+ cp
ζ−r2
ζ−rp

and then take the limit as ζ → r2. All terms on the right hand side, except for c2 itself, then tend to zero,

since we are assuming that rj 6= r2 for all j 6= 2, so that

c2 = lim
ζ→r2

(ζ − r2)
R(ζ)
D(ζ)

Both the numerator (ζ − r2)R(ζ) and the denominator D(ζ) tend to zero as ζ → r2, so we have an indeter-

minate form. But the limit can be evaluated using l’Hôpital’s rule.

c2 = lim
ζ→r2

R(ζ)+(ζ−r2)R
′(ζ)

D′(ζ) = R(r2)
D′(r2)

Equation (7) reduces the problem of finding the impulse response corresponding to R(ζ)
D(ζ) to the problem of

finding the impulse response corresponding to

c
ζ−r = − c

r
1

1−ζ/r

which, by our second table entry, is − c
r e1/r[n].

Example 11 Suppose that

H(z) = 4z3−10z2−z−3
4z3−4z2+z−1
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First substitute z = 1
ζ and simplify by multiplying both the numerator and denominator by −ζ3.

H
(

1
ζ

)

=

4
ζ3 − 10

ζ2 − 1
ζ − 3

4
ζ3 − 4

ζ2 + 1
ζ − 1

=
3ζ3 + ζ2 + 10ζ − 4

ζ3 − ζ2 + 4ζ − 4

Both the numerator and denominator have degree 3. Because they have the same degree, we can avoid doing

long division (for a review of long division of polynomials, see the notes “Long Division”) by the simple

expedient of, first, observing that the coefficient of ζ3 in the numerator is 3 times the coefficient of ζ3 in the

denominator and, second, adding and subtracting 3 times the denominator to the numerator:

H
(

1
ζ

)

= numerator
denominator =

3 denominator+numerator−3 denominator
denominator = 3 + numerator−3 denominator

denominator

The point here is that in

numerator− 3 denominator = 3ζ3 + ζ2 + 10ζ − 4− 3
(

ζ3 − ζ2 + 4ζ − 4
)

= 4ζ2 − 2ζ + 8

the degree three terms, which are the highest degree terms, have cancelled out. So

H
(

1
ζ

)

= 3 + 4ζ2−2ζ+8
ζ3−ζ2+4ζ−4

Next, we have to factor the denominator D(ζ) = ζ3 − ζ2 + 4ζ − 4. There is a MATLAB command, named

roots, that will find (approximately, but accurately) the roots of any polynomial. But this is a rigged up

example with integer roots. There is root finding trick that works well on exams and problem sets, where

integer roots are common. It is simply the fact that any integer root of a polynomial with integer coefficients

must divide the constant term, in this case −4, exactly. So the only possible integer roots are ±1,±2 and

±4. We just substitute these candidates, starting with the simplest, namely 1, into the denominator. Since

D(1) = 0, 1 is a root and ζ − 1 must divide D(ζ) exactly. So D(ζ) must be (ζ − 1) times a quadratic

polynomial:

D(ζ) = ζ3 − ζ2 + 4ζ − 4 = (ζ − 1)(aζ2 + bζ + c)

The coefficients a, b and c can be found by long division. But in this case, it is easier to observe that the

product (ζ − 1)(aζ2 + bζ + c) = aζ3 + (b− a)ζ2 + (c− b)ζ − c is ζ3 − ζ2 + 4ζ − 4 if and only if a = 1, c = 4

and b = 0. Hence D(ζ) = (ζ − 1)(ζ2 + 4) = (ζ − 1)(ζ + 2i)(ζ − 2i) and

H
(

1
ζ

)

= 3 + a1

ζ−1 + a2

ζ+2i +
a3

ζ−2i

with the coefficients ai determined by

a1

ζ−1 + a2

ζ+2i +
a3

ζ−2i =
4ζ2−2ζ+8

ζ3−ζ2+4ζ−4 = R(ζ)
D(ζ)

Since D′(ζ) = 3ζ2 − 2ζ + 4

a1 = R(1)
D′(1) = 4−2+8

3−2+4 = 2

a2 = R(−2i)
D′(−2i) = −16+4i+8

−12+4i+4 = 1

a2 = R(2i)
D′(2i) = −16−4i+8

−12−4i+4 = 1

and

H
(

1
ζ

)

= 3 + 2
ζ−1 + 1

ζ+2i +
1

ζ−2i = 3− 2 1
1−ζ + 1

2i
1

1+ζ/2i −
1
2i

1
1−ζ/2i
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From the table

h[n] = 3δ[n]− 2e1[n] +
1
2ie−1/2i[n]−

1
2ie1/2i[n]

=







0 if n < 0
3− 2 + 1

2i −
1
2i if n = 0

−2(1)n + 1
2i

(

− 1
2i

)n
− 1

2i

(

1
2i

)n
if n > 0







=











0 if n < 0
1 if n = 0
−2 if n > 0, n even
−2− 2

2i

(

1
2i

)n
if n > 0, n odd











=











0 if n < 0
1 if n = 0
−2 if n > 0, n even
−2− (−i)n+1 1

2n if n > 0, n odd











=















0 if n < 0
1 if n = 0
−2 if n > 0, n even

−2− (−1)
n+1
2

1
2n if n > 0, n odd















One can avoid substituting ζ = 1
z when recovering a causal impulse response function from its

(rational) z–transform by the simple expedient of adding 1
z−a to the lookup table. We already know that

anu[n] has z–transform 1
1−a/z = z

z−a . So by the “Time Shifting” property (see the table of properties below)

an−1u[n− 1] has z–transform z−1 z
z−a = 1

z−a and we have the enlarged lookup table

z–Transform Signal

1
zm δm[n] =

{

1 if n = m

0 otherwise

1
1−a/z ea[n] = anu[n] =

{

an if n ≥ 0
0 if n < 0

1
z−a ea[n− 1] = an−1u[n− 1] =

{

an−1 if n ≥ 1
0 if n < 1

Properties of the z–transform

It is not surprising that the z–transform shares many properties with Fourier series and Fourier

transforms. Here is a table of a few of the more important ones.

Property Aperiodic Signal z–Transform Region of Convergence

x[n] X(z) =
∞
∑

n=−∞
x[n]z−n RX

y[n] Y (z) =
∞
∑

n=−∞
y[n]Z−n RY

Linearity Ax[n] +By[n] AX(z) +BY (z) at least RX ∩RY

Time Shifting x[n− n0] z−n0X(z) at least RX ∩ {|z| > 0}

z–scaling anx[n] X
(

z
a

) {

az
∣

∣ z in RX

}

Time Reversal x[−n] X
(

1
z

) {

1
z

∣

∣ z in RX

}

Conjugation x[n] X(z ) RX

z–Differentiation nx[n] −z dX
dz (z) at least the interior of RX

Convolution
∞
∑

m=−∞
x[m]y[n−m] X(z)Y (z) at least RX ∩RY

In the z–Differentiation property the “interior of RX” means all of RX except for its boundary. For example,

if RX = {a ≤ |z| ≤ b}, then the interior of RX is {a < |z| < b}. If RX = {a ≤ |z| < b} or RX = {a < |z| < b},

c© Joel Feldman. 2007. All rights reserved. April 4, 2007 Discrete–Time Linear, Time Invariant Systems and z–Transforms 12



then the interior of RX is still {a < |z| < b}. The notation A ∩ B which appears in the ROC column of

several properties is read “the intersection of A and B”. It consists of all z’s that are in both A and B.

The derivations of the linearity, time shifting, z–scaling, time reversal, conjugation, difference and

z–differentiation properties are trivial computations. Here is the derivation of the convolution property.

Denote h[n] =
∞
∑

m=−∞
x[m]y[n−m]. Then

H(z) =
∞
∑

n=−∞

h[n]z−n =
∑

m,n

x[m]y[n−m]z−n =
∞
∑

m=−∞

∞
∑

n=−∞

x[m]z−m y[n−m]z−(n−m)

Now make a change of summation variables with n being replaced by k = n−m. Note that, for each fixed

m, as n runs over all integers from −∞ to +∞, k also runs over all integers from −∞ to +∞. So

H(z) =
∞
∑

m=−∞

∞
∑

k=−∞

x[m]z−m y[k]z−k = X(z)Y (z)

as desired.

Example 12 We have already seen that, for the banking Example 2, the input and output signals are

related by

y[n] = ay[n− 1] + x[n] (8)

with a = 1+ r
100 . We have also already computed the impulse response function for this system in Example

4. But here is another computation of the impulse response function that uses the time shifting property of

the z–transform. Let’s denote by Y (z), the z–transform of y[n] and by X(z), the z–transform of x[n]. By

the time shifting property, the z–transform of y[n− 1] is z−1Y (z). So, taking the z–transform of (8) gives

Y (z) = a
zY (z) +X(z) =⇒ Y (z) =

1

1− a
z

X(z) (9)

When x[n] = δ[n], the z–transform of x[n] is X(z) = 1. In this case, we have that Y (z) =
1

1− a
z

. This is, of

course, exactly the z–transform of the impulse response function h[n] = anu[n] that we found in Example 4.

Example 13 Now, as a continuation of the last example, suppose that we start the account with an initial

deposit of D in month 0. Then, starting in month 1, we make withdrawals. Say we withdraw W in month

1, Wb in month 2, Wb2 in month 3 and so on. Then

x[n] =















D if n = 0
−W if n = 1
−Wb if n = 2
...















= Dδ[n]−Wbn−1u[n− 1]

Since

◦ the z–transform of δ[n] is 1,

◦ the z–transform of bnu[n] is 1
1−b/z , and

◦ the z–transform of bn−1u[n− 1] is 1
z

1
1−b/z , by the time shift property,

we have

X(z) = D −W 1
z

1
1−b/z
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and

Y (z) =
1

1− a
z

X(z) =
1

1− a
z

[

D −W
1

z

1

1− b
z

]

=
D

1− a
z

−W
1

z

1

1− a
z

1

1− b
z

The contribution of
D

1− a
z

to y[n] is, of course,Danu[n]. To use partial fractions to determine the contribution

of the other term, write ζ = 1
z . Then, the second term is −W times

ζ

(1− aζ)(1 − bζ)
=

A

1− aζ
+

B

1− bζ

with

A =
ζ

(1− bζ)

∣

∣

∣

∣

aζ=1

=
1
a

1− b
a

=
1

a− b
B =

ζ

(1− aζ)

∣

∣

∣

∣

bζ=1

=
1
b

1− a
b

=
1

b− a

(assuming that b 6= a). Thus

Y (z) = D
1

1− a
z

−
W

a− b

1

1− a
z

−
W

b− a

1

1− b
z

and

y[n] =
(

D − W
a−b

)

anu[n] + W
a−bb

nu[n]

Feedback systems

Automatic control systems typically use the output of the system to modify the input. This is

called feedback. A typical example is a household heating/cooling system with thermostatic control. The

householder sets the thermostat at a desired temperature. That’s the input signal. A thermometer in the

control reads the current room temperature, which is the output signal. If the room temperature is too

low the furnace is turned on. If the temperature is too high, the air–conditioner is turned on. When the

desired temperature is reached, the furnace/air–conditioner is turned back off. A general discrete–time,

linear, feedback system has the form

+ H(z)

G(z)

x[n]
+ e[n]

−
y[n]

r[n]

Here

◦ x[n] is the input signal (for example the desired temperature set by the householder) at time n.

◦ H(z) is called the system function of the forward path. In our example, it is the z–transform of the

impulse response that determines the behaviour of the furnace/air–conditioner.

◦ y[n] is the output signal (for example the actual room temperature) at time n.

◦ y[n] also acts as the input signal to the subsystem with z–transformed impulse response G(z), which

is called the system function of the feedback path. In our example, it is the impulse response that

determines the behaviour of the controller in the thermostat.

◦ The circular adder in the block diagram above combines the user input signal x[n] and the output

r[n] of the controller to form the error signal e[n] = x[n]− r[n] (for example the difference between

the desired temperature and the measured temperature), which is the input signal fed to the H

subsystem.
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Suppose that

H(z) =

∞
∑

k=−∞

z−kh[k] G(z) =

∞
∑

k=−∞

z−kg[k]

Since the input to the H subsystem is e[n] and the input to the G subsystem is y[n]

y[n] = (e ∗ h)[n] r[n] = (y ∗ g)[n]

Taking the z–transform of both of these equations gives

Y (z) = E(z)H(z) R(z) = Y (z)G(z)

Since e[n] = x[n]− r[n]

E(z) = X(z)−R(z)

so that

Y (z) =
(

X(z)−R(z)
)

H(z) =
(

X(z)− Y (z)G(z)
)

H(z) = X(z)H(z)− Y (z)G(z)H(z)

Solving for Y (z),

Y (z) = H(z)
1+G(z)H(z)X(z) = Q(z)X(z) with Q(z) = H(z)

1+G(z)H(z)

This tells us the z transform, Q(z), of the impulse response of the full feedback system, including both the

H and G subsystems.

Example 14 (stabilization) One important application of feedback is to stabilize otherwise unstable

systems, like aircraft and rockets. Suppose for example, that

H(z) = b
1−a/z = b z

z−a

with region of convergence |z| > |a|, similar to Examples 7 and 10. If |a| > 1 this system is causal but

unstable. Also suppose that the feedback subsystem is just an amplifier, as in Example 5, so that

G(z) = K

Then the composite feedback system has

Q(z) =
H(z)

1 +G(z)H(z)
=

b z
z−a

1 +Kb z
z−a

=
bz

z − a+Kbz
=

bz

(1 +Kb)z − a

which has a single pole at z = a
1+Kb . If the amplifier is strong enough that |1 + Kb| > |a|, the pole has

modulus
∣

∣

a
1+Kb

∣

∣ < 1 and the feedback system is stable.

Example 15 (inversion) If we choose the H subsystem to be an amplifier with H(z) = K, then

Q(z) = K
1+G(z)K ≈ 1

G(z)

provided |KG(z)| ≫ 1. That is, provided K ≫ |G(z)|−1. So we have constructed an approximate inverse

for the system with system function G(z). Here is what that means. Suppose we cascade the G system and

the Q system, so that the output of the G system is fed into the input of the Q system as in the figure

G Qx[n]
y[n]

w[n]

Then the output, w[n], of the cascaded system is

w[n] = (q ∗ y)[n] with y[n] = (g ∗ x)[n]

Taking z transforms,

W (z) = Q(z)Y (z) with Y (z) = G(z)X(z) =⇒ W (z) = Q(z)G(z)X(z)

If Q(z) were exactly 1
G(z) , then we would have W (z) exactly the same as X(z), so that the final output w[n]

would be identical to the initial input x[n].
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Example 16 (positive feedback) Suppose that our feedback system is modified so that the output, r[n],

of the feedback path is added, rather than subtracted, from the input x[n]. This is called positive feedback.

Effectively, we have replaced G(z) by −G(z). So the feedback system now has system function

+ H(z)

G(z)

x[n]
+ e[n]

+
y[n]

r[n]

Q(z) =
H(z)

1−G(z)H(z)

Now if, as in Example 14, H(z) = b
1−a/z = b z

z−a and G(z) = K, then

Q(z) =
H(z)

1−G(z)H(z)
=

b z
z−a

1−Kb z
z−a

=
bz

z − a−Kbz
=

bz

(1−Kb)z − a

which has a single pole at z = a
1−Kb . Even if the original system had |a| < 1, and so was stable, the feedback

system becomes unstable when K is large enough that Kb is close enough to 1 that
∣

∣

a
1−Kb

∣

∣ > 1. Generation

of instability through positive feedback is commonly observed in squealing loudspeaker systems.
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