
The Cauchy–Riemann Equations

Let f(z) be defined in a neighbourhood of z0. Recall that, by definition, f is differen-

tiable at z0 with derivative f ′(z0) if

lim
∆z→0

f(z0 +∆z) − f(z0)

∆z
= f ′(z0)

Whether or not a function of one real variable is differentiable at some x0 depends only

on how smooth f is at x0. The following example shows that this is no longer the case for

the complex derivative.

Example 1 Let f(z) = z̄. Then, writing ∆z in its polar form reiθ,

f(z0 +∆z) − f(z0)

∆z
=

z0 +∆z − z0

∆z
=

∆z

∆z
=

re−iθ

reiθ
= e−2θ i

So

◦ if we send ∆z to zero along the real axis, so that θ = 0 or θ = π and hence e−2θ i = 1,
f(z0+∆z)−f(z0)

∆z
tends to 1, and

◦ if we send ∆z to 0 along the imaginary axis, so that θ = π
2 or 3π

2 and hence e−2θ i = −1,
f(z0+∆z)−f(z0)

∆z
tends to −1.

Thus lim∆z→0
f(z0+∆z)−f(z0)

∆z
does not exist and f(z) = z̄ is nowhere differentiable. Note

that if we write f(x+ iy) = x+ iy = x− iy = u(x, y)+ iv(x, y), then all partial derivatives

of all orders of u(x, y) = x and v(x, y) = −y exist even though f ′(z) does not exist.

This example shows that differentiablility of u(x, y) and v(x, y) does not imply the dif-

ferentiablility of f(x+ iy) = u(x, y)+ iv(x, y). These notes explore further the relationship

between f ′(z) and the partial derivatives of u and v. We shall first ask the question “Sup-

pose that we know that f ′(z0) exists. What does that tell us about u(x, y) and v(x, y)?”

Here is the answer.

Theorem 2 Let f(z) be defined in a neighbourhood of z0. Assume that f is differentiable

at z0. Write f(x+ iy) = u(x, y) + iv(x, y). Then all of the partial derivatives ∂u
∂x

(x0, y0),
∂u
∂y

(x0, y0),
∂v
∂x

(x0, y0), and
∂v
∂y

(x0, y0) exist and

∂u
∂x

(x0, y0) =
∂v
∂y

(x0, y0)
∂u
∂y

(x0, y0) = −∂v
∂x

(x0, y0) (CR)

and

f ′(x0 + iy0) =
∂u
∂x

(x0, y0) + i∂v
∂x

(x0, y0)

The equations (CR) are called the Cauchy–Riemann equations.
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Proof: By assumption

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z

= lim
∆z→0

[u(x0 +∆x, y0 +∆y)− u(x0, y0)] + i[v(x0 +∆x, y0 +∆y)− v(x0, y0)]

∆z

In particular, by sending ∆z = ∆x+ i∆y to zero along the real axis (i.e. setting ∆y = 0

and sending ∆x → 0), we have

f ′(x0 + iy0) = lim
∆x→0

[u(x0 +∆x, y0)− u(x0, y0)] + i[v(x0 +∆x, y0)− v(x0, y0)]

∆x

and hence

Re f ′(z0) = lim
∆x→0

u(x0 +∆x, y0)− u(x0, y0)

∆x

Im f ′(z0) = lim
∆x→0

v(x0 +∆x, y0)− v(x0, y0)

∆x

This tells us that the partial derivatives ∂u
∂x

(x0, y0),
∂v
∂x

(x0, y0) exist and

∂u
∂x

(x0, y0) = Re f ′(x0 + iy0)
∂v
∂x

(x0, y0) = Im f ′(x0 + iy0) (1)

This gives the formula for f ′(x0 + iy0) in the statement of the theorem.

If, instead, we send ∆z = ∆x+ i∆y to zero along the imaginary axis (i.e. set ∆x = 0

and send ∆y → 0), we have

f ′(x0 + iy0) = lim
∆y→0

[u(x0, y0 +∆y)− u(x0, y0)] + i[v(x0, y0 +∆y)− v(x0, y0)]

i∆y

= lim
∆y→0

[v(x0, y0 +∆y)− v(x0, y0)]− i[u(x0, y0 +∆y)− u(x0, y0)]

∆y

and hence

Re f ′(z0) = lim
∆x→0

v(x0, y0 +∆y)− v(x0, y0)

∆y

Im f ′(z0) = − lim
∆x→0

u(x0, y0 +∆y)− u(x0, y0)

∆y

This tells us that the partial derivatives ∂v
∂y

(x0, y0),
∂u
∂y

(x0, y0) exist and

∂v
∂y

(x0, y0) = Re f ′(x0 + iy0)
∂u
∂y

(x0, y0) = −Im f ′(x0 + iy0) (2)

Comparing (1) and (2) gives (CR).
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Theorem 2 says that it is necessary for u(x, y) and v(x, y) to obey the Cauchy–Riemann

equations in order for f(x+ iy) = u(x+ iy) + v(x+ iy) to be differentiable. The following

theorem says that, provided the first order partial derivatives of u and v are continuous,

the converse is also true — if u(x, y) and v(x, y) obey the Cauchy–Riemann equations then

f(x+ iy) = u(x+ iy) + v(x+ iy) is differentiable.

Theorem 3 Let z0 ∈ C and let G be an open subset of C that contains z0. If f(x+ iy) =

u(x, y) + iv(x, y) is defined on G and

◦ the first order partial derivatives of u and v exist in G and are continuous at (x0, y0)

◦ u and v obey the Cauchy–Riemann equations at (x0, y0),

then f is differentiable at z0 = x0 + iy0 and f ′(x0 + iy0) =
∂u
∂x

(x0, y0) + i∂v
∂x

(x0, y0).

Proof: Write
f(z0 +∆z) − f(z0)

∆z
= U(∆z) + iV (∆z)

where

U(∆z) =
u(x0 +∆x, y0 +∆y)− u(x0, y0)

∆z

V (∆z) =
v(x0 +∆x, y0 +∆y)− v(x0, y0)

∆z

Our goal is to prove that lim
∆z→0

[U(∆z)+ iV (∆z)] exists and equals ∂u
∂x

(x0, y0)+ i∂v
∂x

(x0, y0).

Concentrate on U(∆z). The first step is to rewrite U(∆z) in terms of expressions that

will converge to partial derivatives of u and v. For example u(x0,y0+∆y)−u(x0,y0)
∆y

converges

to uy(x0, y0) when ∆y → 0. We can achieve this by adding and subtracting u(x0, y0+∆y):

U(∆z) =
u(x0 +∆x, y0 +∆y)− u(x0, y0)

∆z

=
u(x0 +∆x, y0 +∆y)− u(x0, y0 +∆y)

∆z
+

u(x0, y0 +∆y)− u(x0, y0)

∆z

To express U(∆z) in terms of partial derivatives of u, we use the (ordinary first year

Calculus) mean value theorem. Recall that it says that, if F (x) is differentiable everywhere

between x0 and x0 +∆x, then F (x0 +∆x)− F (x0) = F ′(x∗

0)∆x for some x∗

0 between x0

and x0 + ∆x. Applying the mean value theorem with F (x) = u(x, y0 + ∆y) to the first

half of U(∆z) and with F (y) = u(x0, y) to the second half gives

U(∆z) =
ux(x

∗

0, y0 +∆y)∆x

∆z
+

uy(x0, y
∗

0)∆y

∆z

for some x∗

0 between x0 and x0+∆x and some y∗0 between y0 and y0+∆y. Because ux and

uy are continuous, ux(x
∗

0, y0 +∆y) is almost ux(x0, y0) and uy(x0, y
∗

0) is almost uy(x0, y0)
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when ∆z is small. So we write

U(∆z) =
ux(x0, y0)∆x

∆z
+

uy(x0, y0)∆y

∆z
+E1(∆z) + E2(∆z)

where the “error terms” are

E1(∆z) = [ux(x
∗

0, y0 +∆y)− ux(x0, y0)]
∆x

∆z

E2(∆z) = [uy(x0, y
∗

0)− uy(x0, y0)]
∆y

∆z

Similarly

V (∆z) =
vx(x

∗∗

0 , y0 +∆y)∆x

∆z
+

vy(x0, y
∗∗

0 )∆y

∆z

=
vx(x0, y0)∆x

∆z
+

vy(x0, y0)∆y

∆z
+E3(∆z) + E4(∆z)

for some x∗∗

0 between x0 and x0 +∆x, and some y∗∗0 between y0 and y0 +∆y. The error

terms are

E3(∆z) = [vx(x
∗∗

0 , y0 +∆y)− vx(x0, y0)]
∆x

∆z

E4(∆z) = [vy(x0, y
∗∗

0 )− vy(x0, y0)]
∆y

∆z

Now as ∆z → 0

◦ both x∗

0 and x∗∗

0 (both of which are between x0 and x0 +∆x) must approach x0 and

◦ both y∗0 and y∗∗0 (both of which are between y0 and y0 +∆y) must approach y0 and

◦
∣

∣

∆x
∆z

∣

∣ ≤ 1 and
∣

∣

∆y
∆z

∣

∣ ≤ 1

Recalling that ux, uy, vx and vy are all assumed to be continuous at (x0, y0), we conclude

that

lim
∆z→0

E1(∆z) = lim
∆z→0

E2(∆z) = lim
∆z→0

E3(∆z) = lim
∆z→0

E4(∆z) = 0

and, using the Cauchy–Riemann equations,

lim
∆z→0

f(z0 +∆z) − f(z0)

∆z
= lim

∆z→0

[

U(∆z) + iV (∆z)
]

= lim
∆z→0

[ux(x0, y0)∆x

∆z
+

uy(x0, y0)∆y

∆z
+ i

vx(x0, y0)∆x

∆z
+ i

vy(x0, y0)∆y

∆z

]

= lim
∆z→0

[ux(x0, y0)∆x

∆z
−

vx(x0, y0)∆y

∆z
+ i

vx(x0, y0)∆x

∆z
+ i

ux(x0, y0)∆y

∆z

]

= lim
∆z→0

[

ux(x0, y0)
∆x+ i∆y

∆z
+ ivx(x0, y0)

∆x+ i∆y

∆z

]

= ux(x0, y0) + ivx(x0, y0)

as desired.
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Example 4 The function f(z) = z̄ has f(x+ iy) = x− iy so that

u(x, y) = x and v(x, y) = −y

The first order partial derivatives of u and v are

ux(x, y) = 1 vx(x, y) = 0

uy(x, y) = 0 vy(x, y) = −1

As the Cauchy–Riemann equation ux(x, y) = vy(x, y) is satisfied nowhere, the function

f(z) = z̄ is differentiable nowhere. We have already seen this in Example 1.

Example 5 The function f(z) = ez has

f(x+ iy) = ex+iy = ex
{

cos y + i sin y
}

= u(x, y) + iv(x, y)

with

u(x, y) = ex cos y and v(x, y) = ex sin y

The first order partial derivatives of u and v are

ux(x, y) = ex cos y vx(x, y) = ex sin y

uy(x, y) = −ex sin y vy(x, y) = ex cos y

As the Cauchy–Riemann equations ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y) are satisfied

for all (x, y), the function f(z) = ez is entire and its derivative is

f ′(z) = f ′(x+ iy) = ux(x, y) + ivx(x, y) = ex cos y + iex sin y = ez

Example 6 The function f(x+ iy) = x2 + y + i(y2 − x) has

u(x, y) = x2 + y and v(x, y) = y2 − x

The first order partial derivatives of u and v are

ux(x, y) = 2x vx(x, y) = −1

uy(x, y) = 1 vy(x, y) = 2y

As the Cauchy–Riemann equations ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y) are satisfied

only on the line y = x, the function f is differentiable on the line y = x and nowhere else.

So it is nowhere analytic.
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Example 7 The function f(x+ iy) = x2 − y2 + 2ixy has

u(x, y) = x2 − y2 and v(x, y) = 2xy

The first order partial derivatives of u and v are

ux(x, y) = 2x vx(x, y) = 2y

uy(x, y) = −2y vy(x, y) = 2x

As the Cauchy–Riemann equations ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y) are satisfied

for all (x, y), this function is entire. There is another way to see this. It suffices to observe

that f(z) = z2, since (x+ iy)2 = x2 − y2 +2ixy. So f is a polynomial in z and we already

know that all polynomials are differentiable everywhere.

Example 8 The function f(x+ iy) = x2 + y2 has

u(x, y) = x2 + y2 and v(x, y) = 0

The first order partial derivatives of u and v are

ux(x, y) = 2x vx(x, y) = 0

uy(x, y) = 2y vy(x, y) = 0

As the Cauchy–Riemann equations ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y) are satisfied

only at x = y = 0, the function f is differentiable only at the point z = 0. So it is nowhere

analytic. There is another way to see that f(z) cannot be differentiable at any z 6= 0. Just

observe that f(z) = zz̄. If f(z) were differentiable at some z0 6= 0, then z̄ = f(z)
z

would

also be differentiable at z0 and we already know that this is not case.
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