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ABSTRACT

We present a novel method for blind separation of any num-
ber of sources using only two mixtures. The method applies
when sources are (W-)disjoint orthogonal, that is, when the
supports of the (windowed) Fourier transform of any two
signals in the mixture are disjoint sets.

We show that, for anechoic mixtures of attenuated and
delayed sources, the method allows one to estimate the mix-
ing parameters by clustering ratios of the time-frequency
representations of the mixtures. The estimates of the mix-
ing parameters are then used to partition the time-frequency
representation of one mixture to recover the original sources.
The technique is valid even in the case when the number
of sources is larger than the number of mixtures. The gen-
eral results are veri�ed on both speech and wireless signals.
Sample sound �les can be found here:
http://www.princeton.edu/~srickard/bss.html

1. INTRODUCTION

Demixing noisy mixtures has been a goal of long stand-
ing in the �eld of blind source separation(BSS). One area
where BSS methods are important is wireless communica-
tions where receiving antennas measure a linear mixture of
delayed and attenuated EM radiation of the source signals.
Another example lies in the acoustic domain where it is de-
sirable to separate a voice of interest from background noise
and interfering speakers.

Assumptions on the statistical properties of the sources
usually provide a basis for a demixing algorithm. Some
common assumptions are that the sources are statistically
independent[1, 2], are statistically orthogonal[3], are non-
stationary[4], or can be generated by �nite dimensional
model spaces[5]. The independence/orthogonality assump-
tion can be veri�ed experimentally for speech signals and is
also valid for many wireless communications schemes. Some
of these methods work well for instantaneous demixing, but
fail if propagation delays are present. Additionally, many
algorithms are computationally intensive as they require the
computation of higher-order statistical moments or the op-
timization of a non-linear cost function.

One area of research in blind source separation that is
relatively untouched is when there are less mixtures than
sources. We refer to such a case as degenerate blind source

separation. Degenerate blind source separation poses a chal-
lenge because the mixing matrix is not invertible and the
traditional method of demixing by estimating the inverse
mixing matrix does not work. As a result, most of re-
search in channel estimation and BSS has been done for the
square non-degenerate case. In the related areas of wireless
communication where channel estimation is important, the
number of receivers is typically more then the number of
emitters. For example, subspace channel estimation meth-
ods require at least one more mixture than sources to esti-
mate the sources and the noise[6, 7].

One example of degenerate blind source separation esti-
mates an arbitrary number of sources from a single mixture
by modeling the signals as AR processes[8]. However, this is
achieved at a price of approximating signals by AR stochas-
tic processes, which can be too restrictive. Another exam-
ple of degenerate separation uses higher order statistics to
demix three sources from two mixtures[9]. This approach
is not feasible however for a large number of sources since
the use of higher order statistics of mixtures leads to an
explosion in computational complexity.

Similar in spirit to this paper, van Hulle employs a clus-
tering method for relative amplitude parameter estimation
and degenerate demixing[10]. The assumptions used by van
Hulle were that only one signal at a given time is non-zero
and that mixing is instantaneous, that is, there is only a
relative amplitude mixing parameter associated with each
source. In real world acoustic environments or wireless com-
munication domains, these assumptions are not valid.

The results of this paper are derived for anechoic time
delay mixtures. We prove that for such a mixing model,
estimation of the mixing parameters and complete separa-
tion of any number of disjoint orthogonal sources is possible
from only two mixtures. The results can be extended to the
noisy echoic case[11].

In Section 2 we de�ne the time delay mixing model, in-
troduce the concept of disjoint orthogonality, and describe
the mixing parameter estimation. In Section 3 we describe
a solution for degenerate demixing.

2. MIXING PARAMETER ESTIMATION

2.1. Source mixing

Consider measurements of a pair of sensors where only the
direct path is present. In this case, without loss of general-
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ity, we can absorb the attenuation and delay parameters of
the �rst mixture, x1(t), into the de�nition of the sources.
The two mixtures can thus be expressed as,

x1(t) =

NX
j=1

sj(t) + n1(t); (1)

x2(t) =

NX
j=1

ajsj(t� Æj) + n2(t); (2)

where Æj is the arrival delay between the sensors resulting
from the angle of arrival, aj is a relative attenuation fac-
tor corresponding to the ratio of the attenuations of the
paths between source and sensors, and n1(t) and n2(t) are
independent white Gaussian noise signals. We use � to de-
note the maximal possible delay between sensors, and thus,
jÆj j � �; 8j.

2.2. Source Assumptions

Given a windowing function W (t), we call two functions
si(t) and sj(t) W-disjoint orthogonal if the supports of
the windowed Fourier transforms of si(t) and sj(t) are dis-
joint. The windowed Fourier transform of si(t) is de�ned,

F
W (si(�))(!; �) =

Z
1

�1

W (t� �)si(t)e
�{!t

dt; (3)

which we will refer to as SWi (!; �) where appropriate. The
W-disjoint orthogonality assumption can be stated concisely,

S
W
i (!; � )S

W
j (!; � ) = 0; 8i 6= j; 8!; �: (4)

Note that, ifW (t) = 1, SWi (!; �) becomes the Fourier trans-
form of si(t), which we will denote Si(!). In this case,
W-disjoint orthogonality can be expressed,

Si(!)Sj(!) = 0; 8i 6= j; 8! (5)

which we call disjoint orthogonality. In addition, when
W (t) = 1, we use the Fourier transform theorem,

F
W (si(� � Æ))(!; �) = e

�{!Æ
F
W (si(�))(!; �): (6)

In the case whereW (t) has �nite support, we will assume, as
is common in array processing literature, the physical sep-
aration of the sensors is small enough relative to the carrier
and bandwidth of the signal such that the relative delay be-
tween the sensors can be expressed as a phase shift of the
signal[12]. This is known as the narrowband assump-

tion in array processing and it implies, for our purposes,
that Equation 6 holds for all Æ, jÆj � �, even when W (t)
has �nite support.

2.3. Amplitude-Delay Estimation

Consider the no noise case with W (t) = 1. We can rewrite
the model from Equations 1 and 2 for the case with two
array elements as,

�
X1(!)
X2(!)

�
=

�
1 : : : 1

a1e
�{!Æ1 : : : aNe

�{!ÆN

�264
S1(!)
...

SN (!)

3
75
(7)
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Figure 1: 2D Histogram of amplitude-delay estimates from
two mixtures of �ve sources. The amplitude parameters
were (:98; 1:02; :93; 1:06; :93) and the corresponding delay
parameters were (:3;�:2; :8;�:7;�:2).

For disjoint orthogonal sources, we note that at most one
of the N sources will be non-zero for a given !, thus,

�
X1(!)
X2(!)

�
=

�
1

aie
�{!Æi

�
Si(!); for some i. (8)

Therefore, we can calculate the relative amplitude and delay
parameters associated with one source using,

(ai; Æi) =

�



X2(!)

X1(!)





 ;=(log(X1(!)

X2(!)
))=!

�
; (9)

for some i, where = denotes taking the imaginary part.
When the noise is non-zero and W (t) has �nite support,
Equation 9 is no longer exact, however, the mixing param-
eters can be approximated for a given (!; �) using,

(âi; Æ̂i) =

�



X
W
2 (!; �)

XW
1
(!; �)





 ;=(log(X
W
1 (!; �)

XW
2
(!; � )

))=!

�
; (10)

for some i. Equation 10 has been shown to yield accurate
mixing parameter estimates for appropriate W (t) under a
variety of noise and multipath conditions[11].

Using Equation 10, every (!; t) yields an estimate pair
for the relative amplitude-delay parameter associated with
one source. For W-disjoint orthogonal signals, if we were to
calculate amplitude-delay estimates from a number of time-
frequency points, we would expect to see clusters around the
true delay mixing parameters for each source. If we were
to use a standard clustering technique on the amplitude-
delay estimates, the number of clusters found would be
the estimate of the number of sources, and the cluster cen-
ters would be the amplitude-delay estimates associated with
each source.

Sample results of estimation of mixing parameters on
mixtures of real speech signals are given in Figure 1, which
shows the results of mixing parameter estimation of �ve
sources from two mixtures. Note that two sources with the
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Figure 2: Two-dimensional histogram of number of esti-
mates for delay-amplitude mixing parameters for ten M-ary
FSK sources obtained using two mixtures.

same angle of arrival can be di�erentiated by their ampli-
tudes alone. Mixing parameter estimation for two mixtures
of ten M-ary FSK wireless signals is shown in Figure 2.

3. DEMIXING

If the number of sources is equal to the number of mixtures,
the non-degenerate case, the standard demixing method is
to invert the mixing matrix. We can write the mixing model
for two sources as,

�
X1(!)
X2(!)

�
=

�
1 1

a1e
�{!Æ1 a2e

�{!Æ2

��
S1(!)
S2(!)

�
: (11)

In the non-degenerate case, the mixing parameter estima-
tion technique described in the previous section can be used
for matrix inversion demixing.

When the number of sources is greater than the number
of mixtures (N > M), the degenerate case, matrix inversion
is no longer possible. Nevertheless, in this case we can still
demix by partitioning the time-frequency plane using one of
the mixtures based on estimates of the mixing parameters
between mixtures.

For W-disjoint orthogonal signals, using Equation 4, we
know that the value of XW

1 (!; �) at any frequency ! for
a given � is equal to S

W
i (!; �) for some i. Moreover, the

ratio X
W
1 (!; � )=XW

2 (!; �) depends only on the mixing pa-
rameters associated with one source. Thus, for each time-
frequency point, we can determine which of the N peaks
in the two-dimensional histogram of amplitude-delay esti-
mates is closest to the (âi; Æ̂i) estimate for the given (!; �).
Each peak corresponds to one source, therefore, partition-
ing XW

1 (!; �) into N time-frequency signals and converting
the resulting partitioned time-frequency signals back into
the time domain produces the N original source estimates.

In detail, we use 
 to denote the support of XW
1 (!; �),

that is, the set of (!; �) pairs for which with X
W
1 (!; � ) 6= 0.

Similarly, the support of SWi (!; �) is 
i. For W-disjoint

orthogonal sources, we have, 
 = [i
i, and,


i \ 
j = ;; i 6= j: (12)

For a given (!; �) 2 
, we can determine the i for which
(!; � ) 2 
i by choosing the closest cluster center to the
estimate generated using Equation 10. Repeating this for
every (!; �) in 
, and assigning,

S
W
i (!; �) = X

W
1 (!; � ); (13)

whenever (!; �) 2 
i, we get the windowed Fourier trans-
form of si for each i. The inverse Fourier transform of
S
W
i (!; �) gives us the individual source functions around

t = � . By repeating this for all t, we reconstruct each
source function.

An example of degenerate demixing of �ve speech sources
from two mixtures is given in Figure 3. Tests on both ane-
choic and echoic degenerate mixtures show that this tech-
nique, which we call DUET (Degenerate Unmixing Estima-
tion Technique), is an extremely robust BSS method[13].

4. SUMMARY

In this paper we presented a number of new results on
demixing degenerate mixtures, a problem that has been
largely unaddressed in the literature. Our approach was
to assume that the source signals are W-disjoint orthogonal
and then to note that mixing is, for a given time-frequency
choice, just a function of one source. For the anechoic mix-
ing model, the ratio of the windowed Fourier transform of
the two mixtures for a given time-frequency choice depends
only on the mixing attenuation and delay parameter as-
sociated with one source. Clustering these ratio estimates
reveals the mixing parameters. Using the cluster centers
to partition the windowed Fourier transform of one of the
mixtures, it is possible to obtain estimates of the original
sources. The fact that both estimation and separation can
be done when the number of sources is larger than the num-
ber of mixtures without signi�cant computational complex-
ity represents a signi�cant advancement in the state of the
art.

We have veri�ed that, perhaps surprisingly, speech sig-
nals satisfy W-disjoint orthogonality enough to allow for
mixing parameter estimation and degenerate separation.
Experimental evidence shows that multiple speakers talk-
ing simultaneously can be demixed with two microphones
with high �delity of recovered signals. For wireless disjoint
orthogonal signals, such as frequency hopped waveforms,
blind estimation of mixing parameters and blind separation
of signals are achievable.

In the present work we were not able to go in depth on
a number of interesting issues. Among them are the ex-
act relationship between statistical orthogonality and dis-
joint orthogonality, the question of how to select the \best"
windowing function, and interplay between the choice of
windowing function and violation of the representation of
time shifts in the time domain by complex factors in the
frequency domain. One could also think of extending our
methods to the non-linear media, where mixing models be-
come non-linear and cause delays that might depend on the
frequency.
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Figure 3: Five original sources, two mixtures, and the �ve
estimates of the original sources. The separated sources
average 14.3 dB SNR improvement.

On another front, it is clear that much more work needs
to be done to further extend the treatment of the echoic case
and in particular to derive better bounds on parameters
when we expect our method to work. We plan to address
these and other issues in subsequent publications.
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