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Consider axisymmetric strong solutions of the incompressible Navier–Stokes equations

in R
3 with nontrivial swirl. Such solutions are not known to be globally defined, but

it is shown in ([1], Partial regularity of suitable weak solutions of the Navier–Stokes

equations. Communications on Pure and Applied Mathematics, 35 (1982), 771–831) that

they could only blow up on the axis of symmetry. Let z denote the axis of symmetry

and r measure the distance to the z-axis. Suppose the solution satisfies the pointwise

scale invariant bound |v(x, t )| ≤ C∗(r2 − t )−1/2 for −T0 ≤ t < 0 and 0 < C∗ < ∞ allowed to

be large, we then prove that v is regular at time zero.

1 Introduction

The incompressible Navier–Stokes equations in cartesian coordinates are given by

∂tv + (v · ∇)v + ∇ p = �v, div v = 0. (N−S)
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The velocity field is v(x, t ) = (v1, v2, v3) : R
3 × [−T0, 0) → R

3 and p(x, t ) : R
3 × [−T0, 0) → R

is the pressure. It is a long standing open question to determine if solutions with large

smooth initial data of finite energy remain regular for all time.

In this paper, we consider the special class of solutions which are axisymmetric.

This means, in cylindrical coordinates r, θ , z with (x1, x2, x3) = (r cos θ , r sin θ , z), that the

solution is of the form

v(x, t ) = vr(r, z, t )er + vθ (r, z, t )eθ + vz(r, z, t )ez. (1.1)

The components vr, vθ , vz do not depend upon θ and the basis vectors er, eθ , ez are

er =
(x1

r
,

x2

r
, 0

)
, eθ =

(
−x2

r
,

x1

r
, 0

)
, ez = (0, 0, 1).

The main result of our paper shows that axisymmetric solutions must blow up faster

than the scaling invariant rate which appears in equation (1.2).

For R > 0, define B(x0, R) ⊂ R
3 as the ball of radius R centered at x0. The parabolic

cylinder is Q(X0, R) = B(x0, R) × (t0 − R2, t0) ⊂ R
3+1 centered at X0 = (x0, t0). If the center

is the origin, we use the abbreviations BR = B(0, R) and QR = Q(0, R).

Theorem 1.1. Let (v, p) be an axisymmetric solution of the Navier–Stokes equations

(N–S) in D = R
3 × (−T0, 0) for which v(x, t ) is smooth in x and Hölder continuous in t .

Suppose the pressure satisfies p ∈ L5/3(D) and v is pointwise bounded as

|v(x, t )| ≤ C∗(r2 − t )−1/2, (x, t ) ∈ D. (1.2)

The constant C∗ < ∞ is allowed to be large. Then v ∈ L∞(BR × [−T0, 0]) for any R > 0. �

We remark that the exponent 5/3 for the norm of p can be replaced. However, it

is the natural exponent occurring in the existence theory for weak solutions, see e.g. [28],

[1].

Recall the natural scaling of Navier–Stokes equations: If (v, p) is a solution to

(N–S), then for any λ > 0, the following rescaled pair is also a solution:

vλ(x, t ) = λv(λx, λ2t ), pλ(x, t ) = λ2 p(λx, λ2t ). (1.3)
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Suppose a solution v(x, t ) of the Navier–Stokes equations blows up at X0 = (x0, t0). Leray

[18] proved that the blow-up rate in time is at least

‖v(·, t )‖L∞
x

≥ C (t0 − t )−1/2.

Caffarelli, Kohn, and Nirenberg [1] showed that for such a blow-up solution, the average

of |v| over Q(X0, R) satisfies

(
1

|QR|
∫

Q(X0,R)
|v|3 + |p|3/2dxdt

)1/3

≥ C

R
.

See also [21, 24, 39]. Thus, the natural rate for blowup is at least

|v(x, t )| ∼ O(1)

[(x0 − x)2 + t0 − t ]1/2
. (1.4)

Both this and the rate (1.2) are invariant under the natural scaling (1.3).

The Serrin-type criteria [6, 8, 9, 15, 30, 31, 33] states that v is regular if it satisfies

‖v‖Ls
t Lq

x(Q1) < ∞,
3

q
+ 2

s
≤ 1, s, q ∈ (2, ∞), or (s, q) = (2, ∞). (1.5)

Above, for a domain � ⊂ R
3, we use the definition

‖v‖Ls
t Lq

x(�×(t1,t2)) := ‖‖v(x, t )‖Lq
x(�)‖Ls

t (t1,t2).

For any X0 = (x0, t0) ∈ Q1, equation (1.5) implies the following local smallness of v:

lim
R↓0

‖v‖Ls
t Lq

x(Q(X0,R)) = 0. (1.6)

Therefore, equation (1.5) is a so-called ε-regularity criterion since it implies that the

norm is locally small. For (q, s) = (3, ∞), equation (1.6) does not follow from equation

(1.5). Hence, the (q, s) = (3, ∞) end point regularity criterion (1.5) proved in [5, 29] is not

an ε-regularity-type theory.

However, these criteria do not rule out blowup with the natural scaling rate (1.4).

It is a fundamental problem in the study of the incompressible Navier–Stokes equations
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to determine if solutions to (N–S) with the following scaling invariant bound are regular:

|v(x, t )| ≤ C

[(x0 − x)2 + t0 − t ]1/2
. (1.7)

If a self-similar solution satisfies this bound, then it is known to be zero [37] (the self-

similar solution from [24] belongs to L∞
t L3

x).

Theorem 1.1 rules out singular axisymmetric solutions satisfying the bound (1.7).

In fact, equation (1.2) is considerably weaker than equation (1.7) and is also not a border-

line case of the Serrin-type criterion. For example, equation (1.2) implies that v ∈ Lq(Q1)

for q < 4, but not for q ∈ [4, 5). The borderline of the Serrin-type criterion, on the other

hand, is v ∈ L5(Q1). Finally, we remark that the assumption (1.2) has been improved in

two recent preprints [3] and [13].

We now recall the previous results on the regularity of axisymmetric solutions

to the Navier–Stokes equations. Global in-time regularity was first proved under the no

swirl assumption, vθ = 0, independently by Ukhovskii–Yudovich [38] and Ladyzhenskaya

[16]. See [17] for a refined proof and [12] for similar results in the half-space setting.

When the swirl component vθ is not assumed to be trivial, global regularity is

unknown. But it follows from the partial regularity theory of [1] that singular points

can only lie on the axis of symmetry. Any off-axis symmetry would imply a whole circle

of singular points, which contradicts [1]. Neustupa–Pokorný [25, 26] proved regularity

assuming the zero-dimensional condition vr ∈ Ls
t Lq

x with 3/q + 2/s = 1, 3 < q ≤ ∞. Reg-

ularity criteria can also be put on the vorticity field ω = curl v,

ω(x, t ) = ωrer + ωθeθ + ωzez, (1.8)

where

ωr = −∂zvθ , ωθ = ∂zvr − ∂rvz, ωz = (∂r + r−1)vθ .

Chae–Lee [2] proved regularity assuming finiteness of another zero-dimensional inte-

gral: ωθ ∈ Ls
t Lq

x with 3/q + 2/s = 2. Jiu–Xin [11] proved regularity if the sum of the zero-

dimensional scaled norms
∫

QR
(R−1|ωθ |2 + R−3|vθ |2)dz is sufficiently small for all R > 0

small enough. Recently, Hou–Li [10] constructed a family of global solutions with large

initial data.

The main idea of our proof is as follows. The bound (1.2) ensures that the first

blow-up time is no earlier than t = 0. For t ∈ (−T0, 0), we show that the swirl component
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vθ gains a modicum of regularity: For some small α = α(C∗) > 0, equation (1.2) enables us

to conclude that

|vθ (t , r, z)| ≤ Crα−1. (1.9)

We prove equation (1.9) in Section 3. This estimate breaks the scaling, thereby trans-

forming the problem from order one to ε-regularity, which is shown to be sufficient in

Section 2.

2 Proof of Main Theorem

In this section, we prove Theorem 1.1. First we show that our solutions are in fact suitable

weak solutions. Then we make use of equation (1.9), to establish our main theorem.

2.1 Suitable weak solution

We recall from [1, 21, 28] that a suitable weak solution of the Navier–Stokes equations in

a domain Q ⊂ R
3 × R is defined to be a pair (v, p) satisfying

v ∈ L∞
t L2

x(Q), ∇v ∈ L2(Q), p ∈ L3/2(Q). (2.1)

Further, (v, p) solve (N–S) in the sense of distributions and satisfy the local energy in-

equality:

2
∫

Q
|∇v|2ϕ ≤

∫
Q
{|v|2(∂tϕ + �ϕ) + (|v|2 + 2p)v · ∇ϕ}, ∀ϕ ∈ C ∞

c (Q), ϕ ≥ 0. (2.2)

To prove interior regularity, we do not need to specify the initial or boundary data.

We define a solution v(x, t ) to be regular at a point X0 if v ∈ L∞(Q(X0, R)) for some

R > 0. Otherwise v(x, t ) is singular at X0. We will use the following regularity criterion.

Lemma 2.1. Suppose that (v, p) is a suitable weak solution of (N–S) in Q(X0, 1). Then

there exists an ε1 > 0, so that X0 is a regular point if

lim sup
R↓0

1

R2

∫
Q(X0,R)

|v|3 ≤ ε1. (2.3)

�
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This regularity criterion, which is a variant of the criterion in [1], was proven in

[36]; see [9] for more general results. The condition (2.3) does not explicitly involve the

pressure, but one does require p ∈ L3/2(Q(X0, 1)) because the pair (v, p) is assumed to be

a suitable weak solution.

2.2 Preliminary estimates

In this section, we show that the solution (v, p) in Theorem 1.1 is sufficiently integrable

to be a suitable weak solution, and we derive estimates depending only upon C∗ of

equation (1.2).

We estimate the pressure with weighted singular integral estimates. We therefore

first estimate v in weighted spaces. Fix β ∈ (1, 5/3). For t ∈ (−T0, 0) by equation (1.2), we

have

∫
R3

|v(x, t )|4
|x|β dx ≤

∫
R3

1

|x|β
C∗rdrdz

(r2 − t )2
=

∫
|z|≥1

+
∫

|z|<1,r>1
+

∫
|z|<1,r<1

= I1 + I2 + I3.

Each of these integrals can be estimated as follows:

|I1| ≤
∫

|z|>1

dz

|z|β
∫ ∞

0

C∗rdr

(r2 − t )2
≤ c|t |−1,

|I2| ≤
∫ ∞

1
r−β C∗

(r2 − t )2
rdr ≤ c,

|I3| ≤
∫ 1

0
(1 + r1−β )

c

(r2 − t )2
rdr ≤ c|t |−(1+β)/2.

Summing the estimates and using β > 1, we get

∫
R3

1

|x|β |v(x, t )|4 dx ≤ c + c|t |−(1+β)/2.

Define Ri’s to be the Riesz transforms: Ri = ∂i√−�
. We consider the singular integral

p̃(x, t ) =
∫ ∑

i, j

∂i∂ j(viv j)(y)
1

4π |x − y| dy =
∑
i, j

Ri Rj(viv j).

To show that this singular integral is well defined for every t , we use the Lq(R3)-estimates

for singular integrals with Aq weight [32]. Specifically, we use q = 2 and the A2 weight
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function |x|−β . We have the estimate

∫
1

|x|β | p̃(x, t )|2 dx ≤ c
∫

1

|x|β |v(x, t )|4 dx ≤ c + c|t |−(1+β)/2. (2.4)

Choose γ ∈ (1/2 + 5β/6, 3). Hölder’s inequality gives us the bound

∫
|x|>1

| p̃(x, t )|5/3

|x|γ dx ≤
(∫

|x|>1

| p̃(x, t )|2
|x|β dx

)5/6 (∫
|x|>1

|x|−(γ− 5
6 β)6dx

)1/6

< ∞.

We will use these bounds to show that the pressure p can be identified with p̃.

Let h(x, t ) = p(x, t ) − p̃(x, t ). Then h is harmonic in x, �xh(x, t ) = 0, and by assump-

tion p(·, t ) ∈ L5/3(R3) for almost every t . For each such t , we have

∫
|x|>1

|h(x, t )|5/3

|x|γ dx ≤ c
∫

|x|>1
|p(x, t )|5/3dx + c

∫
|x|>1

| p̃(x, t )|5/3

|x|γ dx < ∞.

We may thus conclude from using a Liouville theorem that h(x, t ) = 0 for all x if γ < 3.

To see the last assertion, fix a radial smooth function φ(x) ≥ 0 supported in 2 <

|x| < 4 satisfying
∫

φ = 1. For any x ∈ R
3 with R > |x|, we have

h(x, t ) =
∫

h(y, t )R−3φ(x + y/R) dy.

This is the mean-value theorem for harmonic functions. Define A = B5R − BR, then

|h(x, t )| ≤ cR−3
∫

A
|h(y, t )|dy ≤ cR−3+(6+3γ )/5

(∫
A
|y|−γ |h(y, t )|5/3dy

)3/5

.

This clearly vanishes as R → ∞. Thus, p(x, t ) = p̃(x, t ) for all x and for almost every t .

Next we show that (v, p) form a suitable weak solution. From Hölder’s inequality,

equation (2.4), and β < 5/3, we conclude that

∫
Q1

|p(x, t )|3/2 dxdt ≤ c
∫ 0

−1

(∫
B1

1

|x|β |p(x, t )|2 dx
)3/4

dt ≤ c. (2.5)

The pointwise estimate (1.2) on v implies

v ∈ Ls
t Lq

x(Q1),
1

q
+ 1

s
>

1

2
. (2.6)
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We will use (s, q) = (3, 3). We also see from equation (1.2) that v ∈ L4(B1 × (−T0, −ε)) for any

small ε > 0. Thus, the vector product of (N–S) with uϕ for any ϕ ∈ C ∞
c (Q1) is integrable

in Q1 and we can integrate by parts to get the local energy inequality (2.2) with Q = Q1.

In fact, we have equality.

Now, for any R ∈ (0, 1) and t0 ∈ (−R2, 0), we can choose a sequence of ϕ which

converges a.e. in QR to H (t0 − t ), the Heaviside function that equals 1 for t < t0 and 0 for

t > t0. Since the limit of ∂tϕ is the negative delta function in t , this gives us the estimate

ess sup
−R2<t<0

∫
BR

|v(x, t )|2dx +
∫

QR

|∇v|2 ≤ C R

∫
Q1

(|v|3 + |p|3/2). (2.7)

These estimates show that (v, p) is a suitable weak solution of (N–S) in QR. Note that

these bounds depend on C∗ of equation (1.2) only, not on ‖p‖L5/3(R3×(−T0,0)).

2.3 Scaling limit

To show Theorem 1.1, it suffices to show that every point on the z-axis is regular. Suppose

now that a point x∗ = (0, 0, x3) on the z-axis is a singular point of v. We will derive a

contradiction. Define X∗ = (x∗, 0). Let (vλ, pλ) be rescaled solutions of (N–S) defined by

vλ(x, t ) = λv(λ(x − x∗), λ2t ), pλ(x, t ) = λ2 p(λ(x − x∗), λ2t ). (2.8)

Fix R∗ > 0 to be chosen; by Lemma 2.1 there is a sequence λk, k ∈ N, so that λk → 0 as

k → ∞ and

1

R2∗

∫
QR∗

|vλk |3 = 1

(R∗λk)2

∫
Q(X∗,R∗λk )

|v|3 > ε1. (2.9)

We will derive a contradiction to this statement.

For (vλ, pλ) with 0 < λ < 1, the pointwise estimate (1.2) is preserved,

|vλ(x, t )| ≤ C∗(r2 − t )−1/2, (x, t ) ∈ R
3 × (−T0, 0).

We also have by rescaling

pλ(x, t ) =
∫ ∑

i, j

∂i∂ j
(
vλ

i vλ
j

)
(y)

1

4π |x − y| dy,
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The argument in the previous section provides the uniform bounds for q ∈ (1, 4),

∫
Q1

|vλ|q + |pλ|3/2 ≤ C , ess sup
−R2<t<0

∫
BR

|vλ(x, t )|2dx +
∫

QR

|∇vλ|2 ≤ C . (2.10)

Above the bound for pλ follows from equation (2.5), the bound for |vλ|q follows from

equation (1.2), and the energy bound then follows from equation (2.7).

Thus from the sequence λk we can extract a subsequence, still denoted by λk, so

that (vλk , pλk ) weakly converges to some limit function (v̄, p̄)

vλk ⇀ v̄ in Lq(QR), ∇vλk ⇀ ∇v̄ in L2(QR), pλk ⇀ p̄ in L3/2(QR).

Moreover, since (vλ, pλ) solves (N–S) with bound (2.10), we also have the uniform bound

‖∂tv
λ‖L3/2((−R2,0);H−2(BR)) < C .

We can then apply Theorem 2.1 of [35, Chapter III] to conclude that vλk remain in a

compact set of L3/2(QR). Therefore, (a further subsequence of) vλk → v̄ strongly in L3/2(QR).

Since the vλk remain bounded in Lq(QR) for all q < 4, we deduce that vλk → v̄ strongly in

Lq(QR) for all 1 ≤ q < 4.

2.4 The limit solution

The convergence established at the end of Section 2.3 is sufficient to conclude that the

limit function (v̄, p̄) is a suitable weak solution of the Navier–Stokes equations in QR, as

in [1, 21]. Since v satisfies equation (1.2), so does v̄. Hence v̄ is regular at any interior

point of QR, and t = 0 is the first time when v̄(x, t ) could develop a singularity.

To gather more information, we use axisymmetry. We will argue in this section

and the next that the estimate (1.9) (proven in the Section 3) is enough to conclude that

our solution is regular. In particular, equation (1.9) tells us that

∫
QR

∣∣vλ
θ

∣∣ ≤ Cλα → 0 as λ ↓ 0.

Thus, the limit v̄ has no-swirl, v̄θ = 0.
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Let ω̄ = ∇ × v̄ be the vorticity of v̄. The θ component of ω̄, ω̄θ = ∂zv̄r − ∂r v̄z, solves

(
∂t + b̄ · ∇ − � + 1

r2

)
ω̄θ − v̄r

r
ω̄θ = 0.

We have used v̄θ = 0. Above

b̄ = v̄ = v̄rer + v̄zez, b̄ · ∇ = v̄r∂r + v̄z∂z, div b̄ = 0.

We record the Laplacian for axisymmetric functions

� = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
.

Next define � = ω̄θ /r. Then � solves

(
∂t + b̄ · ∇ − � − 2

r
∂r

)
� = 0. (2.11)

We now derive Lq estimates on � using estimates for the Stokes system.

Since v̄ satisfies equation (1.2), it also satisfies equation (2.6). We will use both

(s, q) = (5/2, 5) and (s, q) = (5/4, 5/4). We rewrite (N–S) as a Stokes system with force

(∂t − �)v̄i + ∇i p̄ = ∂ j fij, div v̄ = 0, fij = −v̄i v̄ j.

By the interior estimates of Stokes system (shown in the Appendix), we have

‖∇v̄‖L5/4
t L5/2

x (Q5/8) ≤ C‖v̄‖2
L5/2

t L5
x(Q3/4)

+ C‖v̄‖L5/4(Q3/4) ≤ C .

Hence, � has the bound

‖�‖L20/19(Q5/8) ≤ ‖∇v̄‖L5/4
t L5/2

x (Q5/8)‖1/r‖L∞
t L20/11

x (Q5/8) ≤ C . (2.12)

In Section 2.6, we obtain � ∈ L∞ from equations (2.11), (2.12), and a local maximum

estimate. Then in Section 2.7, we show that this is sufficient to conclude Theorem 1.1.
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2.5 Energy estimates

We derive parabolic De Giorgi-type energy estimates for equation (2.11). To do this we

assume that

|b̄(r, z, t )| ≤ C∗/r.

This assumption on b̄ is substantially weaker than the one from Theorem 1.1.

Consider a test function 0 ≤ ζ1(x, t ) ≤ 1 defined on Q1 for which ζ1 = 0 on ∂ B1 ×
[−12, 0] and ζ1 = 1 on Qσ for 0 < σ < 1. Suppose that ζ1(x, −1) = 0. Now consider the

rescaled test function ζ (x, t ) = ζ1(x/R, t/R2) on QR. Define (u)± = max{±u, 0} for a scalar

function u. Multiply equation (2.11) by p(� − k)p−1
± ζ 2 for 1 < p ≤ 2 and k ≥ 0 to obtain

∫
BR

ζ 2(� − k)p
±

∣∣∣∣
t

−R2

+ 4(p− 1)

p

∫ t

−R2
dt ′

∫
BR

|∇((� − k)p/2
± ζ )|2

= 2
∫ t

−R2
dt ′

∫
BR

(� − k)p
±

(
ζ

∂ζ

∂t
+ |∇ζ |2 + 2 − p

p
ζ�ζ − 2ζ

∂rζ

r
+ b̄ · ζ∇ζ

)

− 2
∫ t

−R2
dt ′2π

∫
dz ζ 2(� − k)p

±

∣∣∣∣
r=0

.

Notice that the last term has a good sign.

Let v± ≡ (u − k)p/2
± . To estimate the term involving b, we use Young’s inequality

∫
R3

v2
±bζ · ∇ζ ≤ δ

R−1+ε

1 + ε

∫
R3

v2
±ζ 2|b|1+ε + Cδ

εR−2+(1+ε)/ε

1 + ε

∫
R3

v2
±ζ 2

[ |∇ζ |
ζ

](1+ε)/ε

.

This holds for small δ > 0 and ε > 0 to be chosen. Further choose ζ to decay like (1 −
|x|/R)n near the boundary of BR. If n is large enough (depending on ε), we have

Cδ

εR−2+(1+ε)/ε

1 + ε

∫
R3

v2
±ζ 2

[ |∇ζ |
ζ

](1+ε)/ε

≤ C R−2
∫

BR

v2
±.

We also use the Hölder and Sobolev inequalities to obtain

δ
R−1+ε

1 + ε

∫
R3

v2
±ζ 2|b|1+ε ≤ δ

(
R(−1+ε)3/2

∫
BR

|b|(1+ε)3/2

)2/3 ∫
R3

|∇(v±ζ )|2

≤ δC
∫

R3
|∇(v±ζ )|2.
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The last inequality is satisfied, for example, if |b| ≤ C∗/r and ε < 1/3. We conclude

∫
R3

v2
±bζ · ∇ζ ≤ δC

∫
R3

|∇(v±ζ )|2 + C R−2
∫

BR

v2
±. (2.13)

The key point which we used here to control the more singular drift term was to split

b from the main part of the term v±ζ , using the Young and Sobolev inequalities instead

of standard techniques which utilize the Hardy inequality-type spectral gap estimate to

control |b|v2
±ζ 2 in one step. We choose δ sufficiently small in order to absorb this term

into the dissipation.

We have (∂rζ )/r = (∂ρζ )/ρ, where ρ = |x| since ζ is radial, so that the singularity

1/ρ is effectively 1/R. We thus have

sup
−σ 2 R2<t<0

∫
Bσ R×{t}

|(� − k)±|p +
∫

Qσ R

|∇(� − k)p/2
± |2 ≤ C

(1 − σ )2 R2

∫
QR

|(� − k)±|p. (2.14)

Our goal will be to establish L p to L∞ bounds for functions in this energy class.

2.6 Local maximum estimate

The estimates in this section will be proven for a general function u = � satisfying

equation (2.14).

Lemma 2.2. Suppose u = � ∈ L p(QR̄) satisfies equation (2.14) for 1 < p ≤ 2 and R < R̄.

Then

sup
QR/2

u± ≤ C (p, C∗)
(

R−3−2
∫

QR

|u±|p

)1/p

.

�

This estimate can be found in [20] for p = 2. The proof is similar and we include

it so that the proof of Theorem 3.1, which uses Lemma 2.2, is self-contained. Our choice

of p is made merely because those are the ones we need, although others are possible.

Proof. For K > 0 to be determined and N a positive integer, we define

kN = k±
N = (1 ∓ 2−N )K, RN = (1 + 2−N )R/2, ρN = R

2N+3
,

RN+1 < R̄N = (RN + RN+1)/2 < RN .
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Notice that

RN − R̄N = (RN − RN+1)/2 = (2−N − 2−N−1)R/4 = ρN .

Define QN = Q(RN ) and Q̄N = Q(R̄N ) ⊂ QN . Choose a smooth test function ζN satisfying

ζN ≡ 1 on Q̄N , ζ ≡ 0 outside QN and vanishing on it’s spatial boundary, 0 ≤ ζN ≤ 1 and

|∇ζN | ≤ ρ−1
N in QN . Further, let

A±(N) = {X ∈ QN : ±(u − kN+1)(X) > 0}.

And AN,± = ∣∣A±(N)
∣∣. Let v± = ζN (u − kN+1)p/2

± .

Hölder’s inequality gives us

∫
QN+1

|(u − kN+1)±|p ≤
∫

Q̄N

|v±|2

≤
(∫

Q̄N

|v±|2(n+2)/n

)n/(n+2)

A2/(n+2)
N,± .

We will use the following parabolic Sobolev inequality which holds for functions van-

ishing on ∂ BR:

∫
QR

|u|2(n+2)/n ≤ C (n)

(
sup

−R2<t<0

∫
BR×{t}

|u|2
)2/n ∫

QR

|∇u|2.

See [20, Theorem 6.11, p. 112]. We are interested in the form

∫
QR

|up/2|2(n+2)/n ≤ C (n)

(
sup

−R2<t<0

∫
BR×{t}

|u|p

)2/n ∫
QR

|∇up/2|2.

Above and below, n is the spatial dimension, so that n = 3. As in the above followed by

Young’s inequality then followed by equation (2.14), we obtain

(∫
Q̄N

|v±|2(n+2)/n

)n/(n+2)

≤ C

(
sup

−R2
N<t<0

∫
B(RN )×{t}

|v±|2
)2/(n+2) (∫

QN

|∇v±|2
)n/(n+2)

≤ C

(
sup

−R2
N<t<0

∫
B(RN )×{t}

|v±|2 +
∫

QN

|∇v±|2
)
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≤ C

(
sup

−R2
N<t<0

∫
B(RN )×{t}

|(u − kN+1)±|p +
∫

QN

|∇(u − kN+1)p/2
± |2

)

+ C∗
ρ2

N

∫
QN

|(u − kN+1)±|p

≤ C∗
ρ2

N

∫
QN

|(u − kN+1)±|p ≤ C∗
ρ2

N

∫
QN

|(u − kN )±|p.

Further assume K p ≥ R−n−2
∫

Q(R) |u±|p. And define

YN ≡ K−pR−n−2
∫

QN

|(u − kN )±|p.

Since k±
N are increasing for + or decreasing for − and QN are decreasing, YN is decreasing.

Chebyshev’s inequality tells us that

AN,± = ∣∣{QN : ±(
u − k±

N+1

)
> 0

}∣∣ = ∣∣{QN : ±(
u − k±

N

)
> ±(

k±
N+1 − k±

N

)}∣∣
= |{QN : ±(u − kN ) > K/2N+1}| ≤ 2p(N+1) Rn+2YN .

Putting all of this together yields

∫
QN+1

|(u − kN+1)±|p ≤
(∫

Q̄N

|v±|2(n+2)/n

)n/(n+2)

A2/(n+2)
N,± ,

≤
(

C∗
ρ2

N

∫
QN

|(u − kN )±|p

)
(2p(N+1) Rn+2YN )2/(n+2)

≤
(

C∗
ρ2

N

K pRn+2YN

)
(2p(N+1) Rn+2YN )2/(n+2)

= C∗K p22(N+3)22p(N+1)/(n+2) Rn+2Y
1+ 2

n+2
N .

We have thus shown that

YN+1 ≤ C (N)Y
1+ 2

n+2
N .

Here C (N) = C∗22(N+3)22p(N+1)/(n+2). We now choose K as

K p =
(

1 + 1

C0

)
R−n−2

∫
Q0

|u±|p.

Above, the constant C0 is chosen to ensure that YN → 0 as N → ∞. �
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2.7 Regularity of the original solution

The limiting solution � satisfies equations (2.11), (2.12), and (2.14). We conclude from

Lemma 2.2 that

� ∈ L∞(Q5/16).

We further know that curl v̄ = ω̄θeθ ∈ L∞(Q5/16) from the above estimate on �, since v̄θ = 0.

Also div v̄ = 0 from the equation. Next v̄ ∈ L∞
t L1

x(Q5/16) by equation (1.2). We thus conclude

∇v̄ ∈ L∞
t L4

x(Q1/4) by Lemma A.1. Thus, v̄ ∈ L∞(Q1/4) by embedding.

Now we can deduce regularity of the original solution from the regularity of the

limit solution. We have shown that

|v̄(x, t )| ≤ C ′
∗ in Q1/4.

Above, C ′
∗ depends upon C∗ but not on the subsequence λk. Since the constant can be

tracked, we may initially choose R∗ sufficiently small to guarantee that

1

R2∗

∫
QR∗

|v̄|3 ≤ ε1/2,

where ε1 is the small constant in Lemma 2.1. Since vλk → v̄ strongly in L3 for k sufficiently

large, we have

1

R2∗

∫
QR∗

|vλ|3 ≤ 1

R2∗

∫
QR∗

|v̄|3 + 1

R2∗

∫
QR∗

|vλ − v̄|3 ≤ ε1.

But this is a contradiction to equation (2.9). Thus, every point x∗ on the z-axis is regular;

that is, there is a radius Rx∗ > 0 so that v ∈ L∞(Q(x∗, Rx∗ )). Since any finite portion of the

z-axis can be covered by a finite subcover of {Q(x∗, Rx∗ )}, we have proved Theorem 1.1.

The rest of the paper is devoted to proving the key Theorem 3.1.

3 Hölder Estimate for Axisymmetric Solutions

We now move from cartesian to cylindrical coordinates via the standard change of vari-

ables x = (x1, x2, x3) = (r cos θ , r sin θ , z). For axisymmetric solutions (v, p) of the form (1.1),
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the Navier–Stokes equations (N–S) take the form

∂vr

∂t
+ b · ∇vr − v2

θ

r
+ ∂p

∂r
=

(
� − 1

r2

)
vr,

∂vθ

∂t
+ b · ∇vθ + vθvr

r
=

(
� − 1

r2

)
vθ ,

∂vz

∂t
+ b · ∇vz + ∂p

∂z
= �vz,

1

r

∂(rvr)

∂r
+ ∂vz

∂z
= 0.

The vector b is given by

b = vrer + vzez, div b = 0.

The equations of the vorticity ω = curl v, decomposed in the form (1.8), are

∂ωr

∂t
+ b · ∇ωr − ωr∂rvr − ωz∂zvr =

(
� − 1

r2

)
ωr,

∂ωθ

∂t
+ b · ∇ωθ − 2

vθ

r
∂zvθ − vr

r
ωθ =

(
� − 1

r2

)
ωθ ,

∂ωz

∂t
+ b · ∇ωz − ωz∂zvz − ωr∂rvz = �ωz.

We are interested in the equation for vθ , which is independent of the pressure.

Consider the change of variable � = rvθ , which is well known (see the references

in the introduction). The function � is smooth and satisfies

∂�

∂t
+ b · ∇� − �� + 2

r

∂�

∂r
= 0. (3.1)

Note that the sign of the term 2
r

∂�
∂r is opposite to that of equation (2.11). It follows directly

from equation (1.2) that ‖�‖L∞
t ,x

≤ C∗; see [2] for related estimates. Since v is smooth, we

have �(t , 0, z) = 0 for t < 0. The smoothness and axisymmetry assumptions also imply

that vθ (t , 0, z) = 0, but we will not use this fact. The main result of this section is the

following.
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Theorem 3.1. Suppose that �(x, t ) is a smooth bounded solution of equation (3.1) in Q2

with smooth b(x, t ), both may depend on θ , and

�|r=0 = 0, div b = 0, |b| ≤ C∗/r in Q2.

Then there exist constants C and α > 0, which depend only upon C∗ such that

|�(x, t )| ≤ C‖�‖L∞
t ,x(Q2)r

α in Q1.

�

We remark that the condition above is substantially weaker than equation (1.2),

and we do not need � to be axisymmetric. In the rest of this section, we will prove the

theorem. Here we are facing two difficulties: First, the condition �|r=0 = 0 precludes a

direct lower bound on the fundamental solution and a Harnack inequality on � (since,

when b = 0, � = r2 is a non-negative solution which does not satisfy the usual Harnack

inequality.) Second, the condition b ≤ C/r is weaker than the standard assumption b ≤
C/|x| (see the discussion). It turns out that one can develop new techniques incorporating

the methods introduced by De Giorgi [4] and Moser [22] to overcome these two points.

However, we do not know if one can follow the approach of Nash [7, 23] which relies

critically on a Gaussian lower bound of the fundamental solution. The proof of Theorem

3.1 is independent of the rest of the paper.

The following related equation has been previously studied by Zhang [41]:

∂u

∂t
+ b · ∇u − �u = 0.

He has shown among other things Hölder continuity of solutions to this equation if

b = b(x) is independent of time and b satisfies an integral condition, which is fulfilled if

say b is controlled by 1/|x|. His proof makes use of Moser iteration and Gaussian bounds.

3.1 Notation, reformulation, and energy inequalities

Let X = (x, t ). Define the modified parabolic cylinder at the origin

Q(R, τ ) = {X : |x| < R, −τ R2 < t < 0}.
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Here R > 0 and τ ∈ (0, 1]. We sometimes for brevity write QR = Q(R) = Q(R, 1). Let

m2 ≡ inf
Q(2R)

�, M2 ≡ sup
Q(2R)

�, M ≡ M2 − m2 > 0.

Notice that m2 ≤ 0 ≤ M2 since �|r=0 = 0.

Now we reformulate the problem in Q(2R) into a new function, u, which will be

zero when |�| is at its maximum value. Specifically, we define

u ≡
{

2(� − m2)/M if − m2 > M2,

2(M2 − �)/M else.
(3.2)

In either case, u solves equation (3.1) and 0 ≤ u ≤ 2 in Q(2R). We will further use

a ≡ u|r=0 = 2

M

(
sup
Q(2R)

|�|
)

= 2

M
max{M2, −m2} ≥ 1,

which follows from our conditions.

We now derive energy estimates for equation (3.1). Define v± = (u − k)± with k ≥ 0.

We have v+ ≤ (2 − k)+ and v− ≤ k. Consider a radial test function 0 ≤ ζ (x, t ) ≤ 1 for which

ζ = 0 on ∂ BR × [−τ R2, 0] and ∂ζ

∂r ≤ 0. We multiply equation (3.1) for u − k with ζ 2v± and

integrate over R
3 × [t0, t ] to obtain

1

2

[∫
R3

|ζv±|2
]t

t0

+
∫ t

t0

∫
R3

|∇(ζv±)|2 =
∫ t

t0

∫
R3

v2
±

(
bζ · ∇ζ + ζ

∂ζ

∂t
+ |∇ζ |2 + 2ζ

r

∂ζ

∂r

)

+ 2π [(a − k)±]2
∫ t

t0

∫
R

dz ζ 2|r=0. (3.3)

We need to estimate all the terms in parenthesis.

Choose σ ∈ (1/4, 1), we require that the test function satisfies ζ ≡ 1 on Q(σ R, τ ).

If we further choose ζ (x, t0) = 0 then, using equation (2.13), we estimate equation (3.3) as

follows:

sup
−τσ 2 R2<t<0

∫
B(σ R)×{t}

v2
± +

∫
Q(σ R,τ )

|∇v±|2 ≤ C∗∗
τ (1 − σ )2 R2

∫
Q(R,τ )

v2
± + C τ R3[(a − k)±]2. (3.4)
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If we alternatively choose ζ = ζ (x), then equation (3.3) takes the form

sup
t0<s<t

∫
B(σ R)×{s}

v2
± +

∫ t

t0

∫
B(σ R)

|∇v±|2 −
∫

BR×{t0}
v2

± ≤ C∗∗
(1 − σ )2 R2

∫ t

t0

∫
BR

v2
± + C τ R3[(a − k)±]2.

(3.5)

Notice that there is no τ−1 appearing in this energy inequality (3.5) compared to

equation (3.4).

The energy estimates (3.4) and (3.5) are the standard parabolic De Giorgi classes

except for the last term. Our goal will be to use them to show that the set where � is very

close to its largest absolute value or, equivalently, the set where u is almost zero is as

small as you wish. We establish this fact in the following series of lemmas.

3.2 Initial estimates

Later on, we will use the two standard lemmas in a nonstandard iteration scheme of

sorts to show that the set where u is almost zero has very small Lebesgue measure.

Lemma 3.2. Suppose there exists a t0 ∈ [−τ R2, 0], K ∈ (0, 1), and γ ∈ (0, 1) so that

|{x ∈ BR : u(x, t0) ≤ K}| ≤ γ |BR|.

Further suppose that u satisfies equation (3.5) for v−. Then for all η ∈ (0, 1 − √
γ ) and

µ ∈ (γ /(1 − η)2, 1), there exists θ ∈ (0, 1) such that

|{x ∈ BR : u(x, t ) ≤ ηK}| ≤ µ|BR|, ∀t ∈ [t0, t0 + (τ ∧ θ )R2].

Here θ depends only on the constants in equation (3.5) and γ . �

We note that, in the proof, it can happen that θ (γ ) → 0 as γ ↑ 1, but if τ is

sufficiently small, then we may take θ = τ when γ is close enough to zero. And if γ is

small, then µ can be taken almost as small.

Proof. We consider v− = (u − K)−. The energy inequality (3.5) for this function is

∫
B(σ R)×{t}

v2
− ≤

∫
BR×{t0}

v2
− + C∗∗

(1 − σ )2 R2

∫ t

t0

∫
BR

v2
− + C τ R3[(a − K)−]2

≤ K2|BR|
(

γ + C∗∗(τ ∧ θ )

(1 − σ )2

)
.
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We have used (a − K)− = 0. The Chebyshev inequality tells us that

| {x ∈ B(σ R) : u(x, t ) ≤ ηK} | · (K − ηK)2 ≤
∫

B(σ R)×{t}
v2

−.

The region BR − Bσ R has volume (1 − σ 3)|BR|. Thus,

| {x ∈ BR, u(x, t ) ≤ ηK} |
|BR| ≤ | {x ∈ B(σ R), u(x, t ) ≤ ηK} |

|BR| + (1 − σ 3)

≤ (1 − η)−2

(
γ + C∗∗(τ ∧ θ )

(1 − σ )2

)
+ (1 − σ 3).

Now let σ be so close to one that γ

(1−η)2 + (1 − σ 3) < µ. Then, with τ fixed, choose θ small

enough that the whole thing is ≤µ. �

Lemma 3.2 shows continuity in time of the Lebesgue measure of the set where

u is small and Lemma 3.3 below shows that if the set where u is small is less than the

whole set, then the set where u is even smaller can be made tiny. This is an extremely

weak way to measure diffusion.

Lemma 3.3. Suppose that u(x, t ) satisfies equation (3.4) for v−. In addition,

|{x ∈ BR : u(x, t ) ≤ K}| ≤ γ |BR|, ∀t ∈ [t0, t0 + θ R2] = I ,

where K, θ > 0, γ ∈ (0, 1) and BR × I ⊂ Q(R, τ ). Then for all ε ∈ (0, 1), there exists a δ ∈ (0, 1)

such that

|{X ∈ BR × I : u(X) ≤ δ}| ≤ ε|BR × I |.
�

Proof. We denote, for n = 0, 1, 2, 3, . . .,

An(t ) = {x ∈ BR : u(x, t ) ≤ 2−nK}, An = {(x, t ) : t ∈ I , x ∈ An(t )}.

Note that An(t ) ⊂ BR and An ⊂ BR × I . Clearly, |An+1| ≤ |An| ≤ |A0| ≤ γ |BR × I |. And

∣∣Ac
n(t )

∣∣ = |{x ∈ BR : u(x, t ) > 2−nK}| = |BR| − |An(t )| ≥ (1 − γ )|BR|.
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Since γ < 1, we know that Ac
n(t ) does not have measure zero.

We invoke the following known inequality, a version of which can already be seen

in Lemma II of [4]. For any v ∈ W1,1(BR) and for any α, β ∈ R with α < β, we have

|{x ∈ BR : v(x) ≤ α}| ≤ C R3+1/(β − α)

|{x ∈ BR : v(x) > β}|
∫

BR∩{α<v≤β}
|∇v|,

where C > 0 only depends on the dimension. To show it, let E = {x ∈ BR : v(x) > β} and

we may assume |E | > 0. This inequality can be shown by plugging

U (x) = min((β − v(x))+, β − α), f (x) = |BR|
|E | 1E (x)

into the Poincaré inequality from [20, Proposition 6.14], which implicitly assumes the

normalization condition 1
|BR|

∫
BR

f = 1.

Now let β = 2−nK and α = 2−n−1K. We have

|An+1(t )| ≤ C 2n+1 R

K(1 − γ )

∫
An(t )−An+1(t )

|∇u| = C 2n+1 R

K(1 − γ )

∫
An(t )−An+1(t )

|∇(u − a)−|.

We use the Cauchy–Schwartz inequality to bound this integral as

|An+1| =
∫

I
|An+1(t )| ≤ C 2n+1 R

K(1 − γ )

∫
An−An+1

|∇(u − a)−|

≤ C 2n+1 R

K(1 − γ )
|An − An+1|1/2

(∫
An−An+1

|∇(u − a)−|2
)1/2

.

The energy inequality (3.4), with σ R and R replaced by R and 2R results in

|An+1| ≤ C 2n+1 R

K(1 − γ )
|An − An+1|1/2

(
C

τ R2

∫
Q(2R,τ )

|(u − a)−|2
)1/2

≤ C 2n+1 R

K(1 − γ )
|An − An+1|1/2|B(2R)|1/2a = C R5/2

K(1 − γ )
|An − An+1|1/2.

Square both sides of this inequality and dividing by |BR × I |2 to obtain

|An+1|2
|BR × I |2 ≤ C

θ K2(1 − γ )2

( |An|
|BR × I | − |An+1|

|BR × I |
)

.



22 C.-C. Chen et al.

Summing in n, we get

n
|An|2

|BR × I |2 ≤
n∑

j=1

|Aj|2
|BR × I |2 ≤ C

θ K2(1 − γ )2

n∑
j=1

( |Aj−1|
|BR × I | − |Aj|

|BR × I |
)

= C

θ K2(1 − γ )2

( |A0|
|BR × I | − |An|

|BR × I |
)

≤ C

θ K2(1 − γ )2
|A0|

|BR × I | ≤ Cγ

θ K2(1 − γ )2
.

We complete the proof by choosing n sufficiently large.
�

3.3 Estimate on the measure of the set where u is small

The next lemma allows us to apply all the machinery above.

Lemma 3.4. There exists a κ ∈ (0, 1) such that 0 < λ < min{κτ , 1/8} implies

|{X ∈ Q(R, τ ) : u(X) ≤ λ2}| ≤ (1 − 4λ)|Q(R, τ )|.
�

Proof. We establish a contradiction using energy estimates. Suppose the opposite

|{X ∈ Q(R, τ ) : u(X) ≤ λ2}| > (1 − 4λ)|Q(R, τ )|.

Or equivalently,

|{X ∈ Q(R, τ ) : u(X) > λ2}| < 4λ|Q(R, τ )|. (3.6)

This condition will imply a contradiction to the size condition on a ≥ 1.

We will test equation (3.1) with pup−1ζ 2 for 0 < p < 1 and ζ ≥ 0. Since u = 0

sometimes, in general we should test equation (3.1) for u + ε with p(u + ε)p−1ζ 2 and then

send ε ↓ 0 to obtain our estimates. However, since the result is the same, to simplify the

presentation we will omit these details. We have

∫
Q(R,τ )

pup−1ζ 2 ∂u

∂t
=

[∫
BR

ζ 2up

]0

t1

−
∫

Q(R,τ )
up2ζ

∂ζ

∂t
≡ I1 + I2,

∫
Q(R,τ )

pup−1ζ 2(−�u) = 4(p− 1)

p

∫
Q(R,τ )

|∇(up/2ζ )|2

+
∫

Q(R,τ )
2up

[
−|∇ζ |2 + p− 2

p
ζ�ζ

]
≡ I3 + I4,
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∫
Q(R,τ )

pup−1ζ 2b · ∇u = −
∫

Q(R,τ )
2upb · ζ∇ζ ≡ I5,

∫
Q(R,τ )

pup−1ζ 2 2

r
∂ru = −

∫
Q(R,τ )

4upζ ζρ/ρ −
∫ 0

−τ R2
dt

∫
R

dz 2(ζ 2up)|r=0 ≡ I6 + I7.

In the computation of I6, we have used ζr/r = ζρ/ρ, which follows if ζ = ζ (ρ, t ) where

ρ = |x| = √
r2 + z2. Notice that

∑7
j=1 I j = 0. For arbitrary p ∈ (0, 1), we see that I3 and I7

are both non-positive.

We choose ζ = ζ1(ρ)ζ2(t ), where ζ1(ρ) = 1 in B(R/2) and ζ1(ρ) has compact support

in BR; also ζ2(t ) = 1 if t ∈ [− 7
8τ R2, − 1

8τ R2] and ζ2(t ) has compact support in (−τ R2, 0).

Thus, I1 = 0 and we have

6

4
τ R3a p ≤ −I7 =

6∑
j=2

I j.

We estimate each of the terms I2 through I6 to obtain a contradiction.

By the argument in equation (2.13), we have

|I5| ≤ 2(1 − p)

p

∫
Q(R,τ )

|∇(up/2ζ )|2 + C

R2

∫
Q(R,τ )

up.

Also note ∇ζ = 0 in B(R/2) and so the singularity 1/ρ is effectively 1/R. Thus,

I2 ≤ C

τ R2

∫
Q(R,τ )

up,
6∑

j=3

I j ≤ C

R2

∫
Q(R,τ )

up.

Assuming equation (3.6) and using 0 ≤ u ≤ 2, we have

a p ≤ C

τ 2 R5

∫
Q(R,τ )

up ≤ C

τ 2 R5
{λ2p|Q(R, τ )| + 2p(4λ|Q(R, τ )|)} ≤ C2

τ
(λ2p + λ).

Here C2 = C2(C∗). Take p = 1/2 and κ = 1
4C2

to get a p < 1, a contradiction. �

Lemma 3.4 is the starting point of our iteration scheme. From this lemma, we

know that there is a t1 ∈ [−τ R2, −2λτ R2] so that

|{x ∈ BR : u(x, t1) ≤ λ2}| ≤ (1 − 2λ)|BR|. (3.7)
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Then apply Lemma 3.2 with K = λ2 to equation (3.7) to see, for say η = λ and µ = 1 − λ,

that

|{x ∈ BR : u(x, t ) ≤ λ3}| ≤ (1 − λ)|BR|, ∀t ∈ [t1, t1 + θ∗ R2] ≡ I∗.

Here θ∗ = θ ∧ τ and θ is the constant chosen in Lemma 3.2. From here, Lemma 3.3 allows

us to conclude

|{X ∈ BR × I∗ : u(X) ≤ δ∗}| ≤ ε∗
2

|BR × I∗|,

where ε∗ > 0 is as small as you want and δ∗ = δ∗(ε∗).

Then, as in equation (3.7), there exists a t2 ∈ I∗ (so that t2 ≤ −λτ R2) such that

| {x ∈ BR : u(x, t2) ≤ δ∗} | ≤ ε∗|BR|. (3.8)

Uptill now, all the small parameters that we have chosen depend upon τ . But above, ε∗
can be taken arbitrarily small, independent of the size of τ . This is the key point that

enables us to proceed. It is the reason why we are required to do this procedure twice.

Now suppose 1 − σ 3 = 1/4 and choose first τ < 1/8, so that C∗∗τ/(1 − σ )2 ≤ 1/4.

Then take δ∗ from equation (3.8) with ε∗ < 1/16 playing the role of γ in Lemma 3.2. Also

η < 1/2. With all this, from Lemma 3.2, we can choose µ < 1 so that

|{x ∈ BR : u(x, t ) ≤ ηδ∗}| ≤ µ|BR|, ∀t ∈ [t2, t2 + τ R2] ≡ I.

Further, it is safe to assume that θ∗ ≤ λ; we see that t2 ≤ −λτ R2 and so [−λτ R2, 0] ⊂ I .

Finally, apply Lemma 3.3 again to obtain

|{X ∈ Q(R, λτ ) : u(X) ≤ δ}| ≤ ε|Q(R, λτ )|, (3.9)

with ε > 0 arbitrarily small. This is a key step in what follows.

Let U = δ − u, where δ is the constant from equation (3.9). U is clearly a solution

of equation (3.1) and U |r=0 = δ − a < 0. We apply equation (3.4) to U on Q(2d) (with τ = 1)

to get

sup
−σ 2d2<t<0

∫
B(σd)×{t}

|(U − k)+|2 +
∫

Q(σd)
|∇(U − k)+|2 ≤ C∗∗

(1 − σ )2d2

∫
Q(d)

|(U − k)+|2.
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This holds for all k > 0 and σ ∈ (0, 1). So we can apply Lemma 2.2 to conclude

sup
Q(d/2)

(δ − u) ≤
(

C

|Q(d)|
∫

Q(d)
|(δ − u)+|2

)1/2

. (3.10)

This inequality combined with equation (3.9) will produce a lower bound.

3.4 Regularity from a lower bound

Let d = √
λτ R so that Q(d) ⊂ Q(R, λτ ). By equations (3.10) and (3.9),

δ − inf
Q(d/2)

u ≤
(

C

|Q(d)|
∫

Q(d)
|(δ − u)+|2

)1/2

≤
(

C δ2ε|Q(R, λτ )|
|Q(d)|

)1/2

= C δε1/2 (λτ )−3/4 ,

which is less than δ
2 if ε is chosen sufficiently small. We conclude

inf
Q(d/2)

u ≥ δ

2
.

This is the lower bound we seek. From it we will deduce an oscillation estimate.

This entails a bit of algebra. We define

md ≡ inf
Q(d/2)

�, Md ≡ sup
Q(d/2)

�.

Then from equation (3.2), we have

inf
Q(d/2)

u =
{

2(md − m2)/M if − m2 > M2,

2(M2 − Md )/M else.

Notice that both expressions above are non-negative in any case; thus we can add them

together to observe that

δ

2
≤ 2

M
{M − osc(�, d/2)} .
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Here osc(�, d/2) = Md − md and osc(�, 2R) = M2 − m2 = M. We rearrange the above equa-

tion as

osc(�, d/2) ≤
(

1 − δ

4

)
osc(�, 2R).

This is enough to produce the desired Hölder continuity via the following.

3.5 Iteration argument

Suppose we have a nondecreasing function ω on an interval (0, R0] which satisfies

ω(τ R) ≤ γω(R),

with 0 < γ , τ < 1. Then for R ≤ R0, we have

ω(R) ≤ 1

γ

(
R

R0

)α

ω(R0), (3.11)

where α = log γ / log τ > 0.

Iterating, as in equation (3.11), we get, for C� = (
1 − δ

4

)−1
supQ(1) �, that

osc(�, R) ≤ C� Rα, ∀R ∈ (0, 1), (3.12)

for α = 2 log(1 − δ
4 )/ log(λτ/16) > 0. Thus, � is Hölder continuous near the origin. We have

proved Theorem 3.1.
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Appendix

Here we collect some estimates needed for Section 2.

Lemma A.1. Let BR2 ⊂ BR1 ⊂ R
3 be concentric with 0 < R2 < R1. Let v be a vector field

defined in BR1 . Let 1 < q < ∞ and 0 < α < 1. Then for k = 0, 1, . . . there is a constant c

depending on R2, R1, q, α, k, so that

‖∇k+1v‖Lq (BR2 ) ≤ c‖∇k div v‖Lq (BR1 ) + c‖∇k curl v‖Lq (BR1 ) + c‖v‖L1(BR1 )

and

‖∇k+1v‖C α (BR2 ) ≤ c‖∇k div v‖C α (BR1 ) + c‖∇k curl v‖C α (BR1 ) + c‖v‖L1(BR1 ).

�

This is well known, see [24].

Lemma A.2 (Interior estimates for Stokes system). Fix R ∈ (0, 1). Let 1 < s, q < ∞, and

f = ( fij) ∈ Ls
t Lq

x(Q1). Assume that v ∈ Ls
t L1

x(Q1) is a weak solution of the Stokes system

∂tvi − �vi + ∂i p = ∂ j fij, div v = 0 in Q1.

Then v satisfies, for some constant c = c(q, s, R),

‖∇v‖Ls
t Lq

x(QR) ≤ c‖ f‖Ls
t Lq

x(Q1) + c‖v‖Ls
t L1

x(Q1). (A.1)

If instead v is a weak solution of

∂tvi − �vi + ∂i p = gi, div v = 0 in Q1,

then

‖∇2v‖Ls
t Lq

x(QR) ≤ c‖g‖Ls
t Lq

x(Q1) + c‖v‖Ls L1(Q1). (A.2)

�

An important feature of these estimates is that a bound of the pressure p is

not needed in the right side. A similar estimate for the time-independent Stokes system
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appeared in [34]. Note that these estimates improve the spatial regularity only. One

cannot improve the temporal regularity, in view of Serrin’s example of a solution v(x, t ) =
f (t )∇h(x) where h(x) is harmonic.

Proof. Denote by P the Helmholtz projection in R
3, (Pg)i = gi − Ri Rkgk, where Ri is the

ith Riesz transform. Let τ = R1/4 ∈ (R, 1) and choose ζ (x, t ) ∈ C ∞(R4), ζ ≥ 0, ζ = 1 on Qτ ,

and ζ = 0 on R
3 × (−∞, 0] − Q1. For a fixed i, define

ṽi(x, t ) =
∫ t

−1
�(x − y, t − s) ∂ j(Fij)(y, s) dyds,

where � is the heat kernel and Fij = fijζ − Ri Rk( fkjζ ). The function ṽi satisfies

(∂t − �)ṽi = ∂ j Fij = [
P∂ jζ ( fkj)

3
k=1

]
i, div ṽ = 0.

The Ls
t Lq

x-estimates for the parabolic version of singular integrals and potentials (see

[19, 27], also see [14, 40] and their references), and the usual version of Lq-estimates for

singular integrals ([32]), give

‖∇ṽ‖Ls
t Lq

x(Q1) + ‖ṽ‖Ls
t Lq

x(Q1) ≤ c‖F‖Ls
t Lq

x
≤ c‖ f‖Ls

t Lq
x(Q1). (A.3)

Furthermore, for some function p̃(x, t ),

(∂t − �)ṽ + ∇ p̃ = ∂ j(ζ fij), div ṽ = 0.

The differences u = v − ṽ and π = p− p̃ satisfy the homogeneous Stokes system

∂tu − �u + ∇π = 0, div v = 0 in Qτ .

Its vorticity ω = curl u satisfies the heat equation (∂t − �)ω = 0. Let W = ζτω, where

ζτ (x, t ) = ζ (x/τ , t/τ 2). It satisfies

(∂t − �)W = G := w(∂t − �)ζτ − 2(∂mζτ )∂mω.

And thus, for (x, t ) ∈ Qτ 2 ,

ωi(x, t ) = Wi(x, t ) =
∫ t

−1

∫
�(x − y, t − s) Gi(y, s) dyds =

∫ t

−1

∫
Hi, j

x,t (y, s) uj(y, s) dyds
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where, using ωi = −δi jk∂ku j,

Hi, j
x,t (y, s) = ∂yk δi jk {�(x − y, t − s)(∂t − �)ζτ + 2 div[�(x − y, t − s)∇ζτ ]} .

The functions Hi, j
x,t are smooth with uniform L∞-bound for (x, t ) ∈ Qτ 3 . Thus,

‖curl u‖L∞(Qτ3 ) ≤ C‖u‖L1(Q1).

Since div u = 0, we have for any q < ∞, using Lemma A.1,

‖∇u‖Ls
t Lq

x(QR) ≤ c‖u‖Ls
t L1

x(Q1) ≤ c‖v‖Ls
t L1

x(Q) + c‖ṽ‖Ls
t L1

x(Q). (A.4)

The sum of equations (A.3) and (A.4) gives equation (A.1). The proof of (A.2) is similar: one

defines

ṽi(x, t ) =
∫ t

−1
�(x − y, t − s) Fi(y, s) dyds, Fi = giζ − Ri Rk(gkζ )

and obtains ‖∇2ṽ‖Ls
t Lq

x(Q1) + ‖ṽ‖Ls
t Lq

x(Q1) ≤ c‖F‖Ls
t Lq

x
≤ c‖g‖Ls Lq (Q1). One then estimates

‖∇2(v − ṽ)‖Ls
t Lq

x(QR) in the same way. �
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[26] Neustupa, J., and M.n Pokorný. “Axisymmetric Flow of Navier–Stokes Fluid in the Whole

Space with Non-zero Angular Velocity Component.” Proceedings of Partial Differential Equa-

tions and Applications (Olomouc, 1999), 126, 469–81 (2001).

[27] Rivière, N. M. “Singular integrals and multiplier operators.” Arkiv for Matematik 9 (1971):

243–78.

[28] Scheffer, V. “Partial regularity of solutions to the Navier–Stokes equations.” Pacific Journal

of Mathematics 66 (1976): 535–52.
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matische Zeitschrift 184 (1983): 359–75 (German).

[32] Stein, E. M. “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory

Integrals.” Princeton Mathematical Series, 43. Princeton, NJ: Princeton University Press,

1993, With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, 3.

[33] Struwe, M. “On partial regularity results for the Navier–Stokes equations.” Communications

on Pure and Applied Mathematics 41 (1988): 437–58.
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