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Abstract: We consider the nonlinear Hartree equation describing the dynamics of
weakly interacting non-relativistic Bosons. We show thabalinearMgller wave oper-

ator describing the scattering of a soliton and a wave can be defined. We also consider the
dynamics of a soliton in a slowly varying background poteni#ak.x). We prove that

the soliton decomposes into a soliton plus a scattering wave (radiation) up to times of
orders~1. To leading order, the center of the soliton follows the trajectory of a classical
particle in the potentialV (sx).

1. Introduction and Summary of Main Results

The problem of identifying classical regimes of quantum mechanics is a long standing
problem of quantum theory. For simple systems it was first studied by Schrodinger in
1926; see [1]. In this paper, we explore a classical regime for a class of systems of
identical, non-relativistic bosons, e.g., bosonic atoms su¢hiawith very weak two-

body interactions described by a potentiat ® of van der Waals or Newtonian type
satisfying certain regularity properties described below. These bosons move under the
influence of an external potential/, whereV is a smooth, positive function on physical
spaceR?® andi > 0. The potentiakV describes e.g. a trap confining the bosons.

Letk denote the strength of the two-body interaction between two bosons as compared
to their average kinetic energy, (e.g. in the sense®hiatmall as compared to the kinetic
energy operator of two bosons, in the sense of Kato and Rellich, [2]). We are interested in
understanding the dynamics of@ndensate”of N = O (K_l) bosons in thémean-
field regime”, wherex is very small. By a “condensate” we mean a state of the system
with the property that all except far(N) bosons are in theameone-particle state
described by a wave functiah(x), x € R3. N-particle states of this kind are also called
coherent states
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Let yo = ¥o(x), x € R3, denote the initial one-particle wave function of a coherent
state of the system at time= 0. In themean-field limit

k — 0, N - o0, with x-N =:v = const, (1.1)

the quantum-mechanical time evolution of a condensate of bosons has the property that
it maps the initial coherent state with a one-particle wave funatigto a coherent state
at a later time with a one-particle wave functiott;. As proven by K. Hepp [3] (see
also [4] for some refinements and extensions), the one-particle wave fuggtafrthe
condensate turns out to be a solution of the (non-linekartree equationEq. (1.2)
below.

If the two-body interactions are dominantly attractive, as’idratoms, and, given
Kk, the number of bosons is large enough (iX.> Ngit.(k), Or v > vgit.), the sys-
tem hasbound statesln other words, the bosons may condense into a tightly bound,
spatially sharply localized cluster. In the mean-field regime, such bound states appear
to be (weakly) well approximated by coherent states with a one-particle wave function
corresponding to a non-trivial local minimum of thkartree energy functional

Turning on a very slowly varying external potential,

AV (x) := W(ex), (1.2)

whereW is a smooth, positive function, ardis much smaller than the diameter of a
bound state ofV bosons when. = 0, one expects that the positior(y) € R3, of the
center of mass of that bound state closely follows a solution of Newton’s equations of
motion,

() =v(),v(t) = —e (VW) (er (1)), (1.3)

for timest with |¢] < O (¢71).

It is in this precise sense that the quantum system of bosons described above ap-
proaches a classical regime in the mean-field limit.

For attractive two-body interactions, the Hartree equation describing the dynamics of
a condensate (coherent state) in the mean-field limit Fedfdocussingnon-linearity.

As a consequence, it has non-triviablitary wave solutions”looking like approximate
s-functions, forv sufficiently large. These solitary wave solutions are precisely the one-
particle wave functions of coherent bound states in the mean-field limit.

Our main objective in this paper is to study slow motion of solitons of the Hartree
equation. We propose to show that, under the influence of a slowly varying external
potential W (¢x), the center of mass position(t), of a solitary-wave solution of the
self-focussing Hartree equation remains close to a solution of Newton’s equations of
motion stated above, for all timeswith |¢| < O (s‘l). (We do, however, not prove
rigorous results on the precise way in which a system of identical bosons approaches its
mean-field limit; but see [3-5].)

Our main results on the self-focussing Hartree equations have been announced in [6],
where the reader can find additional background material and motivation coming from
physics.

In order to be able to describe our main results concisely, we introduce some notation
and recall some known results on the Hartree equation.

Let H1(R") denote the Sobolev space,

HYRY = {y(x), x e R" | VY2 + l¥ ]2 < o0}, (1.9)
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whereyr denotes a measurable complex function®¥n Vi denotes its gradient, and
1(-)|l2 denotes the.2-norm. We study properties of solutions of tHartree equation

1
i = =509+ 2V — v (O [Yil?) Y. (L5)
In Eq. (1.5),
Yi(x) =Y, 1), xeR" ek,

is a time (r)-dependent, complex-valued scalar function on physical sfcée-
longing to the Sobolev spacdl(R"), for each timer; A denotes the scalar Lapla-
cian,AV(x), A € R, is an external potential, witly¥ a smooth, bounded, positive
function onR”, and —®(x) is a radially symmetric two-body potential, with <
LP(R",d"x) + L>®(R"), p > % ; furthermorex denotes convolution. We shall use the
following standard notation:

For an arbitrary measurable functignonR",

[vi=[vera, (1.6)

RH

¥ llp = (/ Ilﬂlp)l/p (1.7)

is the norm on the spade” = L?(R",d"x), 1 < p < o0,
1V g = 1VYll2 + 1]z (1.8)
is the norm onH! = H1(R"), and

W % 00 = / U — o)y (1.9)

denotes the convolution a@f with another such functiop.

There are two important functionals on Sobolev spdéevhich are conserved under
the flowy := o — v, ¥ € H', determined by the Hartree equation (1.5). The first
one is theL.2-norm ofyr

N () = / Wi = 113 (1.10)

and the second one is thlamilton (or energy functional
/WW /VW

4/ (@ 1w1?) w12, (111)

We note that if® is a non-negative function belonging I& + L*°, p > 7, then,
for an arbitrarys > 0, there exists a finite constafi{s) such that

0< f (d> * |1/f|2) W12 <N (5, %) IVV I3+ CO N (F, ), (1.12)
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see e.g. [7]. Thus, for an arbitrary, but fixed valug\éfy, v), and for arbitrary., [A| <
o0, the Hamilton functionat{ (v, v) is bounded from below.

Under the assumptions thaV (x) has a minimum ak = x,, |x¢| < oo, that
®(x) > 0 and that the valuay, of the functionaW(lﬁ, ¥) is large enough, one can
show (see Sect. 3) that the Hamilton functiop&ly, ) restricted to the sphere

Swi={v [ v e HL N (0. v) = N} (1.13)

in Sobolev space reaches its minimum on a positive funaflane Sy concentrated
nearx, and decaying exponentially fast|in|, as|x| — oo . This result still holds when
A = 0 (i.e., for a vanishing external potential); butdfy is a minimizer ofH |SN then

S0iSQy .4, WhereQy 4 (x) := Qn(x — a), for arbitrarya € RV . This is a consequence
of thetranslation invarianceof #, for » = 0.
A minimizer, Q y of H |8N is a solution of the non-linear eigenvalue equation

—%AQ+AVQ—<<D*Q2>Q=EQ, (1.14)

for some real numbeE, with

Then

Y(x, 1) = On(x)e B

is a stationary solution of the Hartree equation (1.5). Multiplying Eq. (1.1 by On
and integrating, we find that

_ 1 2, A 2 1 2\ 2
E—ﬁ/(VQN) +N/VQN_N/(¢*QN)QN' (1.15)

One should notice tha N is notthe value of the energy function®l(yr, ) ISN eval-

uated on the minimizey = Qy, because one is minimizirg (v, ) in the presence
of a constraint, namely/ (v, ) = N.

Let Qg\(,’) be a minimizer of the Hamilton function&{ (v, v) ’SN’ with A = 0,

centered at = 0; (QE\(,)) is known to exist and to be non-trivial, fo¥ large enough).
We seth = 1 and choose

Vix)=VEOx) = W(ex), (1.16)

whereW is a fixed, smooth, bounded, positive function®h ands > 0 is a parameter.
Our main concern, in this paper, is to constioctl (in time¢) solutionsof the Hartree
equation (1.5), with. = 1 andV = V©® asiin (1.16), of the form

Ve =0 (= r@) +he (v = r(@),n ], (117)

whereh, is asmall, dispersive correctioto thesolitary wavedescribed b)Qﬁf,’) (x —
r(1))et?™0  with

e, )l g2 < 032, (1.18)
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0(x, t) is a time-dependent phase,
O(x,1) =v(t)x — Et + 99(@), (12.19)
dr(t)

wherev(r) = =7~ is the velocity of the solitary wave, anth(¢) is independenof

x, for all times with |¢| < 0(¢~1), and provided the soliton trajectoxy (¢), v(r))
solves appropriate equations of motion. It will be shown thét), v(¢)) must solve the
Newtonian equations of motion

() = v(),
0(t) = —e(VW)(er (1)) + a(r), (1.20)

wherea(r) is a“friction force” , with
la(t)| S 0(?), (1.21)

for || < 0(e~1). The friction forceua(r) will be determined more precisely in Sect. 3.

Neglecting the friction force(¢), Egs. (1.20) are Newton’s equations of motion for
a point particle of mas#/ moving in an external acceleration field of strengttvith
potential V), Thus, for the velocity(r) of this particle to deviate substantially from
the initial conditionw(0) = vo, the timer must be @ ~1). For times, with || < 0(s™1),
the friction forcea(¢) has a negligibly small effect, for smail

A solution of the Hartree equation (1.5) of the form (1.17), with properties (1.18)
through (1.21), for times with |z] < 0(s~1), describes the motion of an extended
particle in a shallow potential well ©) interacting weakly with a dispersive medium
of infinitely many degrees of freedom with which it can exchange mass and energy.
The point-particle limit in which Newton’s laws of motion become exact is the limit
¢ — 0. Fore > 0, the interactions between the extended particle and the dispersive
medium can lead to phenomena such as mass accretion, loss of mass and energy fron
the particle into dispersive waves, and friction, for timearge on a scale of 1. The
intuitive picture is one of a bound cluster of “dust” describing an extended particle,
which exhibits Newtonian motion with friction. The friction is caused by the loss of
some “dust” originally bound to the particle. This loss of “dust” is only observed when
the motion of the particle isot inertial (i.e., accelerated or decelerated) and is described
by dispersive waves satisfying a wave equation which is essentially the linearization of
Eq. (1.5) around a solitary wave described @ﬁgzt)(x — r(1))e'?™D  For very large
times, the trajectory of the extended particle is expected either to approach an inertial
motion diverging to spatial infinity (i (x) — const as|x| — oo and if the initial
mass and velocity of the particle were large enough), or to approach a local minimum of
W where the particle will come to rest. This dissipative behavior of the particle motion is
an example of the general phenomenon of “dissipation through radiation”. Some simple
results on the large-time asymptotics of solutions of the Hartree equation (1.5) (existence
of wave operators) are proven in Sect. 4. But it is fair to say that we do not yet have a
good mathematical understanding of large-time behavior of solutions of Eqg. (1.5). For
some earlier results on scattering for the Hartree and nonlinear Schrédinger equation,
see, e.g., [7,8] and references given there.

Our analysis of solutions of the Hartree equation (1.5) of the form described in (1.17),
with properties (1.18) through (1.21), is based d@passumptigrwhich is, implicitly,



228 J. Frohlich, T.-P. Tsai, H.-T. Yau

an assumption on the two-body potentiab that will not be made explicit in this paper:
Let

(f. 8 :=ffg

denote the usual scalar product bfy and let?” denote the Hessian of the Hamilton

functional H(¥, ), with 2 = 0, aty = Q'0. Furthermore, let/,, denote the
restriction ofH” on real-valued functions, and extend it to a complex-linear operator. It
will be shown in Sect. 3 that(;,, ., is given by an unbounded, selfadjoint operatod8n
defining a quadratic form o/ which is bounded from below. It is not hard to see that

(Q, (Hjpa— E)Q) = £0(Q, Q) <0, for 0 := 0, (1.22)

whereE = Ey and

£0 = —% (cp % Q2) 02 . (1.23)

Actually, H,,,— E has only one negative eigenvalue. Sifttes translation-invariant,
itfollowsthatvQ := {910, ... ,9,0}, 9; := %] =1,...,n, aren non-vanishing,
linearly independent zero-modes fif,,,, — E orthogonal tog, i.e.,

(Hrea— E)3;Q =0, and (3,0, Q) =0, (1.24)

forall j =1,...,n. Thus O is an at leasi-fold degenerate eigenvalue #f,, — E.

SinceQ is a minimizer ofH.(y, ¥) |SN’ there is no spectrum 6{,.,,— E in the interval

(20, 0). Furthermore, it is easy to see that the spectrurit{fpf, — E in the interval

[0, —E), where
_ 1 1 2 2 2
E_N<§/(VQ)—/(CD*Q>Q><O (1.25)

is pure-point while, on the half-ling—E, c0), it is continuous. Thus, there is a gap,
g2 > 0, between 0 and the rest of the spectrundf,, — £ in [0, 00); see Sect. 3 for
details.

Ourkey assumptiois that themultiplicity of the eigenvalue of /. — E is precisely
equal ton. This implies that

(h, (Hrea— E)h) = 2(h, h), &2 >0, (1.26)

for all functionsh € H with h L {Q, VQ} in the L2-scalar product., -).

We are now prepared to summarize the contents of this paper and to state our main
results in the form of theorems.

In Sect. 2, we recall the Hamiltonian nature of the Hartree equation (1.5) on the phase
spaceH!. We exhibit continuous symmetries of the Hamilton functional that give rise
to Eg. (1.5) and derive the corresponding conservation laws. We show that the Hartree
equation can also be viewed as tBeler-Lagrange equatioderived from araction
functional The Lagrangian formulation of the non-linear Hartree equation is useful to
study the formapoint-particle limit(thee — 0 limitin (1.16) through (1.21)). This limit
is discussed, in general terms but without mathematical proofs, in Sect. 2, using ideas
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similar to those in [9] in an analysis of vortex motion in the Ginzburg-Landau equation,
which is based on an effective-action formalism. We also discuss some expected features
of the non-linear Hartree dynamics in the large-time limit.

Our first main result is proven in Sect. 3.

Theorem 1.1.Suppose that assumption (1.26) holds for all minimizgrs QE\?), with
N in an open neighborhood of somg > 0. We also assume that

CD(.X) iS radial, ”d)”Wz'l(]R?’)ﬂWZDC(RS) < Cq> (127)

for some constanfe. Then there is a positive constaiy such that, for an arbitrary
T < oo, there is angg > 0 with the property that, for an® < & < g¢ and any initial
condition of the form

¥ (x,0) = Yo(x) = [Q (x — ro) + heo(x)] e, (1.28)

with O = Qn, and ||heo0ll g2 < Coe®?, the Hartree equation, Eq. (1.5), with= 1
andV(x) = W(ex) as in (1.16), has a solution of the form (1.17), for all timesith
1| < Te~1, with the following properties:

1. The phasé(x, ) is as in (1.19);

2. the trajectory(r (¢), v(¢)) of the extended-particle solution (1.17) is a solution of the
equations of motion (1.20) with initial condition&) = rg, v(¢) = vo, for a friction
forcea(t) bounded by

la(t)| < C16?;

3. the dispersive correctioh, satisfies
he Dl g1 < C26¥2,
for some finite constants;, C2 depending oif".

This result makes the point-particle lingit — 0) of the Hartree equation (1.5) precise
for initial conditions describing a single extended particle (solitary wave) moving in a
shallow potential well}¥ (¢x), and perturbed by a small amount of radiation (described
by k.). It is a special case of the more general situation considered in Sect. 3. A more
detailed discussion and the proof of Theorem 1.1 form the contents of Sect. 3.

The results just described raise the issuagfmptotic propertiesf the dynamics
determined by the Hartree equation, as tirrends tat-oco. In Sect. 4, we establish aresult
on the scattering of small-amplitude waves off a single solitary wave. For simplicity,
we suppose that physical space is three-dimensianal,3, (but our methods can be
applied whenever > 3), we set. = 0, and we choos® to be a non-negative, bounded
function of rapid decrease, &g — oco. We consider atasymptotic profile” described

by

Yas(x, 1) = Q (x — ro — vot) o (vo[3+E]) | Bas (x, 1), (1.29)

whereh,; is a solution of the free-particle Schrédinger equation

1
i0ihgs(x, 1) = _5 Ahgs(x, 1), (130)
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with initial condition i, (x, 0) =: h4s 0(x) belonging to and being sufficiently small
in the space?4(R3) N W31 (R3, (1 + |x|2) @3x) and such that the Fourier transform,

has,o(k), vanishes at = vo. In (1.29),0 = QY) € Sy, is a solution of Eq. (1.14), with

A = 0, and itis assumed that inequality (1.26) is satisfiedJfos Qﬁf,’) € Sy, forall N
in a small neighborhood df¥p > 0.

Theorem 1.2.For an asymptotic profile/,,(x, t) as described if(1.29), (1.30),and
under the hypotheses stated above, there are solutjons;, ¢), of the Hartree equation
(2.5) (for » = 0) such that

‘(//ﬂ:(xa t) — was(xa t)v aSt — j:ooy (131)

in H2(R3). Their difference is of orde© (+~1).

Thus the non-linear Mgller wave mags. : ¥,, —> ¥+ exist as symplectic maps
on asymptotic profiles of the form (1.29), (1.30). We emphasize that the effect of the
scattering wave on the location and the phase of the soliton has to be tracked precisely
for all time. The stability of the soliton is quite simple and can be obtained purely
from energy consideration. A review can be found in Sect. 3 (see also Weinstein [14]).
Therefore, the key points of Theorem 1.2 are its two precise assertions: 1. The location of
the soliton is almost “linear.” 2. The scattering wave behaves like an ordinary dispersive
wave, (described by, (x, 1)), plus a small correction. The condition on the Fourier
transform ofh,; 0 is a technical one and we expect to remove it later on. Our result
constitutes the first step toward scattering theory.

The proof of Theorem 1.2 is the contents of the final section, Sect. 4, of this paper.

2. The Hartree Equation as a Hamiltonian System with Infinitely Many Degrees
of Freedom, and Its Point-Particle Limit

In the introduction, we have described results indicating how the Hartree equation (1.2)
captures the dynamics of a system of very many non-relativistic bosons with very weak
two-body interactions in a condensate state. This regime has been called the “mean-field
limit”. Actually, the mean-field limit is equivalent, mathematically, to thassical limit

in which the value of Planck’s constarit, is sent to 0. We are accustomed to expect
(actually in general erroneously) that the unitary dynamics of a quantum-mechanical
system reduces to the Hamiltonian dynamics of a corresponding classical system, in the
classical limit. In the examples studied in this paper, this expectation is justified.

2.1. The Hamiltonian nature of the Hartree equatiorhe phase spacel’, for the
Hartree equation (1.5) is the Sobolev (energy) spdééR”) defined in (1.4). We use
¥ (x) and its complex conjugat¢ (x), x € R”", as complex coordinates fdt. The
symplectic 2-form onl" is given by% dyr A dy. It leads to the followingPoisson
brackets:

), vy} = {¥@). ¥} =0, (2.1)
v, v} =2is(x—y). (2.2)
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The Hamilton functionalt (¢, /), leading to the Hartree equation (1.5) is given by

- 1 2 2 2 2
Ha =g [ [V ravivi - (eswl)wie] . @3
For® e LP + L, p > %, Hiswell defined ol and bounded below on the spheres
Sv={y|v el N(,¥)=N < oo}, (2.4)
where
N, v) =/|w|2; (2.5)

see inequality (1.12). Hamilton’s equations of motion{foare given by
Vi) = {H (Y, ), Y1)}
1
=1 [§ A (x) = AV ()P (x)

+(®x1vil?) (xm(x)} (2.6)

which is precisely the Hartree equation (1.5).
From (2.3) we infer the followingymmetriesind correspondingonservation laws
(1) Gauge invariance of the first kindhe phase transformations

Yx) e ), Ux) e e (x) (2.7)

leave{ (¥, ¥) invariant. These transformations describe the symplectic flow generated
by the Hamiltonian vector field corresponding to the funct%an/(t/f, ¥). Since they

are a symmetry of{ (v, v), it follows that
{H.N} =0, (2.8)

and henceV is conserved, and the spheigs defined in (2.4) are invariant under the
time evolutiomyr — 1, described by (2.6).

(2) Galilei invariance, forr = 0. We shall assume henceforth th&tis rotation-
invariant If the external potential vV vanishes then arbitrary Galilei transformations
are symmetries off.

Space translations, — x + a, are represented dnby

V(X)) = Y (x) ==Y (x —a), a eR",

and are generated by theomentum functional
PO = f AL (2.9)

They clearly leaveH (v, ) invariant, henceP is conserved under the time evolution
and

(H.P}=0. (2.10)
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Rotations,R,;,, in the (ab)-plane ofR", 1 < a < b < n, are represented dnby

V) > g, () = (R

They are generated by the angular momentum functionals
T [ 7 a b
Lap o) =5 [ 0 (x“0 = x"3,) v (211)

with 3, = 9/dx”. Since® has been assumed to be rotation-invariant, rotations leave
H (W, ) invariant, hence the functional%,;, are conserved under the time evolution
and Poisson-commute witH, for all (ab).

Finally, boosts (velocity transformations)— x — vt, v € R”, t denotes time, are
represented on time-dependent trajectotjgéy), in ' by

: 172
Vi (x) > Y (vs x) == (x — m)e’(”“*ﬁ) : (2.12)
They do not leaveH invariant, but one easily checks thatyf (x) is a solution of

Hamilton’s equations of motion (2.6) then soyg(v; x), for arbitraryv € R". The
conserved quantity corresponding to (2.12) is given by

M, (1}1, 1/ft) = / Vv (x +itV) ¥ . (2.13)

It follows that the “centre of mass motion” of a solutign of (2.6) isinertial.

We conclude this section by noting that, as usual, Hamilton’s equations of motion
(2.6) can also be viewed as Euler-Lagrange equations derived from an action principle.
The action functional is defined on a space of continuously differentiable (in time)
trajectories in phase spaftelt is given by

(W ¢ /df |: / Vi — Wt, ¢t):| . (2.14)
The Hartree equation (2.6) is obtained from the action functiSoél ) by variation
with respect ta/, i.e., it is equivalent to the equation
8S (v, ) /89 (x) =0, (2.15)
under the boundary conditions that
Sy, (x) =0, i=1,2. (2.16)

Global existence and unigueness of solutions of the equations of motion (2.6), for
®deLP+ L™, p=> % isprovenin[7] and refs. given there.
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2.2. Stationary solutions of the Hartree equations, for fixed valuas, @ and£,;. In

this section, we consider stationary solutions of the non-linear Hartree equations (2.6),
assuming thatV = 0 and thatb is rotation-invariant. Since the?- normj\/(x/f ), the
momentum functionaP (v, ¥) and the angular momentum functionalg, (v, v) are
conserved, we may put them to fixed valui’s,P andL,;, respectively. In order to find
stationary solutions of (2.6), WitN (v, ) = N, P(¥, ¥) = m andLap (Y, ¥) = Aap,

we may look for critical points of the generalized energy functional

£ (1/}, v E, P, L“h) =H (¥, V) +§ (N =N (. v))
+ P (r =P ¥)+ > LY (kab — Lap (¥, V) (2.17)

a<b
whereE, P and L% areLagrange multipliersBy varying€ (v, ¥; E, P, L*?) with
respect tay, v, E, P andL*, we find the equations
1 2
— Sav—(oxwP)v-Ey
— PPV —i Y L (x*0p — x"34) ¥ = O, (2.18)

a<b

(variation with respect tg), and

N (¥, ¥) =N (variation with respect t&), (2.19)
P (ll_f Ip) = (variation with respect t@), (2.20)

and
Lap (¥, ¥) = rap (variation with respect ta. "), (2.21)

l<a<b<n.
Not much is known about the general solution of Egs. (2.18) through (2.21). But, for
the purposes of this paper, the following solutions are particularly important; We look

for arotation-invariantabsolute mlnlmqu(o) of the Hamilton functional.(y, )
restricted to the sphet®y, which has zero momentum. Equations (2.18) through (2.21)
then simplify to

1
- S8y - (cp " |1//|2) v = EV, (2.22)
N@.¢)=N, (2.23)

and the solutiony = Q(O) must satisfy

(Q(O) Q(0)> _ <Q(0) VQ(O)) (2.24)

and

(x“ab _xb ) 09 —0, foralla <b. (2.25)
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Equation (3.22) is identical to Eq. (1.14), foV = 0, andE is given by

1
= o [ (7o) =5 [ (24097 02 (2.26)

see Eq. (1.15), which is strictly negative, for a non-trivial minimiQé\f,)).

Lemma 2.1.For a positive, rotation-invariant potentiab € L” + L*°, p > 3, with
®(x) — 0, as|x| — oo, there exists a constant, = N, (P), with0 < N, < oo such

that,forN > N,,(2.23)has anon-trivial solutiony = QE\?),wnhN (Q(O) Q(°)>
corresponding to a local minimum & (w, I/f) }SN . The phase OQE\(,)) can be chosen

such thatQ(O) > 0. The non-linear eigenvalu€ is given by (2.26) and is strictly
negative, forN > N,. The functionQES) (x) is smooth and decays exponentially, as
|x| — oo, with decay rates/—E.

Remarks.(i) From the theory of quantum-mechanical bound states we infer that, in
n = 1, 2dimensions), = 0, while, forn > 3, N, is strictly positive if® is integrable,
but vanishes for potentials of very long range, such as the Coulomb potential; see [10].

(i) Given a solution Q(O) of (3.22), the function

Y (v x) 1= Q(O) (x—r— vt)ei(v'xf[% U2+E]l) (2.27)

solves the Hartree equation (2.6), with' = 0, for arbitraryr € R" andv € R". This
follows from the Galilei invariance of the theory. Fgr as in (2.27),

P (¥, ¥i) = Nv. (2.28)

Equation (2.6) also has wave-like solutions with # 0, (e.g. ¥, (x) =
Yo expi (k- x — E (k, ¥o) t), which has infinite energy and momentum). It would be
of interest to also study square-integrable, stationary rotating soliton solutions of (2.6)
with L, # 0.

(iii) It is straightforward to extend Lemma 2.1 to systems whgke # 0. Such
generalizations are of particular interest whérhas symmetriesThen minimizers,

Q<0) of H(¥, w)ysN tend tobreakthe symmetries of V if N is large enough.

(iv) Let H” denote the Hessian G{(v, v) aty = Qf,g), (A = 0). In our proofs
of Theorems 1.1 and 1.2 (see Sects. 3 and 4), we shall always assume that assumption
(1.26) holds, for allv in an open neighborhood of somg > N..

Since the proof of Lemma 2.1 is standard, it is omitted. The interesting analytical
issues arise in the problems described in Remarks (iii) and (iv). They deserve further
study.
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2.3. A heuristic discussion of the point-particle limit of the Hartree equationthis
section we start from the results reviewed in the last section (see Lemma 2.1) to study
the point-particle (Newtonian) limit of the Hartree equation. In this limit the Hartree
equation reduces to the Newtonian mechanics of point-particles interacting through
two-body potential forces. We use ideas closely related to those proposed in [9] in an
analysis of vortex motion in the plane, as described by the Ginzburg—Landau equations.

Let AV and ® be as in Egs. (1.5), (2.6). We set= 1 and consider a family of
external potentials of the form

V(x)= VO (x) = W(ex), (2.29)

whereW is some smooth, positive function &4, ands > 0is a parameter. Furthermore,
the two-body potentiak-®, is chosen to be

®(x) = Dy (x) + Pe(ex), (2.30)

where®; (x) is a rotation-invariant, smooth function decaying rapidlyin= |x|, as
p — oo, and with the properties that

dds(p)

<0, for p >0, (2.31)
dp

and that the key gap assumption (1.26) stated in Sect. 1 holdsforb,. The perturbing
potential®, is rotation-invariant and smooth and may be of long range, e.g.

|De(p)| ~ p>™", as p — oo, (2.32)

forn > 3, which is the behavior of the Coulomb- and of Newton’s gravitational potential.
For simplicity, we assume thaid>g(p)/dp| is uniformly bounded irp.

We pickk positive integersVy, ... , Ni, with N; > N, (), forall j. ForAV =0
andN > N,(®y), we define

Sy = \/N—lfd”xQE\?)(x)zxz, (2.33)

whereQ 'Y is a rotation-invariant minimizer of the functior®i(y, v |5, @s described
in Lemma 2.1.

We consider an initial condition/g(x), for the Hartree equation (2.6) describing
a configuration ok far-separated SO|It0nS"Q(0)(x —rj), rj eR", j=1,...k,
(perturbed by a small-amplitude wave), with the following properties: Each soliton
Q(O)(x) is a rotation-invariant solution of Eq. (3.22), with = &; and N = N,

m|n|mizing7-l(1ﬁ, ¢)|SN (for » = 0, ® = ®,). Furthermore

(j_r?ax (SN/) / <15rl_n<|]r_1§k |r,-—rj|) < ¢, (2.34)

whereg is the parameter introduced in (2.29), (2.30).
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Our goal is to construct a solutiotf;, of the Hartree equation (2.6) of the form
Vi (x) = }:Qﬁk) —rj(0) D 4 hy (1), (2.35)

wherer;(0) =r;, asin (2.34), and;(0) = v; e R", j = 1,... , k, with the following
properties: There is a positive constdhsuch that, for all times with |¢| < %

@ ||| D] ~ oCe)

b 0,0 =@ [x —r;®)] +0;0),

whered; (¢) is independent af, and

© [N;®)] = o).

The trajectoriess (), ... , r¢(¢t) and the phase¥ (1), . .. , 9x(t) will turn out to satisfy
equations of motion which can be derived from the Hartree equation. In this section we
do not present a mathematical proof of the claim that solutions of the Hartree equation
(2.6) of the form (2.35) with properties (a)—(c) exist; (but see Sect. 3). We merely verify
that a functiomy, (x) of the form (2.35) with properties (a)—(c) approaches a critical
point of the action functionab(y, ¥) introduced in (2.14), as — 0, providedthe
trajectoriesr; (1) satisfy certain Newtonian equations of motion and the phases

are suitably chosefy = 1, ... , k). Since critical points of (v, y) satisfy the Hartree
equation (2.6), this makes it plausible that solutions of (2.6) of the form (2.35) with
properties (a) — (c) exist. This claim is proven in Sect. 3kfef 1.

Our heuristic analysis is based on the following simple facts:

(1) Fori # j,
/d"xQ(O) x =) Q) (x—rj) = 0,
exponentially fast, ag; —r;| = 0(e~1) - oo. This follows from Lemma 2.1.

T
) (QE@)(,),hs(-,t)) =o(e), for Jf] < —,
ase — O, foralli =1,...,k; see (2.35) and property (a).

3) (Q(O) Q(O)) =0, foralli,

by translation invariance (see Eq. (1.24)).
(4) Fory :=x —r;(t),

n 0) 2 .

/d )’|QNi(,)(y)| y = 0, foralli,

by rotation invariance.

y ©) ©) .
(5) Ni(t) = Z(QN'(I)’ QN (t)) s for all 1,

becauseN; = (Q(O) Q(O)>
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Using that
9 (O] i0;(x,1)
5 v (x =rjm) e

= [, (= ri0) = 70O, (x = r; (1)

+i6;(x, DN (x - rj(t))] PUCHS (2.36)

with
0;(,t) =7;(0) [x —rj(®] = 70>+, 1), (2.37)

and
VO, (x, 1) = F; (1), (2.38)

we find that, fory, (x) as in (2.35), the action function&l(y/, ) introduced in (2.14),
with—L <n < <L isgivenby

S(v,v)= > fdtZ[ N; /|Q<o> =) iy (e = 1)
141
N.
+ Nji2 = N;d; —-/|VQ‘°> Sl
1
—NjW(srj)+§/< ‘Q(O) )‘Q(O)
+% > NiN;j® (e (Vi—r./))+sa], (2.39)

it

wheres, is an error term~ o(¢). In the first term on the R.S. of (2.39) we have used
(5), the second term proportionalfp vanishes by (4), in the third and fourth term we
have used (2.37), in the sixth term we have used (2.38), and various cross terms vanish

because of (3) or only contribute to the error term because of (1) and (2). We have also
used that

/d"xW(sx)|Q533 (x—r;) P = N;W (er)) + o(e) ;
and that, for # j,
/d"x/d"y|Q§8i) (x — ri)’2d> x -y ‘QE\%) (y - rj)‘ZZNiqu)( (ri - rj) + o(e),

by (4) and becaus®; (x) decays rapidly inx|. Thus

SW.v)= 3 SNewton({rj, N/}j:l,...,k)
+ %/Zdti

1 Jj=1

i . .
[E Ny - Ny -2 (ef). of) +s€:| . (240)
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where
Swewon({75: )1y 1)
t2 k
Nj 22
Z > r - N;W (srj)
=1
1
E Z iN;j®¢ (e (ri — 1)) (2.41)
A
is the usual Hamiltonian action fdr point particles with massen, ..., Ny in an

externalkcceleration fieldvith potentialW (¢-) and interacting through two-body forces
with potentialN; N; @ (¢ (ri — r})).

In order to guarantee that the ansatz (2.35) yields a solution of the Hartree equa-
tion (2.6) with properties (a), (b) and (c), we must require thatwvtheation of the
action S (z}, w) calculated in (2.40), (2.41yith respect to the variational parame-
tersr;j, N;,9;, j=1,...,k, andh, vanish!To write down the variational equations,
we observe that the second term onthe R.S. of (2.40lependendfry, . .. , i, except
for the error terns,, which iso(e). Thus, varyingS (v, ¥) with respect to-y, ... , ¢
yieldsNewton’s equations of motion

Fj=—e(VW) (er))

&
5 2 Ni (Vo) (e (rj = i) +aj, (2.42)
iii#j
wherea; comes from the error tersa, and|a; (t)| ~ o(e), for [¢] < % s j=1,... k.
Variation with respect tavy, . .. , Ny yields the equations
. 1 2
v = Er] — (Erj)—}- ZNiCbZ (8(?‘1—}”/’))
ii#j
H(eW. of) + o). (2.43)
aN j

It is easy to see that

© HO) _ (0)
aN, (Q - Oy >_2N/ Vey
0%\ 02
N (cb*Q )Q
= E; — N;j®.(0) + o(e), (2.44)
see Eq. (2.26). Hence, fonf < I,
k

B = % F— W (erj) + ZM@ (e(ri—rj)) —Ej+o(e) . (2.45)
i=1



Point-Particle (Newtonian) Limit of Non-Linear Hartree Equation 239

Variation with respect té#y, . .. , ¥ yields the equations
N; = o(e), (2.46)

(approximate conservation of masses of particles), and, finally, variation with respect to
h, yields an equation of motion of the form

d k
— he(x.1) =X<h8, {rj,Nj,ﬁj}j:l) (x, 1), (2.47)

with ||| X||| ~ o(e), for|t| < L, where||| () ||| is an appropriately chosen norm.

At a heuristic level, egs. (2.42) and (2.46) show very clearly that the imit 0
corresponds to the point-particle limit in which the mas#8s, . . , Ny, of the particles
(“solitons™) are constant and their trajectories are solutions of Newton’s equations of
motion, on time scales of(®1).

Itis interesting and useful to work out explicit expressions for all the termgfin
Egs. (2.42), (2.45), (2.46) and (2.47), in order to understand more abadrileetions
to theNewtonian point-particle limiand to get a handle on phenomena like radiation
loss and dissipation through emission of small-amplitude dispersive radiation. But, since
our discussion in this section is at a formal level, let’s not! In the special case where
k = 1, the terms of size(¢) are analyzed in Sect. 3.

The analysis of the correction tersmin expression (2.40) for the action functional
and of the properties of solutions of Eq. (2.47) is crucial in attempting to understand the
long-time behavioof solutions of the Hartree equation (2.6). In the introduction, we have
drawn attention to results of Soffer and Weinstein [8], see also [12], concerning “non-
linear Rayleigh scattering” for small-amplitude solutions of the non-linear Schrédinger-
or Hartree equations with a suitable external poteafialOne would like to extend their
results in the direction of a theory nbn-linear resonancegnetastable states) and gain
understanding of the phenomenoriabproach to a groundstate”Of particular interest
are situations where the Hamilton functioi&lv, v), see (2.3), restricted to a sphere
Sy in phase space has sevalaitinctlocal minima, forN large enough. This happens
whenAV has several minima separated by large barriers-adds the potential of an
attractive force. One would then like to understand the shape tfdisins of attraction”
in phase space of the local minima&{(v, 1//)|SN: The forward (backward) basin of

attraction of a family of local minima of.(y, ) |SN parametrized by consists of all

initial conditions in phase space which approach an element of this family plus dispersive
radiation decaying to 0 at the free dispersion rate, as +oco (t — —o0). This is the
phenomenon of “approach to a groundstate”.

More ambitiously, one might try to construct@entre manifold” of asymptotically
attracting configurations of solitons to which solutions of the Hartree equation with
initial conditions sufficiently close to the centre manifold converge locally in space, as
|t| — oo. See [12] for some preliminary results.

Let us consider an example: We choose an initial condition for the Hartree equation
describing two far-separated solitons at positians, and with initial velocities1, vs.

We suppose thatV = 0 and that—®, is purely attractive and of short range. The
“masses”N1, N2 of the solitons and the initial conditions, v1 andry, vo are chosen
such that the two solitons formmund statei.e., that

Ny
2

N>

> v — N1Na® (¢ (r1 — r2)) < 0. (2.48)

v%+
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One would then like to calculate the poweg; (¢), of emission of dispersive radiation
through a sphere of radiu® > max (|ri|, [r2|) . Moreover, one would like to show
that, asy — +o0, a typical configuration of two solitons satisfying (2.48) collapse to
a single soliton moving through space at a constant velocity. This phenomenon would
describe the “radiative collapse of a binary system”.

More generally, it would be interesting to understand how, at intermediate times,
small inhomogeneities in the initial conditions for solutions of the Hartree equation
grow to form a structure of rotating bodies (solitons) perturbed by outgoing, dispersive
radiation, before it eventually approaches a number of far separated solitons escaping
from each other. [In studying such problems, one finds out that the Hartree equation
not only “knows” about Newton'’s equations of motion, it also “knows” about the Euler
equations for the motion of rigid bodies.]

The problems described here are problems orstiatering theoryfor the Hartree
equation. If—® is attractive, i.e., for a self-focussing non-linearity, scattering theory is
bound to be very subtle, involving infinitely many “scattering channels”, and is beyond
the reach of our methods; (see, however, Sect. 4 for some preliminary results, and [7]
for the case where @ is repulsive).

3. Proof of Theorem 1.1

In this section, we prove the first main result (Theorem 1.1) of this paper.

3.1. Stability of soliton solutions of Hartree equation&/e first review the stability of
the soliton solutions to the Hartree equation without external potential, i.e\, $00.
The equation is
OH 1 2

[0 =2— = —=—AY — (O , 3.1

iy o 21# CEAZDIY (3.1)
where% (H = H*=0 see (1.11)) is the first variation of the energy functional w.r.t.
¥. Recall thatQ is a minimizer of/{ under the constraint/ (', ) := ||¥||> = N, for

someN fixed, and thug) satisfies the equation

1
—EAQ—@*IQIz)Q:EQ, (3.2)

for some non-linear eigenvalue (Lagrange multipliérSuppose the functiop can be
written in the formys = (Q + h)e~'E’. Then the linearized equation satisfiedioyakes
the form

id;h = Lh, (3.3)
where

Lhz—%Ah—Eh—(CD*QZ)h— O(® * (Q(h + h))). (3.4)

Due to the appearance bbn the right side of (3.4), is not a complex-linear operator.
It is therefore convenient to separate the last equation into real and imaginary parts

Lh=L;A+iL_B, h=A+iB, (AandBreal) (3.5)
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where

1 2
L__::—-Ezﬁ-— E—®xQ°,
Ly=L_—-20[P=(Q)], (LyA=L_A—-20[® = (QA)D.

HO-(L5)0)-0) o

(£ is the matrix form of—i L; it determines a linear Hamiltonian vector field.)
The operatord._ andL also appear naturally in the second variation of the energy
functional . Writing v = u + iv, we have by explicit computation

In matrix form,

H(Q+h)=H<Q)+fdx@] A+/dxﬁ] B

1 92H
i ‘ A+2 [ dxa ‘ B
+2[/ . oudu + f * oudv o

82
+/de H‘ B}+0(h3)
dvov Q

oH _ oH
dulo  \ du ¢:&:Q'

Notice thatX has no cross terms im andv, except in the nonlinear term depending
only on|y|2. SinceQ is real, we have that

oH
v 10

where

Thus the first order term is just

/dx—‘ A—Z/dx—‘ A= E/deA

where we have used Eq. (3.2). Similarly,

3°H
o
Judv o

and the second order term is just

1 92 92
—/dx H‘A+fde H‘B
2 oudu dvov 1o

= /dxAL+A+/deL_B+E/dx(A2+BZ).

(Observe tha E = L.) We have thus proved that

mm

H(Q +h) = H(Q) + E[(Q, A) + |h|?] + Re(Lh, h) + O (h®), 3.7)
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where(f, g) = [ fgdx is the standard., scalar product and
Re(Lh, h) = /dxAL+A+/deL_B.

Let O, = Oy be the (real) minimizer centered at the origin, With, |2 = N +«.
Leth, = Q. — Q. Then

8=|IQ+th|2—||Q||2=2/th+/h§=2/th+0(82).

We define(N) as the minimal energy subject to the constrgipgt|> = N:

EN)= Iinf HW).
lylI2=N

The last two equations and (3.7) then yield the standard relation

IE(N)
ON
For an arbitrary: with Reh L Q, Eq. (3.7) yields

= EJ2. (3.8)

[/ dxAL. A —i—/deL_B} =H(Q+h) —H(Q) — E|hI?+ O0(h®. (3.9)

SinceH(Q + h) > E(IQ + hlI>) = E(N + [|h]|?), (because Re L Q, [Q + h|? =
Q112 + |I2]1%), we obtain from Eq. (3.8)

H(Q +h) — H(Q) — E|lh)? = O(h®).

This proves that
/dxAL+A >0, /deL,B >0,

forallA L Q andarbitraryB. ThusL_ > 0, andL has at most one negative eigenvalue.
From the explicit form ofL. _ and L we conclude that

L_Q=0, LyVQ =0, L_(xQ)=-VQ. (3.10)
SinceQ is positive andL_ > 0, its null space is the span ¢f, i.e.,
L_ >0, N(L-) = spa{Q}.
From the explicit form of_ ;. we have that
(Q.L+Q) =:¢0-(Q,0) <0, (3.11)
where

g0 = —2(N(Q)? f 0% (@ 0?) <o.

ThusL has exactly one negative eigenvalue. The continuous spediraafdL , can
easily be shown to be the half-life-E, o0). SinceL . VQ = 0, 0 is an at least-fold
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degenerate eigenvalue bf.. A key assumption in our analysis is that the whole null

space ofL, = H,,, — E isspanned by 0, i.e.,

N(Ly) = spany(V Q). (3.12)

Since the continuous spectrumiof and ofL  is the half-linel— E, co), 0 is an isolated
point. Hence there is a positive numisesuch that

(h,Lyh) = 8(h, h),

if  is orthogonal to the span &fQ and to the ground state @f, . In particular, the
number of eigenvalues strictly belawis exactlyn + 1. We have proved the following
lemma.

Lemma 3.1.Assume tha3.12) holds. Then the null spaces bf and L are given
by N(L_) = spa{Q}, N(Ly+) = spak{VQ}. Furthermore, there is a constant
e2 > 0 such that(a) (g.L_g) > e2(g.8) if g L Q. (b) (f.Lyf) = ea(f. f) if
f L spa{Q, VQ}.
If we assume that
1o +n1? =107
the term with the factoFE in (3.7) vanishes, because

2(0, A) = — ||,
and we have that

H(Q +h) =H(Q) + U dxAL, A —i—/deL_B} + O0h®). (3.13)

Thusifh = A +iB, with
A Lspa{VQ}, BLQ, |Q+h|>=]0l> (3.14)

thenwe canwritel = A1+cQ, with (A1, Q) = 0, forsome of order| 4|2, (c(Q, Q) =
(A, Q) = —(h, h)/2). Since(Q, VQ) = 0, we have thatvQ, A1) = 0, provided that
(A, VQ) = 0. Therefore, under assumption (3.14), we can rewrite (3.7) as

H(Q +h) — H(Q) = [(A, L4+ A) + (B, L_B)] + O(h®) (3.15)
= [(A1, L1 A1) + (B, L_B)] + O(h®). (3.16)

SinceA;1 L spa{Q, VQ}, we can apply Lemma 3.1 to conclude tiiat, L+ A1) +
(B, L_B) > e2(]|A1]%2 + ||B||?). Since the difference betwedirt1]|2 and||A|? is of
higher order, we obtain

H(Q + h) — H(Q) = e2llh + Oh®). (3.17)

The last equation implies thglobal (modulational) stabilityof the soliton solution
under small perturbations. To see this, suppose the initial data is of thedo#ihy,
with ||Q + holl2 = ||Q||%; (the last condition always holds, since we can chooge a
with the mass of the initial value). At a later timewe can find- andé such that

Y (x —r)e " = h(x) + Q(x)

with the mass of the correctiofi||2, minimized. One can easily check thasatisfies
condition (3.14). By inequality (3.17) /|2 is bounded from above by the left hand side,
which is conserved under the time evolution.
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3.2. Dynamical linearization of the Hartree equation around solitovie now return
to the Hartree equation (1.5) with external potentitll(x) = W (ex). Since our time
scale is of order ~ ¢~1, the change in the external potential during the evolution on
this time scale may not be small. Thus the argument in the last section no longer applies.
We shall show that, nevertheless, the soliton solution is stable on this time scale, and we
shall track the motion of the soliton precisely.

The Hartree equation (1.5) is

1
iy = —§A¢+W(8x)lﬁ—(‘b*llﬁ|2)¢ = H{)y. (3.18)
The solutions we are interested in are of the form
Y, 1) =[Q (x —r(1) + he (x —r (1), ] /CD, (3.19)

fore > 0smallenough, wher@(x) = 0¢=9 (x)isaminimizer of the energy functional
H, andh.(x — r(t), t) is a small correction term which tends to O,sas> 0; 8(x, t) is
a time-dependent phase of the form

OCx, 1) =v() - (x —r@)) — Et +01(1).

Also, we expect that, to leading order, the veloaity) and the locatiomn (¢) of the
soliton are given by

() =v(), v(t) = —e (VW) (er (1)) .

For the time being, there is no canonical way to determine corrections to these equations,
as the decomposition (3.19) is not unique. We require andd; to obey the following
equations:

F(1) = v(),
v(t) = —e(VW)(er (1)) + a(t),
O1(t) = 30%(1) — W(er (1) + o (1),
where the (vector) acceleration correctiom) and the (scalar) “angular velocity” cor-
rectionw (¢) are of higher order im and will be used for fine adjustment, later on. Their
initial values will be discussed in Subsect. 4.5.1, when we adjust the initial datgm

We now derive the equations fatr w andh. Let&(x, 1) = Q(»)e'?, y = x — r(1).
By explicit computation,

P PETY U S 2
i — HE)E =€ [i0E + A8 [~ Wiex) + ©x[¢]

. v
= [~6u0) - Al = r 0] = $02(0) | + [ijQ(vm - r‘(t))}
—W(ax)+[E+%+cb*|s|2]

We expand the potentid’ around the poink(z):

Wex) = W(er(t)) + VW (er(t))e(x —r(t)) + Qo(x, t),
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where the remainde®o(x, ¢) is real and, by the mean value theorem,
Qo(x, )] < Ce?|y[%, (3.20)

whereC = C(W) depends orW. Recalling the equation for, v and (3.2), we then
have

£, — HE) & = —Q8, (3.21)
where
Q=—W(er)+ W(ex)+0y + o= Qox, 1) +al)y + o). (3.22)

Next, we considen(y, 1) = hs(x — r(t), ). Substitutingy: = (Q + h)e'’ into
Eq. (3.18) and canceling? we get

i{(Q +h)(id,0) —F - V(Q + h) + 8,h}
1 1
= {—EA(Q +h)—iv-V(Q+h)+ EvZ(Q +h)}
+ W(ex)(Q +h) — (% |Q +h|>)(Q +h),

whereQ andh are taken aty, t) = (x — r(¢), t), thatis,Q = Q(x — r(t)) = Q(y)
andh = h(x —r(t),t) = h(y, t). Usingr(¢) = v(¢), Eq. (3.2), and

1 1
30 =v-x+ {_5”2_ or — W(sr)—i—a)(t)} —E=-W(Ex)+Q— Eu2— E,

we obtain

iinh = A= Eh+2(Q + 1) — [ @ *10 + hD(Q + 1)~ (@ % 0]

(3.23)
TreatingQ2h as an error term, we can rewrite this equation as
dh=—iLh+G, (3.24)
where the operatat is given by (3.4), and the nonlinear part is
G=—iQQ+h)—iF(h), (3.25)

with F(h) = — [ (@ % 1h12)(Q + ) + (@ [0 + DA}

J (A 0 L_\/[A ReG

i (5)= (2 9) () (W) @29
We observe that, except f@xp which is part of2 (and thus appears i), all quantities
in this system are evaluated(@t r).

In matrix form,
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3.3. Properties of the linearized flowwMe have shown that the linear part in the dy-
namical linearization of the nonlinear Hartree equation results in the standard linear
evolution (3.3) with matrix form given in (3.6). We notice that andL _, the real and
imaginary part ofL, can be reinterpreted as complex-linear operators which turn out to
be self-adjoint in the usudl? space. The operator

_ 0 L_ . « (0 —Lt
£_<_L+ 0), with £ _(L_ 0 >

acting onH! x H1 is, however, not symmetric. Although our functioAsand B are
real, we shall view._ and L as self-adjoint operators on the Sobolev spAceof
complex-valued functions. The operatdis, however, not self-adjoint and thus does not
have a spectral decomposition. A standard procedure is to decompose th& $pakié
into a direct sum of its generalized null space,

S 1= Ng(L£) = {v: L"v = 0 for somen} ,

and the orthogonal compliment of the generalized null space of its adjoint, i.e., the space
M = Ny (L) . Itis simple to check that both spacés= N, (£) andM = N (L*)*,
are invariant undef. Note that the decompositidii® x H1 = M & S is, howevernot
an orthogonal decomposition.
Following M. I. Weinstein [13], we want to establish the following picture:

CHYxH'=M®S5S.

. TheH! x H-norm onM remains uniformly bounded under the linearized flow for
all time.

3. The dynamics o§ can be computed explicitly.

N =

We usePy,; and Ps to denote jon-orthogonal) projections with respect to the de-
compositionM & S. We first establish some spectral propertied gfand L _.

3.3.1. Generalized null spacéVe first determine the generalized null sp&ce N, (L).
We recall Lemma 3.1 and the equations

L.Q0=0, L,VO=0, L_xQ=-VQ.

SinceQ L spa{VQ} = N(Ly) andL, is self-adjoint, there exists a solutidr,
of the equatiorL. . "1 = Q. We may assumE; L V Q by subtracting its projection on
theVv Q-direction. IfT"; L Q,then(l"1, Q) = (I'1, L4+T'1) > e1(I'1, I'1),byLemma3.1.
This contradiction showd™1, Q) # 0. Nowwelefl’ =T'1+bVQwithb = 2(I'1, x Q).
Then(T", Q) = (I'1, Q) # 0, and(I", x Q) = 0. To summarize, we have found asuch
that

L.T=0, (,x0) =0, (T, 0) #0. (3.27)

We requirgl’, x Q) = 0, in order to construct a dual basis ®m Proposition 3.2 below.
To determine the generalized null space, we need to solve all solutions of the equation
L' (4) = (3) for somen. If n = 2k is even, it is equivalent toL_ L. )*u = 0 and
(LyL_)v = 0.1fn = 2k + 1 is odd, it is equivalent td., (L_L,)*« = 0 and
L_(LyL_)*v = 0.We have solved the solutions for the case 1 above: Itis the span
of (3) and(V2)
9] o/
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We next consider the cage= 2. The null space of L _ is
N(LyL_)=L_"'N(Ly) = N(L_) ® spary{xQ} = spa{Q.xQ}.  (3.28)
Similarly,
N(L_Ly)=N(L;) @ spag{l'} = spag{VQ,T}. (3.29)
For the case = 3, we have
N(L_LyL)=L "N(WL_Ly)=L_"lspag{vQ.,T}.
SinceN(L_) = spap{Q} and(Q,I") # 0,T is not in the range of._. Thus
L_"'span{VQ.T} = L_~span{VQ}=N(L_L}).
This proves thaV(L_LyL_) = N(L;L_). Similarly, N(L,L_Ly) = N(L_L,).
Therefore, ifC" () = (§) for somen > 2, then£? (%) = (§). Thus we have found

a basis forV, (£). We also have similar statements 8¢ (£*). Summarizing, we have
proved

Proposition 3.2.
§ = Ne(£) = spare{(3). (*¢) - (22) - (6)h (3.30)
No(£") =spane((?). (*§) . (vo)- (§)).

Notice that these vectors are dual bases and we have ordered them correspondingly.
In particular, for an arbitrary functiop we have

Ps(g) = k1(Img. T) () + k2(Reg. x Q) (V2)
+k2(mg, VO) () +xk1(Reg, ) (§).
wherex1 = 1/(Q, ') andkz = 1/(x; Q, 3; Q) = —2. Also note that we have

£(g)=@). £(®)=@®). £(o)=-CF). £(5)=-(3)-
(3.31)

Let g(¢) be a solution to the linear evolution (3.3) and denote the projection®nto
by

Psg)=a®) (§)+B®) (V) +r®) (%) +80) (5)-

Then by (3.31) the equations for the coefficie@tst), 8(¢), y (¢), §(¢)) (hoteB(¢) and
y (¢) are vector functions) are given by

(9): a=-s
(VOQ): p=—v
(yOQ): y =0,
(5): 4=
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3.3.2. The flow o/. We have decomposed the spdéé x H! into a direct sum of
the generalized null spae= N, (L) andM = Ng(/:*)L. The generalized null spaces
for L andL* are given by Proposition 3.2. Thu¥, is the space

M ={(y):u L spag{Q,xQ} v L spar{VQ,I'}}.

Since all functions in the spage= N, (L) andM+ = N, (L*) are smooth, the projec-
tions Ps and Py; are bounded in any space.
Ouir first aim is to prove

Lemma 3.3 (H1-norm on M).

1.1f g € M, thenRe(Lg, g) is non-negative and comparable|tg||zl.

2.1f g(t) = e "Ly and0 # ¢ € M, then||g(#)]l g1 is uniformly bounded below and
above.

To prove this lemma, we first show that, for all vectofy € M,

CHull?, < (. Lyw),  C M), < (v, L_v), (3.32)

for some constant, as follows from Lemma 3.1. In fact, it is sufficient to assume that
u 1 spa{Q, xQ} andv L spar{I'}. (As will become clear, we only ugg, Q) # 0
and(xQ, VQ) # 0in this argument.)

For thev-part, if (v, Q) = 0, the claim follows from Lemma 3.1. Hence we may
assumev = Q +w forsomer # 0,w L Q.Byassumption @= (T, tv) = (T, Q +w),
hence|(T", Q)| = |(T", w)| < |IT|l2 [lw]l,. Therefore we havéw||, > c3 > 0 and

W Lov)  wLlw _ elwll e}
@.v) Q5+ Ilwlz ~ IQI5+ Iwl3 ~ Q15+ c3
For theu-part, if (u, VQ) = 0, the claim follows from Lemma 3.1. Hence we
may assume: = bVQ + w for some vecto # 0 and somew L Q,VQ. By

assumption, 0= b(xQ, u) = (bxQ,bVQ + w) = C|b|? + (bxQ, w), with C # 0.
Hence||w]|» > C|b| and

W Lew) _ (wLiw) _ e2llwl}
(w,u) — Ch2+|wl3 ~ Ch2 4 |w|3 ~

by a similar estimate. Hence (3.32) is proved.

Now, since|| V|2 is bounded by, L u) and|u«||?, (and hence byu, L u), see
(3.32)), we can replace the norm on the left hand side of (3.32) byitheorm; (here
the Hy-norm is the sum of thé?-norm plus thel.?-norm of the derivative). Therefore
we have proved that, far¥) € M,

3

C Y, u)yr < (u, Lyu) < Clu,u)yt , (3.33)
Clw,v)y1 < W, L_v) < C(v,v)y1 .
The upper bounds o, Lu) and (v, L_v) are obvious. Hence the first part of the
lemma is proved.
The second part follows from the first part and the next lemma, which states that the

quantity (u, L,u) + (v, L_v), which is equivalent to thé/'-norm onM, is actually
conserved by the linear flow (3.3). We note that

(u, Lyu)+ (v, L_v) =Re(Lg, g) =Im(Lf, g).
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Lemma 3.4.Recall thatl = —iL, andiL # Li, (see (4.5)).
1. RelLf, ) =Im(Lf, g) =Im(Lg, f) = —Im(f, Lg).

2.1f g(r) = e~"L g, thenim(LK g, g) is constant for any integer > 0.
3. Foranyg(¢) with ;¢ = Lg + G, one has

d
Elm(ﬁg, g) =2Im(Lg, G).

Proof. All these assertions can be checked by simple computations. We only prove the
last one in the following.

d
Elm(ﬁg, ¢) =Im(L%g + LG, g) +Im(Lg, Lg + G)

=Im(LG, g) + Im(Lg, G) = 2Im(Lg, G). O

The following two lemmas will be used to prove inequality (3.61) below. (N@te
denotes the Sobolev spatié-2.)

Lemma 3.5.(a) For anym > 1, e~/'L is a bounded map from¥ N H™ into itself.
Explicitly, for any¢p € M N H™,

—itL
<
e o] = Culgllam

(b) £ = —i L, restricted toM, has an inverse which is bounded fras#n L? to M N H?.

Proof. Proofof(a): Letg(r) = e ’L. The casen = 1is Lemma 3.3, part 2. i > 3
is odd, we have that

g 1Zm < C|IM(L™g. )| + C g%
< CImL"¢. )| + C g2 < ClplZm .

The second inequality uses Lemma 3.4, part 2. (Notez i§ even, In{L™g, g) = 0,
and the first inequality fails.) The general case follows from interpolation.
Proof of (b): For() € M we seek(y) € M such that () = (4),i.e,L_y =u
andL,x = —v. Notice thatx L Q andv L VQ, and the null spaces of the self-adjoint
operatorsl._ and L, are spanned by andV Q respectively. Since 0 is an isolated
eigenvalue ofL_ and L, it follows that L~ and L;l are bounded operators on the
orthogonal complements of the null spaces. This provesdhas a bounded inverse
onM N L2

To prove the bound, write» = (%) € M N H?. By (3.33)

1
lulifyre < Clu, Lyw) < S llull3 + C I Lyull3.

Hencellullyi2 < C | Lyull,. Similarly |[vllyiz < C|L_v|l,. Furthermore, write
Ly = —%A + V. (The explicit form of V can easily be read from the definition of
L)

[Aulla =21 L1u — Vully < 2|[Liully + C(V) llullz < ClILyull,.

Hence |lully22 < C||[Liull,. Similarly [[v[ly22 < C|L_v|l,. We conclude that
lwlly22 < C ||Lw]l,. The lemma follows by a duality argumento
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Let
X, = H N 12 {(1+ |y|2k)dy} (3.34)

denote the subspace B of functions with prescribed decay at infinity.

Lemma 3.6 (Finite propagation speed)For any integerk > 0, for any realm > 1,
and forg € M N X, N HK™,

Hymelﬁqs‘

e S CI" el + CAH I Il e (3.35)

The constan€ depends o andm.

Remark.For the free Schrédinger equation, one need not assume thad/, since
Lemma 3.5 (a) always holds.

Proof. Leta be any multi-index witha| = k. Letg(1) = e~""2¢ andv(r) = V¥g(1).
We have ’

ov=Lv+ Ag, withA=[VY L]

Hence,
2m . 2 2m =
— v|© = 2Re o)
di Yl /y t
< [y hveidy + 113+ [y iiagl
Since A is a localized operator involving derivatives only up to-{ 1) order, (A

vanishes fok = 0), the last term is bounded By ||, |gll yx-1 < C ||¢||i1k. Hence, by
interpolation,

d
Iyl = e lymolly- |y tvo ], + C il
<€y 2T ol 4 C g 12,

Let f(¢r) = ||y’”v||§ andN =C ”‘1’”31“"1' By Hoélder’s inequality,

|| < fEYENYE 4 N < —JH +CL+0n>"N,

hencef (t) < Cf(0) + C(1+ 1)?" N, which proves the claim. o

We will need the caske = 1 when we prove Lemma 3.8.



Point-Particle (Newtonian) Limit of Non-Linear Hartree Equation 251

3.4. The fine adjustmentVe first recall the conclusion of dynamical linearization. We
decompose the functiof into the sum

Y, =10 (x = r@®) +he (x = r(0), 0] 0,
whered (x, t) is a time-dependent phase of the form
O(x,t) =v(t)-(x —r()) — Et +01(2),
with
r(1) = v(0),
v(r) = =VW(er))e +a(r),
61(1) = %vzm — W(er() + w@).

Here the (vector) acceleration correctigin) and the (scalar) angular velocity correction
w(t) are of smaller orders, and we shall determine their values in this subsection. The
main correctiorh satisfies the equation

9
S h=Lh+G. 1O =heo. (3.36)

with
G =—-iQ(Q+h)—iF(h),
Q=Qo+ay+w,
Qo= Wi(ex) — W(er) — eyVW(er),
F=—(@#h*(Q +h) — (& *[Q(h+ h)]h.

We decomposg(r) into a sum of its components hiandM: h(t) = hg(t) + hp(2).
The component iy is a sum of the basis vectors (3.30)

hs@) =a@® () +B@ (Y¢) +v®) (,2) +80) (5)-

We now consider projections of Eq. (3.36) ostandM . Taking inner products with
the dual basis, (see Proposition 3.2), we obtain the equatiofis on

(9): &=—8+k1(IMG,T), (3.37)
(2): p=—y+iaReG, y0), (3.38)
(%) 7= «(mG, V), (3.39)
(5): 6= x(ReG, Q). (3.40)
The equation o is
%hM =Lhy + PyG. (3.41)

Notice that2g = W (ex) — W(er) —eyV W (er) is determined by (¢), which solves

¥ =—eVW(er)+a.
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This system is not closed, yet, since we still need to determiaed», which are
used for the fine adjustment. Observe thaindw appear explicitly in the equation on
S only through InG, thatis,ay Q andw Q. These two terms appear in (3.37) and (3.39),
the equations fow andy . Our strategy is to chooseandw so thate = 0 andy = 0.
Thenhg(¢) has at most linear growth.

It is important to understand the orders of these quantities. Assumé thai(e).
Since the forces contains an external inp&oQ ~ €2, G is of the formO (h?) + &2.
The equation fok,y, i.e., (3.41), is thus of the form

< f24c%?, c>1, (3.42)

(and we have assumed that we can take care of the linear part). The solutions of this
equation can blow up at= (ce)~ 1. Explicitly, if £(0) = 0 then

f(t) = cetan(cet).

A more careful examination shows that, due to a cancellation property when inte-
grating in time (which is due to an oscillatory behaviour in time), one can show that

h(t) ~ %2
Based on this observation, we will prove that
a(t)y ~ €2, @)~  Psth)~¢e3,  Py(h)~ &2 (3.43)

In the following subsections, we will prove the existencer6f, r) by proving a
priori bounds and using its local existence. It is also possible to prove existence by a
contraction mapping argument, as we will do in Sect. 4 for the wave operator.

3.5. Initial value and equations af1

3.5.1. Initial value. Recall that the initial datum is given by

Yo(x) = [Q (x) + heo (x)] ™.

The coordinates of the initial valug g in the S direction can be calculated:

(&): @) =«ki(Imh,o,T),
(Y2): B0 =k2(Reh, 0, y0),
(,2): 70 =ka(Mheo,VQ),
(5): 80 =«1(Reh 0. Q).
By our assumption oh, o, these initial values are of ordet/2, which is too large for our
purpose. They can be made smaller by introducing suitable normalization conventions.

We first replaceQ by 0* = O|yo)2s with || O* || .2 = llYoll 2. We then definé; by
the equation

Vo) = [Q () +heo (0] e = [QF (¥) + ha ()] ™.
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From the assumptiofQ* |2 = ||¥oll2, we have
2(0*, Rehy) = —[Iha])*.
Next, we want to choose, v*, 0%, and write
Yo(x) =[0* (x — r*) + h* (x — r*)] V(IO (3.44)
so thatPsh* is essentially zero. Notice that is determined once we have chogénv*
ando*: As a function ofy = x — r*,
h*(y) — [Q* (y + r*) +h (y + r*)] ei[vg(y+r*)—v*y—0*] _ Q* ().
The leading term ok™* is given by (we will choose* ~ 0, v* ~ vg andd* ~ vor*)
h*(y) ~ h1(y) + Q% (y) [i(vo — v¥)y + i(vor™ —6")] + - VO* (y).

We can now calculate the initial value bf along thesS direction (w.r.t.Q0*) as before.
The conclusion is

(8) ©oaf ~ky(Imhg, T*)  Hk1(vor® — 0%) (0%, T'),
(Y2): B*~k2(Reh1, yQ*) +i2) iri (Ve Q*, yQ¥).
(,9): ¥* ~ w2 (Imh1, VO*)+ia(vo — v*) (0%, VO¥),

(B) S*NKl(Rd’ll, Q*).

Since the initial valuéi, g is of orders®/2, hq is of the same order and we can choose
vor* — 6%, r* anduvg — v* of ordere®/2 such that*, 8* andy* vanish to leading order.
It is easy to check that the next order is boundedbhyFurthermores* is of ordere®
as well, thanks to the relation( @*, Rel1) = —||h1]|2.

In the remaining part of this section, we will prove Theorem 1.1 withof the
form (3.44), andPsh* ~ ¢3. The initial values ofr(0), v(0), and#(0) are defined
correspondingly. Notice that, by the assumption of the Theorem, (3.12) is satisfied by
Q*. After this case is proved, the statement in the theorem, @itk Qy,, can be
obtained by defining as

h(y, 1) = Y (x, e — Qno(y)
= Ye™ — 0% + (0" — Ony)
=h*(y.1) + (Q* — Qnp) = 0(e¥/).
From now on, we may and will drop the supersctigind assume
| Psheo| < Ceoe®, (3.45)

wheree is sufficiently small:e < ¢_4, with e_1 andC depending only on the initial
setting ¢, No, Q,...) but not onW or T. Equation (3.45) will be used in (3.52) below.
We note that the smallness @f is only used to find a suitable*(0). It is no longer
needed in the future and henegis independent of" and W. Also note that we may
assuméi, o < coe’™° foro € (0, 1/2]. Then we replace®?, in the above argument, by
¢1*e, and we get a similar conclusion, with (3.45) replaced| By 0| < Ccoe?"°.
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3.5.2. Equations oi§. From now on,C denotes a constant which may depend on the
quantities ¢, Q...), but noton W or T.

Recallthatwe wanttoset= 0 andy = 0in (3.37) and (3.39), whichyield equations
for a andw. From the definition of5 and the inner product relatioris Q, I') = 0 and
k1 =1/(Q,T), we have

k1(ImG, ) = —w — k1(G2, ),
where
G2 = Q00 + QReh + ReF (h). (3.46)
Similarly, from(Q, VQ) = 0 andk> = 1/(x; Q, 9; Q), we have
k2(IMG, VQ) = —a — k2(G2, VQ).
Therefore, in order to hawe = 0 andy = 0, it suffices to set

w=-—8 —k1(Go,T),
a=—k2(Ga, VQ). (3.47)

With this choice ofa andw, we havex(r) = «(0), y() = y(0); B(¢r) ands(¢) are
defined by solving the ODEs (3.38) and (3.40), i.e.,
t
5() = / k1(ReG(s), Q)ds + 5(0), (3.48)
0

t
B1) = fo «2(REG(s), yQ)ds — y ()t + B(0). (3.49)

gLet
Coy=1+[Wlyze.
Then|Qo(x, 1)| < CCwe?|y|?, (cf. (3.20)). Define
t(0) = la@®)] + lo®| + 2 [ht) || g1 + Cue?.

(We would like to have that(r) = O(£?) for 0 < r < Te~1.) In the following we work
in the time ranggo0, 1] where

C(t) < Cye?, withe < g9 < (Cx + T + 10072 (3.50)

holds. HereC, > C,, is a (large) constant to be determined later. Equation (3.50) is
true forr = 0 if C, is sufficiently large with respect tey. Moreover, ifz(s) < Cye?
for somes < Te~1, then (3.50) holds for a small time intenal s + 8s] by a local
wellposedness result. Our goal is to show that Eq. (3.50) holds forr0< Te~1, by
requiringeg sufficiently small. Our strategy is to show that, indee@, < %C*ez if
(3.50) holds. A local wellposedness result then guarantees that (3.50) holds for the whole
time range.

The quantities» anda are defined in terms af, in (3.47), and recall the definition
of G, EQ. (3.46). Note tha®o Q is the leading term ii72. In their definitions, the main
term comes fronR29Q, and we have

(200, D)+ (R0, VO)| < CCye?.
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Also

QDR (1), D) + [(Q)REA(r), VO)| < C(Cpe® + la(®)] + o)) 1]l
< Ce V2 ()2

From the assumption (1.27) @, we have for a genergl ¢ H?,
|(ox10) 4]

From the Young inequality, we have

P R R T (USRI (e

[ox10P] . <10l |182] | = 1l 112

L1
Similarly, we can bound the term with replaced byv ®. Thus we have proved that
IF @)l g1 < Cll5:+ Cllgl3,

for some constant depending@nHence we can bound (k(z)), I') and(F (h(t)), VQ)
by

[(F(h(t)), D) + |(F(h(t)), VO)| < Cllhl%: + C [hl3: < Ce~ o).
Under assumption (3.50), we have thus proved that
lw(@)| + |a(t)] < CCue? + Ce e (1)2. (3.51)
To estimate8 ands, we note that

ReG = (20 + ay + w)Imh 4+ ImF (h).

Since we are only interested in the inner products ofiRéth Q or yQ, and Q has
exponential decay, we can treato be of order one. Thus we have the bound

t
[B@)| 4+ 18(2)| < Cco(T + 1)83 +/ dseilg(s)z, (3.52)
0

where we have used (3.45) and< T.

3.6. Modified linear operator oM. It is important to observe tha? is not bounded.
In fact,

Q =W(ex) — W(er) — eyVW(er) +ay + w = O (Sz(yz n 1)) (3.53)
— 01 +elyl), (3.54)

depending on whether we use Taylor expansion. In either@asenot bounded. This
makes the term-i QA in the nonlinear tern@ hard to control, although the termi Q Q
stays fine sinc is localized. By a finite propagation speed estimate we will see that
Q is of order 1. However-i Qh still cannot be considered an error term. To overcome
this difficulty, we will include this term in the linear operator.
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Explicitly, Eq. (3.41) forhy, can be rewritten as

dhy = (L + Puihy + PuG, (3.55)
G =—iQUQ + hs) — i F(h).

Hence we must consider the solution propagdor, 1) which solves the following
problem: Ifu(t) = P(s, t)¢, thenu is a solution of the equation

du(t) = (L + Py u(), uls) = 9.

We note that the operatdl + PM%Q leavesM and S invariant; but we will primarily
considerP(s, ) on M.
Now the equation foh, can be written as

hy () = /0 t P(s, 1) Py G (s)ds + P(O, 1)1 (0). (3.56)

We decomposé’Mé into the sum of a main pag(s), and a remainde®; G3(s),

where
¢(s) = Pu(—iQ2(s)Q) = Pu(—iQ(s)Q), Gz = —iQhs —iF(h).

The following lemma provides a basic estimate on the propadpdtor).

Lemma 3.7.Assumé3.50)is true for0 < r < Te~ L. For¢ € M,
IP(s, )@l g1 < Croll@ll 2

for0<s <t < Te 1, whereCio = ¢€“»7 is independent of.

We shall prove this lemma in the next subsection. Assuming this lemma and recalling
thatGs(s) is of orderh? + h3, we can bound the contribution 6f3(s) to 15 by

t
H/ P(s, 1) Py G3(s)ds
0

t
< cclo/ e e (s)%ds.
H 0

The key observation is the following lemma, which takes into account cancellations
in the time integration.

Lemma 3.8 (Cancellation) Assumég3.50)is true for0 < r < Te~L. Letp € M N X3.
For 1« t < Te~ %, we have that

t
H/ P(s, t)pds
0

foraconstantCi2 = C12(W, T) independent of. Furthermore, fok (¢) : [0, Te 11—
M N X3,

1/2
< Crat?|plix,
H1

t
”/ P(s, )¢ (t)ds
0

= C12t?supllg(s)llx, + C1at  SUp Nl (s) — (o)l ya -

H |s—o|<tl/2

(3.57)
The spaceXs has been defined i{8.34)
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We also claim the following bounds on the main tepis) = Py (—iQ0(s) Q),

g ()llx, < CCue?,

lp(s) — ¢(0)ll g1 < CCwedls —al. (3.58)

We will prove the lemma and the claim in next subsection.
Assuming Lemma 3.8 and the claim, we get

t
H / P(s, 1) Py (—iQ0(s) Q)ds
0

< C12tY2CCe? + C12tCCpedtt/? < C136%2,
Hl

whereC13 = CC12C,, (T + 1)%2. Hence, by (3.56)14 () is bounded by
t
() g2 < C13e¥? + CC1o / e (s)%ds + Ceoe®?. (3.59)
0

Recall thatz (1) = |a(t)| + | (t)| + £Y/? |h(1)| ;2. Then we can combine all these
bounds, (3.51), (3.52), and (3.59), to obtain the following estimate:

t
£(t) < C(Cy + co(L+ €Y2T) + C13)e? + Ce™2¢2(1) + CC1o f e~ 1 (s)2ds
0
< Ce2(Cy + co(1 4 eY2T) + C13+ C10C2e(1+ T))

< C€2C14, whereC14 = Cy, + 2¢0 + C13+ 1,

if we requires/2T < 1 andC10C2e(1+ T) < 1, in addition to assumption (3.50). We
now choose

Cy, =2CCyq4
and thergg such that
0 < (Co+10072, °T <1, C1oC20(1+T) <1

With these choices, we have proven that
1.2
L) = 5Ce (3.60)

under assumption (3.50) thatr) < C.e2. Suppose thaf0, r1] is the maximal time
interval such that (3.50) holds and< T=~1. Then the equality must hold at= t1 by
local existence and continuity, agdr) must be slightly less thafi, s for somer < 1.
This is a contradiction to (3.60) and hence (3.50) holds true farallrs 1.
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3.7. Proofs of lemmas.

3.7.1. Proof of Lemma 3.7Here we prove that the flow given IB(s, ¢) is bounded in
M:

Proof. Letu(t) = P(s, t)¢ € M, and
f@) =Im(Lu(t), u(t)) = 0.

Recall the second assertion of Lemma 3.4: It implies ;ﬁab = Im(Lg®), g©)),
with g(¢) := ¢'£¢, is constant. We propose th#tr) does not grow inr very fast, for
s,t € (0, Te~1). More precisely, we will prove that

%f(f) = Cef(n),

which impliesf(t) < Cf(s), and hence Lemma 4.7 follows.
We recall the third assertion of Lemma 3.4. In our case= Lu + Py %Qu, hence

%f(r)/z = Im(Lu, Py 2 Qu) = Im(Lu, —iQu) — Im(Lu, Ps(—iQu))
= Im/%Vﬁ(VQ)u+ O (&2 |ul3) — Im(Lu, Ps(—iQu)) .

If {e/} and {e;} denote dual bases df, then Ps(—iQu) = ) (e/, —iQu)e; =
S (iQe’, uej. Hencel| Ps(—iQu)ll 1 < Ce? |lull 2, and

Im(Lu, Ps(—iQu)) < C llull 1 - I Ps(—iQu)l| 2 < Ce® ull?,, .
Since|| Vo = lleVW (ex) — eVW(er) + allo < 2Cwe + Cy2, (With noy depen-
dence), the term Inf %Vﬁ(VQ)u dominates, and

d
@0 <Im / Vii(VQ)u + Ce? lull51 < 2Cwe + C¢(1)) ull3 < CCyef.

The last inequality follows from (3.50) and Lemma 3.3. Hence
f@) < f(0) < T 10

fort <Te 1. DO

3.7.2. Proof of Lemma 3.8\ext we prove the key cancellation lemma. The cancellation
is due to oscillatory behavior in time. We first prove a variant of Lemma 3.8 for the
original flow ¢’£, which will help us to visualize the oscillation. Then we will prove a
weaker result for the modified flow in Lemma 3.8.

Supposep(t) € M satisfiesp(r) = O(1) and %p(t) = 0O(e) in HL. (One such
example iss~2Qq(¢) Q.) Then there is & > 0 such that

t
Hf e"ILs()ds| < C(L+et). (3.61)
0

H1
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By Lemma 3.5,£ 1 is defined onV and commutes wita“~*)£. Thus

t 1 d
/ e(t_‘v)ﬁp(s)ds=/ d—(—e(t_‘v)'c) L7p(s)ds
0 0 das
L1 1 L | Lp-1d
= [—e(’_s) L™ p(s)] +/ eI LY h(s)ds
0 0 ds

t

=01+ / 9L (e)ds
0

= 0(1) + O(er), in HL.

Here we have used Lemma 3.3. (Notice the analogy with the integratigh, afhich
does not increase the orderddf because of its oscillation.)
Now we prove the lemma.

Proof. Chooser ~ 11/2 > 1. We have
G+t

t
/ P(s, )pds = Zf P(s, 1)¢pds
0 ; j

T

(j+Dt

=> P((j + D, r)f P(s, (j + 1)t)¢ds.
j J

T

We write each summand as

(J+Dt
/ P(s, (j + Dr)gpds = (1)
J

j+1
_ /(’+ " DL g
jt
G+t ,(+DT
+/ f P(o, (j + D7) Py 1Q(0)e ™ pdods
J s
= (I) + ().
We have
DI g1 < Cligllgr 1+ 1) < ClipllH2

by (3.61) and (3.50). For (lll), sinag is localized, we expect it is not affected much by

the large potential iIPM%Q(o) for largey. To prove this, we use the finite propagation
speed estimate (3.35): For (0, 1),

|Putamety| = c|[custy®+ce@+ v ] ety

Hl
= ccue?{|@+ 29|, +a+sD16ls)
+ CCE? [l A+ YDl g2 + A+ 5) 1l 2} -

H1
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Hence
111 < CCr0%2? {(Cu + Co)
< CC10Cy ®ll x5 »

sincer2e < 2 ande/2C, < 1, see (3.50).
Thereforel| (1) || g1 < C11 ¢l x, With C11 = C + CC10Cy, and

t
’/ P(s, t)pds
0

Next, for a suitably localized functiop(r) € M N X3,

(@+yD9| |, +(Cut?+ ) 1910

= E C10C11ll9llx, < CC10C111 Y2 Il x4 -
H .
J

t
H/ P(s, )¢ (t)ds
0

H!

= > P+ ven [ T b, 1 [[9)] + [66) - 0G0 as
J /T Hl

<Y C10C1llp(D)llxg + Y Cior sup llg(s) — p(o)ll
J J

[s—o|<t

< C1otY2suplldp()llx, + Crat  SUp  llgp(s) — Pl 1

|s—o|<t1/2
with C1p = CCZ = C(1+ C,,e€T)2. o
This estimate is mainly used f@r(s) = Py (—iQ0(s) Q).

3.7.3. Proof of claim3.58) We rewrite2g in the form
Qo(x,t) = W(er +ey) — W(er) — VW(er) - ey

1
= / {VW(er +uey) -ey}du — VW(er) - ey
0

1 p1
= / / {VZW(er + vuey) 1 ey ® uey] dvdu.
0 JO

From the firstline we have thav3Qq | < &3 | V3W | __. From the third line we obtain
[Q0e™"M| < &2 |V2W|_,. Hence, forp (s) = Py (—iQo(s)Q), we have that

I6)llxs = €[ V30| +C |20e™1] < C1wiyan 2
where the factoe "l is due to the exponential decay ©f Furthermore, since
‘VZW(er(s) + vuey) — V2W(er(o) + vusy)‘ < sup|V3W| - elr(s) — r(o)|
and|r(s) — r(o)| < CCyls — o|, (note|v(r)| < CC,), we conclude that
I6() = p@llz2 = € [V3W|_Cuels — o,

By rewriting VQo(x, 1) = fol {V2W (er(t) + uey) - £2y} du, we get the same bound
for [VIg(s) — ¢ (o)]ll 2.
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4. Mgller Wave Operator

In this section we prove Theorem 1.2. We assume for simplicity that the space dimension
n = 3. All arguments can be modified easilyito> 3.

In the main argument of this section, we assume= 0 and work with the profile
E0o = hys.0, With éoo(O) = 0. At the end of this section we deal with genevalby
applying a Galilei transform. In either case, we haygo(x) = £x(x)e***, and

has,0(v0) = £0(0) = 0.

4.1. Dynamical linearizationWe recall the Hartree equation

1
i = =5 Ay — (®x iRY2

and the equation for the ground st#le

1

—5A0 — (®x0%0 = EQ.
We consider solutions of the Hartree equation of the form

¥ = (Q() + h(y, )",
where

y=x—r@), r@)=v@), @) =a),
o0
031 =00y = Er+ 010, sy =~ [ (1?4 w)ds.
t

The argument here is the same as that in Subsect. 4.2 Wvith 0. We obtain the
equation for:

oth = Lh + G(h), (4.1)
where the linear part

£=1{—%A—E+A},
l

A(h) = —(@ % QO — Q(®  (Q(h + 1)),
and the nonlinear part
1
G=l—.{$2(Q+h)+F(h)}, Q=w+ay,

F(h) = —(® % [h|*)(Q + h) — (® % [Q(h + W) ])h.
We take projections of Eq. (4.1) onfband M. The equations of are
(3): &=-8+x1(ImG, ),

("2): B=—-v+r2(ReG,y0),
(,2): 7= x(mG,VQ),
(5): 8= k1(ReG, Q).



262 J. Frohlich, T.-P. Tsai, H.-T. Yau

(See Proposition 4.2.) The equation &his
Orhyr = Lhy + Py G(h).

Next we consider the wave operator. Given a prdfileat: = oo, we hope to find a
functioni(y, r) such that

h(y, 1) — €% — 0,
ast — oo, in a sense to be made more precise. Here
Lo=—i{-3A—E}
sothatl = Lo — i A. Our strategy is to write
h(-;t) =&, 1)+ g(, 1),

whereg (¢) is the main term, which satisfiediaear equation and has the desired profile
explicitly; g(¢) is an error and converges to zerozas oo, in a suitable sense.
In view of the equation fok, we would like¢ to satisfy the linear equation

Et)yeM, 0&=LE+ PyJE (4.2)

with £(r) — e'£og,, ast — oo. The operatod is a modification of the multiplication
operator—i 2 and is to be defined later in (4.9).
Define the propagatd®(s, r) such thau(z) := P(s, t)¢ solves the equation

oru = Lu+ PyJu, u(s)=¢ e M.

Clearly, P(s, 1) leaves the spac# invariant so thaiz € M. Note thatr < s in this
section, cf. Sect. 3. We defigeto be given by

E(t) = PyeLoto — /OO Py B(s, t)PM[%A + Py J(s)]e Lot oods. (4.3)

t

We have that € M, by definition, and that satisfies (4.2) (differentiate (4.3) and use
that[£, Py] = O!). We shall prove later on that

E(t) — Lot inL2 ast — oo, (4.4)

under the assumption

£x(0) = 0. (4.5)

The potential2 = w + ay is unbounded and complicates the analysis. One may
prove certain finite propagation speed estimates, soytlimeffectively cut off, as in
Sect. 3. Alternatively, we can modify the form ¢f so that the unbounded potential is
cut off. We shall follow the second option in this section. Specifically, we wouldHike
not to “see” the fast phase changein 6 wheny is large. Lety (-) be a smooth cutoff
function with x (x) = 1, for|x| < 1, andy (x) = O, for |x| > 2. We consider of the
form:

¥ = 0e? + h(y, et ET - (Q + ;flh) eif
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whered = vy — Et + 601, u = expi(1 — x)vy), y = x —r(t) andy = x(Cyy/1),
(C. > Ois a constant to be chosen later). Therth satisfies (4.1)

d(uthy = L™ h) —iQ(Q + wth) — i F(u™th). (4.6)

Now 8, (wth) = d;h + hd, (—i(L — x)vy) andd,(—i (1 — x)vy) =: —i(ay + JD),
where

Y = [—xay = A= 0u? + (V) (r + )i~ 2uy].
Also uL(pu=h) = Lh + plL, w~1h. Explicit computation gives
pvut =i [—(1 - v+ (Vx)flvy] =iJ®@,
At =—I@24iv. g, v. g =2vy) -1 v+ (A 2y

Recall thatl = —i(—=A/2 — E + A). Thus,

o L B
ull, Y = 7’“‘[A,u Yn —iplA, wYh

_ (_E(J<2>)2 _ V_J(Z)> W 7@ vh 4 JOh,
2 2
where
JOh = —ip[A, N =ipQ®*[Q(u  h + ph)). — i Q® x [Q(h + h)]
This yields the following equation far:
Oh=Lh+Jh—iQu0 —inF(u th), (4.7

where
] vV.J@
Jh = (—ia) +iJ® - %(1(3)2 - T) h—JP. v+ J®h.
Notice that/ depends omw, a andv with v(¢) = a(¢). Throughout the rest of this section
we assume that there is a consta@ptsuch that
Bla@®)] + Pl )] < Ca. (4.8)
We shall prove later on that this assumption holds. Under this assumption, one finds that

17PN < 072, 17?) < 017,

IV-IJPN e <0073, 1o < 0™

We write

J=Jo+ 0y V41U, (4.9)
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with

Jo = i[—o — xay + (V)r 2(vy)yl,
Jy==1® =~ [=@= 00+ 0ty

vV.J®
—+J9.
> +

Je=—i(1— V2 + (Vv Y(vy) — %(J@)z _

Note thatJ, is real. Furthermore, the only appearanceudih J is in /@, which is
exponentially small. Assuming the bound (4.8)mandw, we can check the following
bounds orv:

Malloo + 1 pllo0 < OG72), [elloo < OC73). (4.10)

OnceJ (¢) is defined, so i§(¢) by (4.2). We can now use (4.7) and (4.2) to obtain an
equation forg := h — &:

dg = (L+)g+ PsJE —iQuQ —inF(u ™ (E + ). (4.11)
Let

Gl = Jgs —iQ(u—DQ —inF (€ + ¢))- (4.12)

Since—iQQ € S, we have thaPy, G = Py Jgy + PMGE}), and the equation fgg on
Mis

gm(t) = _/ P(s. ) PuGPds, (4.13)
t
Let
GiP = Jg+ PsJE —iQu—1Q —inF (' +g)). (4.14)

ThenPsG = —iQQ + PSGI(E), and the equations ofiare

(3): ¢=-8—w+xa(mG?,T),
(%Q): B=-r +k2(ReG? . y0), (4.15)
(2): 7= —atk(MGP,V0),

(5): é= k1(ReG?, ).

Here we have used that(—Q0,T) = —w, k2(—QQ0, VQ) = —a.
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4.2. Bounds on the Propagat®i(s, 7). The following lemma shows tha&(s, t) con-
serves thed 1-norm in M.

Lemma 4.1.Assume the boun@.8). ThenP(s, ¢) is bounded il N H¥, k = 1, 2, 3.
More precisely, there is a constant such that for anyC, (the bound in(4.8)), any
T >1,and anyp € M N H*, we have

PG, | e < /TNl k=1,23,
provided thats, t > T. (The largerT is, the better the estimate.)

Proof. We first consider the cage= 1. Assumeu(t) € M, o,u(t) = Lu + Py J (H)u,
u(s) = ¢. Let f(t) =Im(Lu,u) > 0. Then

%f(t) =Im(Lu, PyJu) = Im(Lu, Ju) — Im(Lu, PsJu).

Here we have used Lemma4.3. Nft@u, PsJu)| < CCyt 2 ||u||i2 andIm(Lu, Ju) =
CRe(Au, Jy - Vu) + 0(t~2) |ull? 1, also, (recalll, is real)

Hl
2Re(Au, Jp, - Vu) = —/J;,~V|Vu|2—2Re[(V12~V)Jb-Vu
= /(V-Jb)|Vu|2—2Re/(Vﬁ-V)Jb Vu < CCut ™3 ull?, . (4.16)

Hence we have

< CCut 2 ||ul%: < CCut 2 (0). (4.17)

d f@
dt
Hence we get
1]’ 1
i 71| < —ce.[i ] =cer
N

In particular,
f@® f@s) < eCC*T*
fe) f@© ~ '

Now we consider the cage= 3. The cas& = 2 follows by interpolation. Lek(r)
be as above and = Lu € M. We have

oow=Lw+LPyJu=Lw+Jw+I[L,J]lu— LPsJu.

This time we letf3(¢) = Im(Lw, w) and have
d
271tf3(t) =Im(Lw, Jw+[L, Jlu — LPsJu).

We have [(Lw, LPsJu)] < CCut72|wl,llull,, and we already showed
Im(Lw, Jw)| < CCxt~2|lwl|5,, when we considered (1), see especially (4.16). Fi-
nally
[Im(Lw, [L, J1u)| = |Im(Lw, —i(VJp) - Vu + 0(1‘_2)14)|
< CCut 3 |wll g llull g2 + CCut ™2 lwll 2 Null 1.
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by integration by parts. Sind{ewni,1 is comparable withys, we conclude

d
’Efs(t) <CCu™2 [f3(t) +/ f3(1) IIu(t)llﬂl] < CC2[f3(t) + f(1)].

Together with (4.17), we s€¢ + f3) satisfies the same inequality in (4.17), and hence

the same bound. Singg + f3) ~ ||u(t)||§{3, the lemma is proved. O

Remark.Due to the spatial cut-off in our Eq. (4.7), we do not need to prove a finite
speed estimate fdt, (as we did in Lemma 4.6 fd?), in order to prove the above lemma.

4.3. Estimates of. We now estimaté precisely. Recall (4.2) and (4.3), the equations
of &. Our goal is to estimate the term [ ™ P(s, 1) Py (1A + Py J (5))e* 06 ods.
We need the following standard results on the free evolution.

Lemma 4.2 (Decay ob'’2/2). Letk > Obe a positive integer and assurﬁgéoo(O) =0
for all non-negative integera < 2k — 2, then

) C
n itA/2 2k n
(Ve ) | = / A+ PIViEWIdy,  (4.18)
for any integem > 0.
Proof. We first consider the cage= 0. Writer = % We have

ilx—yl?

. 1
(e"228,0)(x) = er 27 oo (y)dy

= @rindP? / {H R 0<r">} £ ()dy.

Therefore, the conclusion of the lemma holds if
/ lx — y|21500(y)dy =0 forallx, foralll <k,
which is true under the assumption of the lemma. For gemenak take the derivative

first and then proceed as above. N&}?(V/Q%)(O) = V;,”(p”éoo)(O) = 0 for all
m<2k—2. 0O

We now use thal(s, ) is bounded inH; (Lemma 4.1) to have

ds .
Hl

oo 1
/ B(s, 1) Py = Ae* L8 ds
t l

o0 1
< / H Py = Aok,
H1 t 4

From Lemma 4.2 witlk = 1, the last term is bounded by

r

o0
eszoéoo H ds < / s752q5 < ct79/2,
WLoo(y~1) t
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Notice that this is the only place we use assumption (4.5). Now we récall/, + J;, -
V + J.. Since|| J.(s) |l < 53, we have

H— /oo B(s, 1) Py Jo(s)e* P odss
t

o0
< / Cs3ds[Esoll g2 < Cr 2ol .
H1 t
We now expand(s, r) once more to get

_f P(s, 1) Py (Ja + Jp - V)(5)e X0boods = £1 + Eny + E17,
t
where

o0
e = —Pu [ IRy, + dy VI s,
t
00 N 1
Eas = / { f P, t)PleAe("_s)cod(f} Pat(Ja + Ty - V)(s)eE060cds,
t t

£77 = /oo {/S P(o, t)PMJ(s)e(“_S)l:OdG} Py (Ja + Jb - V)(s)e b ods.
t t

Recall from J.-L. Journe, A. Soffer and C. D. Sogge [15],
‘ ClVly

(LLL®) = (so +s1)%2°
Suppose that we can neglect the second projeddignin the definition ofé;. Since
JpVesto = Jyet£ov, and we can writdl, = —iw + Ja2, Jy = v + Jpp, WhereJ, and
Jp2 have compact supports arhdaz(s)nLl(p) + b2 I L1y = O(s~2), theL>°-norm
of the integrand o is bounded byCr~3/25=2. Integrating ins we get

€7 (Dl 0 < Ct732 e llpa .

To handle theP,,, we simply use thaP,; = 1 — Pg. SincePs is a projection onto local
smooth functions, the same proof applies. We shall not repeat the argument to handle
the projectionP,, later on.

We can also bound; (r) in the H norm by brutal force as we deal with:

1€ Ol g1 < Ct el 2 »

sinceg; involves only free evolution.
We now use thalP(s, r) is bounded inH; to have

(4.19)

elSOHO VetslHo ”

P B T A IOV N
From the definition oA, we have
| AeC™E0 Py gy + 0y D 08|
< e P + Ty D) 0%

LOO
+ | Ve Py (U + Ty DI k|
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Again we use (4.19) to have

e Py o+ d - D080 | = 0T gl

SinceV ande©~£0 commute, we can bound the term wila =<0 in the same way
by also using|VyJaz||L1([,) + IVydp2llpip = O(s~2). We conclude that

o0 S
€47 ()]l g2 < / / 07257 2dods | llwer < 1732 |Exlly2r.  (4.20)
t t

Finally, we can bound; () by
o0 S
€77 @)l g1 < f / 07257 %dods |l ys < 172 1Esoll s - (4.21)
t t

Lets(r) = @ (1) +6D (1) +£ (1), wheres O (1) = Pye'“060, 6@ = &, ands @ (1)
denotes the rest. Then we have proved that

e, + s o2

Hs(l)(t)HHl <ot HS(Z)(t)HHl <82, (4.22)

with the constants depending gr,. In fact, tracking the proof we see that, singe
commutes with*£0, we actually have

< Ct73/2’

L] P L] P

”5(1)0)”1{2 <ot HS(Z)O)”HZ <32, (4.23)

Of course we need to use a stronger nornefgr The following norm is sufficient:

&ooll g2 + oo llwas + ool wat(aa2)an) < € C (4.24)

whereC, is a small constant to be chosen in the next subsection.

4.4. Existence of. In this section we construct the solution via a contraction mapping
argument. After defining the map in Step 1, we show the following bounds in Step 2:

Plo®]+3la)| + 2 lgt) g2 < Cuy (¢ > T) (4.25)

provided that|£,. || < C1C, with C, > 0 sufficiently small (see (4.24)) arfd suffi-
ciently large. Finally in Step 3 we show that the contraction mapping converges in the
norm

Plo)] + Bla@®)| + 2 lg(t) | g1

in the ballt?|w(r)| + 13a(t)| + 12 |g(?)|ly2 < Cx. Notice that we use th&* norm

for () in the contraction, which is weaker than thH& norm appearing in (4.25). Our
approach is certainly not the shortest. Once a certain apriori bound is established, we
can follow standard existence construction by taking weak limits. This will avoid the
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proof of the contraction completely. Our approach however provides more information
to the scattering operator.

STEP 1 We first define the map

(w,a,g) — (0™, a”, gA) (4.26)

with the conventior;igsA = Psg” andgﬁ = Py g”, and so on. Recall that() and& (1),
defined by (4.9) and (4.3) respectively, dependwoanda. To solve the equation on
the S (4.15), we first solvgs andé from (4.15). Since we plan to solve the equation by
iteration, we define (we think = 0)

881 = _/ Kk1(ReGP (5), Q)ds (4.27)
t

B = — / Ooxz(Rerf)(s), yQ)ds .
t

Instead of solving the equation ferandy, we choose anda such thatt = y = 0.
Therefore, we define”, a* to be

o® = =8% +k2(ImG2., 1), (4.28)
a® = k2(ImGP, v Q).
With this choice, the component gf* in the S direction is simply
g5 (0 =20 (Y2)+6°1) (§).

Finally, the component on the direction is given by
(@]
g () = — / P(s. 1) Py GPds, (4.29)
t

whereG,(}) is defined in (4.12). Note the definition Bfs, r) depends o andw, so is
w. Our next step is to prove this map is bounded in a certain norm.

Suppose thaté || < C~1C, (see (4.24)) and
Pl )]+ Bla@)| + 2 |g(t) | g2 < Cs. (4.30)

We will prove the following bound:
2ot O] +2at 0]+ 20|, < C./2 (431)

provided thatC, is sufficiently small. The last statement seems to be contradictory as
the norm is getting smaller after each iteration and we can drive the constant to zero.
But this is impossible as the constant on the estimatg,akemains unchanged. Indeed,
the right hand side of the last bound depends mainly on the constant appearing in the
estimate ok, i.e., in the inequality|&x || < C~1C,.

Sincea(r) satisfies (4.30) and = v, v = 7, we havev(r)| < CC,r—2 and|r(1)| <
CC.t~1. We now estimatd . F (=1 (& + ¢))| ;2. By definition,

uF ) = = (® 5 1h2) (20 + h) — 2 (® x [QRe(w™0)]) h.
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Recall the decomposition and the estimate&dd.23) from Subsect. 5.3. Write =
E+g=60 4D 4 (@ 4 g) Because of the bound (1.27) dn

[(@x11?) wo+m]

2
< |esm?] . -iuo+niy

© 4 D2 @ 4 2
e R P L P

2 2
T L e K
<CCc?3,

Since(¢> * [QRe(;rlh)]) his alocal term by the presence@f using the bound (1.27)
on ® we have

| (@ «<1oReu 1) i

We conclude that

< C Iy, < CCE1™

— 2,.—-3
HMF(;L L =ccH

From the bound of/ (4.10) and the assumption on the normgof4.25), we have
[ Jgs() | g2 < CC2t~272. For anyf € S, we also have

[(fo Tgm)l < CCut 2N fllpy Ngmll e < CCE ™ gy -
Also, |(f, PsJ&)| < CC2t=273/2, Finally —i2 (1 — 1)Q is exponentially small in.
Hence we conclude thatf, G'2)| < CC2:3| £||. Thus
1 1
BEOI+18°(0] = 2Ca ™% 0t 0] < éc*fz,

2

@iz g Jetw) = gca?

provided thatC, is sufficiently small. One can also easily check that

e * 2.3 1.
HgM(t)HHZ_/t e (s)Hszsgft cC?as < S0 2,

The claim (4.31) is proved.

STEP 3 Giventwo datdws, a1, g1) and(wz, az, g2) we denote by their differences:
8w =w1—wp,8a=a1—ap 8g =g1— g2, 88> = glA — ng, and so on. We also let

8o = sup{r2|6w<r)| +1318a(t)| + 12 ||6g<z)||H1] : (4.32)
t

Note: differenta(r) gives differentu, (u = ¢/ 1=0v), but  is the same. Also, from the
definition of J, we havel|§ J, (1) loo + 185 () lloo + 181 () |loo < Cor 2.

Our goalis to estimate|sw” (1) +13|8a” (1)|+1% ||8g* (1) | ;.- Recall the definition
of w®, a® andg® from (4.27), (4.28) and (4.29). In order to estimate the difference of
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o”, a® from two initial data, we need to control the diﬁerencé(ﬂ‘f) = Gl(f)l— Gi)z,

WhereGl(i)k = Jrgk — i,ukF(M,:l(gk + g1), k = 1,2. Hereuy, & and J; denote
the corresponding, € andJ, k = 1,2 and thusd;&, = (L + Py Ji)&- We shall
first estimatedé, thend F = ,ulF(,uIl(El + g1)) — ugF(ugl(& + g2)) and finally
8(Jg) = Jig1 — Jagz andd(J§) := J1&1 — Jobo.
From the equation of, §¢ satisfies
0,88 = (L + Py J1)8& + Py (8J)&2.

Sinceds (1) — 0in H! ast — oo, (see (4.23)), we have
3 = —f Pi(s, 1) Py (87 (5))62(s)d's
t

in H. We now derive a bound o8€. The last term can be decomposed into two parts
A + B with

A=— /ooﬁl(s, t)PM(SJ(s))PMeSEOEOOds,
t

B:i=— / P(s. 1) Pu (8 () {£a(s) — Pure* 8o ds.
t

Since||8J (s)lloo < Cos 2 and||&2(s) — e*£0&;|| ;2 < Cs~ 1 from (4.23), we can bound
B by

1Bl < / Coos—2C,s—Yds = CC. 8012

We can boundi exactly as in Subsect. 4.5. In other words, it can be written as a sum of
three terms satisfying (4.23). More precisely= A© + A® 4+ A@ and

”A(O)(t)H . + HA(l) (1) H i < Coot~32,

HA<1>(z)H < C8ot L, HA(Z)(I)H < C8pt 32,
H? H?

(In fact, A© = 0.) Notice that the constants on the right hand side now hase a
factor. In particular, we can writds = (8£), + (8&), with (8&), = A@ 4+ AD and
(88)p = A® + B such that

18€)a ()l < Coot ™2, (88)p(t)ll g1 < Cor %2, (4.33)

From the definition of§ F, we can bound F in terms ofd& anddg. (Note that
(1 — u2) Q is exponentially small im.) The previous bound o8¢ and the bound (4.32)
ondg thus yields that

I8F|l g1 < CC*Sot_g.
Also, 8(Jg) = (8J)g1 + J2(8g). Thus, for anyf € S with || || ;1 < 1 we have

|(f. 8[Tg])] < CCy8ot™*.
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Similarly,
I(f, 8[PSJE])| < CCy80~ "2,

Finally,8(—i Q2 (u—1)Q) < CCyt~2%e~C". We conclude for any € Swith || f|l ;1 < 1
that

(£.8GP)| < CCudot™>.

Simple calculations then show that
1
8a”(0)] < Zd0r~7,
A 1. 2
6™ (1) < §30t )

1.
sgs)] | = coor

provided thatC, is sufficiently small.
Finally, the equation ogﬁ (4.29) can be written explicitly as

gy = Ly + Pur |V (g +89) = iR = DO —inF (g +6))} .
Hence for&gﬁ = ng - gﬁM we have
88g% = (L + Py 1)dgs + Py {(—51)g§M 1 8(Jgs) —id(Q(u—1)0 — iaF}.
Since(&gﬁ)(r) — 0ast — oo in H!, we can put it in integral form:

B3 (t) =

o
—/ PiGs, t)PM{(—SJ)gZAM +8(Jgs) — i8(Qu —1)0 — iaF} ds. (4.34)
t
Therefore, we can bound th#; norm ofégfl by

3831 0 = C/,OO |(—82085 1 +3(Igs) — i8R0 — 1)0 —i8F| s

Since

| 6neiul = o072 fiu]

(thatis why we needed to prove a stronger boungfoin Step 2), together with previous
bounds or8(Jgs), —i8(2(u — 1)) Q andis F, we can bound the integrand I8y 8os 2.
Thus we have

1
Josul ;. = 5o

provided thatC, is sufficiently small.
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For the caseo = 0, we have proved that
[t2|8wA(t)| + 131802 (1)] + 12 HSgA(t)HHl} < 80/2

under the assumptions (4.24), (4.30) and (4.32). Thus the map (4.26) is a contraction.
Since (4.30) holds for a nonempty set of functions (including zero), we obtain a solution
(w, a, g), together witht. Furthermore, we have proved that

[Plo]+ Flao] + 210l = C.

for + greater than an aboulute constdhtHencev(t) = —ftooa(s)ds = 0(2).
Similarly () = O(t~Y) andéo(r) = O(t~1). Also recally = x —r(r) andhys.0 = &oo.
Therefore, by Taylor expansion,

W(-xv t) - waS(-x’ t)
_ (Q(y)ei(vy—Et+90) +h(y, t)ei(xvy—Et+90)) . <Q(x)e—iEt n (eitA/Zéoo> (x))
=0 Y  inH2

Note that our result is true far> T. However, if we replace all previous estimates of
the forms=™ by (¢t + T)™™, our contraction argument still holds. Hence Theorem 1.2
is proved for the casegp = 0. To conclude Theorem 1.2 for genetg| we apply the
following Galilei transform (boost):

. 1.2
Y(x,t) — ¥(x — vot, t)e! (Vox—3v50)

(Recall hys0(x) = oo (x)e™ and hys0(vo) = £x0(0) = 0.) Also, for generaky
we apply a translation, which does not require a change of assumption. The proof is
complete.
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