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Abstract: We consider the nonlinear Hartree equation describing the dynamics of
weakly interacting non-relativistic Bosons. We show that anonlinearMøller wave oper-
ator describing the scattering of a soliton and a wave can be defined. We also consider the
dynamics of a soliton in a slowly varying background potentialW(εx). We prove that
the soliton decomposes into a soliton plus a scattering wave (radiation) up to times of
orderε−1. To leading order, the center of the soliton follows the trajectory of a classical
particle in the potentialW(εx).

1. Introduction and Summary of Main Results

The problem of identifying classical regimes of quantum mechanics is a long standing
problem of quantum theory. For simple systems it was first studied by Schrödinger in
1926; see [1]. In this paper, we explore a classical regime for a class of systems of
identical, non-relativistic bosons, e.g., bosonic atoms such as7Li, with very weak two-
body interactions described by a potential−κ� of van der Waals or Newtonian type
satisfying certain regularity properties described below. These bosons move under the
influence of an external potentialλV , whereV is a smooth, positive function on physical
spaceR3 andλ ≥ 0. The potentialλV describes e.g. a trap confining the bosons.

Letκ denote the strength of the two-body interaction between two bosons as compared
to their average kinetic energy, (e.g. in the sense that� is small as compared to the kinetic
energy operator of two bosons, in the sense of Kato and Rellich, [2]). We are interested in
understanding the dynamics of a“condensate”of N = O (κ−1

)
bosons in the“mean-

field regime”, whereκ is very small. By a “condensate” we mean a state of the system
with the property that all except foro(N) bosons are in thesameone-particle state
described by a wave functionψ(x), x ∈ R3.N -particle states of this kind are also called
coherent states.
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Letψ0 = ψ0(x), x ∈ R3, denote the initial one-particle wave function of a coherent
state of the system at timet = 0. In themean-field limit,

κ → 0, N →∞, with κ ·N =: ν = const., (1.1)

the quantum-mechanical time evolution of a condensate of bosons has the property that
it maps the initial coherent state with a one-particle wave functionψ0 to a coherent state
at a later timet with a one-particle wave functionψt . As proven by K. Hepp [3] (see
also [4] for some refinements and extensions), the one-particle wave functionψt of the
condensate turns out to be a solution of the (non-linear)Hartree equation, Eq. (1.2)
below.

If the two-body interactions are dominantly attractive, as for7Li atoms, and, given
κ, the number of bosons is large enough (i.e.,N > Ncrit.(κ), or ν > νcrit.), the sys-
tem hasbound states. In other words, the bosons may condense into a tightly bound,
spatially sharply localized cluster. In the mean-field regime, such bound states appear
to be (weakly) well approximated by coherent states with a one-particle wave function
corresponding to a non-trivial local minimum of theHartree energy functional.

Turning on a very slowly varying external potential,

λV (x) := W(εx), (1.2)

whereW is a smooth, positive function, andε is much smaller than the diameter of a
bound state ofN bosons whenλ = 0, one expects that the position,r(t) ∈ R3, of the
center of mass of that bound state closely follows a solution of Newton’s equations of
motion,

ṙ(t) = v(t), v̇(t) = −ε (∇W) (εr (t)) , (1.3)

for timest with |t | < O (ε−1
)
.

It is in this precise sense that the quantum system of bosons described above ap-
proaches a classical regime in the mean-field limit.

For attractive two-body interactions, the Hartree equation describing the dynamics of
a condensate (coherent state) in the mean-field limit has aself-focussingnon-linearity.
As a consequence, it has non-trivial“solitary wave solutions”looking like approximate
δ-functions, forν sufficiently large. These solitary wave solutions are precisely the one-
particle wave functions of coherent bound states in the mean-field limit.

Our main objective in this paper is to study slow motion of solitons of the Hartree
equation. We propose to show that, under the influence of a slowly varying external
potentialW(εx), the center of mass position,r(t), of a solitary-wave solution of the
self-focussing Hartree equation remains close to a solution of Newton’s equations of
motion stated above, for all timest with |t | < O (ε−1

)
. (We do, however, not prove

rigorous results on the precise way in which a system of identical bosons approaches its
mean-field limit; but see [3–5].)

Our main results on the self-focussing Hartree equations have been announced in [6],
where the reader can find additional background material and motivation coming from
physics.

In order to be able to describe our main results concisely, we introduce some notation
and recall some known results on the Hartree equation.

LetH 1(Rn) denote the Sobolev space,

H 1(Rn) = {ψ(x), x ∈ Rn
∣∣ ‖∇ψ‖2+ ‖ψ‖2 <∞

}
, (1.4)



Point-Particle (Newtonian) Limit of Non-Linear Hartree Equation 225

whereψ denotes a measurable complex function onRn, ∇ψ denotes its gradient, and
‖(·)‖2 denotes theL2-norm. We study properties of solutions of theHartree equation

i∂tψt = −1

2
�ψt + λVψt − ν

(
� ∗ |ψt |2

)
ψt . (1.5)

In Eq. (1.5),

ψt(x) = ψ(x, t), x ∈ Rn, t ∈ R,

is a time (t)-dependent, complex-valued scalar function on physical spaceRn be-
longing to the Sobolev spaceH 1(Rn), for each timet ; � denotes the scalar Lapla-
cian, λV (x), λ ∈ R, is an external potential, withV a smooth, bounded, positive
function onRn, and−�(x) is a radially symmetric two-body potential, with� ∈
Lp(Rn, dnx)+L∞(Rn), p ≥ n

2 ; furthermore∗ denotes convolution. We shall use the
following standard notation:

For an arbitrary measurable functionψ onRn,∫
ψ :=

∫
Rn

ψ(x) dnx, (1.6)

‖ψ‖p :=
(∫

|ψ |p
)1/p

(1.7)

is the norm on the spaceLp = Lp(Rn, dnx), 1≤ p <∞,
‖ψ‖H1 := ‖∇ψ‖2+ ‖ψ‖2 (1.8)

is the norm onH 1 = H 1(Rn), and

(ψ ∗ χ)(x) :=
∫
Rn

ψ(x − y)χ(y)dny (1.9)

denotes the convolution ofψ with another such functionχ .
There are two important functionals on Sobolev spaceH 1 which are conserved under

the flowψ := ψ0 �→ ψt , ψ ∈ H 1, determined by the Hartree equation (1.5). The first
one is theL2-norm ofψ

N (ψ̄, ψ) := ∫ |ψ |2 = ‖ψ‖2
2 (1.10)

and the second one is theHamilton(or energy) functional

H (ψ̄, ψ) := 1

4

∫
|∇ψ |2+ λ

2

∫
V |ψ |2

−1

4

∫ (
� ∗ |ψ |2

)
|ψ |2 . (1.11)

We note that if� is a non-negative function belonging toLp + L∞, p ≥ n
2, then,

for an arbitraryδ > 0, there exists a finite constantC(δ) such that

0 ≤
∫ (

� ∗ |ψ |2
)
|ψ |2 ≤ δN (ψ̄, ψ) ‖∇ψ‖2

2+ C(δ) N (ψ̄, ψ)2 , (1.12)
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see e.g. [7]. Thus, for an arbitrary, but fixed value ofN (ψ̄, ψ), and for arbitraryλ, |λ| <
∞, the Hamilton functionalH(ψ̄, ψ) is bounded from below.

Under the assumptions thatλV (x) has a minimum atx = x∗, |x∗| < ∞, that
�(x) ≥ 0 and that the value,N , of the functionalN (ψ̄, ψ) is large enough, one can
show (see Sect. 3) that the Hamilton functionalH(ψ̄, ψ) restricted to the sphere

SN :=
{
ψ
∣∣ ψ ∈ H 1, N (ψ̄, ψ) = N

}
(1.13)

in Sobolev space reaches its minimum on a positive functionQN ∈ SN concentrated
nearx∗ and decaying exponentially fast in|x|, as|x| → ∞ . This result still holds when
λ = 0 (i.e., for a vanishing external potential); but ifQN is a minimizer ofH ∣∣SN then

so isQN,a , whereQN,a(x) := QN(x− a), for arbitrarya ∈ RN . This is a consequence
of thetranslation invarianceof H, for λ = 0.

A minimizer,QN of H ∣∣SN is a solution of the non-linear eigenvalue equation

− 1

2
�Q+ λVQ−

(
� ∗Q2

)
Q = EQ, (1.14)

for some real numberE, with

N (Q̄,Q) = N .

Then

ψ(x, t) = QN(x)e
−iEt

is a stationary solution of the Hartree equation (1.5). Multiplying Eq. (1.14) byQ := QN

and integrating, we find that

E = 1

2N

∫
(∇QN)

2+ λ

N

∫
VQ2

N −
1

N

∫ (
� ∗Q2

N

)
Q2
N . (1.15)

One should notice thatEN is not the value of the energy functionalH(ψ̄, ψ) ∣∣SN eval-

uated on the minimizerψ = QN , because one is minimizingH(ψ̄, ψ) in the presence
of a constraint, namelyN (ψ̄, ψ) = N .

Let Q(0)
N be a minimizer of the Hamilton functionalH(ψ̄, ψ) ∣∣SN , with λ = 0,

centered atx = 0; (Q(0)
N is known to exist and to be non-trivial, forN large enough).

We setλ = 1 and choose

V (x) ≡ V (ε)(x) := W(εx), (1.16)

whereW is a fixed, smooth, bounded, positive function onRn, andε > 0 is a parameter.
Our main concern, in this paper, is to constructlocal (in time t) solutionsof the Hartree
equation (1.5), withλ = 1 andV = V (ε) as in (1.16), of the form

ψ(x, t) =
[
Q
(0)
N (x − r(t))+ hε (x − r(t), t)

]
eiθ(x,t), (1.17)

wherehε is asmall, dispersive correctionto thesolitary wavedescribed byQ(0)
N (x −

r(t))eiθ(x,t), with

‖hε(·, t)‖H1 � 0(ε3/2), (1.18)
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θ(x, t) is a time-dependent phase,

θ(x, t) = v(t)·x − Et + ϑ0(t), (1.19)

wherev(t) = dr(t)
dt

is the velocity of the solitary wave, andϑ0(t) is independentof
x, for all times t with |t | � 0(ε−1), and provided the soliton trajectory(r(t), v(t))
solves appropriate equations of motion. It will be shown that(r(t), v(t))must solve the
Newtonian equations of motion

ṙ(t) = v(t),

v̇(t) = −ε(∇W)(εr(t))+ a(t), (1.20)

wherea(t) is a“friction force” , with

|a(t)| � 0(ε2), (1.21)

for |t | � 0(ε−1). The friction forcea(t) will be determined more precisely in Sect. 3.
Neglecting the friction forcea(t), Eqs. (1.20) are Newton’s equations of motion for

a point particle of massN moving in an external acceleration field of strengthε with
potentialV (ε). Thus, for the velocityv(t) of this particle to deviate substantially from
the initial conditionv(0) = v0, the timet must be 0(ε−1). For timest , with |t | � 0(ε−1),
the friction forcea(t) has a negligibly small effect, for smallε.

A solution of the Hartree equation (1.5) of the form (1.17), with properties (1.18)
through (1.21), for timest with |t | � 0(ε−1), describes the motion of an extended
particle in a shallow potential wellV (ε) interacting weakly with a dispersive medium
of infinitely many degrees of freedom with which it can exchange mass and energy.
The point-particle limit in which Newton’s laws of motion become exact is the limit
ε → 0. Forε > 0, the interactions between the extended particle and the dispersive
medium can lead to phenomena such as mass accretion, loss of mass and energy from
the particle into dispersive waves, and friction, for timest large on a scale ofε−1. The
intuitive picture is one of a bound cluster of “dust” describing an extended particle,
which exhibits Newtonian motion with friction. The friction is caused by the loss of
some “dust” originally bound to the particle. This loss of “dust” is only observed when
the motion of the particle isnot inertial(i.e., accelerated or decelerated) and is described
by dispersive waves satisfying a wave equation which is essentially the linearization of
Eq. (1.5) around a solitary wave described byQ(0)

N(t)(x − r(t))eiθ(x,t). For very large
times, the trajectory of the extended particle is expected either to approach an inertial
motion diverging to spatial infinity (ifW(x) → const, as|x| → ∞ and if the initial
mass and velocity of the particle were large enough), or to approach a local minimum of
W where the particle will come to rest. This dissipative behavior of the particle motion is
an example of the general phenomenon of “dissipation through radiation”. Some simple
results on the large-time asymptotics of solutions of the Hartree equation (1.5) (existence
of wave operators) are proven in Sect. 4. But it is fair to say that we do not yet have a
good mathematical understanding of large-time behavior of solutions of Eq. (1.5). For
some earlier results on scattering for the Hartree and nonlinear Schrödinger equation,
see, e.g., [7,8] and references given there.

Our analysis of solutions of the Hartree equation (1.5) of the form described in (1.17),
with properties (1.18) through (1.21), is based on akey assumption, which is, implicitly,
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an assumption on the two-body potential−� that will not be made explicit in this paper:
Let

(f, g) :=
∫
f̄ g

denote the usual scalar product onL2, and letH′′ denote the Hessian of the Hamilton
functional H(ψ̄, ψ), with λ = 0, at ψ = Q

(0)
N . Furthermore, letH′′

real denote the
restriction ofH′′ on real-valued functions, and extend it to a complex-linear operator. It
will be shown in Sect. 3 thatH′′

real is given by an unbounded, selfadjoint operator onL2

defining a quadratic form onH 1 which is bounded from below. It is not hard to see that(
Q, (H′′

real− E)Q
) = ε0(Q,Q) < 0, for Q := Q

(0)
N , (1.22)

whereE = EN and

ε0 = − 2

N

∫ (
� ∗Q2

)
Q2 . (1.23)

Actually,H′′
real−E has only one negative eigenvalue. SinceH is translation-invariant,

it follows that∇Q := {∂1Q, . . . , ∂nQ}, ∂j := ∂
∂xj
, j = 1, . . . , n, aren non-vanishing,

linearly independent zero-modes forH′′
real− E orthogonal toQ, i.e.,

(H′′
real− E)∂jQ = 0, and

(
∂jQ,Q

) = 0, (1.24)

for all j = 1, . . . , n. Thus 0 is an at leastn-fold degenerate eigenvalue ofH′′
real− E.

SinceQ is a minimizer ofH(ψ̄, ψ)∣∣SN , there is no spectrum ofH′′
real−E in the interval

(ε0,0). Furthermore, it is easy to see that the spectrum ofH′′
real− E in the interval

[0,−E), where

E = 1

N

(
1

2

∫
(∇Q)2−

∫ (
� ∗Q2

)
Q2
)
< 0 (1.25)

is pure-point, while, on the half-line[−E,∞), it is continuous. Thus, there is a gap,
ε2 > 0, between 0 and the rest of the spectrum ofH′′

real− E in [0,∞); see Sect. 3 for
details.

Ourkey assumptionis that themultiplicity of the eigenvalue0 ofH′′
real−E isprecisely

equal ton. This implies that(
h, (H′′

real− E)h
) ≥ ε2(h, h), ε2 > 0, (1.26)

for all functionsh ∈ H 1 with h ⊥ {Q,∇Q} in theL2-scalar product(·, ·).
We are now prepared to summarize the contents of this paper and to state our main

results in the form of theorems.
In Sect. 2, we recall the Hamiltonian nature of the Hartree equation (1.5) on the phase

spaceH 1. We exhibit continuous symmetries of the Hamilton functional that give rise
to Eq. (1.5) and derive the corresponding conservation laws. We show that the Hartree
equation can also be viewed as theEuler–Lagrange equationderived from anaction
functional. The Lagrangian formulation of the non-linear Hartree equation is useful to
study the formalpoint-particle limit(theε→ 0 limit in (1.16) through (1.21)). This limit
is discussed, in general terms but without mathematical proofs, in Sect. 2, using ideas
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similar to those in [9] in an analysis of vortex motion in the Ginzburg-Landau equation,
which is based on an effective-action formalism. We also discuss some expected features
of the non-linear Hartree dynamics in the large-time limit.

Our first main result is proven in Sect. 3.

Theorem 1.1.Suppose that assumption (1.26) holds for all minimizersQ = Q
(0)
N , with

N in an open neighborhood of someN0 > 0. We also assume that

�(x) is radial, ‖�‖W2,1(R3)∩W2,∞(R3) ≤ C� (1.27)

for some constantC�. Then there is a positive constantC0 such that, for an arbitrary
T < ∞, there is anε0 > 0 with the property that, for any0 < ε ≤ ε0 and any initial
condition of the form

ψ(x,0) = ψ0(x) =
[
Q(x − r0)+ hε,0(x)

]
eiv0x, (1.28)

with Q = QN0 and‖hε,0‖H1 ≤ C0ε
3/2, the Hartree equation, Eq. (1.5), withλ = 1

andV (x) = W(εx) as in (1.16), has a solution of the form (1.17), for all timest with
|t | < T ε−1, with the following properties:

1. The phaseθ(x, t) is as in (1.19);
2. the trajectory(r(t), v(t)) of the extended-particle solution (1.17) is a solution of the

equations of motion (1.20) with initial conditionsr(t) = r0, v(t) = v0, for a friction
forcea(t) bounded by

|a(t)| ≤ C1ε
2;

3. the dispersive correctionhε satisfies

‖hε(·, t)‖H1 ≤ C2ε
3/2,

for some finite constantsC1, C2 depending onT .

This result makes the point-particle limit(ε→ 0)of the Hartree equation (1.5) precise
for initial conditions describing a single extended particle (solitary wave) moving in a
shallow potential well,W(εx), and perturbed by a small amount of radiation (described
by hε). It is a special case of the more general situation considered in Sect. 3. A more
detailed discussion and the proof of Theorem 1.1 form the contents of Sect. 3.

The results just described raise the issue ofasymptotic propertiesof the dynamics
determined by the Hartree equation, as timet tends to±∞. In Sect. 4, we establish a result
on the scattering of small-amplitude waves off a single solitary wave. For simplicity,
we suppose that physical space is three-dimensional,n = 3, (but our methods can be
applied whenevern ≥ 3), we setλ = 0, and we choose� to be a non-negative, bounded
function of rapid decrease, as|x| → ∞. We consider an“asymptotic profile”described
by

ψas(x, t) = Q(x − r0 − v0t) e
i
(
x·v0−

[
1
2v

2
0+E
]
t
)
+ has(x, t), (1.29)

wherehas is a solution of the free-particle Schrödinger equation

i∂thas(x, t) = −1

2
�has(x, t), (1.30)
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with initial conditionhas(x,0) =: has,0(x) belonging to and being sufficiently small
in the spaceH 4(R3) ∩W3,1

(
R3,
(
1+ |x|2) d3x

)
and such that the Fourier transform,

ĥas,0(k), vanishes atk = v0. In (1.29),Q = Q
(0)
N0
∈ SN0 is a solution of Eq. (1.14), with

λ = 0, and it is assumed that inequality (1.26) is satisfied forQ = Q
(0)
N ∈ SN , for allN

in a small neighborhood ofN0 > 0.

Theorem 1.2.For an asymptotic profileψas(x, t) as described in(1.29), (1.30),and
under the hypotheses stated above, there are solutions,ψ±(x, t), of the Hartree equation
(1.5) (for λ = 0) such that

ψ±(x, t) −→ ψas(x, t), ast →±∞, (1.31)

in H 2(R3). Their difference is of orderO(t−1).

Thus the non-linear Møller wave maps/± : ψas −→ ψ± exist as symplectic maps
on asymptotic profiles of the form (1.29), (1.30). We emphasize that the effect of the
scattering wave on the location and the phase of the soliton has to be tracked precisely
for all time. The stability of the soliton is quite simple and can be obtained purely
from energy consideration. A review can be found in Sect. 3 (see also Weinstein [14]).
Therefore, the key points of Theorem 1.2 are its two precise assertions: 1. The location of
the soliton is almost “linear.” 2. The scattering wave behaves like an ordinary dispersive
wave, (described byhas(x, t)), plus a small correction. The condition on the Fourier
transform ofhas,0 is a technical one and we expect to remove it later on. Our result
constitutes the first step toward scattering theory.

The proof of Theorem 1.2 is the contents of the final section, Sect. 4, of this paper.

2. The Hartree Equation as a Hamiltonian System with Infinitely Many Degrees
of Freedom, and Its Point-Particle Limit

In the introduction, we have described results indicating how the Hartree equation (1.2)
captures the dynamics of a system of very many non-relativistic bosons with very weak
two-body interactions in a condensate state. This regime has been called the “mean-field
limit”. Actually, the mean-field limit is equivalent, mathematically, to theclassical limit
in which the value of Planck’s constant,h̄, is sent to 0. We are accustomed to expect
(actually in general erroneously) that the unitary dynamics of a quantum-mechanical
system reduces to the Hamiltonian dynamics of a corresponding classical system, in the
classical limit. In the examples studied in this paper, this expectation is justified.

2.1. The Hamiltonian nature of the Hartree equation.The phase space, 0, for the
Hartree equation (1.5) is the Sobolev (energy) spaceH 1(Rn) defined in (1.4). We use
ψ(x) and its complex conjugatēψ(x), x ∈ Rn, as complex coordinates for0. The
symplectic 2-form on0 is given by i

2 dψ ∧ dψ̄ . It leads to the followingPoisson
brackets:

{ψ(x), ψ(y)} = {ψ̄(x), ψ̄(y)} = 0, (2.1){
ψ(x), ψ̄(y)

} = 2iδ(x − y) . (2.2)
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The Hamilton functional,H(ψ̄, ψ), leading to the Hartree equation (1.5) is given by

H(ψ̄, ψ) = 1

4

∫ [
|∇ψ |2+ 2λV |ψ |2−

(
� ∗ |ψ |2

)
|ψ |2
]
. (2.3)

For� ∈ Lp +L∞, p ≥ n
2, H is well defined on0 and bounded below on the spheres

SN =
{
ψ
∣∣ ψ ∈ 0, N (ψ̄, ψ) = N <∞} , (2.4)

where

N (ψ̄, ψ) = ∫ |ψ |2 ; (2.5)

see inequality (1.12). Hamilton’s equations of motion forψ are given by

ψ̇t (x) =
{H (ψ̄t , ψt) , ψt (x)}

= i

[
1

2
�ψt(x)− λV (x)ψt (x)

+
(
� ∗ |ψt |2

)
(x)ψt (x)

]
, (2.6)

which is precisely the Hartree equation (1.5).

From (2.3) we infer the followingsymmetriesand correspondingconservation laws.

(1) Gauge invariance of the first kind. The phase transformations

ψ(x) �→ eiθψ(x), ψ̄(x) �→ e−iθ ψ̄(x) (2.7)

leaveH(ψ̄, ψ) invariant. These transformations describe the symplectic flow generated
by the Hamiltonian vector field corresponding to the function1

2 N (ψ̄, ψ). Since they
are a symmetry ofH(ψ̄, ψ), it follows that

{H,N } = 0, (2.8)

and henceN is conserved, and the spheresSN defined in (2.4) are invariant under the
time evolutionψ �→ ψt described by (2.6).

(2) Galilei invariance, forλ = 0. We shall assume henceforth that� is rotation-
invariant. If the external potentialλV vanishes then arbitrary Galilei transformations
are symmetries ofH.

Space translations,x → x + a, are represented on0 by

ψ(x) �→ ψa(x) := ψ(x − a), a ∈ Rn,

and are generated by themomentum functional

P(ψ̄, ψ) := i

2

∫
ψ̄∇ψ . (2.9)

They clearly leaveH(ψ̄, ψ) invariant, henceP is conserved under the time evolution
and

{H,P} = 0 . (2.10)
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Rotations,Rab, in the(ab)-plane ofRn, 1≤ a < b ≤ n, are represented on0 by

ψ(x) �→ ψRab(x) := ψ
(
R−1
ab x
)
.

They are generated by the angular momentum functionals

Lab(ψ̄, ψ) := i

2

∫
ψ̄
(
xa∂b − xb∂a

)
ψ, (2.11)

with ∂b = ∂/∂xb. Since� has been assumed to be rotation-invariant, rotations leave
H(ψ̄, ψ) invariant, hence the functionalsLab are conserved under the time evolution
and Poisson-commute withH, for all (ab).

Finally, boosts (velocity transformations),x → x − vt, v ∈ Rn, t denotes time, are
represented on time-dependent trajectories,ψt(x), in 0 by

ψt(x) �→ ψt(v; x) := ψt(x − vt)ei
(
v·x− v2

2 t
)
. (2.12)

They do not leaveH invariant, but one easily checks that ifψt(x) is a solution of
Hamilton’s equations of motion (2.6) then so isψt(v; x), for arbitraryv ∈ Rn. The
conserved quantity corresponding to (2.12) is given by

Mv

(
ψ̄t , ψt

) := ∫ ψ̄t v· (x + it∇) ψt . (2.13)

It follows that the “centre of mass motion” of a solutionψt of (2.6) isinertial.
We conclude this section by noting that, as usual, Hamilton’s equations of motion

(2.6) can also be viewed as Euler–Lagrange equations derived from an action principle.
The action functional is defined on a space of continuously differentiable (in time)
trajectories in phase space0. It is given by

S
(
ψ̄, ψ
) := t2∫

t1

dt

[
i

2

∫
ψ̄t ψ̇t −H (ψ̄t , ψt)] . (2.14)

The Hartree equation (2.6) is obtained from the action functionalS(ψ̄, ψ) by variation
with respect toψ̄ , i.e., it is equivalent to the equation

δS
(
ψ̄, ψ
) /
δψ̄t (x) = 0, (2.15)

under the boundary conditions that

δψti (x) = 0, i = 1,2 . (2.16)

Global existence and uniqueness of solutions of the equations of motion (2.6), for
� ∈ Lp + L∞, p ≥ n

2, is proven in [7] and refs. given there.
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2.2. Stationary solutions of the Hartree equations, for fixed values ofN ,P andLab. In
this section, we consider stationary solutions of the non-linear Hartree equations (2.6),
assuming thatλV = 0 and that� is rotation-invariant. Since theL2-normN (ψ̄, ψ), the
momentum functionalP(ψ̄, ψ) and the angular momentum functionalsLab(ψ̄, ψ) are
conserved, we may put them to fixed values,N,P andLab, respectively. In order to find
stationary solutions of (2.6), withN (ψ̄, ψ) = N,P(ψ̄, ψ) = π andLab(ψ̄, ψ) = λab,
we may look for critical points of the generalized energy functional

E
(
ψ̄, ψ;E,P,Lab

)
:= H (ψ̄, ψ)+ E

2

(
N −N (ψ̄, ψ))

+ P · (π − P (ψ̄, ψ))+∑
a<b

Lab
(
λab − Lab

(
ψ̄, ψ
))
, (2.17)

whereE,P andLab areLagrange multipliers. By varyingE (ψ̄, ψ;E,P,Lab) with
respect toψ̄, ψ,E, P andLab, we find the equations

− 1

2
�ψ −

(
� ∗ |ψ |2

)
ψ − Eψ

− iP ·∇ψ − i
∑
a<b

Lab
(
xa∂b − xn∂a

)
ψ = 0, (2.18)

(variation with respect tōψ), and

N (ψ̄, ψ) = N (variation with respect toE), (2.19)

P (ψ̄, ψ) = π (variation with respect toP), (2.20)

and

Lab
(
ψ̄, ψ
) = λab (variation with respect toLab), (2.21)

1≤ a < b ≤ n .
Not much is known about the general solution of Eqs. (2.18) through (2.21). But, for

the purposes of this paper, the following solutions are particularly important: We look
for a rotation-invariantabsolute minimum,Q(0)

N , of the Hamilton functionalH(ψ̄, ψ)
restricted to the sphereSN , which has zero momentum. Equations (2.18) through (2.21)
then simplify to

− 1

2
�ψ −

(
� ∗ |ψ |2

)
ψ = Eψ, (2.22)

N (ψ̄, ψ) = N, (2.23)

and the solution,ψ = Q
(0)
N , must satisfy

P
(
Q̄
(0)
N ,Q

(0)
N

)
= i

2

(
Q
(0)
N ,∇Q(0)

N

)
= 0 (2.24)

and (
xa∂b − xb∂a

)
Q
(0)
N = 0, for all a < b . (2.25)
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Equation (3.22) is identical to Eq. (1.14), forλV = 0, andE is given by

E = 1

2N

∫ (
∇Q(0)

N

)2− 1

N

∫ (
� ∗Q(0)2

N

)
Q
(0)2
N , (2.26)

see Eq. (1.15), which is strictly negative, for a non-trivial minimizerQ
(0)
N .

Lemma 2.1.For a positive, rotation-invariant potential� ∈ Lp + L∞, p ≥ n
2 , with

�(x)→ 0, as|x| → ∞, there exists a constantN∗ = N∗(�), with0 ≤ N∗ <∞ , such

that, forN > N∗, (2.23)has a non-trivial solutionψ = Q
(0)
N , withN

(
Q̄
(0)
N ,Q

(0)
N

)
= N ,

corresponding to a local minimum ofH (ψ̄, ψ) ∣∣SN . The phase ofQ(0)
N can be chosen

such thatQ(0)
N > 0. The non-linear eigenvalueE is given by (2.26) and is strictly

negative, forN > N∗. The functionQ(0)
N (x) is smooth and decays exponentially, as

|x| → ∞, with decay rate
√−E.

Remarks.(i) From the theory of quantum-mechanical bound states we infer that, in
n = 1,2 dimensions,N∗ = 0, while, forn ≥ 3, N∗ is strictly positive if� is integrable,
but vanishes for potentials of very long range, such as the Coulomb potential; see [10].

(ii) Given a solution,Q(0)
N , of (3.22), the function

ψt(v; x) := Q
(0)
N (x − r − vt)ei

(
v·x−
[

1
2 v

2+E
]
t
)

(2.27)

solves the Hartree equation (2.6), withλV = 0, for arbitraryr ∈ Rn andv ∈ Rn. This
follows from the Galilei invariance of the theory. Forψt as in (2.27),

P (ψ̄t , ψt) = Nv . (2.28)

Equation (2.6) also has wave-like solutions withP �= 0, (e.g. ψt(x) =
ψ0 expi (k · x − E (k,ψ0) t), which has infinite energy and momentum). It would be
of interest to also study square-integrable, stationary rotating soliton solutions of (2.6)
with Lab �= 0.

(iii) It is straightforward to extend Lemma 2.1 to systems whereλV �= 0. Such
generalizations are of particular interest whenV hassymmetries. Then minimizers,
Q
(0)
N , of H(ψ̄, ψ)∣∣SN tend tobreakthe symmetries ofλV if N is large enough.

(iv) Let H′′ denote the Hessian ofH(ψ̄, ψ) at ψ = Q
(0)
N , (λ = 0). In our proofs

of Theorems 1.1 and 1.2 (see Sects. 3 and 4), we shall always assume that assumption
(1.26) holds, for allN in an open neighborhood of someN0 > N∗.

Since the proof of Lemma 2.1 is standard, it is omitted. The interesting analytical
issues arise in the problems described in Remarks (iii) and (iv). They deserve further
study.
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2.3. A heuristic discussion of the point-particle limit of the Hartree equation.In this
section we start from the results reviewed in the last section (see Lemma 2.1) to study
the point-particle (Newtonian) limit of the Hartree equation. In this limit the Hartree
equation reduces to the Newtonian mechanics of point-particles interacting through
two-body potential forces. We use ideas closely related to those proposed in [9] in an
analysis of vortex motion in the plane, as described by the Ginzburg–Landau equations.

Let λV and� be as in Eqs. (1.5), (2.6). We setλ = 1 and consider a family of
external potentials of the form

V (x) ≡ V (ε)(x) := W(εx), (2.29)

whereW is some smooth, positive function onRn, andε > 0 is a parameter. Furthermore,
the two-body potential,−�, is chosen to be

�(x) = �s(x)+�6(εx), (2.30)

where�s(x) is a rotation-invariant, smooth function decaying rapidly inρ := |x|, as
ρ →∞, and with the properties that

d�s(ρ)

dρ
< 0, for ρ > 0, (2.31)

and that the key gap assumption (1.26) stated in Sect. 1 holds for� = �s . The perturbing
potential�6 is rotation-invariant and smooth and may be of long range, e.g.∣∣�6(ρ)∣∣ ∼ ρ2−n, as ρ →∞, (2.32)

forn ≥ 3, which is the behavior of the Coulomb- and of Newton’s gravitational potential.
For simplicity, we assume that|d�6(ρ)

/
dρ
∣∣ is uniformly bounded inρ.

We pickk positive integersN1, . . . , Nk, with Nj > N∗(�s), for all j . ForλV = 0
andN > N∗(�s), we define

δN :=
√
N−1

∫
dnxQ

(0)
N (x)2x2, (2.33)

whereQ(0)
N is a rotation-invariant minimizer of the functionalH(ψ̄, ψ)∣∣SN , as described

in Lemma 2.1.
We consider an initial condition,ψ0(x), for the Hartree equation (2.6) describing

a configuration ofk far-separated “solitons”,Q(0)
Nj
(x − rj ), rj ∈ Rn, j = 1, . . . , k,

(perturbed by a small-amplitude wave), with the following properties: Each soliton
Q
(0)
Nj
(x) is a rotation-invariant solution of Eq. (3.22), with� = �s andN = Nj ,

minimizingH(ψ̄, ψ)∣∣SN (for λ = 0, � = �s). Furthermore(
max

j=1,... ,k
δNj

) / (
min

1≤i<j≤k
∣∣ri − rj ∣∣) ≤ ε, (2.34)

whereε is the parameter introduced in (2.29), (2.30).
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Our goal is to construct a solution,ψt , of the Hartree equation (2.6) of the form

ψt(x) =
k∑
j=1

Q
(0)
Nj (t)

(
x − rj (t)

)
eiθj (x,t) + hε(x, t), (2.35)

whererj (0) = rj , as in (2.34), anḋrj (0) = vj ∈ Rn, j = 1, . . . , k, with the following
properties: There is a positive constantT such that, for all timest with |t | < T

ε
,

(a)
∣∣∣∣∣∣hε(·, t)∣∣∣∣∣∣ ∼ o(ε),

for an appropriately chosen norm
∣∣∣∣∣∣ (·) ∣∣∣∣∣∣,

(b) θj (x, t) = ṙj (t)·
[
x − rj (t)

]+ ϑj (t),
whereϑj (t) is independent ofx, and

(c)
∣∣Ṅj (t)∣∣ = o(ε).

The trajectoriesr1(t), . . . , rk(t) and the phasesϑ1(t), . . . , ϑk(t) will turn out to satisfy
equations of motion which can be derived from the Hartree equation. In this section we
do not present a mathematical proof of the claim that solutions of the Hartree equation
(2.6) of the form (2.35) with properties (a)–(c) exist; (but see Sect. 3). We merely verify
that a functionψt(x) of the form (2.35) with properties (a)–(c) approaches a critical
point of the action functionalS(ψ̄, ψ) introduced in (2.14), asε → 0, providedthe
trajectoriesrj (t) satisfy certain Newtonian equations of motion and the phasesϑj (t)

are suitably chosen(j = 1, . . . , k). Since critical points ofS(ψ̄, ψ) satisfy the Hartree
equation (2.6), this makes it plausible that solutions of (2.6) of the form (2.35) with
properties (a) – (c) exist. This claim is proven in Sect. 3 fork = 1.

Our heuristic analysis is based on the following simple facts:

(1) Fori �= j,∫
dnxQ

(0)
Ni
(x − ri)Q(0)

Nj

(
x − rj

)→ 0,

exponentially fast, as|ri − rj | = 0(ε−1)→∞. This follows from Lemma 2.1.

(2)
(
Q
(0)
Ni(t)

, hε(·, t)
)
= o(ε), for |t | ≤ T

ε
,

asε→ 0, for all i = 1, . . . , k; see (2.35) and property (a).

(3)
(
Q
(0)
Ni
,∇Q(0)

Ni

)
= 0, for all i,

by translation invariance (see Eq. (1.24)).

(4) For y := x − ri(t),∫
dny
∣∣Q(0)

Ni(t)
(y)
∣∣2y = 0, for all i,

by rotation invariance.

(5) Ṅi(t) = 2
(
Q
(0)
Ni(t)

,Q
(0)
Ṅi (t)

)
, for all i,

becauseNi =
(
Q
(0)
Ni
,Q

(0)
Ni

)
.
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Using that

∂

∂t

[
Q
(0)
Nj (t)

(
x − rj (t)

)
eiθj (x,t)

]
=
[
Q
(0)
Ṅj (t)

(
x − rj (t)

)− ṙj (t)·∇Q(0)
Nj (t)

(
x − rj (t)

)
+ iθ̇j (x, t)Q(0)

Nj (t)

(
x − rj (t)

)]
eiθj (x,t), (2.36)

with

θ̇j (x, t) = r̈j (t)
[
x − rj (t)

]− ṙj (t)2+ ϑ̇j (t), (2.37)

and

∇θj (x, t) = ṙj (t), (2.38)

we find that, forψt(x) as in (2.35), the action functionalS(ψ̄, ψ) introduced in (2.14),
with −T

ε
≤ t1 < t2 ≤ T

ε
, is given by

S
(
ψ̄, ψ
) = 1

2

t2∫
t1

dt

k∑
j=1

[
i

2
Ṅj −

∫ ∣∣Q(0)
Nj

(
x − rj

) ∣∣2r̈j · (x − rj )
+Nj ṙ2

j −Nj ϑ̇j −
1

2

∫ ∣∣∇Q(0)
Nj

∣∣2− Nj

2
ṙ2
j

−NjW
(
εrj
)+ 1

2

∫ (
� ∗ ∣∣Q(0)

Nj

∣∣2) ∣∣Q(0)
Nj

∣∣2
+ 1

2

∑
i:i �=j

NiNj�6
(
ε
(
ri − rj

))+ sε], (2.39)

wheresε is an error term∼ o(ε). In the first term on the R.S. of (2.39) we have used
(5), the second term proportional tor̈j vanishes by (4), in the third and fourth term we
have used (2.37), in the sixth term we have used (2.38), and various cross terms vanish
because of (3) or only contribute to the error term because of (1) and (2). We have also
used that ∫

dnxW(εx)
∣∣Q(0)

Nj

(
x − rj

) ∣∣2 = NjW
(
εrj
)+ o(ε) ;

and that, fori �= j ,∫
dnx

∫
dny
∣∣Q(0)

Ni
(x − ri)

∣∣2�(x − y) ∣∣Q(0)
Nj

(
y − rj

)∣∣2=NiNj�6 (ri − rj )+ o(ε),
by (4) and because�s(x) decays rapidly in|x|. Thus

S
(
ψ̄, ψ
) = 1

2
SNewton

({
rj , Nj

}
j=1,... ,k

)
+ 1

2

t2∫
t1

dt

k∑
j=1

[
i

2
Ṅj −Nj ϑ̇j − 2H

(
Q
(0)
Nj
,Q

(0)
Nj

)
+ sε
]
, (2.40)
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where

SNewton

({
rj , Nj

}
j=1,... ,k

)
=

t2∫
t1

dt

k∑
j=1

[
Nj

2
ṙ2
j −NjW

(
εrj
)

+ 1

2

∑
i:i �=j

NiNj�6
(
ε
(
ri − rj

)) ]
(2.41)

is the usual Hamiltonian action fork point particles with massesN1, . . . , Nk in an
externalacceleration fieldwith potentialW(ε·) and interacting through two-body forces
with potentialNiNj�6

(
ε
(
ri − rj

))
.

In order to guarantee that the ansatz (2.35) yields a solution of the Hartree equa-
tion (2.6) with properties (a), (b) and (c), we must require that thevariation of the
action S

(
ψ̄, ψ
)

calculated in (2.40), (2.41)with respect to the variational parame-
ters rj , Nj , ϑj , j = 1, . . . , k, andhε vanish!To write down the variational equations,
we observe that the second term on the R.S. of (2.40) isindependentof r1, . . . , rk, except
for the error termsε, which iso(ε). Thus, varyingS

(
ψ̄, ψ
)

with respect tor1, . . . , rk
yieldsNewton’s equations of motion

r̈j = − ε (∇W) (εrj )
+ ε

2

∑
i:i �=j

Ni (∇�6)
(
ε
(
rj − ri

))+ aj , (2.42)

whereaj comes from the error termsε, and|aj (t)| ∼ o(ε), for |t | ≤ T
ε
; j = 1, . . . , k.

Variation with respect toN1, . . . , Nk yields the equations

ϑ̇j = 1

2
ṙ2
j −W

(
εrj
)+∑

i:i �=j
Ni�6

(
ε
(
ri − rj

))
− ∂

∂Nj
H
(
Q
(0)
Nj
,Q

(0)
Nj

)
+ o(ε) . (2.43)

It is easy to see that

∂

∂Nj
H
(
Q
(0)
Nj
,Q

(0)
Nj

)
= 1

2Nj

∫ (
∇Q(0)

Nj

)2

− 1

Nj

∫ (
� ∗Q(0)2

Nj

)
Q
(0)2

Nj

= Ej −Nj�6(0)+ o(ε), (2.44)

see Eq. (2.26). Hence, for|t | ≤ T
ε

,

ϑ̇j = 1

2
ṙ2
j −W

(
εrj
)+ k∑

i=1

Ni�6
(
ε
(
ri − rj

))− Ej + o(ε) . (2.45)
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Variation with respect toϑ1, . . . , ϑk yields the equations

Ṅj = o(ε), (2.46)

(approximate conservation of masses of particles), and, finally, variation with respect to
hε yields an equation of motion of the form

∂

∂t
hε(x, t) = X

(
hε,
{
rj , Nj , ϑj

}k
j=1

)
(x, t), (2.47)

with
∣∣∣∣∣∣X∣∣∣∣∣∣ ∼ o(ε), for |t | ≤ T

ε
, where

∣∣∣∣∣∣ (·) ∣∣∣∣∣∣ is an appropriately chosen norm.
At a heuristic level, eqs. (2.42) and (2.46) show very clearly that the limitε → 0

corresponds to the point-particle limit in which the masses,N1, . . . , Nk, of the particles
(“solitons”) are constant and their trajectories are solutions of Newton’s equations of
motion, on time scales of 0(ε−1).

It is interesting and useful to work out explicit expressions for all the terms ofo(ε) in
Eqs. (2.42), (2.45), (2.46) and (2.47), in order to understand more about thecorrections
to theNewtonian point-particle limitand to get a handle on phenomena like radiation
loss and dissipation through emission of small-amplitude dispersive radiation. But, since
our discussion in this section is at a formal level, let’s not! In the special case where
k = 1, the terms of sizeo(ε) are analyzed in Sect. 3.

The analysis of the correction termsε in expression (2.40) for the action functional
and of the properties of solutions of Eq. (2.47) is crucial in attempting to understand the
long-time behaviorof solutions of the Hartree equation (2.6). In the introduction, we have
drawn attention to results of Soffer and Weinstein [8], see also [12], concerning “non-
linear Rayleigh scattering” for small-amplitude solutions of the non-linear Schrödinger-
or Hartree equations with a suitable external potentialλV . One would like to extend their
results in the direction of a theory ofnon-linear resonances(metastable states) and gain
understanding of the phenomenon of“approach to a groundstate”.Of particular interest
are situations where the Hamilton functionalH(ψ̄, ψ), see (2.3), restricted to a sphere
SN in phase space has severaldistinct local minima, forN large enough. This happens
whenλV has several minima separated by large barriers and−� is the potential of an
attractive force. One would then like to understand the shape of the“basins of attraction”
in phase space of the local minima ofH(ψ̄, ψ)∣∣SN : The forward (backward) basin of

attraction of a family of local minima ofH(ψ̄, ψ)∣∣SN parametrized byN consists of all
initial conditions in phase space which approach an element of this family plus dispersive
radiation decaying to 0 at the free dispersion rate, ast → +∞ (t → −∞). This is the
phenomenon of “approach to a groundstate”.

More ambitiously, one might try to construct a“centre manifold” of asymptotically
attracting configurations of solitons to which solutions of the Hartree equation with
initial conditions sufficiently close to the centre manifold converge locally in space, as
|t | → ∞. See [12] for some preliminary results.

Let us consider an example: We choose an initial condition for the Hartree equation
describing two far-separated solitons at positionsr1, r2 and with initial velocitiesv1, v2.
We suppose thatλV = 0 and that−�6 is purely attractive and of short range. The
“masses”N1, N2 of the solitons and the initial conditionsr1, v1 andr2, v2 are chosen
such that the two solitons form abound state, i.e., that

N1

2
v2

1 +
N2

2
v2

2 −N1N2�6 (ε (r1− r2)) < 0 . (2.48)
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One would then like to calculate the power,PR(t), of emission of dispersive radiation
through a sphere of radiusR " max (|r1|, |r2|) . Moreover, one would like to show
that, ast → ±∞, a typical configuration of two solitons satisfying (2.48) collapse to
a single soliton moving through space at a constant velocity. This phenomenon would
describe the “radiative collapse of a binary system”.

More generally, it would be interesting to understand how, at intermediate times,
small inhomogeneities in the initial conditions for solutions of the Hartree equation
grow to form a structure of rotating bodies (solitons) perturbed by outgoing, dispersive
radiation, before it eventually approaches a number of far separated solitons escaping
from each other. [In studying such problems, one finds out that the Hartree equation
not only “knows” about Newton’s equations of motion, it also “knows” about the Euler
equations for the motion of rigid bodies.]

The problems described here are problems on thescattering theoryfor the Hartree
equation. If−� is attractive, i.e., for a self-focussing non-linearity, scattering theory is
bound to be very subtle, involving infinitely many “scattering channels”, and is beyond
the reach of our methods; (see, however, Sect. 4 for some preliminary results, and [7]
for the case where−� is repulsive).

3. Proof of Theorem 1.1

In this section, we prove the first main result (Theorem 1.1) of this paper.

3.1. Stability of soliton solutions of Hartree equations.We first review the stability of
the soliton solutions to the Hartree equation without external potential, i.e., forλ = 0.
The equation is

i∂tψ = 2
∂H
∂ψ̄

= −1

2
9ψ − (� ∗ |ψ |2)ψ, (3.1)

where∂H
∂ψ̄

(H = H(λ=0), see (1.11)) is the first variation of the energy functional w.r.t.

ψ̄ . Recall thatQ is a minimizer ofH under the constraintN (ψ̄, ψ) := ‖ψ‖2 = N , for
someN fixed, and thusQ satisfies the equation

−1

2
9Q− (� ∗ |Q|2)Q = EQ, (3.2)

for some non-linear eigenvalue (Lagrange multiplier)E. Suppose the functionψ can be
written in the formψ = (Q+h)e−iEt . Then the linearized equation satisfied byh takes
the form

i∂th = Lh, (3.3)

where

Lh = −1

2
9h− Eh− (� ∗Q2)h−Q(� ∗ (Q(h+ h̄))). (3.4)

Due to the appearance ofh̄ on the right side of (3.4),L is not a complex-linear operator.
It is therefore convenient to separate the last equation into real and imaginary parts

Lh = L+A+ iL−B, h = A+ iB, (A andB real), (3.5)
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where

L− = −1

2
9− E −� ∗Q2,

L+ = L− − 2Q[� ∗ (Q·)], (L+A = L−A− 2Q[� ∗ (QA)]).
In matrix form,

∂

∂t

(
A

B

)
=
(

0 L−
−L+ 0

)(
A

B

)
=: L

(
A

B

)
. (3.6)

(L is the matrix form of−iL; it determines a linear Hamiltonian vector field.)
The operatorsL− andL+ also appear naturally in the second variation of the energy

functionalH. Writing ψ = u+ iv, we have by explicit computation

H(Q+ h) = H(Q)+
∫
dx
∂H
∂u

∣∣∣
Q
A+
∫
dx
∂H
∂v

∣∣∣
Q
B

+1

2

[ ∫
dxA

∂2H
∂u∂u

∣∣∣
Q
A+ 2

∫
dxA

∂2H
∂u∂v

∣∣∣
Q
B

+
∫
dxB

∂2H
∂v∂v

∣∣∣
Q
B

]
+O(h3)

where
∂H
∂u

∣∣∣
Q
=
(
∂H
∂u

)
ψ=ψ̄=Q

.

Notice thatH has no cross terms inu andv, except in the nonlinear term depending
only on|ψ |2. SinceQ is real, we have that

∂H
∂v

∣∣∣
Q
= 0 .

Thus the first order term is just∫
dx
∂H
∂u

∣∣∣
Q
A = 2

∫
dx
∂H
∂ψ̄

∣∣∣
Q
A = E

∫
dxQA,

where we have used Eq. (3.2). Similarly,

∂2H
∂u∂v

∣∣∣
Q
= 0,

and the second order term is just

1

2

[∫
dxA

∂2H
∂u∂u

∣∣∣
Q
A+
∫
dxB

∂2H
∂v∂v

∣∣∣
Q
B

]
=
∫
dxAL+A+

∫
dxBL−B + E

∫
dx(A2+ B2) .

(Observe thatH′′
real− E = L+.) We have thus proved that

H(Q+ h) = H(Q)+ E[(Q,A)+ ‖h‖2] + Re(Lh, h)+O(h3), (3.7)
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where(f, g) = ∫ f̄ gdx is the standardL2 scalar product and

Re(Lh, h) =
∫
dxAL+A+

∫
dxBL−B.

LetQε ≡ QN+ε be the (real) minimizer centered at the origin, with‖Qε‖2 = N+ε.
Let hε = Qε −Q. Then

ε = ‖Q+ hε‖2− ‖Q‖2 = 2
∫
Qhε +

∫
h2
ε = 2

∫
Qhε +O(ε2).

We defineE(N) as the minimal energy subject to the constraint‖ψ‖2 = N :

E(N) = inf
‖ψ‖2=N

H(ψ).

The last two equations and (3.7) then yield the standard relation

∂E(N)
∂N

= E/2. (3.8)

For an arbitraryh with Reh ⊥ Q, Eq. (3.7) yields[∫
dxAL+A+

∫
dxBL−B

]
= H(Q+ h)−H(Q)− E‖h‖2+O(h3). (3.9)

SinceH(Q + h) ≥ E(‖Q + h‖2) = E(N + ‖h‖2), (because Reh ⊥ Q, ‖Q + h‖2 =
‖Q‖2+ ‖h‖2), we obtain from Eq. (3.8)

H(Q+ h)−H(Q)− E‖h‖2 ≥ O(h3).

This proves that ∫
dxAL+A ≥ 0,

∫
dxBL−B ≥ 0,

for allA ⊥ Qand arbitraryB. ThusL− ≥ 0, andL+ has at most one negative eigenvalue.
From the explicit form ofL− andL+ we conclude that

L−Q = 0, L+∇Q = 0, L−(xQ) = −∇Q. (3.10)

SinceQ is positive andL− ≥ 0, its null space is the span ofQ, i.e.,

L− ≥ 0, N(L−) = spanR{Q}.
From the explicit form ofL+ we have that

(Q,L+Q) =: ε0 · (Q,Q) < 0, (3.11)

where

ε0 = −2(N(Q))−1
∫
Q2
(
� ∗Q2

)
< 0.

ThusL+ has exactly one negative eigenvalue. The continuous spectra ofL− andL+ can
easily be shown to be the half-line[−E,∞). SinceL+∇Q = 0, 0 is an at leastn-fold
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degenerate eigenvalue ofL+. A key assumption in our analysis is that the whole null
space ofL+ = H′′

real− E is spanned by∇Q, i.e.,

N(L+) = spanR{∇Q}. (3.12)

Since the continuous spectrum ofL− and ofL+ is the half-line[−E,∞), 0 is an isolated
point. Hence there is a positive numberδ such that

(h, L+h) ≥ δ(h, h),
if h is orthogonal to the span of∇Q and to the ground state ofL+. In particular, the
number of eigenvalues strictly belowδ is exactlyn+ 1. We have proved the following
lemma.

Lemma 3.1.Assume that(3.12)holds. Then the null spaces ofL− andL+ are given
by N(L−) = spanR{Q}, N(L+) = spanR{∇Q}. Furthermore, there is a constant
ε2 > 0 such that(a) (g, L−g) ≥ ε2(g, g) if g ⊥ Q. (b) (f, L+f ) ≥ ε2(f, f ) if
f ⊥ spanR{Q,∇Q}.

If we assume that
‖Q+ h‖2 = ‖Q‖2

the term with the factorE in (3.7) vanishes, because

2(Q,A) = −‖h‖2,

and we have that

H(Q+ h) = H(Q)+
[∫

dxAL+A+
∫
dxBL−B

]
+O(h3). (3.13)

Thus ifh = A+ iB, with

A ⊥ spanR{∇Q}, B ⊥ Q, ‖Q+ h‖2 = ‖Q‖2, (3.14)

then we can writeA = A1+cQ, with (A1,Q) = 0, for somec of order‖h‖2, (c(Q,Q) =
(A,Q) = −(h, h)/2). Since(Q,∇Q) = 0, we have that(∇Q,A1) = 0, provided that
(A,∇Q) = 0. Therefore, under assumption (3.14), we can rewrite (3.7) as

H(Q+ h)−H(Q) = [(A,L+A)+ (B,L−B)]+O(h3) (3.15)

= [(A1, L+A1)+ (B,L−B)
]+O(h3). (3.16)

SinceA1 ⊥ spanR{Q,∇Q}, we can apply Lemma 3.1 to conclude that(A1, L+A1)+
(B,L−B) ≥ ε2(‖A1‖2 + ‖B‖2). Since the difference between‖A1‖2 and‖A‖2 is of
higher order, we obtain

H(Q+ h)−H(Q) ≥ ε2‖h‖2+O(h3). (3.17)

The last equation implies theglobal (modulational) stabilityof the soliton solution
under small perturbations. To see this, suppose the initial data is of the formQ + h0,
with ‖Q + h0‖2 = ‖Q‖2; (the last condition always holds, since we can choose aQ

with the mass of the initial value). At a later timet , we can findr andθ such that

ψt(x − r)e−iθ = h(x)+Q(x)
with the mass of the correction,‖h‖2, minimized. One can easily check thath satisfies
condition (3.14). By inequality (3.17),‖h‖2 is bounded from above by the left hand side,
which is conserved under the time evolution.
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3.2. Dynamical linearization of the Hartree equation around solitons.We now return
to the Hartree equation (1.5) with external potentialλV (x) = W(εx). Since our time
scale is of ordert ∼ ε−1, the change in the external potential during the evolution on
this time scale may not be small. Thus the argument in the last section no longer applies.
We shall show that, nevertheless, the soliton solution is stable on this time scale, and we
shall track the motion of the soliton precisely.

The Hartree equation (1.5) is

i∂tψ = −1

2
9ψ +W(εx)ψ − (� ∗ |ψ |2)ψ =: H(ψ)ψ. (3.18)

The solutions we are interested in are of the form

ψ(x, t) = [Q(x − r(t))+ hε (x − r(t), t)] eiθ(x,t), (3.19)

for ε > 0 small enough, whereQ(x) = Q(ε=0)(x) is a minimizer of the energy functional
H, andhε(x − r(t), t) is a small correction term which tends to 0, asε→ 0; θ(x, t) is
a time-dependent phase of the form

θ(x, t) = v(t) · (x − r(t))− Et + θ1(t).

Also, we expect that, to leading order, the velocityv(t) and the locationr(t) of the
soliton are given by

ṙ(t) = v(t) , v̇(t) = −ε (∇W) (εr(t)) .
For the time being, there is no canonical way to determine corrections to these equations,
as the decomposition (3.19) is not unique. We requirev, r, andθ1 to obey the following
equations:

ṙ(t) = v(t),

v̇(t) = −ε(∇W)(εr(t))+ a(t),
θ̇1(t) = 1

2v
2(t)−W(εr(t))+ ω(t),

where the (vector) acceleration correctiona(t) and the (scalar) “angular velocity” cor-
rectionω(t) are of higher order inε and will be used for fine adjustment, later on. Their
initial values will be discussed in Subsect. 4.5.1, when we adjust the initial datumhε,0.

We now derive the equations fora, ω andh. Let ξ(x, t) = Q(y)eiθ , y = x − r(t).
By explicit computation,

ξ−1 {i∂t −H(ξ)} ξ = ξ−1
[
i∂t ξ + 1

2
9ξ

]
−W(εx)+� ∗ |ξ |2

=
[
−θ̇1(t)− ∂t [v(t)(x − r(t)] − 1

2v
2(t)
]
+
[
i
∇Q
Q
(v(t)− ṙ(t))

]
−W(εx)+

[
E + 9Q

2Q
+� ∗ |ξ |2

]
.

We expand the potentialW around the pointr(t):

W(εx) = W(εr(t))+ ∇W(εr(t))ε(x − r(t))+/0(x, t),
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where the remainder/0(x, t) is real and, by the mean value theorem,

|/0(x, t)| ≤ Cε2|y|2, (3.20)

whereC = C(W) depends onW . Recalling the equation forr, v and (3.2), we then
have

ξ−1 {i∂t −H(ξ)} ξ = −/ξ, (3.21)

where

/ = −W(εr)+W(εx)+ v̇y + ω = /0(x, t)+ a(t)y + ω(t). (3.22)

Next, we considerh(y, t) = hε(x − r(t), t). Substitutingψ = (Q + h)eiθ into
Eq. (3.18) and cancelingeiθ we get

i {(Q+ h)(i∂t θ)− ṙ · ∇(Q+ h)+ ∂th}
=
{
−1

2
9(Q+ h)− iv · ∇(Q+ h)+ 1

2
v2(Q+ h)

}
+W(εx)(Q+ h)− (� ∗ |Q+ h|2)(Q+ h),

whereQ andh are taken at(y, t) = (x − r(t), t), that is,Q = Q(x − r(t)) = Q(y)

andh = h(x − r(t), t) = h(y, t). Usingṙ(t) = v(t), Eq. (3.2), and

∂t θ = v̇ · x +
{
−1

2
v2− v̇r −W(εr)+ ω(t)

}
− E = −W(εx)+/− 1

2
v2− E,

we obtain

i∂th = −1

2
9h− Eh+/(Q+ h)−

{
(� ∗ |Q+ h|2)(Q+ h)− (� ∗Q2)Q

}
.

(3.23)

Treating/h as an error term, we can rewrite this equation as

∂th = −iLh+G, (3.24)

where the operatorL is given by (3.4), and the nonlinear part is

G =− i/(Q+ h)− iF (h), (3.25)

with F(h) = −
{
(� ∗ |h|2)(Q+ h)+ (� ∗ [Q(h+ h̄)])h

}
.

In matrix form,

∂

∂t

(
A

B

)
=
(

0 L−
−L+ 0

)(
A

B

)
+
(

ReG
ImG

)
. (3.26)

We observe that, except for/0 which is part of/ (and thus appears inG), all quantities
in this system are evaluated at(y, t).
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3.3. Properties of the linearized flow.We have shown that the linear part in the dy-
namical linearization of the nonlinear Hartree equation results in the standard linear
evolution (3.3) with matrix form given in (3.6). We notice thatL+ andL−, the real and
imaginary part ofL, can be reinterpreted as complex-linear operators which turn out to
be self-adjoint in the usualL2 space. The operator

L =
(

0 L−
−L+ 0

)
, with L∗ =

(
0 −L+
L− 0

)
acting onH 1 × H 1 is, however, not symmetric. Although our functionsA andB are
real, we shall viewL− andL+ as self-adjoint operators on the Sobolev spaceH 1 of
complex-valued functions. The operatorL is, however, not self-adjoint and thus does not
have a spectral decomposition.A standard procedure is to decompose the spaceH 1×H 1

into a direct sum of its generalized null space,

S := Ng(L) = {v : Lnv = 0 for somen} ,
and the orthogonal compliment of the generalized null space of its adjoint, i.e., the space
M = Ng(L∗)⊥. It is simple to check that both spaces,S = Ng(L) andM = Ng(L∗)⊥,
are invariant underL. Note that the decompositionH 1×H 1 = M ⊕ S is, however,not
an orthogonal decomposition.

Following M. I. Weinstein [13], we want to establish the following picture:

1. H 1×H 1 = M ⊕ S.
2. TheH 1×H 1-norm onM remains uniformly bounded under the linearized flow for

all time.
3. The dynamics onS can be computed explicitly.

We usePM andPS to denote (non-orthogonal) projections with respect to the de-
compositionM ⊕ S. We first establish some spectral properties ofL+ andL−.

3.3.1. Generalized null space.We first determine the generalized null spaceS = Ng(L).
We recall Lemma 3.1 and the equations

L−Q = 0, L+∇Q = 0, L−xQ = −∇Q.
SinceQ ⊥ spanR{∇Q} = N(L+) andL+ is self-adjoint, there exists a solution,01,

of the equationL+01 = Q. We may assume01 ⊥ ∇Q by subtracting its projection on
the∇Q-direction. If01 ⊥ Q, then(01,Q) = (01, L+01) > ε1(01, 01), by Lemma 3.1.
This contradiction shows(01,Q) �= 0. Now we let0 = 01+b∇Qwith b = 2(01, xQ).
Then(0,Q) = (01,Q) �= 0, and(0, xQ) = 0. To summarize, we have found a0 such
that

L+0 = Q, (0, xQ) = 0, (0,Q) �= 0. (3.27)

We require(0, xQ) = 0, in order to construct a dual basis onS in Proposition 3.2 below.
To determine the generalized null space, we need to solve all solutions of the equation

Ln ( uv ) =
(

0
0

)
for somen. If n = 2k is even, it is equivalent to(L−L+)ku = 0 and

(L+L−)kv = 0. If n = 2k + 1 is odd, it is equivalent toL+(L−L+)ku = 0 and
L−(L+L−)kv = 0. We have solved the solutions for the casen = 1 above: It is the span
of
( 0
Q

)
and
( ∇Q

0

)
.
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We next consider the casen = 2. The null space ofL+L− is

N(L+L−) = L−−1N(L+) = N(L−)⊕ spanR{xQ} = spanR{Q, xQ}. (3.28)

Similarly,

N(L−L+) = N(L+)⊕ spanR{0} = spanR{∇Q,0}. (3.29)

For the casen = 3, we have

N(L−L+L−) = L−−1N(L−L+) = L−−1spanR{∇Q,0} .
SinceN(L−) = spanR{Q} and(Q,0) �= 0,0 is not in the range ofL−. Thus

L−−1spanR{∇Q,0} = L−−1spanR{∇Q} = N(L−L+).

This proves thatN(L−L+L−) = N(L+L−). Similarly,N(L+L−L+) = N(L−L+).
Therefore, ifLn ( uv ) =

(
0
0

)
for somen ≥ 2, thenL2 ( uv ) =

(
0
0

)
. Thus we have found

a basis forNg(L). We also have similar statements forNg(L∗). Summarizing, we have
proved

Proposition 3.2.

S = Ng(L) = spanR{
( 0
Q

)
,
( ∇Q

0

)
,
( 0
xQ

)
,
(
0
0

)}, (3.30)

Ng(L∗) = spanR{
(

0
0

)
,
(
xQ
0

)
,
( 0∇Q
)
,
(
Q
0

)}.
Notice that these vectors are dual bases and we have ordered them correspondingly.

In particular, for an arbitrary functiong we have

PS(g) = κ1(Img, 0)
( 0
Q

)+ κ2(Reg, xQ)
( ∇Q

0

)
+ κ2(Img,∇Q)

( 0
xQ

)+ κ1(Reg,Q)
(
0
0

)
,

whereκ1 = 1/(Q,0) andκ2 = 1/(xjQ, ∂jQ) = −2. Also note that we have

L ( 0
Q

) = ( 0
0

)
, L ( ∇Q0 ) = ( 0

0

)
, L ( 0

yQ

) = − ( ∇Q0 ) , L ( 00 ) = − ( 0
Q

)
.

(3.31)

Let g(t) be a solution to the linear evolution (3.3) and denote the projection ontoS

by

PSg(t) = α(t)
( 0
Q

)+ β(t) ( ∇Q0 )+ γ (t) ( 0
xQ

)+ δ(t) ( 00 ) .
Then by (3.31) the equations for the coefficients(α(t), β(t), γ (t), δ(t)) (noteβ(t) and
γ (t) are vector functions) are given by( 0

Q

) : α̇ = −δ,( ∇Q
0

) : β̇ = −γ,( 0
yQ

) : γ̇ = 0,(
0
0

) : δ̇ = 0.
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3.3.2. The flow onM. We have decomposed the spaceH 1 × H 1 into a direct sum of
the generalized null spaceS = Ng(L) andM = Ng(L∗)⊥. The generalized null spaces
for L andL∗ are given by Proposition 3.2. Thus,M is the space

M = {( uv ) : u ⊥ spanR{Q, xQ}, v ⊥ spanR{∇Q,0}}.
Since all functions in the spaceS = Ng(L) andM⊥ = Ng(L∗) are smooth, the projec-
tionsPS andPM are bounded in anyHk space.

Our first aim is to prove

Lemma 3.3 (H 1-norm on M).

1. If g ∈ M, thenRe(Lg, g) is non-negative and comparable to‖g‖2
H1.

2. If g(t) = e−itLφ and0 �= φ ∈ M, then‖g(t)‖H1 is uniformly bounded below and
above.

To prove this lemma, we first show that, for all vectors( uv ) ∈ M,

C−1‖u‖2
L2 ≤ (u, L+u), C−1‖v‖2

L2 ≤ (v, L−v) , (3.32)

for some constantC, as follows from Lemma 3.1. In fact, it is sufficient to assume that
u ⊥ spanR{Q, xQ} andv ⊥ spanR{0}. (As will become clear, we only use(0,Q) �= 0
and(xQ,∇Q) �= 0 in this argument.)

For thev-part, if (v,Q) = 0, the claim follows from Lemma 3.1. Hence we may
assumetv = Q+w for somet �= 0,w ⊥ Q. By assumption 0= (0, tv) = (0,Q+w),
hence|(0,Q)| = |(0,w)| ≤ ‖0‖2 ‖w‖2. Therefore we have‖w‖2 ≥ c3 > 0 and

(v, L−v)
(v, v)

= (w,L−w)
‖Q‖2

2+ ‖w‖2
2

≥ ε2 ‖w‖2
2

‖Q‖2
2+ ‖w‖2

2

≥ ε2c
2
3

‖Q‖2
2+ c2

3

.

For theu-part, if (u,∇Q) = 0, the claim follows from Lemma 3.1. Hence we
may assumeu = b∇Q + w for some vectorb �= 0 and somew ⊥ Q,∇Q. By
assumption, 0= b(xQ, u) = (bxQ, b∇Q + w) = C|b|2 + (bxQ,w), with C �= 0.
Hence‖w‖2 > C|b| and

(u, L+u)
(u, u)

= (w,L+w)
Cb2+ ‖w‖2

2

≥ ε2 ‖w‖2
2

Cb2+ ‖w‖2
2

≥ Cε2,

by a similar estimate. Hence (3.32) is proved.
Now, since‖∇u‖2 is bounded by(u, L+u) and‖u‖2, (and hence by(u, L+u), see

(3.32)), we can replace the norm on the left hand side of (3.32) by theH1-norm; (here
theH1-norm is the sum of theL2-norm plus theL2-norm of the derivative). Therefore
we have proved that, for( uv ) ∈ M,

C−1(u, u)H1 ≤ (u, L+u) ≤ C(u, u)H1 , (3.33)

C−1(v, v)H1 ≤ (v, L−v) ≤ C(v, v)H1 .

The upper bounds on(u, L+u) and(v, L−v) are obvious. Hence the first part of the
lemma is proved.

The second part follows from the first part and the next lemma, which states that the
quantity(u, L+u) + (v, L−v), which is equivalent to theH 1-norm onM, is actually
conserved by the linear flow (3.3). We note that

(u, L+u)+ (v, L−v) = Re(Lg, g) = Im(Lf, g).
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Lemma 3.4.Recall thatL = −iL, andiL �= Li, (see (4.5)).

1. Re(Lf, g) = Im(Lf, g) = Im(Lg, f ) = −Im(f,Lg).
2. If g(t) = e−itLφ, thenIm(Lkg, g) is constant for any integerk ≥ 0.
3. For anyg(t) with ∂tg = Lg +G, one has

d

dt
Im(Lg, g) = 2Im(Lg,G).

Proof. All these assertions can be checked by simple computations. We only prove the
last one in the following.

d

dt
Im(Lg, g) = Im(L2g + LG, g)+ Im(Lg,Lg +G)

= Im(LG, g)+ Im(Lg,G) = 2Im(Lg,G). &'
The following two lemmas will be used to prove inequality (3.61) below. (NoteHk

denotes the Sobolev spaceWk,2.)

Lemma 3.5.(a) For anym ≥ 1, e−itL is a bounded map fromM ∩ Hm into itself.
Explicitly, for anyφ ∈ M ∩Hm,∥∥∥e−itLφ∥∥∥

Hm
≤ Cm ‖φ‖Hm .

(b) L = −iL, restricted toM, has an inverse which is bounded fromM∩L2 toM∩H 2.

Proof. Proof of (a): Letg(t) = e−itL. The casem = 1 is Lemma 3.3, part 2. Ifm ≥ 3
is odd, we have that

‖g(t)‖2
Hm ≤ C ∣∣Im(Lmg, g)∣∣+ C ‖g(t)‖2

Hm−2

≤ C ∣∣Im(Lmφ, φ)∣∣+ C ‖φ‖2
Hm−2 ≤ C ‖φ‖2

Hm .

The second inequality uses Lemma 3.4, part 2. (Note: Ifm is even, Im(Lmg, g) = 0,
and the first inequality fails.) The general case follows from interpolation.
Proof of (b): For( uv ) ∈ M we seek

(
x
y

) ∈ M such thatL ( xy ) = ( uv ), i.e.,L−y = u

andL+x = −v. Notice thatu ⊥ Q andv ⊥ ∇Q, and the null spaces of the self-adjoint
operatorsL− andL+ are spanned byQ and∇Q respectively. Since 0 is an isolated
eigenvalue ofL− andL+, it follows thatL−1− andL−1+ are bounded operators on the
orthogonal complements of the null spaces. This proves thatL has a bounded inverse
onM ∩ L2.

To prove the bound, writew = ( uv ) ∈ M ∩H 2. By (3.33)

‖u‖2
W1,2 ≤ C(u,L+u) ≤ 1

2
‖u‖2

2+ C ‖L+u‖2
2 .

Hence‖u‖W1,2 ≤ C ‖L+u‖2. Similarly ‖v‖W1,2 ≤ C ‖L−v‖2. Furthermore, write
L+ = −1

29 + V . (The explicit form ofV can easily be read from the definition of
L+.)

‖9u‖2 = 2‖L+u− V u‖2 ≤ 2‖L+u‖2+ C(V ) ‖u‖2 ≤ C ‖L+u‖2 .

Hence‖u‖W2,2 ≤ C ‖L+u‖2. Similarly ‖v‖W2,2 ≤ C ‖L−v‖2. We conclude that
‖w‖W2,2 ≤ C ‖Lw‖2. The lemma follows by a duality argument.&'
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Let

Xk = Hk ∩ L2
{
(1+ |y|2k)dy

}
(3.34)

denote the subspace ofHk of functions with prescribed decay at infinity.

Lemma 3.6 (Finite propagation speed).For any integerk ≥ 0, for any realm ≥ 1,
and forφ ∈ M ∩Xk ∩Hk+m,∥∥∥ymetLφ∥∥∥

Hk
≤ C ∥∥ymφ∥∥

Xk
+ C(1+ |t |m) ‖φ‖Hk+m . (3.35)

The constantC depends onk andm.

Remark.For the free Schrödinger equation, one need not assume thatφ ∈ M, since
Lemma 3.5 (a) always holds.

Proof. Let α be any multi-index with|α| = k. Let g(t) = e−itLφ andv(t) = ∇αy g(t).
We have

∂tv = Lv +Ig, with I = [∇α,L].

Hence,

d

dt

∫
y2m|v|2 = 2Re

∫
y2mv̄vt

≤ C
∫
y2m−1|v||∇v|dy + C ‖v‖2

2+ C
∫
y2m|v||Ig|.

SinceI is a localized operator involving derivatives only up to (k − 1)st order, (I
vanishes fork = 0), the last term is bounded by‖v‖2 ‖g‖Hk−1 ≤ C ‖φ‖2

Hk . Hence, by
interpolation, ∣∣∣∣ ddt ∥∥ymv∥∥2

2

∣∣∣∣ ≤ C ∥∥ymv∥∥2 ·
∥∥∥ym−1∇v

∥∥∥
2
+ C ‖φ‖2

Hk

≤ C ∥∥ymv∥∥2(1−1/2m)
2 · ‖v‖1/m

Hm + C ‖φ‖2
Hk .

Let f (t) = ‖ymv‖2
2 andN = C ‖φ‖2

Hk+m . By Hölder’s inequality,

∣∣f ′∣∣ ≤ f 1−1/2mN1/2m +N ≤ f

1+ t + C(1+ t)
2m−1N,

hencef (t) ≤ Cf (0)+ C(1+ t)2mN , which proves the claim. &'

We will need the casek = 1 when we prove Lemma 3.8.
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3.4. The fine adjustment.We first recall the conclusion of dynamical linearization. We
decompose the functionψ into the sum

ψ(x, t) = [Q(x − r(t))+ hε (x − r(t), t)] eiθ(x,t),
whereθ(x, t) is a time-dependent phase of the form

θ(x, t) = v(t) · (x − r(t))− Et + θ1(t),

with

ṙ(t) = v(t),

v̇(t) = −∇W(εr(t))ε + a(t),
θ̇1(t) = 1

2
v2(t)−W(εr(t))+ ω(t).

Here the (vector) acceleration correctiona(t) and the (scalar) angular velocity correction
ω(t) are of smaller orders, and we shall determine their values in this subsection. The
main correctionh satisfies the equation

∂

∂t
h = Lh+G, h(0) = hε,0, (3.36)

with

G = −i/(Q+ h)− iF (h),
/ = /0 + ay + ω,
/0 = W(εx)−W(εr)− εy∇W(εr),
F = −(� ∗ |h|2)(Q+ h)− (� ∗ [Q(h+ h̄)])h.

We decomposeh(t) into a sum of its components inS andM: h(t) = hS(t)+hM(t).
The component inS is a sum of the basis vectors (3.30)

hS(t) = α(t)
( 0
Q

)+ β(t) ( ∇Q0 )+ γ (t) ( 0
yQ

)+ δ(t) ( 00 ) .
We now consider projections of Eq. (3.36) ontoS andM. Taking inner products with

the dual basis, (see Proposition 3.2), we obtain the equations onS:( 0
Q

) : α̇ = −δ+κ1(ImG,0), (3.37)( ∇Q
0

) : β̇ = −γ+κ2(ReG, yQ), (3.38)( 0
yQ

) : γ̇ = κ2(ImG,∇Q), (3.39)(
0
0

) : δ̇ = κ1(ReG,Q). (3.40)

The equation onM is

∂

∂t
hM = LhM + PMG. (3.41)

Notice that/0 = W(εx)−W(εr)− εy∇W(εr) is determined byr(t), which solves

r̈ = −ε∇W(εr)+ a.
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This system is not closed, yet, since we still need to determinea andω, which are
used for the fine adjustment. Observe thata andω appear explicitly in the equation on
S only through ImG, that is,ayQ andωQ. These two terms appear in (3.37) and (3.39),
the equations forα andγ . Our strategy is to choosea andω so thatα̇ = 0 andγ̇ = 0.
ThenhS(t) has at most linear growth.

It is important to understand the orders of these quantities. Assume thath ≤ o(ε).
Since the forceG contains an external input/0Q ∼ ε2,G is of the formO(h2) + ε2.
The equation forhM , i.e., (3.41), is thus of the form

f ′ ≤ f 2+ c2ε2 , c > 1 , (3.42)

(and we have assumed that we can take care of the linear part). The solutions of this
equation can blow up att = (cε)−1. Explicitly, if f (0) = 0 then

f (t) = cε tan(cεt).

A more careful examination shows that, due to a cancellation property when inte-
grating in time (which is due to an oscillatory behaviour in time), one can show that

h(t) ∼ ε3/2.

Based on this observation, we will prove that

a(t) ∼ ε2, ω(t) ∼ ε2, PS(h) ∼ ε3, PM(h) ∼ ε3/2. (3.43)

In the following subsections, we will prove the existence ofh(y, t) by proving a
priori bounds and using its local existence. It is also possible to prove existence by a
contraction mapping argument, as we will do in Sect. 4 for the wave operator.

3.5. Initial value and equations onS.

3.5.1. Initial value. Recall that the initial datum is given by

ψ0(x) =
[
Q(x)+ hε,0 (x)

]
eiv0x.

The coordinates of the initial valuehε,0 in theS direction can be calculated:( 0
Q

) : α(0) = κ1(Imhε,0, 0),( ∇Q
0

) : β(0) = κ2(Rehε,0, yQ),( 0
yQ

) : γ (0) = κ2(Imhε,0,∇Q),(
0
0

) : δ(0) = κ1(Rehε,0,Q).

By our assumption onhε,0, these initial values are of orderε3/2, which is too large for our
purpose. They can be made smaller by introducing suitable normalization conventions.

We first replaceQ byQ∗ = Q‖ψ0‖2, with ‖Q∗‖L2 = ‖ψ0‖L2. We then defineh1 by
the equation

ψ0(x) =
[
Q(x)+ hε,0 (x)

]
eiv0x = [Q∗ (x)+ h1 (x)

]
eiv0x.
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From the assumption‖Q∗‖2 = ‖ψ0‖2, we have

2(Q∗,Reh1) = −‖h1‖2.

Next, we want to chooser∗, v∗, θ∗, and write

ψ0(x) =
[
Q∗
(
x − r∗)+ h∗ (x − r∗)] eiv∗(x−r∗)+iθ∗ , (3.44)

so thatPSh∗ is essentially zero. Notice thath∗ is determined once we have chosenr∗, v∗
andθ∗: As a function ofy = x − r∗,

h∗(y) = [Q∗ (y + r∗)+ h1
(
y + r∗)] ei[v0(y+r∗)−v∗y−θ∗] −Q∗ (y) .

The leading term ofh∗ is given by (we will chooser∗ ∼ 0, v∗ ∼ v0 andθ∗ ∼ v0r
∗)

h∗(y) ∼ h1 (y)+Q∗ (y)
[
i(v0 − v∗)y + i(v0r

∗ − θ∗)]+ r∗ · ∇Q∗ (y) .
We can now calculate the initial value ofh∗ along theS direction (w.r.t.Q∗) as before.
The conclusion is( 0

Q

) : α∗ ∼ κ1
(
Imh1, 0

∗) +κ1(v0r
∗ − θ∗) (Q∗, 0∗) ,( ∇Q

0

) : β∗ ∼ κ2
(
Reh1, yQ

∗)+κ2
∑
kr
∗
k

(∇kQ∗, yQ∗) ,( 0
yQ

) : γ ∗ ∼ κ2
(
Imh1,∇Q∗

)+κ2(v0 − v∗)
(
Q∗,∇Q∗) ,(

0
0

) : δ∗ ∼ κ1
(
Reh1,Q

∗) .
Since the initial valuehε,0 is of orderε3/2, h1 is of the same order and we can choose
v0r

∗ − θ∗, r∗ andv0− v∗ of orderε3/2 such thatα∗, β∗ andγ ∗ vanish to leading order.
It is easy to check that the next order is bounded byε3. Furthermore,δ∗ is of orderε3

as well, thanks to the relation 2(Q∗,Reh1) = −‖h1‖2.
In the remaining part of this section, we will prove Theorem 1.1 withψ0 of the

form (3.44), andPSh∗ ∼ ε3. The initial values ofr(0), v(0), andθ(0) are defined
correspondingly. Notice that, by the assumption of the Theorem, (3.12) is satisfied by
Q∗. After this case is proved, the statement in the theorem, withQ = QN0, can be
obtained by definingh as

h(y, t) = ψ(x, t)e−iθ −QN0(y)

= (ψe−iθ −Q∗)+ (Q∗ −QN0)

= h∗(y, t)+ (Q∗ −QN0) = O(ε3/2).

From now on, we may and will drop the superscript∗ and assume∥∥PShε,0∥∥ ≤ Cc0ε
3, (3.45)

whereε is sufficiently small:ε ≤ ε−1, with ε−1 andC depending only on the initial
setting (H,N0,Q,...) but not onW or T . Equation (3.45) will be used in (3.52) below.

We note that the smallness ofc0 is only used to find a suitableh∗(0). It is no longer
needed in the future and hencec0 is independent ofT andW . Also note that we may
assumehε,0 ≤ c0ε

1+σ for σ ∈ (0,1/2]. Then we replaceε3/2, in the above argument, by
ε1+σ , and we get a similar conclusion, with (3.45) replaced by

∥∥PShε,0∥∥ ≤ Cc0ε
2+2σ .
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3.5.2. Equations onS. From now on,C denotes a constant which may depend on the
quantities (�,Q...), but notonW or T .

Recall that we want to setα̇ = 0 andγ̇ = 0 in (3.37) and (3.39), which yield equations
for a andω. From the definition ofG and the inner product relations(xQ,0) = 0 and
κ1 = 1/(Q,0), we have

κ1(ImG,0) = −ω − κ1(G2, 0),

where

G2 = /0Q+/Reh+ ReF(h). (3.46)

Similarly, from(Q,∇Q) = 0 andκ2 = 1/(xjQ, ∂jQ), we have

κ2(ImG,∇Q) = −a − κ2(G2,∇Q).
Therefore, in order to havėα = 0 andγ̇ = 0, it suffices to set

ω = −δ − κ1(G2, 0),

a = −κ2(G2,∇Q). (3.47)

With this choice ofa andω, we haveα(t) = α(0), γ (t) = γ (0); β(t) andδ(t) are
defined by solving the ODEs (3.38) and (3.40), i.e.,

δ(t) =
∫ t

0
κ1(ReG(s),Q)ds + δ(0), (3.48)

β(t) =
∫ t

0
κ2(ReG(s), yQ)ds − γ (0)t + β(0). (3.49)

qLet

Cw = 1+ ‖W‖W3,∞ .

Then|/0(x, t)| ≤ CCwε2|y|2, (cf. (3.20)). Define

ζ(t) := |a(t)| + |ω(t)| + ε1/2 ‖h(t)‖H1 + Cwε2.

(We would like to have thatζ(t) = O(ε2) for 0 ≤ t ≤ T ε−1.) In the following we work
in the time range[0, t1] where

ζ(t) ≤ C∗ε2, with ε ≤ ε0 ≤ (C∗ + T + 100)−2 (3.50)

holds. HereC∗ > Cw is a (large) constant to be determined later. Equation (3.50) is
true for t = 0 if C∗ is sufficiently large with respect toc0. Moreover, ifζ(s) < C∗ε2

for somes < T ε−1, then (3.50) holds for a small time interval[s, s + δs] by a local
wellposedness result. Our goal is to show that Eq. (3.50) holds for 0≤ t ≤ T ε−1, by
requiringε0 sufficiently small. Our strategy is to show that, indeed,ζ(t) ≤ 1

2C∗ε
2 if

(3.50) holds.A local wellposedness result then guarantees that (3.50) holds for the whole
time range.

The quantitiesω anda are defined in terms ofG2 in (3.47), and recall the definition
ofG2, Eq. (3.46). Note that/0Q is the leading term inG2. In their definitions, the main
term comes from/0Q, and we have

|(/0Q,0)| + |(/0Q,∇Q)| ≤ CCwε2.
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Also

|(/(t)Reh(t), 0)| + |(/(t)Reh(t),∇Q)| ≤ C(Cwε2+ |a(t)| + |ω(t)|) ‖h‖2

≤ Cε−1/2ζ(t)2.

From the assumption (1.27) on�, we have for a generalφ ∈ H 1,∥∥∥(� ∗ |φ|2)φ∥∥∥
H1
≤
∥∥∥� ∗ |φ|2∥∥∥

L∞
· ‖φ‖H1 +

∥∥∥(∇�) ∗ |φ|2∥∥∥
L∞
· ‖φ‖L2 .

From the Young inequality, we have∥∥∥� ∗ |φ|2∥∥∥
L∞
≤ ‖�‖L∞

∥∥∥|φ|2∥∥∥
L1
= ‖�‖L∞ ‖φ‖2

L2 .

Similarly, we can bound the term with� replaced by∇�. Thus we have proved that

‖F(φ)‖H1 ≤ C ‖φ‖2
H1 + C ‖φ‖3

H1

for some constant depending on�. Hence we can bound(F (h(t)), 0)and(F (h(t)),∇Q)
by

|(F (h(t)), 0)| + |(F (h(t)),∇Q)| ≤ C ‖h‖2
H1 + C ‖h‖3

H1 ≤ Cε−1ζ(t)2.

Under assumption (3.50), we have thus proved that

|ω(t)| + |a(t)| ≤ CCwε2+ Cε−1ζ(t)2. (3.51)

To estimateβ andδ, we note that

ReG = (/0 + ay + ω)Imh+ ImF(h).

Since we are only interested in the inner products of ReG with Q or yQ, andQ has
exponential decay, we can treaty to be of order one. Thus we have the bound

|β(t)| + |δ(t)| ≤ Cc0(T + 1)ε3+
∫ t

0
dsε−1ζ(s)2, (3.52)

where we have used (3.45) andεt ≤ T .

3.6. Modified linear operator onM. It is important to observe that/ is not bounded.
In fact,

/ =W(εx)−W(εr)− εy∇W(εr)+ ay + ω = O
(
ε2(y2+ 1)

)
(3.53)

= O (1+ ε|y|) , (3.54)

depending on whether we use Taylor expansion. In either case/ is not bounded. This
makes the term−i/h in the nonlinear termG hard to control, although the term−i/Q
stays fine sinceQ is localized. By a finite propagation speed estimate we will see that
/ is of order 1. However,−i/h still cannot be considered an error term. To overcome
this difficulty, we will include this term in the linear operator.
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Explicitly, Eq. (3.41) forhM can be rewritten as

∂thM = (L+ PM 1
i
/)hM + PMG̃, (3.55)

G̃ = −i/(Q+ hS)− iF (h).
Hence we must consider the solution propagatorP(s, t) which solves the following
problem: Ifu(t) = P(s, t)φ, thenu is a solution of the equation

∂tu(t) = (L+ PM 1
i
/)u(t), u(s) = φ.

We note that the operatorL + PM 1
i
/ leavesM andS invariant; but we will primarily

considerP(s, t) onM.
Now the equation forhM can be written as

hM(t) =
∫ t

0
P(s, t)PMG̃(s)ds + P(0, t)hM(0). (3.56)

We decomposePMG̃ into the sum of a main part,φ(s), and a remainder,PMG3(s),
where

φ(s) = PM(−i/(s)Q) = PM(−i/0(s)Q), G3 = −i/hS − iF (h).
The following lemma provides a basic estimate on the propagatorP(s, t).

Lemma 3.7.Assume(3.50)is true for0 ≤ t ≤ T ε−1. For φ ∈ M,

‖P(s, t)φ‖H1 ≤ C10‖φ‖H1

for 0 ≤ s ≤ t ≤ T ε−1, whereC10 = eCCwT is independent ofε.

We shall prove this lemma in the next subsection. Assuming this lemma and recalling
thatG3(s) is of orderh2+ h3, we can bound the contribution ofG3(s) to hM by∥∥∥∥∫ t

0
P(s, t)PMG3(s)ds

∥∥∥∥
H1
≤ CC10

∫ t

0
ε−1ζ(s)2ds.

The key observation is the following lemma, which takes into account cancellations
in the time integration.

Lemma 3.8 (Cancellation).Assume(3.50)is true for0 ≤ t ≤ T ε−1. Letφ ∈ M ∩X3.
For 1( t ≤ T ε−1, we have that∥∥∥∥∫ t

0
P(s, t)φds

∥∥∥∥
H1
≤ C12t

1/2 ‖φ‖X3

for a constantC12 = C12(W, T ) independent ofε. Furthermore, forφ(t) : [0, T ε−1] →
M ∩X3,∥∥∥∥∫ t

0
P(s, t)φ(t)ds

∥∥∥∥
H1
≤ C12t

1/2 sup
s
‖φ(s)‖X3

+ C12t sup
|s−σ |≤t1/2

‖φ(s)− φ(σ)‖H1 .

(3.57)

The spaceX3 has been defined in(3.34).
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We also claim the following bounds on the main termφ(s) = PM(−i/0(s)Q),

‖φ(s)‖X3
≤ CCwε2,

‖φ(s)− φ(σ)‖H1 ≤ CCwε3|s − σ |. (3.58)

We will prove the lemma and the claim in next subsection.
Assuming Lemma 3.8 and the claim, we get∥∥∥∥∫ t

0
P(s, t)PM(−i/0(s)Q)ds

∥∥∥∥
H1
≤ C12t

1/2CCwε
2+ C12tCCwε

3t1/2 ≤ C13ε
3/2,

whereC13 = CC12Cw(T + 1)3/2. Hence, by (3.56),hM(t) is bounded by

‖hM(t)‖H1 ≤ C13ε
3/2+ CC10

∫ t

0
ε−1ζ(s)2ds + Cc0ε

3/2. (3.59)

Recall thatζ(t) = |a(t)| + |ω(t)| + ε1/2 ‖h(t)‖H1. Then we can combine all these
bounds, (3.51), (3.52), and (3.59), to obtain the following estimate:

ζ(t) ≤ C(Cw + c0(1+ ε1/2T )+ C13)ε
2+ Cε−1ζ 2(t)+ CC10

∫ t

0
ε−1ζ(s)2ds

≤ Cε2(Cw + c0(1+ ε1/2T )+ C13+ C10C
2∗ε(1+ T ))

≤ Cε2C14, whereC14 = Cw + 2c0 + C13+ 1,

if we requireε1/2T ≤ 1 andC10C
2∗ε(1+ T ) < 1, in addition to assumption (3.50). We

now choose

C∗ = 2CC14

and thenε0 such that

ε0 ≤ (C∗ + 100)−2, ε
1/2
0 T ≤ 1, C10C

2∗ε0(1+ T ) < 1.

With these choices, we have proven that

ζ(t) ≤ 1

2
C∗ε2 (3.60)

under assumption (3.50) thatζ(t) ≤ C∗ε2. Suppose that[0, t1] is the maximal time
interval such that (3.50) holds andt1 < T ε−1. Then the equality must hold att = t1 by
local existence and continuity, andζ(t)must be slightly less thanC∗ε2 for somet < t1.
This is a contradiction to (3.60) and hence (3.50) holds true for allt ≤ T ε−1.
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3.7. Proofs of lemmas.

3.7.1. Proof of Lemma 3.7.Here we prove that the flow given byP(s, t) is bounded in
M:

Proof. Let u(t) = P(s, t)φ ∈ M, and

f (t) = Im(Lu(t), u(t)) ≥ 0.

Recall the second assertion of Lemma 3.4: It implies thatf̂ (t) = Im(Lg(t), g(t)),
with g(t) := etLφ, is constant. We propose thatf (t) does not grow int very fast, for
s, t ∈ (0, T ε−1). More precisely, we will prove that

d

dt
f (t) ≤ Cεf (t),

which impliesf (t) ≤ Cf (s), and hence Lemma 4.7 follows.
We recall the third assertion of Lemma 3.4. In our case,∂tu = Lu+PM 1

i
/u, hence

d

dt
f (t)/2= Im(Lu, PM 1

i
/u) = Im(Lu,−i/u)− Im(Lu, PS(−i/u))

= Im
∫

1

2
∇ū(∇/)u+O(ε2 ‖u‖2

2)− Im(Lu, PS(−i/u)) .

If {ej } and {ej } denote dual bases ofS, then PS(−i/u) = ∑(ej ,−i/u)ej =∑
(i/ej , u)ej . Hence‖PS(−i/u)‖H1 ≤ Cε2 ‖u‖L2, and

Im(Lu, PS(−i/u)) ≤ C ‖u‖H1 · ‖PS(−i/u)‖H1 ≤ Cε2 ‖u‖2
H1 .

Since‖∇/‖∞ = ‖ε∇W(εx)− ε∇W(εr)+ a‖∞ ≤ 2Cwε + C∗ε2, (with noy depen-
dence), the term Im

∫ 1
2∇ū(∇/)u dominates, and

d

dt
f (t) ≤ Im

∫
∇ū(∇/)u+ Cε2 ‖u‖2

H1 ≤ (2Cwε + Cζ(t)) ‖u‖2
H1 ≤ CCwεf.

The last inequality follows from (3.50) and Lemma 3.3. Hence

f (t) ≤ eCCwεtf (0) ≤ eCCwT f (0)
for t ≤ T ε−1. &'

3.7.2. Proof of Lemma 3.8.Next we prove the key cancellation lemma. The cancellation
is due to oscillatory behavior in time. We first prove a variant of Lemma 3.8 for the
original flow etL, which will help us to visualize the oscillation. Then we will prove a
weaker result for the modified flow in Lemma 3.8.

Supposeρ(t) ∈ M satisfiesρ(t) = O(1) and d
dt
ρ(t) = O(ε) in H 1. (One such

example isε−2/0(t)Q.) Then there is aC > 0 such that∥∥∥∥∫ t

0
e(t−s)Lρ(s)ds

∥∥∥∥
H1
≤ C(1+ εt). (3.61)
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By Lemma 3.5,L−1 is defined onM and commutes withe(t−s)L. Thus∫ t

0
e(t−s)Lρ(s)ds =

∫ t

0

d

ds

(
−e(t−s)L

)
L−1ρ(s)ds

=
[
−e(t−s)LL−1ρ(s)

]t
0
+
∫ t

0
e(t−s)LL−1 d

ds
ρ(s)ds

= O(1)+
∫ t

0
e(t−s)LO(ε)ds

= O(1)+O(εt), in H 1.

Here we have used Lemma 3.3. (Notice the analogy with the integration ofeit , which
does not increase the order ofeit because of its oscillation.)

Now we prove the lemma.

Proof. Chooseτ ∼ t1/2 " 1. We have∫ t

0
P(s, t)φds =

∑
j

∫ (j+1)τ

jτ

P(s, t)φds

=
∑
j

P((j + 1)τ, t)
∫ (j+1)τ

jτ

P(s, (j + 1)τ )φds.

We write each summand as∫ (j+1)τ

jτ

P(s, (j + 1)τ )φds ≡ (I)

=
∫ (j+1)τ

jτ

e((j+1)τ−s)Lφds

+
∫ (j+1)τ

jτ

∫ (j+1)τ

s

P(σ, (j + 1)τ )PM 1
i
/(σ )e(σ−s)Lφdσds

≡ (II )+ (III ).
We have

‖(II )‖H1 ≤ C ‖φ‖H1 (1+ ετ) ≤ C ‖φ‖H1

by (3.61) and (3.50). For (III), sinceφ is localized, we expect it is not affected much by
the large potential inPM 1

i
/(σ ) for largey. To prove this, we use the finite propagation

speed estimate (3.35): Fors ∈ (0, τ ),∥∥∥PM 1
i
/(·)esLφ

∥∥∥
H1
≤ C
∥∥∥[Cwε2y2+ C∗ε2(1+ |y|)

]
esLφ
∥∥∥
H1

≤ CCwε2
{∥∥∥(1+ y2)φ

∥∥∥
H1
+ (1+ s2) ‖φ‖H3

}
+ CC∗ε2 {‖(1+ |y|)φ‖H1 + (1+ s) ‖φ‖H2

}
.
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Hence

‖III ‖H1 ≤ CC10ε
2τ2
{
(Cw + C∗)

∥∥∥(1+ y2)φ

∥∥∥
H1
+ (Cwτ2+ C∗τ) ‖φ‖H3

}
≤ CC10Cw ‖φ‖X3

,

sinceτ2ε < 2 andε1/2C∗ ≤ 1, see (3.50).
Therefore‖(I )‖H1 ≤ C11‖φ‖X3

with C11 = C + CC10Cw and∥∥∥∥∫ t

0
P(s, t)φds

∥∥∥∥
H1
≤
∑
j

C10C11‖φ‖X3
≤ CC10C11t

1/2 ‖φ‖X3
.

Next, for a suitably localized functionφ(t) ∈ M ∩X3,∥∥∥∥∫ t

0
P(s, t)φ(t)ds

∥∥∥∥
H1

=
∥∥∥∥∥∥
∑
j

P((j + 1)τ, t)
∫ (j+1)τ

jτ

P(s, (j + 1)τ )
{[
φ(jτ)

]
+
[
φ(s)− φ(jτ)

]}
ds

∥∥∥∥∥∥
H1

≤
∑
j

C10C11‖φ(jτ)‖X3
+
∑
j

C2
10τ sup

|s−σ |≤τ
‖φ(s)− φ(σ)‖H1

≤ C12t
1/2 sup

s
‖φ(s)‖X3

+ C12t sup
|s−σ |≤t1/2

‖φ(s)− φ(σ)‖H1

with C12 = CC2
11 = C(1+ CweCCwT )2. &'

This estimate is mainly used forφ(s) = PM(−i/0(s)Q).

3.7.3. Proof of claim(3.58). We rewrite/0 in the form

/0(x, t) = W(εr + εy)−W(εr)− ∇W(εr) · εy
=
∫ 1

0
{∇W(εr + uεy) · εy} du− ∇W(εr) · εy

=
∫ 1

0

∫ 1

0

{
∇2W(εr + vuεy) : εy ⊗ uεy

}
dvdu.

From the first line we have that
∥∥∇3/0

∥∥∞ ≤ ε3
∥∥∇3W

∥∥∞. From the third line we obtain∥∥/0e
−ν|y|∥∥∞ ≤ ε2

∥∥∇2W
∥∥∞. Hence, forφ(s) = PM(−i/0(s)Q), we have that

‖φ(s)‖X3 ≤ C
∥∥∥∇3/0

∥∥∥∞ + C ∥∥∥/0e
−ν|y|
∥∥∥∞ ≤ C ‖W‖W3,∞ ε2,

where the factore−ν|y| is due to the exponential decay ofQ. Furthermore, since∣∣∣∇2W(εr(s)+ vuεy)− ∇2W(εr(σ )+ vuεy)
∣∣∣ ≤ sup|∇3W | · ε|r(s)− r(σ )|

and|r(s)− r(σ )| ≤ CC∗|s − σ |, (note|v(t)| ≤ CC∗), we conclude that

‖φ(s)− φ(σ)‖L2 ≤ C
∥∥∥∇3W

∥∥∥∞ C∗ε3|s − σ |.

By rewriting ∇/0(x, t) =
∫ 1

0

{∇2W(εr(t)+ uεy) · ε2y
}
du, we get the same bound

for ‖∇[φ(s)− φ(σ)]‖L2.
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4. Møller Wave Operator

In this section we prove Theorem 1.2. We assume for simplicity that the space dimension
n = 3. All arguments can be modified easily ton > 3.

In the main argument of this section, we assumev0 = 0 and work with the profile
ξ∞ = has,0, with ξ̂∞(0) = 0. At the end of this section we deal with generalv0 by
applying a Galilei transform. In either case, we havehas,0(x) = ξ∞(x)eiv0·x , and

ĥas,0(v0) = ξ̂∞(0) = 0.

4.1. Dynamical linearization.We recall the Hartree equation

i∂tψ = −1

2
9ψ − (� ∗ |ψ |2)ψ,

and the equation for the ground stateQ,

−1

2
9Q− (� ∗Q2)Q = EQ.

We consider solutions of the Hartree equation of the form

ψ = (Q(y)+ h(y, t))eiθ(y,t),
where

y = x − r(t), ṙ(t) = v(t), v̇(t) = a(t),

θ(y, t) = v(t)y − Et + θ1(t), θ1(t) = −
∫ ∞
t

(
1
2v

2+ ω
)
ds .

The argument here is the same as that in Subsect. 4.2, withW ≡ 0. We obtain the
equation forh:

∂th = Lh+G(h), (4.1)

where the linear part

L = 1

i

{−1
29− E + A

}
,

A(h) = −(� ∗Q2)h−Q(� ∗ (Q(h+ h̄))),
and the nonlinear part

G = 1

i
{/(Q+ h)+ F(h)} , / = ω + ay,

F (h) = −(� ∗ |h|2)(Q+ h)− (� ∗ [Q(h+ h̄)])h.
We take projections of Eq. (4.1) ontoS andM. The equations onS are( 0

Q

) : α̇ = −δ+κ1(ImG,0),( ∇Q
0

) : β̇ = −γ+κ2(ReG, yQ),( 0
yQ

) : γ̇ = κ2(ImG,∇Q),(
0
0

) : δ̇ = κ1(ReG,Q).
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(See Proposition 4.2.) The equation onM is

∂thM = LhM + PMG(h).
Next we consider the wave operator. Given a profileξ∞ at t = ∞, we hope to find a

functionh(y, t) such that

h(y, t)− etL0ξ∞ → 0,

ast →∞, in a sense to be made more precise. Here

L0 = −i
{−1

29− E
}

so thatL = L0 − iA. Our strategy is to write

h(·, t) = ξ(·, t)+ g(·, t),
whereξ(t) is the main term, which satisfies alinear equation and has the desired profile
explicitly; g(t) is an error and converges to zero, ast →∞, in a suitable sense.

In view of the equation forh, we would likeξ to satisfy the linear equation

ξ(t) ∈ M, ∂tξ = Lξ + PMJξ (4.2)

with ξ(t)→ etL0ξ∞, ast →∞. The operatorJ is a modification of the multiplication
operator−i/ and is to be defined later in (4.9).

Define the propagator̃P(s, t) such thatu(t) := P̃(s, t)φ solves the equation

∂tu = Lu+ PMJu, u(s) = φ ∈ M.
Clearly, P̃(s, t) leaves the spaceM invariant so thatu ∈ M. Note thatt < s in this
section, cf. Sect. 3. We defineξ to be given by

ξ(t) = PMe
tL0ξ∞ −

∫ ∞
t

PM P̃(s, t)PM [1
i
A+ PMJ(s)]esL0ξ∞ds. (4.3)

We have thatξ ∈ M, by definition, and thatξ satisfies (4.2) (differentiate (4.3) and use
that[L, PM ] = 0!). We shall prove later on that

ξ(t)→ etL0ξ∞ in L2, ast →∞, (4.4)

under the assumption

ξ̂∞(0) = 0. (4.5)

The potential/ = ω + ay is unbounded and complicates the analysis. One may
prove certain finite propagation speed estimates, so thaty is effectively cut off, as in
Sect. 3. Alternatively, we can modify the form ofψ so that the unbounded potential is
cut off. We shall follow the second option in this section. Specifically, we would likeh

not to “see” the fast phase changevy in θ wheny is large. Letχ(·) be a smooth cutoff
function withχ(x) = 1, for |x| ≤ 1, andχ(x) = 0, for |x| ≥ 2. We considerψ of the
form:

ψ = Q(y)eiθ + h(y, t)ei(χvy−Et+θ1) =
(
Q+ µ−1h

)
eiθ ,
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whereθ = vy − Et + θ1, µ = exp(i(1− χ)vy), y = x − r(t) andχ = χ(C∗y/t),
(C∗ > 0 is a constant to be chosen later). Thenµ−1h satisfies (4.1)

∂t (µ
−1h) = L(µ−1h)− i/(Q+ µ−1h)− iF (µ−1h). (4.6)

Nowµ∂t (µ−1h) = ∂th+ h∂t (−i(1− χ)vy) and∂t (−i(1− χ)vy) =: −i(ay + J (1)),
where

J (1) =
[
−χay − (1− χ)v2+ (∇χ)(vt + y)t−2vy

]
.

AlsoµL(µ−1h) = Lh+ µ[L, µ−1]h. Explicit computation gives

µ∇µ−1 = i
[
−(1− χ)v + (∇χ)t−1vy

]
= iJ (2),

µ9µ−1 = −(J (2))2+ i∇ · J (2), ∇ · J (2) = 2(∇χ) · t−1v + (9χ)t−2vy.

Recall thatL = −i(−9/2− E + A). Thus,

µ[L, µ−1]h = iµ

2
[9,µ−1]h− iµ[A,µ−1]h

=
(
− i

2
(J (2))2− ∇ · J

(2)

2

)
h− J (2) · ∇h+ J (3)h,

where

J (3)h := −iµ[A,µ−1]h = iµQ� ∗ [Q(µ−1h+ µh̄)].− iQ� ∗ [Q(h+ h̄)]
This yields the following equation forh:

∂th = Lh+ Jh− i/µQ− iµF(µ−1h), (4.7)

where

Jh =
(
−iω + iJ (1) − i

2
(J (2))2− ∇ · J

(2)

2

)
h− J (2) · ∇h+ J (3)h.

Notice thatJ depends onω, a andv with v̇(t) = a(t). Throughout the rest of this section
we assume that there is a constantC∗ such that

t3|a(t)| + t2|ω(t)| ≤ C∗. (4.8)

We shall prove later on that this assumption holds. Under this assumption, one finds that

‖J (1)‖∞ ≤ O(t−2), ‖J (2)‖∞ ≤ O(t−2),

‖∇ · J (2)‖∞ ≤ O(t−3), ‖J (3)‖∞ ≤ O(e−t ).´
We write

J = Ja + Jb · ∇ + Jc, (4.9)
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with

Ja = i[−ω − χay + (∇χ)t−2(vy)y],
Jb = −J (2) = −

[
−(1− χ)v + (∇χ)t−1vy

]
,

Jc = −i(1− χ)v2+ i(∇χ)vt−1(vy)− i

2
(J (2))2− ∇ · J

(2)

2
+ J (3).

Note thatJb is real. Furthermore, the only appearance ofµ in J is in J (3), which is
exponentially small. Assuming the bound (4.8) ona andω, we can check the following
bounds onJ :

‖Ja‖∞ + ‖Jb‖∞ ≤ O(t−2), ‖Jc‖∞ ≤ O(t−3). (4.10)

OnceJ (t) is defined, so isξ(t) by (4.2). We can now use (4.7) and (4.2) to obtain an
equation forg := h− ξ :

∂tg = (L+ J )g + PSJξ − i/µQ− iµF(µ−1(ξ + g)). (4.11)

Let

G(1)µ := JgS − i/(µ− 1)Q− iµF(µ−1(ξ + g)). (4.12)

Since−i/Q ∈ S, we have thatPMG = PMJgM + PMG(1)µ , and the equation forg on
M is

gM(t) = −
∫ ∞
t

P̃(s, t)PMG
(1)
µ ds, (4.13)

Let

G(2)µ := Jg + PSJξ − i/(µ− 1)Q− iµF(µ−1(ξ + g)). (4.14)

ThenPSG = −i/Q+ PSG(2)µ , and the equations onS are

( 0
Q

) : α̇ = −δ − ω+κ1(ImG
(2)
µ , 0),( ∇Q

0

) : β̇ = −γ +κ2(ReG(2)µ , yQ), (4.15)( 0
yQ

) : γ̇ = −a+κ2(ImG
(2)
µ ,∇Q),(

0
0

) : δ̇ = κ1(ReG(2)µ ,Q).

Here we have used thatκ1(−/Q,0) = −ω, κ2(−/Q,∇Q) = −a.



Point-Particle (Newtonian) Limit of Non-Linear Hartree Equation 265

4.2. Bounds on the Propagator̃P(s, t). The following lemma shows that̃P(s, t) con-
serves theH 1-norm inM.

Lemma 4.1.Assume the bound(4.8). TheñP(s, t) is bounded inM ∩Hk, k = 1,2,3.
More precisely, there is a constantC such that for anyC∗ (the bound in(4.8)), any
T ≥ 1, and anyφ ∈ M ∩Hk, we have∥∥P̃(s, t)φ∥∥

Hk ≤ eCC∗/T ‖φ‖Hk , k = 1,2,3,

provided thats, t ≥ T . (The largerT is, the better the estimate.)

Proof. We first consider the casek = 1. Assumeu(t) ∈ M, ∂tu(t) = Lu + PMJ(t)u,
u(s) = φ. Let f (t) = Im(Lu, u) ≥ 0. Then

d

2dt
f (t) = Im(Lu, PMJu) = Im(Lu, Ju)− Im(Lu, PSJu).

Here we have used Lemma 4.3. Note|(Lu, PSJu)| ≤ CC∗t−2 ‖u‖2
L2 and Im(Lu, Ju) =

CRe(9u, Jb · ∇u)+O(t−2) ‖u‖2
H1, also, (recallJb is real)

2Re(9u, Jb · ∇u) = −
∫
Jb · ∇|∇u|2− 2Re

∫
(∇ū · ∇)Jb · ∇u

=
∫
(∇ · Jb)|∇u|2− 2Re

∫
(∇ū · ∇)Jb · ∇u ≤ CC∗t−3 ‖u‖2

H1 . (4.16)

Hence we have ∣∣∣∣ ddt f (t)
∣∣∣∣ ≤ CC∗t−2 ‖u‖2

H1 ≤ CC∗t−2f (t). (4.17)

Hence we get ∣∣[ln f ]ts
∣∣ ≤ −CC∗ [t−1

]t
s
≤ CC∗T −1.

In particular,

f (t)

f (s)
,
f (s)

f (t)
≤ eCC∗T −1

.

Now we consider the casek = 3. The casek = 2 follows by interpolation. Letu(t)
be as above andw = Lu ∈ M. We have

∂tw = Lw + LPMJu = Lw + Jw + [L, J ]u− LPSJu.
This time we letf3(t) = Im(Lw,w) and have

d

2dt
f3(t) = Im(Lw, Jw + [L, J ]u− LPSJu).

We have |(Lw,LPSJu)| ≤ CC∗t−2 ‖w‖2 ‖u‖2, and we already showed
|Im(Lw, Jw)| ≤ CC∗t−2 ‖w‖2

H1 when we consideredf (t), see especially (4.16). Fi-
nally

|Im(Lw, [L, J ]u)| = |Im(Lw,−i(∇Jb) · ∇u+O(t−2)u)|
≤ CC∗t−3 ‖w‖H1 ‖u‖H2 + CC∗t−2 ‖w‖H1 ‖u‖H1 ,
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by integration by parts. Since‖w‖2
H1 is comparable withf3, we conclude∣∣∣∣ ddt f3(t)

∣∣∣∣ ≤ CC∗t−2
[
f3(t)+

√
f3(t) ‖u(t)‖H1

]
≤ CC∗t−2 [f3(t)+ f (t)] .

Together with (4.17), we see(f + f3) satisfies the same inequality in (4.17), and hence
the same bound. Since(f + f3) ∼ ‖u(t)‖2

H3, the lemma is proved.&'
Remark.Due to the spatial cut-off in our Eq. (4.7), we do not need to prove a finite
speed estimate for̃P, (as we did in Lemma 4.6 forP), in order to prove the above lemma.

4.3. Estimates ofξ . We now estimateξ precisely. Recall (4.2) and (4.3), the equations
of ξ . Our goal is to estimate the term− ∫∞

t
P̃(s, t)PM(

1
i
A+ PMJ(s))esL0ξ∞ds.

We need the following standard results on the free evolution.

Lemma 4.2 (Decay ofeit9/2).Letk > 0be a positive integer and assume∇mp ξ̂∞(0) = 0
for all non-negative integersm ≤ 2k − 2, then∣∣∣(∇nx eit9/2ξ∞) (x)∣∣∣

x=O(1) ≤
C

td/2+k

∫
(1+ |y|2k)|∇ny ξ∞(y)|dy, (4.18)

for any integern ≥ 0.

Proof. We first consider the casen = 0. Writer = i|x−y|2
2t . We have

(eit9/2ξ∞)(x) = 1

(2πit)d/2

∫
e
i|x−y|2

2t ξ∞(y)dy

= 1

(2πit)d/2

∫ {
1+ r + 1

2
r2+ · · · + 1

(k − 1)! r
k−1+O(rk)

}
ξ∞(y)dy.

Therefore, the conclusion of the lemma holds if∫
|x − y|2lξ∞(y)dy = 0 for all x, for all l < k,

which is true under the assumption of the lemma. For generaln, we take the derivative
first and then proceed as above. Note∇mp ̂(∇nx ξ∞)(0) = ∇mp (pnξ̂∞)(0) = 0 for all
m ≤ 2k − 2. &'

We now use that̃P(s, t) is bounded inH1 (Lemma 4.1) to have∥∥∥∥∫ ∞
t

P̃(s, t)PM
1

i
AesL0ξ∞ds

∥∥∥∥
H1
≤
∫ ∞
t

∥∥∥∥PM 1

i
AesL0ξ∞

∥∥∥∥
H1
ds .

From Lemma 4.2 withk = 1, the last term is bounded by∫ ∞
t

∥∥∥esL0ξ∞
∥∥∥
W1,∞(y∼1)

ds ≤
∫ ∞
t

s−5/2ds ≤ Ct−3/2.



Point-Particle (Newtonian) Limit of Non-Linear Hartree Equation 267

Notice that this is the only place we use assumption (4.5). Now we recallJ = Ja + Jb ·
∇ + Jc. Since‖Jc(s)‖∞ ≤ s−3, we have∥∥∥∥− ∫ ∞

t

P̃(s, t)PMJc(s)e
sL0ξ∞ds

∥∥∥∥
H1
≤
∫ ∞
t

Cs−3ds‖ξ∞‖H1 ≤ Ct−2‖ξ∞‖H1.

We now expand̃P(s, t) once more to get

−
∫ ∞
t

P̃(s, t)PM(Ja + Jb · ∇)(s)esL0ξ∞ds = ξJ + ξAJ + ξJJ ,

where

ξJ = −PM
∫ ∞
t

e(t−s)L0PM(Ja + Jb · ∇)(s)esL0ξ∞ds,

ξAJ =
∫ ∞
t

{∫ s

t

P̃(σ, t)PM
1

i
Ae(σ−s)L0dσ

}
PM(Ja + Jb · ∇)(s)esL0ξ∞ds,

ξJJ =
∫ ∞
t

{∫ s

t

P̃(σ, t)PMJ (s)e
(σ−s)L0dσ

}
PM(Ja + Jb · ∇)(s)esL0ξ∞ds.

Recall from J.-L. Journe, A. Soffer and C. D. Sogge [15],∥∥∥eis0H0V eis1H0

∥∥∥
(L1,L∞)

≤ C ‖V̂ ‖1

(s0 + s1)d/2 . (4.19)

Suppose that we can neglect the second projectionPM in the definition ofξJ . Since
Jb∇esL0 = Jbe

sL0∇, and we can writeJa = −iω+ Ja2, Jb = v + Jb2, whereJa2 and
Jb2 have compact supports and‖Ĵa2(s)‖L1(p)+‖Ĵb2(s)‖L1(p) = O(s−2), theL∞-norm
of the integrand ofξJ is bounded byCt−3/2s−2. Integrating ins we get

‖ξJ (t)‖L∞ ≤ Ct−3/2 ‖ξ∞‖W1,1 .

To handle thePM , we simply use thatPM = 1−PS . SincePS is a projection onto local
smooth functions, the same proof applies. We shall not repeat the argument to handle
the projectionPM later on.

We can also boundξJ (t) in theH 1 norm by brutal force as we deal withJc:

‖ξJ (t)‖H1 ≤ Ct−1 ‖ξ∞‖H2 ,

sinceξJ involves only free evolution.
We now use that̃P(s, t) is bounded inH1 to have

‖ξAJ (t)‖H1 ≤
∫ ∞
t

∫ s

t

∥∥∥Ae(σ−s)L0PM(Ja + Jb · ∇)(s)esL0ξ∞
∥∥∥
H1
dσds.

From the definition ofA, we have∥∥∥Ae(σ−s)L0PM(Ja + Jb · ∇)(s)esL0ξ∞
∥∥∥
H1

≤
∥∥∥e(σ−s)L0PM(Ja + Jb · ∇)(s)esL0ξ∞

∥∥∥
L∞

+
∥∥∥∇e(σ−s)L0PM(Ja + Jb · ∇)(s)esL0ξ∞

∥∥∥
L∞

.
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Again we use (4.19) to have∥∥∥e(σ−s)L0PM(Ja + Jb · ∇)(s)esL0ξ∞
∥∥∥
L∞
≤ σ−3/2s−2 ‖ξ∞‖W1,1 .

Since∇ ande(σ−s)L0 commute, we can bound the term with∇e(σ−s)L0 in the same way
by also using‖∇̂yJa2‖L1(p) + ‖∇̂yJb2‖L1(p) ≤ O(s−2). We conclude that

‖ξAJ (t)‖H1 ≤
∫ ∞
t

∫ s

t

σ−3/2s−2dσds ‖ξ∞‖W2,1 ≤ t−3/2 ‖ξ∞‖W2,1 . (4.20)

Finally, we can boundξJJ (t) by

‖ξJJ (t)‖H1 ≤
∫ ∞
t

∫ s

t

σ−2s−2dσds ‖ξ∞‖H3 ≤ t−2 ‖ξ∞‖H3 . (4.21)

Let ξ(t) = ξ (0)(t)+ξ (1)(t)+ξ (2)(t), whereξ (0)(t) = PMe
tL0ξ∞, ξ (1) = ξJ andξ (2)(t)

denotes the rest. Then we have proved that∥∥∥ξ (0)(t)∥∥∥
L∞
+
∥∥∥ξ (1)(t)∥∥∥

L∞
≤ Ct−3/2,∥∥∥ξ (1)(t)∥∥∥

H1
≤ Ct−1,

∥∥∥ξ (2)(t)∥∥∥
H1
≤ Ct−3/2,

(4.22)

with the constants depending onξ∞. In fact, tracking the proof we see that, since∇
commutes withesL0, we actually have∥∥∥ξ (0)(t)∥∥∥

W2,∞ +
∥∥∥ξ (1)(t)∥∥∥

W2,∞ ≤ Ct−3/2,∥∥∥ξ (1)(t)∥∥∥
H2
≤ Ct−1,

∥∥∥ξ (2)(t)∥∥∥
H2
≤ Ct−3/2.

(4.23)

Of course we need to use a stronger norm forξ∞. The following norm is sufficient:

‖ξ∞‖H4 + ‖ξ∞‖W3,1 + ‖ξ∞‖W2,1((1+x2)dx) ≤ C−1C∗ , (4.24)

whereC∗ is a small constant to be chosen in the next subsection.

4.4. Existence ofg. In this section we construct the solution via a contraction mapping
argument. After defining the map in Step 1, we show the following bounds in Step 2:

t2|ω(t)| + t3|a(t)| + t2 ‖g(t)‖H2 < C∗, (t > T ) (4.25)

provided that‖ξ∞‖ ≤ C−1C∗ with C∗ > 0 sufficiently small (see (4.24)) andT suffi-
ciently large. Finally in Step 3 we show that the contraction mapping converges in the
norm

t2|ω(t)| + t3|a(t)| + t2 ‖g(t)‖H1

in the ball t2|ω(t)| + t3|a(t)| + t2 ‖g(t)‖H2 < C∗. Notice that we use theH 1 norm
for g(t) in the contraction, which is weaker than theH 2 norm appearing in (4.25). Our
approach is certainly not the shortest. Once a certain apriori bound is established, we
can follow standard existence construction by taking weak limits. This will avoid the
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proof of the contraction completely. Our approach however provides more information
to the scattering operator.

STEP 1 We first define the map

(ω, a, g) −→ (ω�, a�, g�) (4.26)

with the conventiong�S = PSg
� andg�M = PMg

�, and so on. Recall thatJ (t) andξ(t),
defined by (4.9) and (4.3) respectively, depend onω anda. To solve the equation on
theS (4.15), we first solveβ andδ from (4.15). Since we plan to solve the equation by
iteration, we define (we thinkγ = 0)

δ�(t) = −
∫ ∞
t

κ1(ReG(2)µ (s),Q)ds , (4.27)

β�(t) = −
∫ ∞
t

κ2(ReG(2)µ (s), yQ)ds .

Instead of solving the equation forα andγ , we chooseω anda such thaṫα = γ̇ = 0.
Therefore, we defineω�, a� to be

ω� = −δ� + κ1(ImG
(2)
µ , 0), (4.28)

a� = κ2(ImG
(2)
µ ,∇Q).

With this choice, the component ofg� in theS direction is simply

g
�
S (t) = β�(t)

( ∇Q
0

)+ δ�(t) ( 00 ) .
Finally, the component on theM direction is given by

g
�
M(t) = −

∫ ∞
t

P̃(s, t)PMG
(1)
µ ds, (4.29)

whereG(1)µ is defined in (4.12). Note the definition of̃P(s, t) depends ona andω, so is
µ. Our next step is to prove this map is bounded in a certain norm.

STEP 2 Suppose that‖ξ∞‖ ≤ C−1C∗ (see (4.24)) and

t2|ω(t)| + t3|a(t)| + t2 ‖g(t)‖H2 < C∗. (4.30)

We will prove the following bound:

t2|ω�(t)| + t3|a�(t)| + t2
∥∥∥g�(t)∥∥∥

H2
< C∗/2 (4.31)

provided thatC∗ is sufficiently small. The last statement seems to be contradictory as
the norm is getting smaller after each iteration and we can drive the constant to zero.
But this is impossible as the constant on the estimate ofξ∞ remains unchanged. Indeed,
the right hand side of the last bound depends mainly on the constant appearing in the
estimate ofξ∞, i.e., in the inequality‖ξ∞‖ ≤ C−1C∗.

Sincea(t) satisfies (4.30) anda = v̇, v = ṙ, we have|v(t)| ≤ CC∗t−2 and|r(t)| ≤
CC∗t−1. We now estimate

∥∥µF(µ−1(ξ + g))∥∥
H2. By definition,

µF(µ−1h) = −
(
� ∗ |h|2

)
(µQ+ h)− 2

(
� ∗ [QRe(µ−1h)]

)
h.
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Recall the decomposition and the estimate forξ (4.23) from Subsect. 5.3. Writeh =
ξ + g = ξ (0) + ξ (1) + (ξ (2) + g). Because of the bound (1.27) on�,∥∥∥(� ∗ |h|2) (µQ+ h)∥∥∥

H2

≤
∥∥∥� ∗ |h|2∥∥∥

W2,∞ · ‖µQ+ h‖H2

≤ C
∥∥∥� ∗ |ξ (0) + ξ (1)|2∥∥∥

W2,∞ + C
∥∥∥� ∗ |ξ (2) + g|2∥∥∥

W2,∞

≤ C ‖�‖W2,1 ·
∥∥∥ξ (0) + ξ (1)∥∥∥2

W2,∞ + C ‖�‖W2,∞ ·
∥∥∥ξ (2) + g∥∥∥2

H2

≤ CC2∗ t−3.

Since
(
� ∗ [QRe(µ−1h)])h is a local term by the presence ofQ, using the bound (1.27)

on� we have∥∥∥(� ∗ [QRe(µ−1h)]
)
h

∥∥∥
H2
≤ C ‖h‖2

H2(y∼1) ≤ CC2∗ t−3.

We conclude that ∥∥∥µF(µ−1(ξ + g))
∥∥∥
H2
≤ CC2∗ t−3.

From the bound ofJ (4.10) and the assumption on the norm ofg (4.25), we have
‖JgS(t)‖H2 ≤ CC2∗ t−2−2. For anyf ∈ S, we also have

|(f, JgM)| ≤ CC∗t−2 ‖f ‖H1
‖gM‖L2 ≤ CC2∗ t−4 ‖f ‖H1

.

Also, |(f, PSJ ξ)| ≤ CC2∗ t−2−3/2. Finally−i/(µ − 1)Q is exponentially small int .
Hence we conclude that|(f,G(2)µ )| ≤ CC2∗ t−3 ‖f ‖. Thus

|β�(t)| + |δ�(t)| ≤ 1

8
C∗t−2, |ω�(t)| ≤ 1

8
C∗t−2,

|a�(t)| ≤ 1

8
C∗t−3,

∥∥∥g�S (t)∥∥∥
H2
≤ 1

8
C∗t−2,

provided thatC∗ is sufficiently small. One can also easily check that∥∥∥g�M(t)∥∥∥
H2
≤
∫ ∞
t

∥∥∥G(1)µ (s)

∥∥∥
H2
ds ≤

∫ ∞
t

CC2∗s−3ds ≤ 1

8
C∗t−2.

The claim (4.31) is proved.

STEP 3 Given two data(ω1, a1, g1) and(ω2, a2, g2)we denote byδ their differences:

δω = ω1− ω2, δa = a1− a2, δg = g1− g2, δg� = g
�
1 − g�2 , and so on. We also let

δ0 = sup
t

{
t2|δω(t)| + t3|δa(t)| + t2 ‖δg(t)‖H1

}
. (4.32)

Note: differenta(t) gives differentµ, (µ = ei(1−χ)vy), butχ is the same. Also, from the
definition ofJ , we have‖δJa(t)‖∞ + ‖δJb(t)‖∞ + ‖δJc(t)‖∞ ≤ Cδ0t

−2.
Our goal is to estimatet2|δω�(t)|+t3|δa�(t)|+t2 ∥∥δg�(t)∥∥

H1. Recall the definition
of ω�, a� andg� from (4.27), (4.28) and (4.29). In order to estimate the difference of
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ω�, a� from two initial data, we need to control the difference ofδG
(2)
µ := G

(2)
µ,1−G(2)µ,2,

whereG(2)µ,k := Jkgk − iµkF (µ
−1
k (ξk + gk)), k = 1,2. Hereµk, ξk andJk denote

the correspondingµ, ξ andJ , k = 1,2 and thus∂t ξk = (L + PMJk)ξk. We shall
first estimateδξ , thenδF = µ1F(µ

−1
1 (ξ1 + g1)) − µ2F(µ

−1
2 (ξ2 + g2)) and finally

δ(Jg) := J1g1− J2g2 andδ(J ξ) := J1ξ1− J2ξ2.
From the equation ofξ , δξ satisfies

∂tδξ = (L+ PMJ1)δξ + PM(δJ )ξ2.
Sinceδξ(t)→ 0 inH 1 ast →∞, (see (4.23)), we have

δξ = −
∫ ∞
t

P̃1(s, t)PM(δJ (s))ξ2(s)ds

in H 1. We now derive a bound onδξ . The last term can be decomposed into two parts
A+ B with

A := −
∫ ∞
t

P̃1(s, t)PM(δJ (s))PMe
sL0ξ∞ds,

B := −
∫ ∞
t

P̃1(s, t)PM(δJ (s))
{
ξ2(s)− PMesL0ξ∞

}
ds.

Since‖δJ (s)‖∞ ≤ Cδ0s
−2 and‖ξ2(s)−esL0ξ2‖H2 ≤ Cs−1 from (4.23), we can bound

B by

‖B‖H1 ≤
∫
Cδ0s

−2C∗s−1ds = CC∗δ0t
−2.

We can boundA exactly as in Subsect. 4.5. In other words, it can be written as a sum of
three terms satisfying (4.23). More precisely,A = A(0) + A(1) + A(2) and∥∥∥A(0)(t)∥∥∥

W2,∞ +
∥∥∥A(1)(t)∥∥∥

W2,∞ ≤ Cδ0t
−3/2,

∥∥∥A(1)(t)∥∥∥
H2
≤ Cδ0t

−1,

∥∥∥A(2)(t)∥∥∥
H2
≤ Cδ0t

−3/2.

(In fact, A(0) = 0.) Notice that the constants on the right hand side now have aδ0
factor. In particular, we can writeδξ = (δξ)a + (δξ)b with (δξ)a = A(0) + A(1) and
(δξ)b = A(2) + B such that

‖(δξ)a(t)‖W1,∞ ≤ Cδ0t
−3/2, ‖(δξ)b(t)‖H1 ≤ Cδ0t

−3/2. (4.33)

From the definition ofδF , we can boundδF in terms ofδξ and δg. (Note that
(µ1−µ2)Q is exponentially small int .) The previous bound onδξ and the bound (4.32)
on δg thus yields that

‖δF‖H1 ≤ CC∗δ0t
−3.

Also, δ(Jg) = (δJ )g1+ J2(δg). Thus, for anyf ∈ S with ‖f ‖H1 ≤ 1 we have

|(f, δ[Jg])| ≤ CC∗δ0t
−4.
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Similarly,

|(f, δ[PSJξ ])| ≤ CC∗δ0t
−7/2.

Finally,δ(−i/(µ−1)Q) ≤ CC∗t−2e−Ct . We conclude for anyf ∈ S with ‖f ‖H1 ≤ 1
that

|(f, δG(2)µ )| ≤ CC∗δ0t
−3.

Simple calculations then show that

|δa�(t)| ≤ 1

8
δ0t

−3,

|δω�(t)| ≤ 1

8
δ0t

−2,∥∥∥δg�S (t)∥∥∥
H1
≤ 1

8
δ0t

−2,

provided thatC∗ is sufficiently small.
Finally, the equation ofg�M (4.29) can be written explicitly as

∂tg
�
M = Lg�M + PM

{
J (g

�
M + gS)− i/(µ− 1)Q− iµF(µ−1(g + ξ))

}
.

Hence forδg�M = g
�
1,M − g�2,M we have

∂tδg
�
M = (L+ PMJ1)δg

�
M + PM

{
(−δJ )g

�
2,M + δ(JgS)− iδ(/(µ− 1))Q− iδF

}
.

Since(δg�M)(t)→ 0 ast →∞ in H 1, we can put it in integral form:

(δg
�
M)(t) =
−
∫ ∞
t

P̃1(s, t)PM

{
(−δJ )g

�
2,M + δ(JgS)− iδ(/(µ− 1))Q− iδF

}
ds. (4.34)

Therefore, we can bound theH1 norm ofδg�M by∥∥∥δg�M∥∥∥
H1
≤ C
∫ ∞
t

∥∥∥(−δJ )g
�
2,M + δ(JgS)− iδ(/(µ− 1))Q− iδF

∥∥∥
H1
ds .

Since ∥∥∥(δJ )g�2,M∥∥∥
H1
≤ Cδ0s

−2
∥∥∥g�2,M∥∥∥

H2
,

(that is why we needed to prove a stronger bound forg� in Step 2), together with previous
bounds onδ(JgS),−iδ(/(µ−1))Q andiδF , we can bound the integrand byC∗δ0s

−3.
Thus we have ∥∥∥δg�M∥∥∥

H1
≤ 1

8
δ0t

−2

provided thatC∗ is sufficiently small.
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Conclusion: For the casev0 = 0, we have proved that{
t2|δω�(t)| + t3|δa�(t)| + t2

∥∥∥δg�(t)∥∥∥
H1

}
≤ δ0/2

under the assumptions (4.24), (4.30) and (4.32). Thus the map (4.26) is a contraction.
Since (4.30) holds for a nonempty set of functions (including zero), we obtain a solution
(ω, a, g), together withξ . Furthermore, we have proved that{

t2|ω(t)| + t3|a(t)| + t2 ‖g(t)‖H2

}
≤ C∗

for t greater than an aboulute constantT . Hencev(t) = − ∫∞
t
a(s)ds = O(t−2).

Similarly r(t) = O(t−1) andθ0(t) = O(t−1). Also recally = x− r(t) andhas,0 = ξ∞.
Therefore, by Taylor expansion,

ψ(x, t)− ψas(x, t)
=
(
Q(y)ei(vy−Et+θ0) + h(y, t)ei(χvy−Et+θ0)

)
−
(
Q(x)e−iEt +

(
eit9/2ξ∞

)
(x)
)

= O(t−1) in H 2.

Note that our result is true fort > T . However, if we replace all previous estimates of
the formt−m by (t + T )−m, our contraction argument still holds. Hence Theorem 1.2
is proved for the casev0 = 0. To conclude Theorem 1.2 for generalv0, we apply the
following Galilei transform (boost):

ψ(x, t) −→ ψ(x − v0t, t)e
i(v0·x− 1

2v
2
0t).

(Recallhas,0(x) = ξ∞(x)eiv0·x and ĥas,0(v0) = ξ̂∞(0) = 0.) Also, for generalr0
we apply a translation, which does not require a change of assumption. The proof is
complete.
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