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Abstract

We consider a linear Schrédinger equation with a nonlinear perturbati®a.in
Assume that the linear Hamiltonian has exactly two bound states and its eigen-
values satisfy some resonance condition. We prove that if the initial data is suffi-
ciently small and is near a nonlinear ground state, then the solution approaches to
certain nonlinear ground state as the time tends to infinity. Furthermore, the dif-
ference between the wave function solving the nonlinear Schrédinger equation
and its asymptotic profile can have two different types of decay: The resonance-
dominated solutions decay &51/2 or the dispersion-dominated solutions decay

at least liket =3/2. © 2002 John Wiley & Sons, Inc.
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1 Introduction

Consider the nonlinear Schrodinger equation
(1.1) iy = (A +V)Y + APy, Yt =0) = o,

whereV is a smooth localized potential, is an order-1 parameter, and =
Y(t,x) : R x R® — C is a wave function. Lety < 0 be the ground state
energy to—A + V, and denotdH; = —A +V — g. The nonlinear bound states to
the Schrddinger equation (1.1) are solutions to the equation

(1.2) (—A+V)Q+AQPQ=EQ.
They are critical points to the energy functional

I I S VTR S S
H[¢]—/2|V¢| +SVIBE + 32161 dX

subject to the constraint of fixdd? norm. For each bound sta@ = Qg, ¥ (t) =
Qe 'l is a solution to the nonlinear Schrédinger equation. We may obtain a
family of such bound states by standard bifurcation theory: For Eagifficiently
close toey so thate — ey anda share the same sign, there is a unique small positive
solution Q = Qg to equation (1.2) that decays exponentiallyxas> oo; see
Lemma 2.1. We call this family theonlinear ground stateand shall refer to it as
{Qele.

Let

(1.3) He=—-A+V -E+21Q2.
We haveHg Qe = 0. SinceQe is small ancE is close tosy, the spectral properties
of Hg are similar to those offl;.

Suppose the initial data of the nonlinear Schrodinger equatyas near some

Qe. Under rather general conditions, the family of nonlinear ground states is stable
in the sense that if

inf () - Qe€®
is small fort = 0, it remains so for all; see, for example, [13] for the case< O.

See also [18, 19]. Lek|| L2, denote a local.? norm; a precise choice will be made

later on. One expects that this difference actually approaches zero when measured
by a localL? norm, i.e.,

(1.4) lim inf |t - Qe€| . =0.

t—00®,E

If —A 4+ V has only one bound state, it is proven in [15] that the evolution will
eventually settle down to some ground st®e_ with E,, close toE. (See also
[9] for another proof using techniques from dynamical systems.)

Suppose now that A + V has multiple bound states, say, two bound states: a
ground statepg with eigenvaluesy and an excited stai® with eigenvaluesy, i.e.,
Hi¢1 = ey1¢1 Whereey; = €1 — ey > 0. The question is whether the evolution with
initial datayo near somé&e will eventually settle down to some ground st&e_



DYNAMICS OF NLS 155

with E., close toE. Furthermore, can we characterize the asymptotic evolution?
In this paper, we shall answer this question positively in the case of two bound
states and estimate precisely the rate of relaxation for a certain class of initial data.

We now state the main assumptions of this paper.

ASSUMPTIONAO: —A + V acting onL?(R%) has two simple eigenvalues
& < e < 0 with normalized eigenvectotfgy andg;.

AssSUMPTIONAL: Resonance conditiorLet eg; = €; — € be the spectral
gap of the ground state. We assume that 2~ |ey| so that 2y, is in the
continuum spectrum dfl;. Furthermore, for some constagt> 0 and all
reals sufficiently small,

(L5 lim («po«pf, M o e = SPC”1¢o¢>f) > 0> 0.
We shall use Dto replacesi and the limit lim, _, o, later on.
AsSUMPTIONAZ2: For Q% sufficiently small, the bottom of the continuous
spectrum to—A + V + 1QZ%, 0, is not a generalized eigenvalue; i.e., it
is not a resonance. Also, we assume tffasatisfies the assumption in
Yajima [20] so that thaV* P estimatek < 2 for the wave operatoNVy =
limi_ o €t &tA+E) hold fork < 2; i.e., there is a sma#t > 0 such that

VAV (X)| < C(X)™°7° for |a| < 2.

Also, the functiongx - V)XV for k = 0, 1, 2, 3, are—A bounded with a
—A bound less than 1:

[x-V)*Ve|, <ooll-Adl,+Cligll, . o0o<1, k=0,1,23.

Assumption A2 contains some standard conditions to assure that most tools in
linear Schrodinger operators apply. These conditions are certainly not optimal. The
main assumption above is the conditiog2> || in assumption Al. The rest of
assumption Al just consists of generic assumptions. This condition states that the
excited state energy is closer to the continuum spectrum than to the ground state
energy. It guarantees that twice the excited state energflf ¢fvhich one obtains
from taking the square of the excited state component) becomes a resonance in
the continuum spectrum (dfl;). This resonance produces the main relaxation
mechanism. If this condition fails, the resonance occurs in higher-order terms and
a proof of relaxation will be much more complicated. Also, the rate of decay will
be different.

Define the notation
(1.6) (x) =V14+x2, {t}, =& °n~2+2rt, {t}g—l/z ~ min {sn, n—1t—1/2} ,

wheren = ||| 2 andI" = O(n?) is a positive constant to be specified later in
(6.3) of Lemma 6.1. For the moment, we remark thas of order 22n? times

the quantity in (1.5). The subscriptis a small parameter to be specified in Theo-
rems 1.3 and 1.4. We shall often drop it in the proofs of Theorems 1.3 and 1.4. We
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denote byL? the weighted_? spacesr(may be positive or negative),
(1.7) LZR®) = {¢ € LARY) : (x)'¢ € L2 RY)} .

Our space for initial data is

(1.8) Y=H®R)NLZR?, ro>3.

We shall usd_{  to denotel 2, . The parameter, > 3 s fixed, and we can choose,
say,ro = 4 for the rest of this paper.

Our first theorem states that if the initial datgis small inY and the distance
betweeny, and a nonlinear ground stafg. is small, then the solutioty (t) has to
settle down to some asymptotic nonlinear ground state-as co. Furthermore,
the difference betweetry and the asymptotic nonlinear ground staté at oo is

boundedaboveby the orderO(t~%/?). Recall that. = O(1) is fixed.

THEOREM 1.1 Assume that assumptioA®, A1, and A2 on V hold. Then there
are small universal positive constantgand ny > 0 such that, for any nonlinear
ground state Q with mass n= ||Q.[l.2 < ng and any initial datayq satisfying

Vo — €9Q, |y < g3n? for someBg € R, there exist an energy£and a function

A(t) such that Qe_ Il 2 — n = O(e3n), O(t) = —Ext + O(logt), and

(1.9) lv® — Qe €°V| . <C@+t~2.

}Lloc
To describe more detailed behavior of the solutjof), we need various spec-
tral properties of the linearized operator. All statements we make here will be
proven in Section 2. LeL be the operator obtained from linearizing the Schro-
dinger equation (1.1) around the trivial solutiQre 'E! (see Section 2), i.e.,

(1.10) th=i"{(-A+V —E+1Q5h+1Q*h+h)} .

Notice thatL is not self-adjoint due to the conjugation. If we can decomgose
into its real and imaginary parts, the operafotan be written in the matrix forms

0 L_
L «~— |:—L+ 0i|

where
(1.11) L_:=—A+V—-E+1Qi=Heg, L,=L_+2.Q2.
Explicitly, we have
L(f+ig)=L_g—iL f.

Notice thatL is a small perturbation of the Hamiltonid#,. Hence the spectral
properties of_ are closely related to those bf;. SinceH; has two eigenvalues, 0
andey;, we expectC to have two eigenvalues as well.

From (1.2) we have._ Qg = 0. If we differentiate (1.2) with respect 6, we

havel . Re = Qg, whereRg = 9 Qg. Let S be the space spanned by and
its tangentRg, i.e.,

(1.12) S= & =span {Re,iQe} -
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Clearly, Sis the generalized eigenspaceivith eigenvalue O.

L has a pair of eigenvaluesix, wherex is a perturbation o0&, = e; — e of
H,. The corresponding generalized eigenfunctianandv, are perturbations of
the linear excited stat®;. They are real-valued functions characterized by

(1.13) Liu=«xv, L_v=«u, (Uuv)=1.

In particular, for all real numbers andg, we havel?(au + Biv) = —k2(au +
Biv). Thus

(12.14) E« (L) = span {u, iv}

is the generalized eigenspace with eigenvalbies

Finally, the space of the continuous spectrig(L), is characterized by the
relation

(1.15) He(£) = {f +igeL?: f,greal f L Qg v; gL Re,u}.
We have the following spectral decomposition result, to be proven in Section 2.2.

LEMMA 1.2 (Spectral Decompositiorifhe space of complex-valued functions
in R3 can be decomposed as the direct sum,&,3L) andH¢(L), i.e.,

(1.16) L*R%=S®M =S@E (L) ®H(L), M:=E (L) DHc(L).

The decomposition is not orthogonal; the three real subspaces, &), and
H:(£) are invariant underZ but not under multiplication by i. The space M can
also be characterized by

(1.17) M=Meg={f+igelL?: f,greal f L Qg gL Re}.

From this lemma, for a fixed enerdy we can decompose a wave function via
(1.16). Itis more convenient for our analysis to decompose the wave function into
the following form:

(1.18) Y(t.30 = [Qe(0) + aeORe(x) + he(t, )] €90

with hg(t, X) € Mg. We shall prove in Lemma 2.2 the existence and uniqueness
of such a decomposition faf (t, x) near a ground state. If we allow the eneigy

to vary, it is possible to choode such that the component along tRe direction
vanishes; i.e., there exisigt) such that

(1.19) ¥ (t, X) = [Qew(X) + h(t, x)1€°®

with he(t,X) € Mg; see Lemma 2.3. We can view this ground st@g;, as
the best approximation to the wave functigrit). This choice is different from
choosing the best approximation by minimizing the difference in ltAenorm
infeo W (t, ) — Qe€®| 2.

Although (1.19) can be viewed as the best decomposition of a wave function,
it introduces a time-dependent linearized operator. So for analytical purposes, it is
more convenient to work with (1.18). Notice th@g + ag (1) Rg is the first-order
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approximation ofQgtac ). So the decomposition (1.18) can be viewed as the
best time-independent decomposition. Siheét, x) € Mg, we can write it as
(1.20) he) =¢e() +ne), (e € Ec(L), ne €H(L).

Theorem 1.1 gives an upper bound to the difference between the wave function
and the asymptotic ground state. In fact, we can estimate the component along the
excited states and the continuum spectrum more precisely in the following theo-
rem:

THEOREM 1.3 Suppose the assumptions of Theofefrhold. Let

(1.21) e =n"Y(IICeg0ll + Ineg0lly?) < €0

If we decomposé (t) as in(1.18)with Q = Qg_, being the profile at time & oo
and h(t) = ¢(t) + n(t) as in(1.20) then we have

lz®Ille < C{ty~2, la®) < C{t)™,
In®lls < CHII*7 0 In®lle, <C{t) ™,
whereft} = {t}, ando = 0.01.

(1.22)

Theorem 1.3 provides rather precise upper bounds on the asymptotic evolution.
These bounds are optimal for a large class of initial data described by the next
theorem. In the following, for two function§ andg, we denote

(1.23) f~g ifCiligll < IIfll <Czlgll
for some constant§,, C, > 0.
THEOREM 1.4 (Resonance-Dominated Solutions$sume that assumptiorg)
throughA2 on V hold. Suppose that the initial dafg is decomposed as {1.19)
with respect to the uniquegki.e.,

Yo = [Qey + LE00 + NEg0l€ OF00.

Write ¢g,0 = ZoU + iz1v and denote g, o = 7o + iz1. Suppose that these compo-
nents satisfy

| Zeg,oll 2.2
(1.24) Yol =n<ng, O<e:= TO <¢€o, lngolly <e&°n®,

where iy and gg are the same constants as in Theorerh Then the conclusions
of Theoreml.1and Theoreni.3hold. In particular, there is a limit frequency &
such that the estimatg4.22) hold for {t} = {t},. If ¢(t) = ¢e_(t) denotes the
excited state component with respect to the linearized operator with engrgy E
the lower bound holds as well, and we have

(1.25) e () ~ {t} Y2

Furthermore, for allh. > 0 or A < O, we have|Qg_ |2 > || Qg,ll2 and

1
(1.26) IQe. 17> = I Qg 1%, + E||;E0,o||ﬁz +0(%n?).
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Solutions satisfyingl.25)are calledresonance-dominated solutions

Roughly speaking, Theorem 1.4 states that, if the excited state component is
much bigger than the dispersive component, then the decay mechanism is domi-
nated by resonance. Furthermore, (1.26) states that approximately half of the prob-
ability density of the excited staté;g,(x)|%/2, is transferred to the ground state
independently of the sign df. Since the total probability is conserved, the other
half is transferred to the dispersive part.

We have decomposed the wave function according to the optimal elgrgy
(1.19). Alternatively, we can first fix an ener@y, and decompose the initial data

Yo as
(1.27) Yo =[Qe, +&Re, + ¢ + n.Je.
If the components satisfy

Yol =n <no, lgll=¢en, O<e=<eo,

1.28
(1.28

Inlly < Ce?n?,  Jal<e
then we can re-decomposgg as in Theorem 1.4 with respect K satisfying the
estimate (1.24); see Lemma 2.3. This implies that the set of all gyaontains
anopen setwith nonlinear ground states in its boundary. Therefore, the class of
resonance-dominated solutions is in a sense large.

The condition (1.24) is very subtle. It states that the excited-state component
is much bigger than the dispersive component with respect to a decomposition
according taC. Since. differs from Hg by ordem?, the condition (1.24) does not
hold for a decomposition af with respect to the linear Hamiltoniafg.

Finally, the following existence result shows that the resonance-dominated so-
lutions are not all solutions. We expect that the dispersion-dominated solutions
constructed by the following theorem are rare:

THEOREM 1.5 (Dispersion-Dominated Solutionkpt assumption80 throughA2
apply on V. Let Z= H2NW?21(R3). For a given nonlinear ground stateg) with
Qe.ll =n<ngletE=Eyandl = Lg_. Forany giveré,, € He(L£)NZ with
sufficiently small Z norm, there exists a solutigrt) of (1.1)and a real function
o(t) = Ot~ 1) fort > 0so that

[ (t) — 1,l’as(t)”HZ(RS) < Ct™2 ,
where
Vas(t) = Qee 'EMHIW 4 o iElglly
In particular, ¥ (t) — Qg, e B0 = O(t=¥2) in L2

loc*

Theorem 1.5 constructs dispersion-dominated solutions based on the operator
e_“:. The scattering property of this operator is very similar to the standard operator
€At In particular, fory,, € Z = H?R3) N W2L(R3, (1 + |x|*dx) sufficiently
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small in Z with %-(0) = 0 andV .(0) = 0, the same statement holds if we
replacey,s by
Vas(t) = Qe F' + &2y, .

This will be shown in the proof of Theorem 1.5.

The resonance solutions were first observed by Buslaev andrRane]3] for
some one-dimensional Schrodinger equation with two bound states and a higher
nonlinear term (we thank the referee for supplying us with this reference). In the
physical dimensiod = 3, this type of solution was proven by Soffer and Weinstein
in an important paper [16], but for real solutions to the nonlinear Klein-Gordon
equation

(1.29) d2u+Bu=2au®, B :=(—A+V+md,

wherex is a small nonzero number. Assume tBathas onlyoneeigenvector (the
ground state)p, B2p = Q?¢, with the resonance conditicR < m < 39 (and
some positivity assumption similar to that appearing in assumption Al). Rewrite
real solutions to equation (1.29) as= a¢ + n with

a(t) = ReA()é™, ReA()d" =0.
Then A andn satisfy the equations

. 1
(1.30) A= e (¢, A@g + n)?)
(1.31) (82 + BHn = Per(ag +1)°.

Theorem 1.1 in [16] states that all solutions decay as
A ~ O Il ~ 074,

In particular, the ground state is unstable and will decay as a resonance with
ratet—/4,

We first remark that the proof in [16] has only established the upper bound
t=Y4. Furthermore, a universal lower bound of the farm¥# is in fact incorrect.
From the previous work of [1, 5], it is clear that dispersion-dominated solutions
decaying much faster than'/# exist. Similar to Theorems 1.4 and 1.5, we have
the following two cases:

(1) n(0) <« A(0): The dominant term on the right side of (1.30r&%¢°.
(2) 17(0) > A(0): The dominant term ian>.
In case 2 another type of solutions arises, namely, those with decay rate
A ~ (72, Il ~ (172

We shall sketch a construction of such solutions at the end of Section 8.

Notice that all solutions in [16] decay as a functiort oT herefore, we can view
[16] as a study of asymptotic dynamics around a vacuum. Although most works
concerning asymptotic dynamics of nonlinear evolution equations have been con-
centrated on cases with vacuum as the unique profile=atco, more interesting
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and relevant cases are asymptotic dynamics around solitons (such as the Hartree
equations [5]; see also [2, 3]). The soliton dynamics have extra complications
involving translational invariance. The current setting of nonlinear Schrédinger
eguations with local potentials eliminates the translational invariance and consti-
tutes a useful intermediate step. This greatly simplifies the analysis but preserves a
key difficulty that we now explain.

Recall that we need to approximate the wave functigt) by nonlinear ground
states for alt. Since we aim to show that the error between them decay 1iké,
we have to track the nonlinear ground states with accuracy at least fike Al-
though the nonlinear ground states approximating the wave fungtipncan in
principle be defined, say, via equation (1.4) or (1.6), neither characterization is
useful unless we know the wave functionist) precisely. Furthermore, even as-
suming we can track the approximate ground states reasonably well, the linearized
evolution around these approximate ground states will be baseterependent,
non-self-adjoinbperatorsC;. At this point we would like to mention the approach
of [15] based on perturbation around the unitary evolugdft, whereH, is the
original self-adjoint Hamiltonian. While we do not know whether this approach
can be extended to the current setting by adding the ideas of [16] (it was announced
in [16] that its method can be extended to (1.1) as well), such an approach can be
difficult to extend to the Hartree or other equations with nonvanishing solitons. The
main reason is that these dynamics are not perturbations of linear dynamics.

We believe that perturbation around the profile at oo is a more natural
setup. In this approach, at least we do not have to worry about the time dependence
of approximate ground states in the beginning. But the linearized opefator
L is still non-self-adjoint, and it does not commute with the multiplication by
i. So calculations and estimates based/{oare rather complicated. Our idea
is to map this operator to a self-adjoint operator by a bounded transformation in
Sobolev spaces. This map in a sense brings the problem back to the self-adjoint
case for various calculations and estimates. Another important input we used is the
existence and boundedness of the wave operatof fofhe boundedness of the
wave operator in Sobolev spaces for the standard one-body Schrédinger operator
is a classical theorem of Yajima [20]. In the current setting it was recently proved
by Cuccagna [4]. See Section 2 for more details.

The next step is to identify and calculate the leading oscillatory terms of the
nonlinear systems involving the bound-states components and the continuum-spec-
trum components. The leading-order terms, however, depend on the relative sizes
of these components, and thus we have two different asymptotic behaviors: The
resonance-dominated solutions and the dispersion-dominated solutions. Finally,
we represent the continuum spectrum component in terms of the bound-states com-
ponents, and this leads to a system of ordinary differential-integral equations for
the bound-states components. This system can be put into a normal form, and the
size of the excited-state component can be seen to deday/asNotice that the
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phase and the size of the excited-state component decay differently. It is thus im-
portant to isolate the contribution of the phase in the system. Finally, we estimate
the error terms using estimates of the linearized operators. These estimates are
based on standard methods from scattering theory [6, 14, 16] and estimates on the
wave operators [4, 20].

2 Preliminaries

We first fix our notation. LetH* denote the Sobolev spaceé“?(R%). The
weighted Sobolev spade?(R3) is defined in (1.7). The inner product ) is

2.1) (f. Q) :/ fgdx.
R3

For two functionsf andg, we denote
f =0(g) if |f|l <C|gl for some constar€ > 0.

We will denote, as in (1.23),

f~g if Cellgll < IIfll <CyJlg|l for some constani§,, C, > 0.
For a double index = (g, «1), g anday honnegative integers, we denote
(2.2) =77 |a|=ag+ a1, [a]=—ap+oq.
For examplez®? = z372. We will definez = n~'p wherepx = €*'. Hence
% = pl¥'p*. In what follows|«a| = 2 and|8| = 3.
2.1 Nonlinear Ground States Family

We establish here the existence and basic properties of the nonlinear ground-
states family mentioned in Section 1. Our statement and proof are also valid for
nonlinear excited states.

LEMMA 2.1 Suppose that A 4+ V satisfies assumptiod® andA2. Then there is
an ny sufficiently small such that for E betweeyead Q+An§ there is a nonlinear
ground state{ Qg}g solving(1.2). The nonlinear ground state Qis real, local,
and smooth)r=X(E — &) > 0, and

Qe =ngo+ 0%, n~CA YE—-eyl?, C= (/¢6‘dx) "
Moreover, we have R= 3g Qe = O(n"2)Qg + O(n) = O(n™Y) and 32 Qe =
O(n~3%). If we define ¢= (Q, R)~%, then g = O(1) andic; > 0.

PROOF. Suppose tha@ = Qg is a nonlinear ground state satisfying

(—A+V -—e)Q+1Q*=E'Q
whereE’ = E — ey is small. WriteQ = n¢o+h with realh L ¢o. Thenh satisfies
(2.3) (—=A+V — & — E"Yh + A(ngo + h)* = E'ngy.
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Taking the inner product withy, we see that it is necessary thaandE’ be of the
same sign. FoE’ sufficiently small, since the spectral gap of the operatar +
V — g is of order 1, the same conclusion holds for the operatdr+V — ey — E'.
Thus we can check directly from (2.3) that

(2.4) IQell :=n*~A"'E’, |lh[2=0@1nd%.

The existence of solutiortsand E’ can be established from the implicit function
theorem, or the solutions can simply be obtained by a contraction mapping argu-
ment.

By differentiating the equation d@g with respect tae, we have
(2.5) L.Re=Qg, L,:=—A+V-E+3Q%

Denote by|0) the ground state th . with L? norm 1 and eigenvalue iAn?. We
have
Qe = O(N)|0) + O(AN°).

Hence (using the spectral gap)

n
an2

=0 n?Q+ O(n).

Hencec; = O(1). Since the sign of the ground-state energy.iois the same as

1, we haver(Q, R) > 0. By differentiating the equation, we can pray@Qe =
O(n~3) in a similar way. O

R= (L) OMm)|0) + O(n?)] = O( )|0> +0mnd

(2.6)

SupposeQe = O(n) anda is a small parameter withta| < n. By Taylor
expansion and2 Qg = O(n~3%), we have

(2.7) Qeta = Qe +aRe + O(n%a®) = Qg + O(n'a).
Since(aRe)? = O(n~2a?), from (2.7) we also have
(2.8) IQe+all® = IIQell* + 2a(Qe. Re) + O(n~?a’).

We will need the following renormalization lemmas. We will formulate them
in terms of nonlinear ground states, although they also hold for nonlinear excited
states. Lety; be eitherY, defined in (1.8), ot.2_, defined in (1.7) withrg > 3.

—rg?

Recall from Lemma 1.2 thdt € M if and only if Reh L. Q and Imh L R.

LEMMA 2.2 Lety € Y1 be given with|ly, = n,0 < n < no. Suppose that for
some nonlinear ground stateg® © we have|y — Qe€®|ly, < Ctn,0 < 7 < ¢o.
Then there are unigue small &, and h such that

(2.9) v =[Qe +aRe +h]€©* | he M.

Furthermore,| Qelly, > N, a= O(rn?), 6 = O(r), and h= O(rn).
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PROOF. By consideringye™'© instead ofyr, we may assum® = 0. Write
¥ = Q + kwith a smallk = O(zn). We want to solve smal and¢ such that
h=1vye'" — Qg —aRe € Mg, i.e.,

(Q.ReQ+ke™ —Q—aR| _ [0
(R, Im[(Q + k)e™’]) -~ o]

with the left side of ordetfgz] if (a,0) = (0,0). We compute the derivative of
this vector with respect ta andod at (a, ) = (0, 0) and obtain the matrix

_(Qa R) (Qs Im k) _ _(Q’ R) O(Tnz)
0 (R,—Re(Q+Kk)| 0 —(R, Q)+ O() |’

which is invertible. Here we have uségl = O(n) and R = O(n~'). Since
(Q, R) = O(1), by the implicit function theorem we can solee= O(rn?) and
6 = O(r) satisfying the equation. Hende= (Qg + ke — Qg — aRe =
O(zn). O

The next lemma shows that the best decomposition as defined by (1.19) can
always be achieved for a small vector near a nonlinear ground state.

LEMMA 2.3 Lety € Y; with [|¢]ly, = n bounded by a small numbeg,n.e.,
0 < n < no. If ¥ is near a nonlinear ground state € ®! in the sense that
¥ — Qg, €€y, < Crn for somer with 0 < 7 < g andeg small. Then there is
a unigue E near Esuch that the component along the Birection as defined by
(2.9)vanishesi.e., there is unique small and h such that

v =[Qe +h]€©  he M.
Moreover, E— E; = O(tn?), 8 = O(z?), and h= O(zn).

If v is given explicitly asy = [Qg, + a1 Rg, + hy]€©t with hy € Mg, and
a; = O(¢?n?), we have

5
(2.10) |E—E4 < 21|al| =0(%n?), 6=0(%, h—h;=0(?n).

PrROOF As inthe proof of the previous lemma, we may assue= 0. Write
v = QE1 + kq with hy € ME1 andk; = alREl + h; = O(Tn) small. Let
E = E; + y. We want to find smaljy andé such thah = ye'? — Qg € Mg,
that is,

(2.11) |:(QE1+V’ Re(Qe, + ke’ — Qi) | _ [O]
(Re 4y, IM[(QE, + ke 1) ol-

When(y, ) = (0, 0), the left side equals

r 2
[(QEv glREl)]’ which is of order ’8 ]

The derivative of this vector with respectjoandé at(y, 8) = (0, 0) is given by
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(RElv _QE;]_ + REkl) (QE]_! Im kl) —
(0eRele=g;, IMk)  (Rg;, — R&(QE, + k1))

—(Q,R) O(rn?)

O(tn?) —(R, Q)+ O(1) ]’
which is invertible. Here we have us€ = O(n), R = O(n™1), anddeRe =
O(n~3). By the implicit function theorem we can solye = O(zn?) andf =
O(7?) satisfying the equation. Hente= (Qg, +kpe? — Qe4y = O(zn).

Finally, whena; = O(z?n?), the vector on the left side of (2.11) at, 0) =
(0, 0) is of order
°n?
o

Hence we can solvg = O(z®n% and# = O(z®). We also havéeh — h; =
(Qg, + a1Re, +hp)e™'? —h; — Qg,4, = O(NY) + O(n~tay) = O(z2n). The last
statement is proven. O

The next lemma provides estimates on the components in (1.18) when the ref-
erence nonlinear ground state varies.

LEMMA 2.4 Letyr = [Qg, + a1Rg, + h11€© with | Qg, [ly, = n < ny, [[haly, =
p < e1n, and|a;| < Cp?. Suppose E= E; + y with |y| < Cp?. By Lemma2.2
we can rewriteyr uniquely with respect to Fas

(2.12) ¥ =[Qe, + @Re, + hy] €2,

where b € Mg,, &, andd = ®, — ©4 are small. We have the estimates
0 =0 >py),

(2.13) Ei+a—Ey—a=0n"py),

hi —hy = O(~%py).
Notice that m3py < Ce&?is small.
PROOF. Note|y| < Cp? < e2n?. Using (2.7) we have
(2.14) Qe, — Qe, = O0(M™Yy),  Re; —Re, = 0(7%y),
AQE, —2QE, = 0().

Since
ey — Qg, = [Qg, — Q] + &R, + s
= O(n1y) + O(p*n™") + O(p) = O(p) = Ceun,
Lemma 2.2 is applicable with = p/n, and we have (2.12) with
a = O(tn?) = O(np), hy=0(n) = O(p), 6= 0(t?) =0 ?%p?.
We have
(2.15) [Qe, +a1Re, + hile™"? = Qg, + &Re, + hs.
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Denote by (RS) the right side and by (LS) the left side. Taking the imaginary part
and then taking the inner product wiRg,, we have
(Re,, IM(RY) = (Rg,, Imhy) =0,
sinceh € Mg,, and
(Rg,, IM(LS)) = (Rg,, Qg, + a1Rg, + Rehy)(—sind) + (Rg,, Imh1) coss .
Since(Rg,, Qg, + a1Rg, + Reh;) ~ 1 and
(Re,, Imhy) = (Rg, + O(n~°y), Imhy) = 04+ O(n°py),
we conclude that sif4+-O(n~3py) = 0. Since is small, we havé = O(n~3py).
Write € = 1+ O(0) in (2.15). Since
[Qe, +aRe, +h1]0®) = O(MHOM~py),
equation (2.15) gives
(2.16) Qe, + a1Re, — Qg, — &Re, = O(N?py) + hy — hy.

Taking the real part and then taking the inner product \@#, we get from the
right sideO(n - n~2py) 4+ 0+ (Qg, + O(n~1y), hy) = O(n~1py). On the other
hand, by (2.7)

QE; + &Rg; — Qg, — @RE,
= [Qg, — ¥Re, + O(y*n¥)] + ai[Re, + O(yn™ %] — Qg, — &Re,
= (—y + & — &)Re, + O p%),
where we have useld; = E, — y. Hence we conclude
(E1 — E2 + &1 — 8)(Qg,, Re,) + 01 3p%y) = O(n*py).

Since(Qg,, Re,) = O(1), we haveE; — Ex+a; —a; = O(n~1py). From (2.16),
we thus have

ha —h1 = O(h*py)Re, + O(N~°p?y) — O(N~?py) = O(N~?py).

2.2 Linearized Operator: Spectral Analysis

We now study the spectral properties@f In this section, we identififC with
R? and the multiplication by becomes

Nt

Recall the definition oM and the decompositioh?(R%) = S@ M. This decom-
position is nonorthogonal and presents some problems in analysisX hetthe
space orthogonal tQ,

X:H(LZ):[¢EL2(R3):¢LQ]; X «— [gﬂ
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wherell is the orthogonal projection that eliminates Qalirection:

Q. h)
Q%

We claim that there is a “nice” operatorfrom M to X and a self-adjoint operator
Athat is a perturbation dfl; such that

(2.17) L], =-U"tJAU.

[Th=h

Let Py be the projection fromL? onto M according to the decomposition
L2(R3% = S M. It has the matrix form

- [2] -3 8]

where the projections are given by

(2.18) Po:L2— Q', Pi=ld—q|R(Q|], g =(Q,R™,
P,: L2 — RY, P,=1d—c|Q)(R].

Clearly PR = 0 andP,Q = 0. One can easily check that

I O

(2.19)  Rux = [0 o

]:M—)X, RXME[IO 82:|:X—>M.

We now define
2.20) A:=[(H?+HY22.Q?HY)]Y? = [HY2L . HYA])"? H=L_.
( ) -

Alis a self-adjoint operator acting &rf(R®), with Q as an eigenvector with eigen-
value 0. We shall often viewA as an operator restricted to its invariant subspace
X. Define

A1/2H71/2 0
(2.21) Ug: X — X, UOE[ 0 A-1212 |
and let
(2.22) U=URux: M — X, U lT=RmuU;l: X — M.
0

Notice thatH ~¥/? is defined only orQ*. We can easily check thet—U |y = Idy,
andUU ~1|x = Idx. Moreover, we have

_ 0 H 1/2A71/2 A3/2 H -1/2 0
—(U™tD) (AU = |:_ P,H-Y2AL2 0 ] [ 0 A1/2H1/2:|

B 0 H
| -PIiL, 0]

SinceP,I1L, = L, when acting orR*, we have proven (2.17).
If we define

1
(2.23) Ui = E(HA”ZH*WPl + MAY2HY2M)
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then(U.)* = $(P,HY2AY21T + MHY2A-Y21T) and
(2.24) U=U,+CU_, Ul=(@U,*—CU.)*,

whereC = [} _9]is the conjugation operator i?(R%). AlthoughU, andU_ are
not self-adjoint operators, they commute with the multiplication operatdence,
as operators ih.?(R3),

(2.25) Ui = (Uy +CU_)i =i(U, —CU_).

Since the mass dg is small, A is a self-adjoint perturbation dfi; = —A +
V —gy . As H; has two simple eigenvalues, so ddesThe ground state oA is just
Q (which with the normalized ground state equafs = Q/ | Qll,) with energy
0. Standard perturbation theory implies tiahas an excited stata¢;* = x o2
such thatc = ejp + O(n?) and¢]* = ¢1 + O(n?). The spectral decomposition
Lemma 1.1 is a corollary of (2.17) and the spectral propertie&. dfor example,

define A
u _1|®
=G

We can check easily thatandv are the generalized eigenvectors of (1.13). We
summarize the results here in the following lemma:

LEMMA 2.5 Let X be the orthogonal complement of Q iR. LLet A be de-

fined by(2.20) Let U and U™ be defined by2.22) Then(2.17) holds, i.e.,

LIy = —U~1JAU. If we denote by P and P2 the orthogonal projections onto
the eigenspace and continuous spectrum space of A, we have

(2.26) UPyw=U, UPf=PAU, UP:=PLU.

Furthermore, we have U= U, + U_Cand U™t = Ui —UzC, with U, and U_
commuting with i.

2.3 The Equations

In this subsection we derive the equations for the components of the solution
¥ (t) of the Schrodiger equation (1.1) according to the decomposition (1.18).

Fix an energyE, the corresponding ground sta@@ = Qg, and its tangent
R = Rg = 9 Qe. Recall the decomposition (1.18) of the wave functip@, X).
We let

(2.27) O(t) = o(t) — Et.

Denote byh, = a(t) Re(X) + h(t, x). Substituting the above ansatz into (1.1), we
have the equations

dtha = Lha+i 7 (F +6(Q + ha)),
F = 1Q(2hal® + h3) + Alha|*h,
= 1Q(2/h|? + h?) + 2.QRa2h + h) + 3.QR%a® + »(aR+ h)>(aR+ h)
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where/ is already defined in (1.10). By (1.2) and (2.5), we hade- 9,)aR =
—iaQ — aR. Hence

dh=Lh+i"Y(F+6(Q+aR+h)) —iaQ—aR.

Sinceh(t) € M andM is an invariant subspace 6f we have ~1(F +6(Q+aR+
h)) —iaQ — aR € M. From the characterizatiod = [f +ig: f 1L Q,g L R],
the functionsa(t) ando(t) satisfy

(Q,Im(F +6h) —aR) =0,
(R,Re(F +6(Q+aR+h))+aQ) =0.
The equation oM is
(2.28) &%h=Lh+ PyFa, Fa=iYF+6@R+h)).

Recall the representation gfin terms of A. The previous equation can be rewritten
as

(2.29) 3 (Uh) = —i AUh) + U Py Fa.

We can writeU h = z¢;* +w wherew denotes the part on the continuum spectrum
of A. Then we have

2= —ikz+ (@9, UPuFa), w=—iAw+PIUPyFy.

SinceUP% = PAU, we haveP2AU Py = PAU. Using the definitions ofi andv,
we have

(91, U Py Fan) = (v, ReFay) +i (U, Im Fay) = (Uy, Fan) — (U, Fan)
whereu, = %(u + v). If we definep(t) = €~tz(t), we have
e 'p(t) =i MUy, F) + (u_, F) + [(uy. h) + (u_, h) + (u, R)alé}.
Summarizing, we have the decomposition
v = (Q_i_aR_i_h)e—iEt-i-iG, Uh = Zq&f—i—w, 7 = e—il(tp, o= ei"t,
and the equation
a=(cQ.Im(F +6h)), ¢c;=(Q. R,
(2.30) { 8w = —iAw + PAUI~X(F +6(@R+h)),
ie”'p = (uy, F)+ U, F) +[(uy, h) + u_,h) + (u, Rals,
where
(2.31) F = AQ(2|h|?> + h?) + 2AQRa(2h + h) + 3AQR%a?
+ x@R+h)?@R+ h),
(2.32) 6 = —[a+ (ciR,ReF)] - [1+a(ciR, R) + (¢, R, Reh)] 1.

This is a system of equations involvirgg z, andn only. It is the system that we
shall solve in the rest of this paper. Note thatloes not appear explicitly in the
system (2.30). We setonly on the right side. Although will appear when we
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integrate the main term of, it appears only in the forrd?; hence we do not need
estimates fo#.

We also have the following decompositionfoaccording to (1.16):
(2.33) h=¢+n, n=U"weHL),
(2.34) ¢ =U"'z¢® = Re(z)u + Im(2)iv = zu, +2zu_ € E (L).

The equation for can be obtained from that af or more directly from projecting
the original equation dfi onto the continuum spectrum &f

(2.35) dn =Ly +PEiYF+6@R+h)).

2.4 Linear Estimates

Here we collect a few estimates on the operatdrsC, and A. They will be
proven at the end of this paper.

We denote the wave operators f6r(respectively,A and H) by W, (respec-
tively, Wa andWy). They are defined by

W, = lim e“e ™™ W, = lim &fe M
t—o0

2.36 e o

( ) WH — t“m eItHe—ItH* ,
where

(2.37) H,=—-A—E.

Note that if Wa exists, we have the intertwining property thatA)P:.(A) =
Wa f (H,)Wj for suitable functionsf. We also have a similar property fdr.

LEMMA 2.6 Fork =0, 1, 2, there is a positive constant;&Go that

(2.38) Crhlgllnx < e Aglluk < Callp |l

forall¢p € XN HXand allt € R.

LEMMA 2.7 (Decay Estimates fa''A) Forq e [2, ool and d = q/(q — 1),

(2.39) JePang |, = cit ) gl
For smooth local functiong and sufficiently larger, we have
; 1
2.40 x) e A = _pAm(x) " < C(t)~Y®
(2.40) (x) A0z e e =C

where |= 1, 2and0i meansosi with lim,_ o, outside of the bracket.

Estimate (2.39) folA = —A + V was proven in [8] using estimates from [7]
and [10]. Estimate (2.40) foh = +/H was proven by Soffer and Weinstein [16].
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LEMMA 2.8

(2.41) <¢0¢§, Im Pg\n¢0¢f) =

A—-0 — 2«
1
<¢0¢)]2_, Im mp?l¢o¢%> + O(nZ) > 0.

This lemma is a perturbation result. Notice tkat= ey + O(n?); hence the
second term is greater thamn by assumption Al.

LEMMA 2.9 (Operatol)) (i) The operators Yand U;* are bounded opera-
torsin WP N X fork < 2,1 < p < oo, andin L2N X for |r| < rq. (L? is the
weighted 2 space defined i(1.7).) Hence U: M — X and U1 : X — M are
bounded in WP and L2 norms.

(i) The commutatofU, i] is a local operator in the sense that
(2.42) U, i1¢ll e7nias < CllglLa -

LEMMA 2.10 (Wave Operators)he wave operators Yand W, defined by(2.36)
exist and satisfy WP estimates for k< 2,1 < p < oo (similar estimates hold for
their adjointg:

HWLPCE ” (WKD, WPy = C. HWAP?HH( <C.

Wk<p,Wk~ Py —

The statement oW/, was proven in [4], following the proof of [20]. Hence we
need only to prove the statement\dfa.

3 Main Oscillation Terms

We now identify the main oscillation terms in equation (2.30). Most quantities
treated in this paper, such &s a, z, andn, are strongly oscillatory. Hence it is
necessary to identify their oscillatory parts before we can estimate. We shall use the
complex amplitude of the excited stateas the reference. Recalt) = e *! p(t).

We will show thatp(t) ~ t~¥/2 and its oscillation (phase speed) is much smaller
thanx. The change of mass on the direction of the nonlinear ground state is given
by a. We will also show that = O(z%) and the order of the dispersive wayé)

is also of orderO(z?). Assuming these orders, the second-order terfisigiven
explicitly by

(3.1) F@ =1QQI¢1*+ ¢%) = Zpo + 22day + Zdon
where¢ = zu, + zu_ and
b0 = AQ(UE + 2uu_) = AQ¢Z + O(n®),
(3.2) dan = 20Q(U2 + U2 +usu_) = 22Q¢? + O(n%),
¢z = LQ(UZ +2u u_) = O(n%).
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We shall writeF @ = z%¢,,, wherex is a double indicesij) withi + j = 2 and
i, ] > 0. The repeated indices mean summation. We shalpuager on to denote
double indices summing to 3 adsumming to 4.

3.1 Leading Oscillatory Terms ina

We first identify the main oscillation terms @af(t). Recall from (2.30) that
a= (c,Q, ImF+6h) andc; = (Q, R)~1. We shall impose the boundary condition
ofaatt = T. This is in fact a condition imposed on the choicekaf. Hence we
use the following equivalent integral equation:

t
(3.3) at) = a(T) +/ (c1Q, ImF + 6h)(s)ds.
T
The main term of InF +-6his ImF® = Im AQ¢?2, and thus the leading oscillation
term ofa(t) is from the integral; A? dswith

A® = (,Q,AQIm¢?).
Since¢ = zu, + zu_, we have Int = Imz(u; — u_) and Im¢? = (Im ) (u? —
u?); therefore, we have

A® =CiImZ*, Ci=(c1Q,AQ(U —u?)).
Write

. 1 d .
3.4 2 — @ 2dksny2 _ = (a—2iks 2‘
(3.4) z°(s) =e —Sicge® P
We can integratd® by parts to get
t t t
(3.5) / AP ds=Im le Z2ds= ZagoRe{[zZ]tT —/ e 2%s2pp ds} ,
T T T

where

(3.6) am:%:ii@QJqﬁ—wwzom%

and the last integral is a higher-order term. Let us denote

(3.7) a®(t) = an(@® + )1,

which is the main oscillatory term ia. We denote the rest @fby b, i.e.,
(3.8) a(t) = a® () + bqt),

and we have
bt) = a(T) —a®(T)

(3.9) t . .
+/ {(€1Q. Im[F — F® + 6h]) — 4a,Ree ?**pp} (s)ds.
.

It is easy to see that, b, a = O(z?), butb = O(z%). In other wordsa® is the
part ofa with strong oscillation and is the part ofa that has slower oscillation.
The use ob is convenient when we work on normal forms pfanda later. (We
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will integrate by parts terms involving, and in some sense replace terms involving
b by terms involvingp, which is smaller. If we work witla instead, then we replace
a by 4, which is of the same order and we need one more step.) In fact, in principle
one should treat the normal forms pfanda together, since they correspond to the
excited states and the ground state. See [17] for more elaboration on this point.

It should be noted that, althoudiit) is not oscillatory, it is in fact larger than
a@(t), and hence is the main term aft). Another point to make here is that the
introduction ofb(t) is for computational convenience. The true variable we work
with is still a(t). In particular, the induction assumption we make later in Section 5
is ona, notb.

Notice that when integrating, we take ReF instead of ImF. Hence the term
C|z|? survives and cannot be integrated; tis) = O(logt), althougha(t) =
o).

3.2 Leading Oscillatory Terms ingy

We now identify the main oscillation term in From the basic equation (2.30),
we rewrite thew equation as

dw = —iAw —idw + PAUI Y [F +6@R+¢)] — PAU,i167.

where We.have used the commutdtdr i ] to interchangé) andi so as to produce
the termi&w. This term is a global linear term im and cannot be treated as an
error term (howeverU, i]67 is an error term). We can eliminate it by rewriting
the last equation in terms §f= €%w = €U, i.e.,

il = —i A + €PAUI TYF +6@R+¢)] — €°PAIU, 1167,

or in integral form,

t
(3.10) i) = 1A + fo e ACIPAF, (5)ds.
where
(3.11) F, =€°Ui"Y[F +6@R+¢)] — €°[U,i16n.

SinceU andU ~! are bounded in Sobolev spaces by Lemma 2.9 and
(3.12) n(t) =U e i),
for the purpose of estimation we can treands; as the same.
Let F, » be the second-order term Bf, and letF, ; denote the rest, i.e.,
F,] = Fn’z -+ Fn,g,
(3.13) F,2=¢€UitF@ = Ui 12¢,,
Fo3=€Ui"[(F - F?®) +d@R+¢)]—€[U,i10n.
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SinceU = U, +CU_ with U, andU_ commuting withi, see (2.24), we can write
F,2as

F,2=¢€%U, +CU )i 12,
=i, —CU_ )¢, =i 7,
(3.15) P2g =Ui0 —U-d02. Pz =Usidoy —U-9@o .
Dy = Uy —U)day -
ReplacingF, in (3.10) byF, » and integrating by parts, we have

(3.14)

t t
/ e—IA(t—S) PCAFU’Z ds= / e—ltAeIS(A—OI+[oc]K) ((elé poz)(s)) | _lP?q)a ds

0 0
(3.16) = ;i@ (t) — e A EZ) (0)Tfn + (%),
where
: -1
(3.17) P21 =€V W),, 7= A,

— P
A—-0 + [a]k
and(x) denotes the remainder term from integration by parts,

t
(*) — _/(; e—i(t—S)A{ ISK[a] (eIQp )na}

In the integration we have inserted the regularizing faetér® with the sign of
0i chosen so thaa 'A%, decays as — +oo. See Lemma 2.7.

We shall see thaj®(t) is the main oscillation term ifi(t). We denote the rest
by 7 (t):
(3.18) 7=i%+79.

Notice that this is not a decomposition irf: Both 7 and#® are not inL?.
Nevertheless, this decomposition is useful for studying the local behavigr of
Also note that, although, ¢ L? but is still “orthogonal” to the eigenvector d,

(¢1 ) ﬁo{) =0
From (3.10) we obtain the equation f@®:

7@ t) = e Mo — ‘A‘<é9f)<0>ﬁa

t

_/ e—iA(t—s){ |s;<[a (eIOp )Ua}ds
0
t

(3.19) +/0 e—'A“—S>P§{F,7,3—e'9Ui—1n2ﬁ}ds

t

+/0 e AIPALIY 1n? ds

3 3 3 3 3
_775)4‘77%)“‘7]:(3)4‘77;(1)‘{‘77&)-
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We treat”(3) separately becaus¢i is a nonlocal term. Recall that =
U-te 7. We have the similar decomposition for

nt) = n(Z)(t) + 77(3)(t) , 77(2) — U—le—ieﬁ(Z) _ U_lZaﬁa ’

(3'20) ( —U- —|9 (3) (3) —U- -1 —|9 (3)

If we view b andn® as orderz?, andn(3) as orderz®, we can now decompose
F into

(3.21) F=F?4+FO® 4L FO L F®
where
F® =1Q11*+¢?),
FO =22Q[¢ +)n® +¢i®] + Al¢l% + 20QRA? (20 +¢)
(3.22) F® = 20QRb2¢ +{) = 21QR@ - a®) (2 + 1),
F@ =20Q[(¢ +)n® + ¢i®] + 2Q[2InI* + n°] + 21aQR2n + 7))
+ 31a% QR + A[|kI*k — [¢1%¢].

In view of (4.5),F @ consists of terms of order; F® and F® of terms of order
z%; andF @ of higher-order terms. We separate & term since it depends dn
and requires different methods to estimate.

From (2.32), we have

6 = —[a+ (R, ReF)] - [1+ a(ciR, R) + (c1R, Reh)] *
= —[a+ (R, ReF)] - [1— (1R, Reh)] + O(Z* + a% + n?)
(3.23) = —[a+ (c1R,ReF?)]| + Fy3+ Fy4
where
Fos=— (1R, ReF® + FO®) 4 [a+ (1R, ReF?)] (c1R, Ret)
andFy 4 = O(Z* + a2 + n?).

4 Outline of Proofs and Basic Estimates
We are now ready to outline the proofs for Theorems 1.1 through 1.4.

4.1 Initial Data and Basic Quantities

Under the assumptions of either Theorem 1.1 or Theorem 1.3, we can rewrite
the initial datay using Lemma 2.3 as

Yo = [Qg, + he,0l€9%0°,  hg, o€ Mg,
for someky, hE0,0i and@Eo,o, with

9
n=lYolly . lQgl = 35N, lhgyolly <Ceon.
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We can assume th&g, o = 0 without loss of generality. We now writez, o =
{Ey,0 + ME,0 @ccording to the spectral decomposition (1.16Mg,. Recall the
definition ofe in (1.21). We have

(4.1) Ieo0ll < Cen, |ngolly < Ce?n?, & <eg.

For the rest of this paper, we shall takas either given by (1.21) or (1.24). The
choice will not be important, and, whenever a specific choice is needed, we shall
remark upon it.

For allt > 0, we have||y (t)|| .2 = n. If we write ¥ (1) = X¢o + Y1 + &,
£ € He(—A + V), then we havex|? + |y|? + [[£]?, = n? Since the spectral
projections of—A + V and £ differ by an order ofO(LQ?) = O(n?), we have
IQell = [X| + OM3), IZll2 = |yl + O(n®), and|in|l.2 = ]l .2 + O(N3). In
particular,

(4.2) IQell < 2n. llg®lz<3gn, In®)2=<3n.
We now give a list of the expected sizes of frequently used quantities. Let

A-0 — 2
where®,9 = O(n) is defined as in (3.15), ang is the constant from assump-

tion Al. The last statemert > A2n?y, will be proven in Lemma 6.1. Recall
that

(4.4) {th=e2n 24Tt {t} 2~ min{en, n~it—Y2}

(4.3) I'=Im (2<I>20, P?CDZ()) > A°n%yp,

{t}~Y2 will be the typical size ofz(t)|. The following is a table of order it for
functions:

z®] = Ot %), Ja®)| =0,
In®) e = O™, |0(t)] = O(logt) .
The following is a table of order in for constants:
Q=0(M), R=0(n),
ct=0(), uy=0(@1), u_.=0(®Mm.

The first three estimates in the last equation are due to Lemma 2.1. The last one
is because the differences betwden L_, andH; = —A + V — gy are of order
O(xn?), and hence so are the differences betwgem, andv.

(4.5)

(4.6)

4.2 Outlines of the Proofs for Theorems 1.1 and 1.3

We now estimate solutions to the equations (2.30) with the decompositions into
main oscillatory and higher-order terms in Section 3. We first fix a fiivand let
E = E(T) be the best approximation at the tirfieso that (1.19) holds at time
T,i.e.,

(4.7) ¥ (T, X) = [Qe(X) + he (T, x)] €T .
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We can now decompose the wave function for all time with respect to this ground
state as in (1.18), namely,

Y (t,x) = [Qem () + agm) () Rer)(X) + heg (t, x)]e‘(“)(t) ’

wherehgT)(t, X) = ¢e)(t) + neT)(t) € Mger. To simplify the notation, we
write ag(ry = ar, etc. By assumption, we haws (T) = 0. We now wish to
estimatear, ¢1, andny for all timet < T. The following propositions are stated
with respect to a decomposition of a fixed nonlinear ground state pEofile

We first choose a suitable norm. We need to control the excited-state component
z and a local norm of). We also need a global norm gfto control the non-
local termn®. Recall that we can decompogénto a sum ofp® + n® with n®
decomposed further into a sum of five terms; see (3.20). Sjfften\?, andn”
are explicit, we need only to control

5

3 3 3 3 3

(4.8) nPs=Y 0 =ng +n + 15
=3

and we define
M(T) := sup { {2 1zO1 + (0¥ Il + 07 { IOl 2
(4.9) ost=T
+e7 (e ¥ 8 1050 |
whereI' = O(n?) is defined in (4.3) and,, = 1c,T" + O(n®) will be defined
explicitly later in (7.22). For the time being, we need only know tBat a constant
with the size given above; hen@ = c; + O(n).

If we assume thaa(t) is bounded byt—! up to some timeT, we have the
following control of M (t).

ProOPOSITION4.1 Suppose @) andn(t) are solutions to the equatiorf2.30)for
0<t <T.(T can be finite or infinitg. Assume

(4.10) lat) < D{t}7t, 0<t<T.

Then we have
M) <2 forallt <T.

Moreover, if we further assumey| = en > 0 and|nolly < £2n?, then|z(t)| >
c{t}~v2

Recallb(t) := a(t) — a@(t). Let Sy (t) = b(t) — b(T) so that
(4.12) at) = a(T) + [ax(Z + )]} + Sr(0).

Assuming thata(t) is bounded byt~%, we can controlS;(t) by the following
proposition:
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PROPOSITION4.2 Suppose that M) < 2and|a(t)] < D{t} for0O<t < T.
Recall D= 2B,,/T" = ¢; + O(n). Then we have

D D
(4.12) SOl = 3 =, Jam| < lam)+ > .

PROOF OFTHEOREMS1.1AND 1.3: Assuming the previous two propositions,
we now prove that
(4.13) sugar(t)|{t} < D

t<T

for all time, whereay is the component with respect to the best approximation
at the timeT defined in (1.19). From (4.1), the relation (4.13) holds Toe= 0.
Suppose it holds for tim& = T;. From the continuity of the Schrddinger equation,
there exists ad > 0 (depending off;) such thatE(T) — E(Ty)| < exgd—T1](D—
SUR.y, lar, (D[ {t}) for all [T — T1| < 8. Thus the bound (4.13) holds for all
|IT — T1] < 8. This proves that the set of sudhis open. Now suppose tha
is the first time that (4.13) is violated. Clearly, we have,sypar, ()| {t} < D.
From Propositions 4.1 and 4.2, formula (4.13) holdsTor

Once we have proven (4.13), the conclusions of Propositions 4.1 and 4.2 hold,
and they imply both Theorem 1.1 and Theorem 1.3. O

We remark that the main reason that the previous continuity argument works
is due to the explicit identification of the leading termsaim, andz. Since these
leading terms are essentially computed without using assumptions on the decay of
a, the bound ora, i.e., (4.13), is used only to control error terms. We shall prove
Theorem 1.4 in Section 7, where we obtain more detailed information about the
wave function.

The proof of Proposition 4.1 will be given in the next two sections and is fol-
lowed by a proof of Proposition 4.2. Once again, our strategy of proof is to show
thatM(0) < 2 and thatM(t) < 2 if M(t) < 2. By continuity of M(t), this
would imply thatM (t) < % forallt < T. So for the rest of this and the next
sections, we shall freely use thk(t) < 2 and|a(t)| < D {t}~1. It will follow
from Lemmas 5.2 and 5.3 that we can bound

O IOl + e M= U2 50 .
by . It will follow from Lemma 6.2 that
{tH%1z(t)] < (1 + 20)

for some smalb. We have thuM (T) < g and conclude Proposition 4.1.

We note that, under the assumptions (4.10) Bh@) < 2, we have, from the
equations (2.31) foF, (2.32) for6, (2.30) forp, and (3.9) fob,
IFlz, <Cnity™. |F-F?|, <Ci{t)™¥?,

(4.14) . 0
0] <C{t}™*, |pl<Cnft}™*, b <Cni{t}¥2.
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It follows from (4.14) that
(4.15) |6(t)| < Clog{t} .

Note that, although anda are of the same ordet,is not oscillatory and we cannot
expect an estimate better than (4.15). This estimate will not be used in the rigorous
proof, but it provides an idea about its size.

5 Estimates of the Dispersive Wave

For the dispersive part, our main interest is its local decay estimate. Due to
the presence of the nonlocal teshin F, we will also need a global estimate on
n. Our goal is to prove, fos = 1/100,

_ 3 _ _
In®lle < 5077 [ns®] 2 < Cemo(em®* ()%
We will need the following calculus lemma:

LEMMA 5.1 Let0 <d < 1 < m, and{t} = ¢ 2+ 2I't.

t
(51) / It — S|—d{s}—m ds < C82m—2n2m+2d—4 {t}—d ,
0

(5.2) /Ot It —s|79{s}"tds < Cn®2{t} % log(1l + &?n’t).
If, instead, d> m > 1,
(5.3) /Ot t—s)9sy Mds<C{t}™™.
PROOF. Denote the first integral by (I). if < ¢ 72n~4, then{t} ~ ¢=2n~2? and
I ~ / t It —s|"%en®ds < (en)® (e~ ?n~ ¢
° — 82m_2n2m+2d_4(8n)2d ~ 82m_2n2m+2d_4 {t}—d .
If t > ¢72n~%, then{t} ~ 2I't and

t/2 t
() 5/ Ct‘d{s}‘mds+/ Clt —s|™9C {t}™™ ds
0 t/2
—d(.2n4ym—1
_ Ctde?n)m
- r
Estimate (5.2) is an obvious modification of (5.1). For the last estimate (5.3),
denote the second integral by (I).tl< e=?n4, then{t} ~ e?>n~2 and

+ Ctl—d {t}—m < C82m—2n2m+2d—4 {t}—d )

t
an < C/ t—s)"9En?ds< (en)®™.C~C{t}™™.
0
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If t > e~?n*, then{t} ~ I'(t) and
t
() ~ f t—s)9r™s)y™Mds< CIr™t) ™™~ C{t}™".
0

We conclude the lemma. O

5.1 Estimates inL*4

LEMMA 5.2 Suppose thaj is given by equatiol3.10)and recallp = U e %7,
Assuming the estimafé.10)on a(t) and M(T) < 2, we have

InMlls < {t)3*

whereo = 1/100if ¢ is sufficiently small.

PrRooF From the defining equation (3.10) f we have
t
17 @)1l s < CllTolly (1)~¥* + / Clt — sI™*|F,(s)lla/3ds,
0

whereF, = Ui ~}[F +4(@R+¢)] — €°[U,i16n. By Lemma 2.9,
|€°1U.1160(S) || 4a < ClBIIIN(S)l4 -
Therefore we have
IF,(S)llaz < CIOI (Ial + () a3 + () la) + IF(S) Iz

From the Hoélder inequality and the definition §F(s)|| +3, we can bound
IF(s)ll 4 by

IF(S)llLes < C (N2, + lal [hll e + 1al® + 03] L4z + |al®) .

Since[|h?|| 45 = I3, and[|h(S)ll s < [1£(S)llie + In(S)ll+, we have from the
assumptiorM+ (t) < 2 that

Ih(s)llLe < C{s}2 4 C{s}~**log(s} < C{s} 2.

Therefore we havéF (s)|| 42 < Cn{s}~L. Similarly, we haved(s)| < C{s} ™.
SinceC [|7jolly (t) ¥4t < C [|7olly e {t}~¥*** < & {t}"¥**, we con-
clude

t
||77(t)|||_4 < %6 {t}73/4+(r +A |t — S|*3/4Cn{s}fl dS
< Ly ¥4 4 enn 2 (ty ¥ logl(sn)? (t)] < & (1) Y4+

Here we have used Lemma 5.1 for the integration. d
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5.2 Local Decay

Recall tha;® = U ~te"7#® andi® satisfies the equation (3.19). We want to
show that;® is smaller tharij® locally. Recall that the local? norm is defined
in (1.7) withrq the exponent in Lemma 2.7.

LEMMA 5.3 Assuming the estimafé.10)on a(t) and M(T) < 2, we have
(54) Hn(3) ”|_|2 < C82n2(t>_9/8, Hn(3) Hle < C(Sn)3/4 {t}—9/8 ]

Hence we havennle < C{t}7}, and for a local functionp we have

(@, It + 1] < C 007 o (InlEo + lInlliz, InliEs)
= C g . 2.

PROOF SinceU is bounded, it is sufficient to prove the corresponding esti-
mates for eachi{”, j = 1,2, ..., 5, defined in the decomposition (3.19) &P

We first estlmate;(3)

(5.5)

[ Iz, < Climoliv{t)™® < Ce?n(t)~°.
For 15 andiiy, the two terms involving;, (7, ¢ L?) from the definition and the
linear estimates in Lemma 2.7, we have

2]z, = emnet)=%,
t

[i],. =c / (t —5)7/8n?(s)"¥2ds < n(em)¥ (1)
0

Here we have usedl, = O(n), |p| < Cn{t}~%, and|f| < C{t}"tin (4.14) and
(5.3). Note that, whehis of order 1,7\> and75> are of ordeng ands2n3, which
are larger thai€ (¢n)®¥* {1}-%8 = O((en)3).

We treatiy and7i$ together. FoiY) = [J e ' AC-9PAF, ;—e?Ui~1p2)ds,
we can rewrite the integrand using the definitiorFg§ from (3.13),

Frs—€Ui % = Ui [(F - F® — %)) + 6@R+¢)] — €°[U,i16n,
which consists of only local terms. Sindér (t) < 2, we have
|Fys— Ui %) L43ALET = Cis}2.

Here we have used Lemma 2.9 to estimelf¢U, i16n. Note that, in terms like
Q¢n, n is estimated byinll 2 < Cn{s} L.

From the Holder inequality, the? bound (4.2), and the global estimateroih
Lemma 5.2, we have

1/2 5/2 _ 5/2 _
173 s < lnlly % Inlly? < Cn¥/2 ({s)3/4)”* < C{s)~"4,

I llLas < Il < C(ts)~¥*)° < c{sy /4.
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Thus we haveiy) + 7Y = [ e AC9IPAF, 5(s)ds, with
—3/2

” Fy.3(s) ” L43AL8/T = C{s}
We can bound th&.2 . norm by either the- or L8 norm. Ift > 1, we bound
theLZ

2.normbyL®in0<s<t-1,and byL4 int—1<s<t. BylLemmaZ2.7,
t—1
||ﬁ£13)+né3) ||L2 < C/ |9/8”F’7~3(S)”|—8/7 ds

1
e /t—l m I FVI,3(S) I a3 ds
<C C{t— S>*9/8 {5}73/2 ds+C {t}73/2

< C(en)¥*{t) ™8 4 C(en)¥* (1) %8 .

In the last line we have used (5.3). tif< 1, we can use the second integral to
estimate; hence we get the desired esﬂmatﬁ{;f? + é3)|||_2 . O

6 Excited-State Equation and Normal Form

6.1 Excited-State Equation
Let us return to the equation fgrfrom (2.30),

6.1) p=-ie""{(us, F)+ U, F) + [(us, h) + (u_, h) + (u, Ralé} .

In view of the decompositions (3.22) & and (3.23) ofy, we can expand the
right-hand side of equation (6.1) into terms in ordeeof

(6.2) p= e e, +ds2” + dibz+ dobz + P?} .

Herea and B are summing over allke| = 2 and|8| = 3. The coefficients are
computed and their properties summarized in the following lemma:

LEMMA 6.1 We can rewrite equatiof6.1)of p into the form(6.2). The coefficients
d; and & and all ¢, are purely imaginary. P denotes higher-order terms and
will be defined in6.6). Moreover,Red,; = —T, with

(63) I' = (2@20, Im P?CDZ()) > )\.anj/o >0,

A—-0 — 2
wherey, is the constant in assumptidl, and &, = ITAQ¢? + O(n3) is defined
in (3.15) We also have,c= O(n) and &, di, d> = O(1).

PROOF: There are two parts in equation (6.1): The part wittand the part
with 6. We first consider the second part. Recall from (3.23),

6 =—-a— (R ReF?)+ 0,
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whereO(z%) denotes terms of the ordet+-az+zy plus higher-order terms. Hence
—ie"“"{(uy, h) + (u_, h) + (u, R)a}d
= —ie"{ (U, 0) + (U, O) + OB} - { —a— (1R, ReF?) + O(Z%)}
= —ie" U, o)+ U, 0}
| —an(Z+ 7% —b— (iR, ReF?)} + O(Z".
The leading terms are of the formfi, bz, andbz. These terms are of ord€ (z%).
Since the coefficients in each bracket are real, the coefficients of the leading terms,

that is, their contributions tdg, d;, andd,, are all purely imaginary due to the
factor in front.

Now we look at the first part of the equation (6.1). The contributiog, ¥ is
from F@ = z%¢,,

—i {(LI+, Za(ba) + (U_, za¢a)} .

Clearly all coefficients of* are purely imaginary. Since there is no contribution
from the second part tq,z%, we know that thec, are purely imaginary. We also
havec, = O(¢,) = O(n).

The contribution from the first part bz + d,bz is from F®:

—i {(u, 22QRW2¢ 4+ ¢) + (Uu_, QR + 2¢)}

with ¢ = zu, + zu_. Hence all coefficients dbz andbz are purely imaginary.
Together with the analysis of the second part of (6.1), we kioandd, are purely
imaginary.

The contribution from the first part g z? is from F®:

—i {(uy, F®) + (u_, F9)} .

Among alldg, we are only interested in the real partdhf, which does not come
from the second part as we already showed. A coefficieft® has to have an
imaginary part in order to have a contribution to d3e The only such source
is Z%720 in 1@, which lies in the first group of terms iR®. Let us call these
termsF,?:

Fi¥ =2.Q[(¢ +0n® + ¢i®].
Recall thatp® = U~1z%7,. Denoten’ = %7, and recall (2.24) that) ! =
(Up)* — (U_)*C. Hencen® = [(U,)* — (U_)*Cly’ = (Up)*n’ — (U_)*i7, and
(up, ) + (u-, F?)
= (22Q, (ux¢ +uH)n®) + (22Q, (u¢ +u_7)7?)
= (22Q, (U+¢ + uD[(U)*n" — (U)*7')

+(20Q, (UZ +u_OIUN T = (U)*n)
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= / [U(24Q(us¢ 4+ ug)) — U_(22Q(u¢ +u_¢))] n' dx

+ / [-U_(22Q(u4¢ +ud)) + U (24Q(ug 4+ u-2))] 7' dx.

We want to collect terms of the for@z?z with ReC # 0. However, the only term
from 7’ with a resonance coefficient B, Which is of the formz?, with two
bars. Hence the last integral does not con&inand is irrelevant. From the first
integral, we want to choos# from 7/, i.e., Z°ij»0, and choosé from ¢ or ¢. The
terms withz are
U, 20Q(uizu. +uzuy) —U_20Quzu. +u_zZu,) = 2(U ¢ — U_¢p2)Z
= 2dyz.

Here we have used (3.2) and (3.15); hence

4) Redr; = Re(—i) (2 —Im(2dy, —
(6.4) Redy; &(—i) (2P0, n20) m( 20 AT o

P{jcpzo) =-T.

To showI™ > A2n?yy, it suffices to show that
(6.5) Pyo = MAQP? + O(n).
Note thatdyo = U ¢p20 — U_po2 = U, 1Q¢? + O(n®) by (3.15) and (3.2). Now
U, = J(IMAY2H 2P+ TTA-Y2HY/21T) is defined in (2.23). SincAY?H /2 =
1+0(n?) andA~Y2HY2 = 14+-O(n?) by (9.7) and (9.8), we havg, = (TP, +
1) + O(n?). By (2.18),P, = IT + O(n?). Therefore we have (6.5). It will follow

from the induction assumption th = m¢o + O(n®) with m > ‘g‘n. Then we
have, by Lemma 2.8,

A—0i —2
> 2)2(&n)%y0 + O(n%) .

I = 2:°m?Im <n¢o¢§, - Pé‘n¢o¢f) + O(n%

Collecting terms of orde® (z* + a2 + n?), we have

PO = —i{(Us, F®) + U, FY) 4+ [ ) + U, ) + (U, Rald)
(6.6) — i [, O+ U, D] (Fos+ Foa) .

6.2 Normal Form

LEMMA 6.2 We can rewrite equatio(6.2) of p into anormal form:

(6.7) q = 821/q/°q + dibg + g

where q is a perturbation of p given in the proof. The coefficdgnsatisfies
(6.8) ReS;; = Redy; = —T.
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If we assume estimafd.10)on a(t) and M(T) < 2, then the error term §), to
be given by6.22) satisfies the bound
(6.9) lg(t)| < Ce¥*on"4{t} 138,

Furthermore, there is a small positive constansuch that|q(t)| and |z(t)| are
bounded by

(6.10) la®l < A+o) {72, |z®)] < 1 +20) {t)72.
If we have|z(0)| = ¢n + o(en), we also have lower bound
Al = L-o) {12, |z = 1 —20) {t}) 2.
PrROOF. From (6.2) we have
p=pn[C” +ds2’ +dibz+ dhbz+ P?P], p=¢*,

and we want to obtain the normal form (6.7). We will repeatedly use the following
formula:

m Qo m R[o
(6.11) Mmpa=3<“ P )—’“‘ Pt

dt \ ixm ikm
where, ifa = (agaq), |a| =ag+a1 =2,3,4, ...,
(6.12)  fo(@ = (@0 +C)(p'p)
= (a0 + 1C)z  [cu2* + ds 2P + dibz+ dobz + P¥] |

andC denotes the conjugation operator. The formula is equivalent to integration
by parts.

We first removec, z*. Let

C

-

i+ [a])
Since[«] is even, 1+ [«] # 0. By (6.11)

Ppr=0p

9 = P — CuuZ* — —————nz*f,(2).
Pr=Pp—Cp |K(1+[0[])M (2
Decomposingf, (z) into two parts, we can write
C N
dizf = —————uz* C)z ;2
|z ix(l+[oz])“ (a0 +1C)z77cz 2%,
C
— -17d, 7 5 p@
0 = i g fapHE @0+ 002 [ds2’ + dibz+ dobz + P?]
and we get

pr =82’ + dipubz+ doubz + uP@ + gy
with 85 = dg + dJ. Sincec, are purely imaginary, hence so atg, and we have
the relation

(6.13) RQSﬂ = REdlg .
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Next we removel,ubz. Let
/Ldzbz
2ik

P2 = pP1—

We have
2q, . .
P2 = P1 — pudobz — ’;i—lf(bﬁ +bp) = udpz’ + dipubz+ (LP? + 01+ Q)

where )

d . K3

Oz = —%(bp +bp).
%
Now we deal withszzf terms. Let

5ﬁ,bLZﬁ
P3s = P2 — Z T E—
2 @+ 18D

Note 1+ [B] # O for B # (21). We have
Ps = P2 — udp2’ + g3 = 80117’z + phbz+ (WP + g1 + g2 + Gs)

with
Ssultel d

go- Y
P k(14 [B]) dt

Notice that the equation fops has the desired form (6.7), and that the error
term (uP™® + g1 + g» + @) has the desired decay frwhent is large. However,
certain terms in the error term are not small compareldZbwhent is of order 1,
and hence need to be treated. (ReCa#: — Red,;.) We will also integrate these
terms and include them in the perturbationpof

One such term is of the for@¢ n{>) from P, wheren ) = ¥ +n5>. Since

the size of;\¥ andn’? are comparable t9® when the tim is of order 1, and"z3
comes from terms of the forr®:»®, we need to treat terms of the for@¢ n(f;
We will integrate these terms and include them in the perturbatiop. dRecall
¥ =U~te 5, j = 1,2 and

70+ = e [iio — (€92 (0)7a]
wherejy = €?OUnq, and?,, |«| = 2, are defined as in (3.17). Dencte=

nf’; =¥ +n¥ and ¥, = €7©@[Uno — 2%(0)7.] € He(A) for the computation
below. We have

(614) X(t) — (775-3) + n§3))(t) — U_le_ie(t)e_iAt)?O )

Recall (6.1). The only source €3¢ x is from F, where we have a termh®((¢ +
Z)x + ¢x). This is the same source for the resonance ©gm®. Hence terms
of the formQ¢ x in uP® are exactly

Py, = =11 (Us, 22Q(¢ + O x +¢5)) —inC(u, 22Q(E + Ox +¢50) -

().
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Clearly these terms can be summed in the form
(6.15) Pa =uzp+2p.x)+Cu 20 +24. %)

Here eachp = O(n) stands for a different local smooth function. Redatt! =
U — U*C from (2.24); hence

Utzf+2g9 =2zU*f -U*g) +2U*g—U*f)
(cf. (7.14)). Together with (6.14) we have

Pag = / (Pp1 + 1> pe2) € '%e 7 A Ko dx
(6.16) ’ o
+C [ (u?ppa+ pou) e e N Todx
for some local function®y, ¢», ¢, ¢4 = O(n). Recallu(s) = €*S. Define
t .
f1(t) :/ /¢1€'As)?odx ds,
t
fz(t) :/ /¢zeiZ<Se—i(A—Oi)skvodde’
t . .
fa(t) :/ /q&ge"z”se"’*s)?odx ds,

t
f4(t) Z/ f¢4e_iASy0 dx ds.

These functions in depend on the initial data only. Recdly containsi,y =
—(A = 0i — 2«)~tP2d,0, which is not a local term. It is clear by Lemma 2.7 that

t
)] < f Ch(s) 8 |7l ds < Ce¥2n2(t) V8.
o0
However, we claim we have

(6.17) |fi(t)] < Ce¥2n?(t)"%8, j=1,23 4.

In fact, (6.17) is clear foffj (t), j # 2, since we can integrate them explicitly. For
example,

fa(t) = /(_iA)_l(Pé\(]ﬁl)e_iAt;{de _ O(<t>_9/8) ,

by Lemma 2.7. Here we have used tht! is bounded inLZ N Hc(A). The
problem for the termf,(t) is that the factoe>Se~'As gives resonance whilg is
not a local term. However, the main term fpthat concerns us is

t
/ f¢2€l2kse_l(A_Ol)sﬁzodX ds= —i /¢2(A — 2k — Oi)_ng\(pzodx,

which is still of orderO((t)~%%) by Lemma 2.7. Thus we also have (6.17) for
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We can now integrat@zne):
1,2

d
(6.18) Pan; = a(pzl) + 04,

wherepy is of similar form to P,
12

Ps = pe*m f1+ F_)efie f,+C (peﬁie f3+ F_)efie f4) ,
(6.19) d p d . d p d .
G = g (pe ) f1+ g (e "y f,+C <a(pe ') f3 + (e %) f4) :
By (6.17),

(6.20) |pal < Ce¥2n%(t)"¥8|z|, |aal < Ce¥2n(t)~¥8(1Z0] + |pI) .

We have integrated terms of the ordgen!>,.

Other terms of concern fdr= O(1) are related t@R andn from P®. (We
are not worried about terms fromy, go, andgs, since the coefficients of these
remainder terms of integration by parts are multiplied®gn); see (4.14).) These
terms are of the form

Paz.ay = 1 { (¢, Z2aR) + (¢, Q@R?) + (¢, QaRy) + (¢, zaRy} ,

where¢ denotes some local functions. Sinee= O({t}"}), R = O(n™ 1), and

n = O({t}™Y) locally, the largest terms here are of ordet {t}~2, which is larger
thanT"z® whent is small. However, terms linear im can be integrated a&®”

in the next section. The first two termgzaR and xQ(aR)?, are multiplied

by 1 = €; hence they are oscillatory and can be integrated,a% terms and

as A@ in the next section. (Nota = ay(z%> + z°) + b and all terms of the
form nz"b™ with |y| 4+ 2m = 4 are oscillatory; i.e., they have a nonzero phase.)
Since the computation is the same as A%, c,z%, and AZ?, we shall skip the
computation and just give the result:

Paz ay = %(ps) +0s,
where ps is of similar form toPy 5, and
(6.21) lpsl = Cn it} 2, g5l < C{t} 2.
Now we letq = p3 — ps — ps. We have
4 = 8112’2 + pthbz+ (LP® + g1 + O + g3) — Pz,,g + 04— Paza, + 05

= 821/pI*p + dibp + [(uP? — P, @ — Pazay) + g1+ G2 + O3 + Ga + 0]

n
= 82119/°q + dibg + g,
where

(6.22) 9=[(1P? =Py~ Pazs) + 0+ 0]

+ 821(1pl?p — 19/°g) + dib(p — Q) .
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Hence we have arrived at the normal form. (Note that, although wexepidb
in the definition ofg,, it should be replaced by their corresponding equations (6.2)
and (7.2)). Also, note we have

Ca ,udzbz Z Sﬁ,uzﬂ

— Pa.
B#(21)

Finally, from the explicit form ofg(t), it is bounded by terms of the form
nZ' 4+ nk? + (ng, n?) + nznys.
Assuming the bounds a(t) andM (t), we get the bound (6.9) fay(t):
|g(t)| < C83/4—on7/4 {t}—13/8 .

To conclude this lemma, it remains to prove the estimatg,omhich follows
from the next lemma. O

Our main restriction on the size g§ comes from the ternng, (n(B))Z) ing(t).
Since we want it to be smaller thdhz|?, we need), < £¥2n?fort = O(1). We
assumejg < £2n? for simplicity.

6.3 Decay Estimates

In this subsection we present a calculus lemma that deals with the degéy.of
We will write

(6.24) qt) = pHe®,
wherep = |g| andw is the phase aof|. Recall
{t}=e?n242I't, {t} ~maxe>n21t}.

Before we proceed with the proof, we give some simple facts of an ordinary
differential equation.

Example Consider real functions(t) > 0 that solve
(6.25) Py =—rt)®—e@+1t)73
fort > 0, wheres > 0 is small. We have the following facts:
(1) All solutionsr (t) satisfy
ri) < (C+2t)~Y? withC =r(0 2.

(2) There is a number > 0 such that if (0) > ry, thenr (t) ~ (C + 2t)~ /2,
(3) There is a unique global solutiop(t) of (6.25) such that

ro(t) ~t™2 ast — oo.

(4) If r(0) < rg(0), thenr (t) = 0 in finite time.
(5) If r(0) > ro(0), then

foor(s)zds= 00
0
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Thus the behavior af(t) depends on which term on the right side of (6.25) domi-
nates.

LEMMA 6.3 Recall that i, ¢g, N, ande given in Theoremé&.1throughl.4 satisfy
0O<n<ngand0 < ¢ < g. LetI' ~ n?ando = 0.01. Suppose a positive
functionp(t) satisfies

(6.26) p=-Tp’+3O),
where the error term
Ig(t)| < Ce¥4on”4 ()18 | {t) ={t}, = 2n"2 4+ 2I't.
(i) Suppose0 = en. Then there is a constant | m(ep) > 1 such that
mt{t} Y2 < p(t) <m{t} 2.

Moreover, nieg) — 1T aseg — O™
(i) Suppose thgt (0) < en. Then we have

pt) <mi{t} 2.

The above example shows that we cannot expect a lower boupdtiounder
the assumption of part (ii), whes(0) is too small compared with the error term.

PROOF. We first prove part (i). Lep, = m{t} Y2 andp_ = m1{t}~V/?
with m > 1 to be determined. We haye (0) > p(0) > p_(0). Moreover,

pr=—-Tm2p3 = —Tp} +T(A—-m?)p] > —Tp} +7

F(l _ m—Z)m3 {t}_3/2 > 083/4_Un7/4 {t}_13/8 .

~

po=—Tm?p> = —Tp® —T(M* — 1)p2 < -T2 +7
F(mz _ l)m73 {t}73/2 > C83/47(rn7/4 {t}713/8 .
Since{t} ™2 > (en)/*{t}~*¥/8, both inequalities hold if

rdA—m?m rm?—1m3> Celon?.

Sincel’ ~ n? ande < &, the above is true fom > 1 arbitrarily close to 1 by
choosingeg sufficiently small. By comparison, we haye (t) < p(t) < p, (1) for
all t.

The upper bound in part (ii) follows from the same proof by compayixig
with p (1). O
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7 Change of the Mass of the Ground State

Recall thata(t) satisfies the integral equation (3.3), and we have derived the
main oscillatory terms ddi(t) in (3.8): a(t) = a®@(t)+b(t) anda® = ay(z°+2),
with b(t) given by (3.9); that is,

t
(7.1) at) = a(T) +/ (¢1Q, Im(F + 6h))ds
T

t
—aT) +a?(t) —a®(T) + / b(s)ds,
T

wherec;, = (Q, R)~* and
(7.2) b= (c1Q, IM[F — F@ + 6h]) — 4ayoRee ?“*pp.
Note that, after the substitution= 1@ + n® anda = ax(z2 + 7% + b, b is of

the form Re)_{CZ + Czb+ (z¢, n) + CZ* 4+ CZb} plus error. We will perform
several integrations by parts to arrive at the form

t
att) =0t +/ Ot ?ds=0Ot™b
T

and obtain the estimata(t)| < O(t™1).

We first decompose the integrandait) in (7.1) according to order ig; see
table (4.5). Recalh = n® 4 »® anda = ay(z?> + 7%) + b. Also, recall from
(3.23) that

(7.3) 6 =—[a® + Db+ (iR, ReF®)] + Fy3+ Fpa
Fos=— (R, ReF® + F®) 4 [a® + b+ (c1R, ReF?)] (1R, Re),
andFy 4 = O(Z* + @ + n?). Thus we have
(c1Q, Iméh)y =46 (ClQ, Im¢ +n® + 17(3))
(7.4) =—[a® + b+ (R, ReF?)](c1Q, v) Imz
(7.5) + Fo3(c1Q, v) Imz — [@® + b+ (¢;R, ReF?)](c; Q, Im @)
+ Fpa(c1Q, v) Imz+ (Fp 3 + Fo4) (c1Q, Imn®)
+0(cQ, Imp®).

Here the second line (7.4) is of ord®nz?) and the third line (7.5) of orded (z%),

and the last line (7.6) contains higher-order terms. Together with the decompo-
sitions (3.22) ofF we can decompose the integrandagf) in (7.1) according to
order inz,

(7.6)

©Q,Im(F +6h)) = A® + A® + AW L A®)
A® = [ACD L A@D) L A@)]
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where A®@ consists 0fO(z%) terms,A® of O(z%) terms,A® of O(z* terms, and
A® of higher-order terms. They are given explicitly by
A? = (c1Q,ImAQ¢?),
A®Y = (c;Q, Im2LQRK) — b(c;Q, v) Im z,
A = (€1Q,Im2,Q¢ 1) |
A?) = (¢;,Q, ImAl¢ ¢ + 2AQRE?¢)
—[a® + (1R, ReF?)](c1Q, v) Imz,
AY + A® = (c,Q,Im {AQn? + 2AQRay + A[|aR+ ¢ [*@R+¢) — 1¢1%¢]})
+ (7.5)+ (7.6).
(7.7) A® = (7.5)+ (a.Q. Im {AQ(n?)? + 2.QRay®
+1[2cP@R+ 1) + *@R+n@)]}),
A® = (Q, Im {QI27®7® + n®)?1 + 22QRa®})
+(c1Q, Im {A[21¢1Pn® + ¢2n® + €%¢ + 2|e1%¢ + €22]}) + (7.6),
{=aR+n.
Since¢ = zu, + zZu_, we have

Im¢ =Imz(uy —u_) and Img? = (ImZ%) (Ui — u?).

We now proceed to integrate them term by term. We have already integrated
A®@ in Section 3.1. Write

(7.8) e p=c,Z* +ds2’ +dibz+ dhbz + P@ 1=, z* + PCY,
B

where P34 s defined by the last equality. We can rewrite our result in Sec-
tion 3.1 as

t t
(7.9) / AP ds=a®(t) —a?(T) +/ Azz+ Ags+ Arsds,
T T

a® =an(Z+ 7). &= (%) (cQ, AQUE —u?)) = O(n?),
(7.10) Aoz = —danRezc,z*, Ays= —4dayRe[dszZ + dibZ] ,
A275 = —4aygRez P(4) .

Note here we have used Rebbz = O from Lemma 6.1.
We can also rewrite (7.2), the equation boe= a — a@, as

(7.11)  B=[A® £ AP L AP L A, ]+ AD 4 Ay + A® 4 Ags.
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7.1 Integration of O(z%) Terms

There are three terms of ordéx(z%): AP, A@ and A?) (we will absorb
Agz into A®). We first integrateA@ . From its explicit form we have\@® =
C,blImz for a real constanC, = O(n). Hence, using the integration-by-parts
formula (6.11) and the decompositions (7.8) and (7.11),

t t 1 L d
/A<zb>ds=/ Cobimzds= Czlm—.{bZ—f e"”s—(bp)dS}
T T —lk T dt

C t
= 229 Re{zb—f b + b(c, % + P<3»4>)ds}
2c T

t

= Czbb(z + 2) + / Azu4 + Azus dS,
T
whereP @4 is defined in (7.8) and
C
Cv= o> = O(n).
K
(7.12)  Agpa = —Co(z+ D[AP + AP 4 A®) 4 Ay 5] — 2c,ipRec, 2,
Asos = —Cop(Z+ D[AP + Ags+ A® + Ays] — 2c,ioRe P

We now integrateA®”. Recall from (2.24) that) = U, + U_C andU ! =
Ui — U*C. We will also use the following formulae:

Re/dxf(Cg) = Re/dx(Cf)g,
(7.13)

Im/dxf(Cg) = —Im/dx(Cf)g,
(7.14) U@zf+2z9 =zU,f+U_§) +2zU,g+U_T).

Recally = U~ '?7. Denotey’ = e '?#; and hence; = U~1y’. We have
from (7.13) and (7.14) the identity

A = (,Q, Im2.Qcn)

= Im/declezcn
=1Im f dx2cAQ%(zu; + zu ) (U — U*C)yyf
=1Im / dx { (U +U_C)[z(2c:2Q%uy) + 226, Q%u)1} '

= Imde(Z¢3+2¢4)n’,
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where
¢s = U, (204 Q%) + U_ (264 Q%) ,
¢a = U1 (2010 Q%) + U_(2c1AQUy) .
We now rewrite

n'(s) =e i =ee M1 (s),

7.15 s

(7.15) f(s) —e'Asn—no+/ eTAPLF, (T)dr .
0

The reason we work wittf instead ofi is that those terms of the same orde) (
in 05 f (s) = €SAPAF, (s) are explicit. We now have

t t
/ A®) ds — Im / (3, 211) + (¢, 20)ds
T T
t
—Im / (¢3. €754 (pe ¥ 1)) ds
T

t
+ Im/ (¢a, €754 (pe? f)) ds.
T

Note f (s) € Hc(A). We first compute the first integral, which is equal to
t

1
— T a—is(Ati) —i0
N ['m <¢3’ SA+0" (pe f))L
- Im/t <¢3 1 e—iS(A+K)£ (pe—ie f)) ds
T ’ —|(A+K) dS

1 . !
= |Re PATgs, ze 7
|: <A+K 119, 2 n>:|T

t 1
— Re ——P2M¢s, [e*Spy’ —i0zy + ze'?PLF,] ) ds
[ (o Pemon [ o~ iz + 26 P2F, )

= [Re(¢s, z0)]; — Re/ (¢s. [€7“pn’ —i6zy' + ze?PLF,]) ds

where
1
=P
(03 Atc ¢3.
We are careful in addinB2TT so thatps makes sense. We can do so sirf@s) €
Hc(A). Similarly, the second integral is equal to

t
= [Re(¢s. 21) ]} — Re/T (06, [€°Pn' — 1627’ + 2 '“PLF,]) ds

with
1
¢6 = 7——PcTiga.
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Usingn’ = Un, we can rewrite the leading termsfq& A@) dsin the form
Re(¢s, zn') + Re(ge, 217') = Re/ dx(z¢s + 2¢e) (U4 +U_C)n
— Re / dX[(U7 + U*C)(25 + 29811
= Ref dx(zes + 2p7)n

= Re&(z¢7 + Z¢s, 1) ,
where we have used (7.13) and (7.14) again, with the convention (2.1) and
ps=Uids +Ups, ¢7=Ulgg+U ¢s.

Tracking our definition, we hawg, = O(n?),i = 3,4,...,8.
The remaining integral has the integrand

- _ Re(¢5, [e‘i’(s pn’ — ién/ + Ze_iOP?Fn])
— Re(¢e., [€°pn’ — 102 + 2ePLF,))
. Re/ dx (€775 pes + € Bips) Uy
+ (25 + 206) [-16Un + €7°PAF, ] .
Using (3.11) we have
[<i6Un +e"PEF,] = PAUI Y F + @R+ ¢ +1n)l.

Thus the integrand of the remaining integral can be writteA2s+ Az, 4+ Az, 5,
and we have

t t
(7.16) / A ds = [Re(zp7 + Zds, M1 + f Az 3+ Aga+ Ay sds,
T T

Ayz=— Re/ dx(z¢s + 2¢5)P'C°‘Ui_1z“¢a

Agys=— Re/ dx (CoZ*¢s + CuZ%¢ps) Un®

+ (265 + 2p)PLUI TL{F® 4 F®

7.17
(7-17) —[a® + b+ (4R, ReF@)] ¢}
Agys=— Re/ dx (CaZ%¢s + C.Z%¢6) Un® + (PP g5 + PBAge)Un

+ (25 + 2pe)PLUI H{F@ +0@R+n) + (Fos+ Foa)¢}

where PG4 stands for the higher-order termseén'*sp (7.8), and we have used
the definitions ofF (3.22) and (7.3). We observe that the only appearancé of



196 T.-P. TSAI AND H.-T. YAU

is as the exponent @&’. Also, Az,.3 is a sum of monomials of the foree® with
|8l = 3. Thereisn@ orn in A, s.
Summarizing our effort, we have obtained

a(t) = a(T) + [a20 (22 + 22) + (2 + 2) + Re(z7 + 25, )]
t
3
(7.18) - / [A®) + Aoz + Azyg] + [A? + Ass + Agnay + Ay |
T

+ [A(5) + Azs + Agps) + A(zn.S)] ds.

All terms in[A®) 4+ Ay 3+ A3 are of the forncz®, |8 = 3. We defineA, so
that

AsZf = AP 4 Ao 3+ Az 3
= (cQ, ImA|¢[%¢ + 22QRA?¢) — [a® + (c1R, ReF?) |(¢1Q, v) Imz

— 4ayoRezg,z* — Re/ dx(z¢s + 2¢6)P§Ui‘lz"¢a .

From this explicit form, we havég = O(n). By integration by parts, we have

t t
A
/ Aﬁzﬂds=aﬁzﬁ—/ a2’ f4(2)ds, ag:= —— = O(n),
T T

N i[Blx
(7.19) = a,7 +/t Asa+ Agsds
where f; is defined in (6.12) aIId
Aas = Z —a37? (Bo + p1C)z tc, 2
(7.20) B=(bo.B1).o+P1=3
fos = Y —aZ(Bo+ BO)ZIPEY.

B=(Bo.B1).o+p1=3
Notice that{8] # 0 andag = a;.
Substituting (7.19) into (7.18), we obtain

a(t) = a(T) + [ag0 (2 + 22) + Cb(z + 2) + Rezd7 + 265, 1) + 352" |
t
(7.21) + f [A® + Az s+ Agna + Agya + A
T

+[A® + Ags + Agns + Az + Ags ds.

We have finished the integration of all terms of or@(z%) in equation (7.1) for

a(t). Thus there are no ord€-z°) terms in the integrand in (7.21). The ordér
terms are collected in first group of integrands in (7.21), and the higher-order terms
in the second group.
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In principle, orderz* terms have the following formsz*, b?, n2, z°b, z%n, by,
andzn®. Closer examination shows thbf, b|z|?, or zy® never occur. (Re-
call thatzn® is part ofzn, which we already treated when we integrat&@”.)
Furthermore, the terms involving can be removed by making the substitution
n =n® 4+ n®. A precise statement on these integrands is given in the following
lemma. It is crucial that no term involvinig? appear in the integrand. Otherwise,

it will result in an inequality of the fornb(t) < C/t + ft b(s)?ds, which does not
guaranted(t) < C/t.

LEMMA 7.1 The integrands of order @%) in (7.21)can be summed into the form

[AD + Aos+ Agnay + Agyay + Aga] =
Boolz|* + Re{ AuoZ* + Aa1Z’Z + ApbZ} .

There are no terms of the fornt tb|z|?, or zy®. Moreover, we have

(7.22) By = 3ciI" + oM, Ag, As1=0(N), Ap=0(®M).

PrRoOOF Recall the definitions (7.7), (7.10), (7.12), (7.17), and (7.20):

A? = (c,Q, Im {2Q(n®)? + 2.QRay®
+a[21712@R+n®) + @R+ n?)]})
+ Fp3(c1Q,v)Imz—[a® + b+ (R, ReF®) ](c1Q, Imn®)
Ao4 = —4danRe[dszZ + dibZ]
Aabay = —Con(Z+ 2)[ A + A 4 AP L A, 5] — 2c,b Rec, 2
Aana = — Ref dx (CaZ*¢s + C.Z%¢ps) Un®

+ (265 + 2¢e)PAUI HF® + F® — [a® + b + (c1R, ReF®)] ¢}
Aa= Y —aZ(Bot+ F1O)Z a2
B=(Bo.p1),Po+B1=3

The first part of the lemma is obtained by direct inspection. Note we can deal with
Az, 4 in the same manner as we dealt WRH? . The orders of the coefficients are
also obtained by direct check with the following table in mind:

Q=n, R:n_l, =1, ¢c,=n, dﬂ’dl’dzzl’
2 2
a@o=N", a=n, Cp=n, ¢r7,Ppg=n

t~z+n’z, aR~n1p?, n~np?.
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We note that alC|z|* terms withC = O(n?) but one are killed by the Im operator.
The only surviving term is the following resonance terma§?:
(Q. ImAg%y@) =
(€1Q.IMAZU% Znp) + OMd)2*+ Y 07",
ly|=4,y#(22)
The first term on the right side is equal %01F|z|4 + O(n®), and this is the main
term in By,. This proves Lemma 7.1. Il
7.2 Integration of Higher-Order Terms

Next we proceed to integrate out those oscillatory terms in the integrand of
(7.21) fora(t). The first group consists of terms of the foeh |y | = 4.

t
Re/ AsoZ* + A2’z + ApbZds
T

A4024 A3 23 Z_ A b 22 !
— R 1 b2
| |T

—4ig —2ik —2ik

t 4 35 -2
AqoZ A31Z°Z Apop~ d
“Re || T 0@+ o @ g bpIds
whered (bp?) = bp? + 2bpp = O(2°). Let
Ay A Ay
a0 = =0(MN), au=-——=0M), ap=-——=0(m,
—4ix —2ik —2ik

d
Ays = — Re{a4024 f10(2) + a312°Z f31(2) + abzd—s(bpz)} .

Then we have the identity
t
Re/ A4()Z4 + A31232 + Ab2b22 ds=
T

t
Ref[asz’ + 8312’2 + abzbzz]tT + / Assds.
T

After this integration, the integrand in (7.21) becomes
A® + Ays+ Agzas) + Agns + Asa+ Ass.

Since| A4 5 is of orderz®, the integrands are of ordet or higher. More precisely,
they are of the orders

n(Z® +z@R?+ z@Rn + (@R + 2 + 220>, + 205 +---).

(The firstn is from thec; Q in equation (2.30) fod.) These terms are of order
t~2-1/8 and thus can be considered as error terms wHarge. Unfortunately, we
need to control their behavior even foof order 1. In this region, their orders in
terms ofn are crucial.
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We first note thanz® is bounded byen?|z|* < |B||z|*. Sincellnllz <
C {t}7%, the termnzy? is also much smaller thaiBy,||z|*. The termnzzng?’)5 is

bounded by:~7n(en)¥4 {t}~27Y/8 « |By,||z/*. Thus the main trouble lies in terms
of order
nz@R?+ nz@R)y + n@R)?y + nZn?, .

These terms have faster time-decay order ffag||z|*, namely,t—>~1/8, but they
are larger thamBy,||z|* when timet = O(1). They are oscillatory terms of order
z° that we will integrate. (In contrast, terms of ordef may be nonoscillatory.)
Since the integration procedures for these terms are the same as th@a¥pr
terms, we only sketch the main steps:

(1) Replace alh in the above group bgo(z? + z%) + b.

(2) Alltermsz” with |y| = 5 are oscillatory and can be integrated®’.

(3) nZ2bR? andnzI?R? are also oscillatory and can be integratedh&® .

(4) All terms linear inp—z3n, zbn, andb?y—can be integrated a&®?.

(5) zzn(3) can be integrated d%zn(a) , defined in (6.15). Specifically, we have
terms of the form o

22 (3) = Z Re n¢ Za’?(g) ) t(%zﬂﬁ)z) + A22n(1?22,5

la|=2
wheregp = O(1) are some complex local functions angl ©® andA22 ® 5
are defined similarly tg, andg, in (6.19) with the decay

|az,0 | < Cit}ten®() ™",
|Azz,75332,5| < C{t) 2 (t) /% < CelBa| {t} 2 .

Note that, as inp; and g4, we have terms of the forn, (A — 2« —
0i)~2PAd)nZin a,,@ , which still has the claimed decay by Lemma 2.7.

To summarize, we have obtained
a(t) = a(T) + [a20 (2 + 2) + Cab(z + 2) + Re(zp7 + 2¢g, 1) + 852" ]
+ Re[asZ* + 212°2 + @b Z + a2, |
+Re[CZ + CZb+ CzF + CZn + Czhby + CkPy + C2n 2, ],

(7.23) +/ Bx|z|* 4+ Bsds,
T

whereB,, = %clr‘ + O(n3), the terms in the third line denote various terms of
similar form (e.g.C2 mean<Cz’ with |y| = 5), and

(7.24) |Bs(t)] < C(e +n)°n"*{t} 28 « Tt} 72,
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assuming the bound (4.10) aiit) andM(T) < 2.
Recallb(t) := a(t) — a®(t) andSr (4.11) is defined by

at) = a(T) + [0 (2 + P)]; + Sr@ 2 1,6)(®).
From (7.23),Sr can be viewed as a function afz, n, andd and explicitly given by

Sr(a z,n,0)(1)
= [cab(z + 2) + Re(ze7 + 2¢, 1) + 252°
+ Re[au?! + 23122 + apbZ + a2, |
+Re[CZ + CZb+ CzlF + CZn + Czhby + CkPy + C2n2, ],

t
(7.25) +/ Bx,|z|* 4+ Bsds.
T

The right-hand side depends by ®, etc., which are not explicitly given as vari-
ables inSr. But all these variables can be traced back to the basic variapkes
n, andd, e.g.,.b = a — ayy(Z2 + 2%).

Making the same assumptions as in Proposition 4.1, we have

B D
(7.26) |Sr(a,z n,0)()] < Cy(D) {t} ¥+ 2—? tyt< [o(l) + Z} {ty .
We also hava(t) = a(T)+[ax0(22+ 221} +S(@)(t) = a(T)+[o(1)+ D /4] {t} .
We conclude with the following lemma:
LEMMA 7.2 Suppose that M) < 2 and|a(t)] < D{t}"*for0 <t < T. Recall
D = 2By,/T" = ¢; + O(n). Then we have

D D

(7.27) ISr@ 20,00 = 3 {ty ., Ja®| < lam)|+ > {ty .

This lemma gives Proposition 4.2 and concludes the proof of Theorems 1.1 and 1.3.
Since|Eo— Ej11| < |Eo—Ej|+|y| < 2De?n?+|y| < 2De?n?, by Lemma 2.4
again withE; standing forEy and E; standing forE; 1,

(7.28) |Eo — Ej11 — 8j41(0)| < Cn~Y(en)(2De?n?) = Ce3n?.

The constan€C here is independent gfsince we use a bound foE, — Ej1| that
is independent of. Sincelaj;1(0)| < 3D&n?, we have

(7.29) |Eo — Ejy1] < De?n?.

From this, we also gefyo — Q1€+ @y < 2en. We have thus proven the
induction hypothesisl(, ) for t = T, 1. The induction proof is complete.
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PROOF OFTHEOREM 1.4: Suppose the assumption of Theorem 1.4 holds. The
existence ofE,, and the upper bound (1.22) follows from the same proof for The-
orem 1.3. Recall from (1.24) that

2 2
|Zey ol =N,  Ingeolly < Ce“n®, ag,0=0.

Lety = Ep — E, be the energy shift. The energy shift can be boundef/by
De?n? (2.10). Thus with respect tB,, Lemma 2.4 guarantees

1ze, (0)] = en+ O(e’n), e, Oy < Ce?n?, ag, (0) < Ce’n?.

The second part of Proposition 4.1 thus provides the lower bqupd)| > (1 —
20) {t}~Y/? for all timest.

We now prove (1.26), the last statement of Theorem 1.4. Since: De?n?,
by (2.8) we have

(7.30) IQeolI? = Qe 12 + 2/ (Qus, Reo) + O(N72y?).

We can also estimate the energy shift= a,,(0) + O(s3n?) by Lemma 2.4 with
E; standing forEgy and E; standing forE,,. Thus we have

0 0
2.0(0) = / Bz2|z|*ds+ O((en)®”) = / Bzolq|* ds+ O((en)?*)

whereq = g (t). RecallBy, = 3T + O(n®) andc; = (Qw, Ry) ™t Onthe
other hand, we hav |q[?> = —2T"|q|* + {t}*"/3; hence

19(0)|? = /Ooo —2r|g|*ds+ O((en)¥%) .

From these formulae fa,. (0) andq(0) we have
4200 (0)(Quo» Reo) + 19(0)* = O((em)%).

Recall that the eigenfunctions fdr satisfyu, v = ¢; + O(n?). From the defini-
tion of z, we have|z(0)|?> = [|£(0)]|?; - [1 + O(n?)]. Since|q(0)|? = [z(0)|? +
O((en%*), we conclude 2(Qu, R) = =3 1£(0)lI7> + O(e?n?(s/* + nt/4))
and

(731) Qe = QeI = 3 IEO)IF2 + O(e”n*(e " + n¥h)..
Therefore (1.26) and thus Theorem 1.4 are proven. O

8 Existence of Dispersion-Dominated Solutions

In this section we prove Theorem 1.5. For a given prdfile we will construct
a solution of the form (1.18),
¥ =[QM) +abR(X) + ht, x)1e/-F+O1,

so thatyr (t) — Yas(t) = O(t~2). Herea(t), 0(t) € R andh(t) € M.
By (2.29) we have

&%Uh = —iAUh —i6Uh+Ui"Y(F +6aR) — [U,i]6h.
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(Recallu Py = U.) We single out-i 6Uh since it is a global linear term in. Let
h = €Uh; we have

(8.1) &h = —iAh 4+ €?{Ui~Y(F +daR) —[U,i16h}.
Let
(8.2) ht) =e MUt +g(t), h=Ute’h.

Hereg(t) € X is the error term. Note thaj(t) consists of both excited state and
subspace of continuity components. From (8.1) we have

t
(8.3) g(t):/ e AU TY(F +6aR) — [U,i16h}ds.

We will solve{a, 6, g} satisfying (2.30), (2.32), and (8.3), respectively, witand
h defined in (8.2).
Note F = F(@aR+ h). The main term irF is

Fo=1Q (2617 +&%) + 61’6, &) =U"le"VeMUs.
By assumptiorf,, is small in the spac& = H2 N W21(R®). SinceU is bounded
in WkP, U llnznweirs) < € for somee sufficiently small. From Lemmas 2.6
and 2.7, we have the bounis(t)||y2 < Cie and||&(t) [z~ < Cie|t|~¥2. Hence
the termi|£|2 in Fo is bounded by |26 (t) 2 < ClIE(t)[I3, < Ce®. Moreover,
ift > 1,
1) | < Cle® |2, e ], < Ce32,

[v21EPH® 2 = Cle® ][ VD], +Cle® ] [ VE® [ = Cat 2.
We conclude that
(8.4) g%, < Ce3(t) 2.
We also have the following estimate: For a functibe L' N L2, we have
(¢, 1€178)| < min{llgll s - [1E1% i, lllz - 116176 ]2}
< Cliplliin2e3(t) 2.

(8.5)

The other termh Q(2|£|? 4 £2) in Fy is actually larger than|£|%¢ locally and can
be estimated similarly. We conclude

[Fo(t) [z < Ce?(t) 3.
If |lg(t)[l42 < Ce?(t)~2, one can prove, for example,
l1E +97E +®)|,,. < Ce3t) 2, 11QEgM) |2 < Ce3(t)~ 2.

From these estimates dfy, the main term of-, ;he following bounds follow
from definitions (8.3), (2.30), and (2.32) of a, andd, respectively,

(8.6) g St2, agt?, 4St?, oSt
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One verifies with these orders that the main ternois indeedF,. Although

6(t) = O(t~1), 0 only appears in the forrd? and does not change the estimates.
We now proceed to construct a solution. For convenience, we introduce a new

variablew = 6. Let A be the space

A={(».0,a,0):[0,00) > Rx R x R x H?, |o(t)| <& ()2
0] < &> ()7 Jai)] < &7 () 72 19M) Iz < 277 (1) 2],
whereo = 1/100 is small. We define a Cauchy sequence on the sgabg
iterating the following map: (cf. (2.30), (2.32), and (8.3))

w”(t) := —[a+ (1R, ReF)] - [1+ a(c1R, R) + (c1R, Reh)] 1,

t
02 (t) = f wds,

e¢]

t
a’(t) :=/ (©1Q, Im(F + wh)) ds,

o0

t
go(t) == / e A9 A9 Y "L(F + waR) — [U, ilwh} ds,

whereF = F(@aR+ h) andh(t) = U~le (e "AtU&,, + g(t)). Our initial data
are

wot)=0, 6t)=0, at)=0, g =0.
Given(w, 0, a, g) € A, using this assumption and (8.4) and (8.5), we have

912gllnz < lgld, < Ce® (),
IFllq2 < Ce?(t) 2,

(¢, F)I < Cllpll1n2 Ce2(t) 3,

0™ ()] < Ce? 7 (t) % < 227 (t) 2,

t
102(t)| < / e (s)Pds < 2 (1) L,

e¢]

t
()] < / Ce2(s)3ds < 627 (1) 2,

t
192 () 2 < / Ce?(s)3ds < 277 (t) 2,

provided thate is small enough. In the last line we have used Lemma 2.6 on the
boundedness & ''A on X N H2. We have also used the estimate

IV, i1hllh2 < ClI§llwae + ClIglly2 -
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The estimate of is similar to (2.42) in Lemma 2.9, which in some sense $dy$]

is a local operator. Although it is not stated in Lemma 2.9, the proof of Lemma 2.9
in Section 9 gives the estimate. We have shownthét 9%, a%, g*) € A, that s,

our mapping mapgl into itself.

Next we show that the mapping is a contraction. Given, 0, a1, g;) and
(w2, 02, 82, O2) € A, we denote
S0 = sup {8(t)2[8e (1] + (t)[86 ()| + 27 (t)?|sat)| + () 18g(t) |42} ;
<t<oo

we knows, < Ce2-% . Note thatF is cancelled i F and thats(€9) = O(56).
We have (the norms d¥, g, andh are taken inH?)

180191211z < ClIgl? 189l < Ce*28o(t)~°,
(¢, 3h)| < Cye(t)"¥2[80] + C, 159l < Cypdolt) 2,
I8F[lq2 < C llaR+hl - (e(t)~*?|80] + [|8gl| + |8a]) < Cedo(t)~ "2,

5 1
18 ()] < 71621+ ClIoF | + Ce(t)~¥?|(R, sh)| < a(so(t)_z,

t
1
1862 (1)| 5/ |sw|ds < éso<t>*1,

t

Isa®(t)| < C / ISFIl + &2 (s)"2(|8w| + [(Q, Shyds < 27 %8(t) 2,
t

156° ()2 < C/ £2(5)"%156] + I5F | .

o]

+ 272 (5)2(|8w| + |8a] + So(s) Dds < %%(t)_z-

Here we have used Lemma 2.6 and the localneg&)of] again. Therefore we
have

Sup {8(t)2180™ ()| + ()86 ()| + 27(t)?]6a” (1)| + ()2189° (1) | 2}
) 1
< —

30,

N

and thus our map is a contraction. We conclude that we do have solatioith
the main profilee ' AU €.
Recalliya(t) = Qe 'EHID 4 oiBtglLe By (8.2) we have
w(t) — [Q +aR+ U~ efie(efiAtusoo + g)]efiEtJriQ(t)
— 1/fas(t) + [aR+ U —1e—ieg]e—i Et+i0(t) + e—iEt+i9[U —1’ e—iG]e—iAtugoo )
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Sincea(t), |g(t)|l42 = O(t2), and by the localness ¢f) 2, i]
U™ e]e"MUE, = —sing[U,ile ' MU&, = O™ - Ot™¥?),

we havey (t) — yas(t) = O(t~2) in H2. Hence Theorem 1.5 is proved.

Finally, we address the remark after Theorem 1.5. Rewfritei (A + E) + V3
whereV; = i71(V + 20Q? + 1Q?C) is a local operator. One may replace the
definition of&(t) by £(t) = U—te ?®UE(t) with

(8.7) E(t) = PE By + / el=9L pLy, g (B+Bsy ds,
and proceed as in the previous proof to construct a solttierl) ~le19(UZ +g).
The assumptiof(0) = 0 andV 3, (0) = 0 ensures that **" x, has a local
decay of ordelO(t~7/?); see [5, lemma 5.2]. Hence the difference betweén
andé“tBty . is of orderO(t=>?) in H2 Thus globallyFy(t) = O(t~%) and
locally Fo(t) = O(t~®). Hencea,d = O(t™*) andd(t) = O(t~3). Therefore
in H?

w(t) — [Q + U—le—ie(t)Ug(t)]e—iEt+i9(t) + O(t—Z)

— Qe—iEt + eiAtho + O(t—Z) )

Here we use again that*' x,, has a fast local decay and tHat*,i] is a local
operator. Note that (8.7) is in fact an expansioreéMW, x.. by the Duhamel’s
formula, whereW, is the wave operator of defined in (2.36). See [5, section 5]
for a similar argument.

Remarl{Remark on Dispersion-Dominated Solutions to Klein-Gordon Equations)
We now sketch a construction for dispersion-dominated solutions to Klein-Gordon
equations. We follow the notation in the introduction. For a specified profile
letu = & +gwhere&(t) = €8y, +e71BY_ andg denotes the rest. Then we have

(F+B)E =0, (B2+BHg=r(¢+09)°.
Henceg(t) satisfies

t
. . 1
_ B(t—s) _ o—iB(t—s) 3
g(t) _/ {€ e }—ZiB/\(s + g)°ds.

o
Since the main source term is bounded|l¥||> < [I€]12, I€]l, < Ct~3, we have

lall, < f;o Cs3ds < Ct=2. Then we proceed as in Section 8 to construct one
such solution by a contraction mapping argument.

9 Proof of Linear Estimates

We now proceed to prove the lemmas in Section 2.4. To simplify the presenta-
tion, we will assumeé. > 0. The proof for the cask < 0 is exactly the same.

Recall thatX is the space of all functions ib?(R?) that are orthogonal t@,
andIT is the orthogonal projection frorh?(R%) onto X. In what follows we will
only consider the restrictions &f and A on X. Hence we often omit the projection
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IT in the definition ofA. (It should be noted, howevel, acts onL?(R3).) In the
rest of this section, when we writ€?, W% P, or L2, we often mean their intersection
with X: L2 X, WkP N X, orL?N X.

We recall assumption A2 ovi. We assume that O is neither an eigenvalue nor a
resonance forA + V. We also assume th&t satisfies the assumption in Yajima
[20] so that thew P estimates fok < 2 for the wave operatoiy holds: For a
smallo > 0,

VAV (X)| < C(X)™> for |a| < 2.
Also, the functiongx - V)XV, fork = 0, 1, 2, 3, are—A bounded with an-A
bound less than 1:

9.1)  IX-V)Vol2 <ool-A¢l,+Cligl,, oo<1, k=0123
By the assumption, the following operators are boundedfin
(9.2) HoY2(x - VSVHY2 D (x- WKVHL, HZY(x - V)RV,

fork=0,1,2, 3.

SinceQ is the ground state dfl with V satisfying the previous assumptiogy,
is a smooth function with exponential decay at infinity. Hence the above statements
onV also hold forQ andQ?. SinceV + 1Q? andV have the same properties, in
what follows we will replace/ +1Q? in H by V and writeH = H, + V to make
the presentation simpler. So it should be kept in mind that the poténtialthis
section is in facV + 1 Q?.

For two operatorsS and T with bounded inversesS is said to beT -bounded
if ST~ is a bounded operator. If boandT are self-adjoint, this implie¥ ~1S
is also bounded. A deeper result s&§'$? is TY/2-bounded; see [11, theorem
X.18]. We saySandT aremutually boundedf both ST-* andT S-* are bounded
operators. This is the case |[{S— T)T_1||(|_2’|_2) = 6 < 1 for somed. (It
implies immediately thaff ST-|| < 2. Since| Tl < |ISoll + (T — So| <
1Spll + 0 || Toll, we have| Toll < C|Se|, which impliesT is S-bounded.)

LEMMA 9.1 Foreachk= 1,1, 3

, 3,2, 3, the operators H, H¥, and A are mutually
bounded.

PROOF. ThatHX andHX are mutually bounded follows from our assumption
onV by standard argument. To sha#* and A< are mutually bounded, it suf-
fices to prove the casés= 2 andk = 3 by the previous remark. We first show
(A2 — H?)H~2|| < 1, which implies the case= 2.

H(A2 . HZ)H_ZH _ ||Hl/2AQ2H1/2H_2H
= [HY2Q°HT = [H.Q°H | = 172,
The last inequality can be obtained by writing
HY2QPH™ = HI2Q% + HI?1Q% HIY
_ H;l/ZQZ + H;l/Z[QZ, H*]H*fl’
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and noting{Q?, H,] = AQ?+2VQ?. V.
To prove the cask = 3, it suffices to proveA® < CH® andH® < C A°. Note
that

(fAST) = (f A2A2A%f) < (f A2H2A%f).
SinceA? = H?2 + HY2AQ?H'?, we have
(f A2H2A%f) <
C(fH?HZH?f) + C(f(HY2AQ*HY?)H?(HY2AQ*HY?) f)

where the cross terms are estimated by the Schwarz inequality. To show that the
last term is bounded b@(f H8 f), we shall show thaH¥?Q?H %2 is bounded
in X. Rewrite

HS/ZQZH—S/Z — H3/2H—2Q2H—1/2 + H3/2[Q2, H—Z]H—l/Z
— H—l/2Q2H—l/2+ H_l/Z[QZ, HZ]H_S/Z.

Since[Q?, H?] is of the formZW|53 G.(X)V¢, the operators on the right side of

the equation are bounded ¥a This showsA® < CH®. ThatH® < C A% is proven
similarly. O

Recall the standard formula

*© 1 ds
9.3 T = —, 0 1.
(©-3) fo s+ T s 7=

The operatoiT in the above formula will beA? or H. Hence we also need to
estimate operators of the forgﬂm. Clearly, fors > 0,

H2

9.4
(9.4) ST H?

~1/2
(Wep. Wk p) <1, “ H ||(Wk,p,Wk.p) <C.

LEMMA 9.2 Let s> 0. The operator H(s + H?) is bounded in WP N X with

H
9.5 — < C(s)7Y2.
( ) S+ H2 (WK-P, Wk P) <C6)
Also, for k=41, £2, 43,
1

x)K x) K <C(s) 1,

( >s+H< ) ey (s)
(9.6) H

H (x)k * < C(s) Y2,
s+ H (L2,L2)

PrRoOFE We can rewrite
H 1 1

s+H2:H+\/§i+H—\/§i'
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Therefore, to prove statements tdy (s + H?), it suffices to prove the correspond-
ing statements for /AH + /si). We first prove (9.5) fok = 0. Letk; denote the
eigenvalue of the excited state bf, and letP; denote the projection onto the
corresponding eigenspace. We can write

1 1 1
_— | = —P 4+ Wy —W pH .
H—{—ﬁlx K1+ A/Si ! — E+ /si ¢
wherep = —iV andWy is the wave operator off. Note E < 0. SinceWy

andWj}, are bounded itwk P for sufficiently niceV [20], it is sufficient to prove
that 1/(p? — E £ \/si) are bounded inWkP. However, ¥(p? — E &+ ./si) are
convolution operators with explicit Green functions:

Ee—m(— ENCIEG

IX]

54

. in1/2
Since |[e"XICEEVSY? | < g=cxI9™* the |1 norms of the Green functions are

bounded by(s)~'/2. By Young’s mequahty we have
1

— < C(s)""2,
’ p?2 — E £ /i (LP,LP)
which proves (9. 5) fok = 0. Fork > 1 and forp € W*P, we have
H
Hk Hk/Zi Hk/2
‘ s+ H?2 d)‘wkp s+ Hqu Lo s+ H? ¢ Lp

< C(s) 2| H¥?p| , ~ ()" * I llwkp -

This proves (9.5) fok > 1.
For (9.6), we prove the second part. The proof for the first part is similar. For
k > 0, since

" 1 1
[<X>’H+\/§i}:H+\/§i +[]H ¢§|
and
[, H + /5] = 2V (V(x)9) — (A(x)9),
we have

[

1 1
< C v* 1 . k—1 X —k+1
= ”H—i—ﬁi( * )H Ht s
<C(s)"Y?
by induction ink. We have the same estimate f¢x)¥, . ng] and hence (9.6)

holds for positivek. The proof for the cask < 0 is similar. a



DYNAMICS OF NLS 209
RecallL? is the weighted.? space with normi f || .2 = [[(x)" f 2.

LEMMA 9.3 The operators W2A-1/2, A-12HY2 H-Y2 A2 and A/?H /2 are
bounded operators in WP N X and L2 N X.

PROOF. By (9.3) we can write

HY2A-1/2 — H1/2 = 1 ds
o S+ H2+ HY2,Q2H1/2sl/4

or 1 1
- Hl/Z/ [ + HY2.Q
0

S+ H2 s+ H?

- H j 1 Jds
A HY2 ——— | —
J;( Qs—i— HZQ) Q s+ Hz}sl/4

J H ds
_ —12| 2>
_1+/0 [ H2AQ2< +H2 ) Qs+H2|_| }51/4'

Since| H2|| < (s)"Y2 by Lemma 9.2, we have

o ds
2p-1/2 2 2 2
|HY2A~Y ||(kap’wkyp) < 1+C/0 (s)~Y nZ(n ~1/2)ipg)~Y i

<1+Cnr?.
Similarly,
| AT72HY2] (o wipy = 1+ Cn%

Also, using (9.6), for < 3 we have
[HY2ATY2] () + [ ATYEHY2] (o ) = 14 C0%.

The above proves thati/2A=1/2 and A-%2HY/2 are bounded inW*P and L2.
Indeed, we have proven

©.7) [xPHYEATZ = D)% (22

+ [P ATZHYZ = ()% (12 12y = Cn

We now consideH ~Y2AY2 and AY2H /2, Since

A1/2:A2A—3/2:Az/°° 1 ds
0o S+ A?s¥47
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we have
H-12A12 = H-12(H42 4 HY2) 02H 12 * 1 ds
B (R™+ Q V|, STRZFHUBQRHIA S
1 ds

S+ H2 4+ HY2)Q2HY2 s%4

= (H3/2+AQ2H1/2)/OO
0

= |1+)»Q2|2.

The main term id1. The terml, is similar to HY2A~%2, and its integrand has a
better decay irs for larges. Hence

[2Q%12] = Callzll < Cr.
For the main term;,

© HZ & H b H ds
li1=1 - - H-12>
' +/o S+H2Q§(QS+H2Q> Qs+H2 s%/4

Hence

00 00 ) dS
2 /e —1/2 _12
1] < l—i—C/O njE_O(n (s)~Y2yin(s)~Y i

<1+C oonz(s)*l/ZE <1+Cn?
- 0 S3/4 - :

Here the norms are taken {fWw*-P, Wk-p) and(LrZ, Lr2). Hence we have proven
Lemma 9.3. O

In fact, the last part of the above proof also shows
(9.8) [[(x)3(HT2AY2 — ()% (2 2
+ ()P ATEHTZ = ()% (2 2y = C*.
PROOF OFLEMMA 2.9: The above lemma proves tlluia;;tanduo‘1 are bounded

in Wk-P andL2. Moreover, (9.7) and (9.8) mean thag— 1 andU, * —1 are “local”
operators. In particular, they implyfUo, i1¢|l s7q 23 < C |¢]| 4. Since

s ~ |PL O
U=UII Wherel'[_[0 l‘[]

is a bounded projectioty is also bounded. Similarly ~* is also bounded. More-
over, we have

1 0 + [Uo, ITT,

where by (2.18P; — IT = —¢|ITR) (Q)]| is a local operator; hend#&, i] satisfies
the last estimate in Lemma 2.9. Lemma 2.9 is thus proven. d

[U. 1] = Ug[fL. i] + [Uo. 11T = Ug(Py — 1) [O 1]
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PROOF OFLEMMA 2.10: We need only to prove the statementWg. Note
that the estimates (9.7) and (9.8) also show, for@myL 2,

(9.9) (Uil _ 1)e‘“H*¢ 0 in L2 ast — oo
Notice
W = lim tAetH — |im Uefu —leith
t—o0 t— 00

= lim Ueleth 4 Jim Ue“ Ut —1)e it
By (9.9) we have
Wa = lim Ue“e ™ = uw,.
The boundedness §¥ follows from that ofU andW,.. This proves Lemma 2.10.
Il

PROOF OFLEMMA 2.7: Since
e "APRp = Wae "M WiP2s

the estimate (2.39) follows from the usu@lP, L9) estimate fore 't"+ and the
boundedness olVx andPZ in LP spaces. To prove (2.40), either we prove the
boundedness oV, in weighted spacek?, or we use the Mourre estimate. We
will follow the second approach and the argument in [16].

Leta = 2«. We consider intervala = (a—r,a+r). Letga(t) = go((t —
a)/r), whereq is a fixed smooth function with support {#-2, 2) andgo(t) = 1
for |t| < 1. We will considerga (A) with r small enough. LeD = xp + px,
p = —iV, and the commutators

adb(A) = A, adS™(A) = [ad5(A), DI.
We need to prove the following lemma:
LEMMA 9.4 For A small enough, the Mourre estimate
ga(A)[iA, DIga(A) = 6ga(A)?

holds for some > 0. Also, g (A) acg(A)gA(A) are bounded operators inAfor
k=0,12 3.

We will use the following lemma:
LEMMA 9.5 The operators
H™®D*H™?(x)"® and (x)"*H™?D*H"3
are bounded in Efork,m=0, 1, 2, 3.

PrRoOOF. This is standard and we only sketch the proofmlis even, we can
compute the commutatdD®, H™?] explicitly and estimate

H—3Dka/2<X>—3 — H_3Hm/2Dk<X>_3+ H_S[Dk, Hm/2]<x>_3.
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If mis odd, we write

H_3Dka/2<X>_3 — /00 H—3D|(H(m+l)/2 1 (X)—3E
0 s+H NE
and proceed as in the case whmaris even, by using (9.6). Here we have used
formula (9.3). a

PROOF OFLEMMA 9.4: LetG = A — H and writeA = H + G. Since
[IA,D]=[H.+V +G,iD]=—-A+[V +G,iD]
=A-V-G+I[V+G,iD]

andga(A)Aga(A) > 26g.(A)? for some 2 > 0, it suffices to show that, for
M= -V +[V,iD], -G, and[G, D], the operators

Ia(AMPA(A) = (Ga(AHD(H2MH_?) (HZga(A)

are bounded by, (A)?, and the bound goes to zero when the intervahrinks to
zero. Since both

a(AHZ = (Ga(AAYH(A2H?) and H2ga(A) = (HZA?)(A%ga(A))

are bounded and converge to zero weakly wheshrinks to zero, this will be true
if one can show thaH_2MH_? is compact. The cas®l = —V + [V,iD] is
standard and follows from our assumption, so we only consit{etG H2 and
H2[G, D]H 2.

We proceed to find an explicit form @@. By (9.3) withT = A?, o = % we
write

A_l_/°° 1 ds
~Jo s+ H2+HY2Q2HY2 /5

© 1 1 > H ] 1 ds
= HY2x A HY? —— —
/o s+ H2+s+ H? Q;( Qs+ H2Q> Q s+ H2 /s

— H71 + H71/2<X>73J0<X>73H71/2

where

_[®.s H °° H b H 5 ds
JO_/O X s+ H2AQ§<AQS+ H2Q> Qs+ 2 ) NS

By Lemma 9.2,

o0
130l w212 < / (s)7%.n?- ()" 2ds < CnP.
0
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Hence
A= AAT
_ (H2 + Hl/Z)\QZHl/Z) (H—l + H—1/2<X>—3JO<X>—3H—1/2)
(9.10) =H+G,
G = Hl/z)LQszl/z + H3/2(X)’3J0(X)’3H’l/2
+ HY22Q%(x) 2 Jo(x) S H 2.

SinceH ~Y2(x)~1and(x)"*H~%2 are compact, from (9.103_2G H_2is com-
pact. We can also write

H?GDH,? = {H/’GHY2(x)} - {(x) "H "?DH_?}.

The second operator is bounded by Lemma 9.5. The first is compact since its terms
are of the formH~™ . (x)~% . (bounded operator). Similarly4>DGH_2 is also
compact. Hence we conclude the Mourre estimate.

To show thaiga (A) adg(A)gA(A) are bounded fok = 0, 1, 2, 3, we rewrite

ga(A) ad; (A)ga(A) =
(Ga (A A% (APH3) (H 2 adS (A H %) (H3AT3) (A%gA(A)) .
We need only to show that —3 ade(A)H*3 are bounded since the other terms
are bounded by Lemma 9.1. Rec&ll= H + G. It is standard to prove that

H-3ad (H)H 3 is bounded. FoH 2 ad(G)H 3, since it is a sum of terms of
the form

H3DKGD™H 2, k+m<3,

it suffices to show that these terms are bounded. By the explicit form (9.18) of
and Lemma 9.5, they are indeed bounded. For example,

H —3D2 { H3/2<X>_3J0<X>_3H_1/2} DlH -3 _
{H_3D2H3/2<X>_3} Jo{<x>_3H_1/2D1H_3} ,

a product of three bounded operators. We concludeghéd) ad‘D(A)gA(A) are
bounded fok =0, 1, 2, 3. O

With Lemma 9.4 (cf. the remark in [16, p. 27]), the minimal velocity estimate
in [6] and theorem 2.4 of [14] implies

|F(D < 6t/2)e A ga(A) (D) ¥ o2 < Cit) ¥4,

The same argument in [16] then gives the desired decay estimate (2.40). [

PROOF OFLEMMA 2.8: Letyn = PATIgop? andyo = PHigop?. RecallH; =
—A +V —ey. We havey,, = ¥+ O(n?). We write v, = o + bg1 + 1, where
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n € He(Hy) andb, n = O(n?). Rewrite

(om0 =)
= Imi /OO (Yn, €71 AT020y, ) dt
(9.11) i
= Imi /OO (Yn, €1 H70729 ) dt
(9.12) i

00 t
+ Imi f / (Wn, e—l(t—S)(A—OI —Z{)(AQz + G)e—IS(Hl—OI —Zx)wn) ds dt.
0 0

The main term lies in (9.11). Itis

o i 1
™ /0 (W, &M H=0 29y ) dit = (‘/’0’ m m‘“) ’

which is the desired main term in Lemma 2.8.

We want to show that the rest of (9.11) and (9.12) are integrable and of order
O(n?). Recall that we writey,, = o+ b1 +n. For the term in v, by the decay
estimate we have

(9.13) | (¥, &0 29) | < Ct) ¥ Wl Liniz [l sz < C(E) ™20
hence this term is integrable. Also, sindeg; = ey1¢1,
(wn’ e—it(H1—0i—2K)b¢l) — (wn’ e—it(601—2K—Oi)b¢l) ,

so we can integrate this oscillation term explicitly. (The boundary term at
oo vanishes due to the decay ef'-%)) We conclude that the rest of (9.11) is
integrable and of orde®(n?).

For (9.12), it suffices to show its integrability sin€? + G gives the order
O(n?). Rewrite the lasty, in (9.12) ashg; + PHiyn. For the part containinges,
we have

(wn, e—i(I—S)(A—Oi—ZK) ()\’QZ + G)e_iS(Hl_Oi_ZK)b¢l) —

(wn’ e*it(Afoi —2) eiS(A*Q)l) ()\‘QZ + G)b¢1) .
Integration ins gives
((A—eon) Y, €A 0729Q% + G)bgy) .

Sinceey; lies outside the continuous spectrumftthe last expression is integrable
in t following the same argument as (9.13). For the part contaiRffigr,, since
(LQ? + G) is a “local” operator in the sense that it serds functions toL*, we
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have
| (wn’ e—i(t—S)(A—Oi _ZK)()\QZ 4 G)e—iS(Hl—Oi —ZK)P(ljlw_n) | <
Cre(t —9)2(8) ¥ 1 ¥nllf a2
which can be integrated mandt. Hence we have proven Lemma 2.8. O

PROOF OFLEMMA 2.6: Giveng € HKN X, k = 0,1, 2, letu(t) = e''A¢ €
X. We have%(u(t), AMu(t)) = 0; hence(u(t), A™u(t)) is a conserved quantity.
Whenk = 0, this implies that thé.? norm is conserved. Fd = 2, we have

(U, AZU) = (u’ (H2 + Hl/z)\QzHl/z)U)
= (u, H?u) + O(n*|lui3,) < Cllull%, .

On the other hand, sindaul|?, < C[ul3, + C |lull?, and(u,u) < C(u, A%u)
due to the spectral gap @f, we have

CHulfz < (U, H2u) = (1= O(?)*[(u, A%u) + O(n?) |lull?,]
< C(u, A%).
Thus we haveu(t), A%u(t)) ~ ||u(t)||2H2 in the sense of (1.23), and we have
lu® 12 ~ (u(t), Au(t)) = (u(0), A%u(0)) ~ [u(0)l|?: .

The cas&k = 2 is thus proven. The case= 1 can be obtained by interpolation.
O
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