Chapter 2

Constrained Systems

2.1 Labeled graphs and constraints

First, we recall a convenient diagrammatic method used to present a constrained system of
sequences. An encoder, in turn, may generate sequences only from this set.

A labeled graph (or a finite labeled directed graph) G = (V, E, L) consists of —

e a finite set of states V = V;

e a finite set of edges E = Eg where each edge e has an initial state og(e) and a terminal
state Tg(e), both in V;

e an edge labeling L = Lg : E — ¥ where X is a finite alphabet.

We will also use the notation u = v to denote an edge labeled a from state u to state v in

G.
Figure 2.1 shows a “typical” labeled graph.

Figure 2.1: Typical labeled graph.

37

CHAPTER 2. CONSTRAINED SYSTEMS 38

While some of the properties of interest to us do not depend on the labeling L, most do.
We will omit the labeling qualifier from the term ‘graph’ in those cases where the labeling
is immaterial.

There are a few features worth highlighting. Since the graph is directed, each edge can
be traversed in only one direction, as indicated by the arrow. Self-loops, meaning edges
that start and terminate in the same state, are allowed. Also, there can be more than one
edge connecting a given state to another state; these are called parallel edges. However,
we assume that distinct edges that share the same initial and terminal states have distinct
labels. A graph is called essential if every state has at least one outgoing edge and at least
one incoming edge; we will sometimes need to assume that graphs are essential, but then we
will make this assumption explicitly. The out-degree of a state in a graph is the number of
edges outgoing from that state. The minimum out-degree of a graph is the smallest among
all out-degrees of the states in that graph.

A path v in a graph G is a finite sequence of edges ejey...e, such that og(e; 1) =
7q(e;) for i = 1,2,...,—1. The length of a path 7 is the number of edges along the path
and is denoted by £(y). The state sequence of a path ejes...e, is the sequence of states
og(er)og(es) . ..og(er)Tg(ee). A cycle in a graph is a path ejes . .. e, where 7g(ep) = og(e1)-
We will also use the term right-infinite path for an infinite sequence of edges ejey--- in G
such that og(e;11) = 7¢(e;) for i > 1. Similarly, a bi-infinite path is a bi-infinite sequence of
edges - --e_jeperey - - - with og(e;r1) = 76(e;) for all 4.

A labeled graph can be used to generate finite symbol sequences by reading off the labels
along paths in the graph. A finite sequence of symbols over a given alphabet will be called
a word or a block. The length of a word w—which is the number of symbols in w—will be
denoted by ¢(w). A word of length ¢ will be called an ¢-block. If a path 7 in a graph G is
labeled by a word w, we say that w is generated by v (and G). For example, in Figure 2.1,
the 5-block abced is generated by the path

05051525042,

We also define the empty word as a 0-block: it is generated by a zero-length path which
consists of one state and no edges. The empty word will be denoted by €. A sub-word of
a word w = wjwy ... w, is either the empty word or any of the words w;w;y1 ... w;, where
1 <4< j </ Such asub-word is proper if 1 <1 < j < £. Observe that every word that is
generated by an essential graph is a proper sub-word of some other word that is generated
by that graph.

Let G; = (W4, E1, Ly) and Gy = (Va, Ey, Ly) be labeled graphs. We say that G; and Gy
are (labeled-graph) isomorphic if there is a one-to-one mapping % from V; onto V, such that
u < v is an edge in G if and only if 1 (u) = ¥ (v) is an edge in Gy.

The underlying finite directed graph of a labeled graph is conveniently described by a

matrix as follows. Let G be a graph. The adjacency matric A = Ag = ((AG)W,) v is
u,veVg

CHAPTER 2. CONSTRAINED SYSTEMS 39

the |Vi| x |Vi| matrix where the entry (Ag),, is the number of edges from state u to state
v in G. For instance, the adjacency matrix of the graph in Figure 2.1 is

111
AG: 0 0 2
100

The adjacency matrix of course has nonnegative, integer entries. It is a useful artifice; for
example, the number of paths of length ¢ from state u to state v is simply (A%),,, and the
number of cycles of length £ is simply the trace of A%.

The fundamental object considered in the theory of constrained coding is the set of words
generated by a labeled graph. A constrained system (or constraint), denoted S, is the set of
all words (i.e., finite sequences) obtained from reading the labels of paths in a labeled graph
G (although sometimes we will consider right-infinite sequences xoz1zs--- and sometimes
bi-infinite sequences - - - T_oT_1Xox1To - - -). We say that G presents S or is a presentation of
S, and we write S = S(G). The alphabet of S is the set of symbols that actually occur in
words of S and is denoted X = X(5).

As central examples of constrained systems, we have the (d, k)-RLL constrained systems,
which are presented by the labeled graph in Figures 1.3, and the B-charge constrained
systems, which are presented by the labeled graph in Figure 1.14.

A constrained system is equivalent in automata theory to a regular language which
is recognized by an automaton, the states of which are all accepting [Hopc79]. A con-
strained system is called a sofic system (or sofic shift) in symbolic dynamics [LM95]—except
that a sofic system usually refers to the bi-infinite symbol sequences generated by a la-
beled graph. Earlier expositions on various aspects of constrained systems can be found
in [Béal93a|, [KN90], [LM95], and [MSW92].

A constrained system should not be confused with any particular labeled graph, because
a given constrained system can be presented by many different labeled graphs. For ex-
ample, the (0,1)-RLL constrained system is presented by all labeled graphs in Figures 2.2
through 2.5, which are very different from one another. This is good: one presentation may
be preferable because it has a smaller number of states, while another presentation might be
preferable because it could be used as an encoder.

0
(==

Figure 2.2: Labeled graph for (0,1)-RLL constrained system.

It should be quite clear at this point why we assume that labeled graphs do not contain
parallel edges that are labeled the same: the set of words generated by a given graph would
not change if such parallel edges were added.

CHAPTER 2. CONSTRAINED SYSTEMS 40

Figure 2.4: Yet another labeled graph for (0, 1)-RLL constrained system.

2.2 Properties of labelings

2.2.1 Deterministic presentation

For purposes of encoder construction, it will be important to consider labelings with special
properties. The most fundamental special property is as follows.

A labeled graph is deterministic if at each state the outgoing edges are labeled distinctly.
In other words, at each state, any label generated from that state uniquely determines an
outgoing edge from that state. The labeled graphs in Figures 1.3, 1.14, 2.2, and 2.3 are
deterministic while the labeled graphs in Figures 2.4 and 2.5 are not. Constrained systems
in the engineering literature are usually presented by deterministic graphs. In fact, any

0\ 1 ;Q
Y 3 < > 4
0 / 1

Figure 2.5: One more labeled graph for (0, 1)-RLL constrained system.

CHAPTER 2. CONSTRAINED SYSTEMS 41

constrained system can be presented in this way, as we show next.

Let G be a labeled graph. We define the determinizing graph H of G in the following
manner. For any word w and state v € Vg, let Tg(w,v) denote the subset of states in G
which are accessible from v by paths in G that generate w. When w is the empty word
€, define T;(€,v) = {v}. The states of H are the distinct nonempty subsets {TG(W,v) }w

of V. As for the edges of H, for any two states Z,Z' € Vg we draw an edge Z b 7' in
H if and only if there exists a state v € Vi and a word w such that Z = Tg(w,v) and
7" = Tg(wb,v). In other words, each state of G in Z' is accessible in G from some state in
Z by an edge labeled b. By construction, the determinizing graph H is deterministic. We
have also the following.

Lemma 2.1 Let H be the determinizing graph of a labeled graph G. Then S(H) = S(G).

Proof. If a word w = wyws ... wy is generated by paths in G starting at state v, then w
is also generated by the path

{v} = Ta(e,v) =5 To(w, v) 2 To(wiwy,v) 2 - 25 T (wiwy . . . we,)

in H. Conversely, if w is generated by H starting at a state Z = Tg(w',v), then, by the
construction of H, w'w is generated in G by a path that starts at state v. (]

By Lemma 2.1 we can conclude the next result.

Proposition 2.2 Any constrained system can be presented by some deterministic labeled
graph.

We also have the notion of co-deterministic, obtained by replacing “outgoing” with “in-
coming” in the definition.

‘Deterministic’ is called right-resolving in symbolic dynamics [LM95].

2.2.2 Finite anticipation

Encoder synthesis algorithms usually begin with a deterministic presentation and transform
it into a presentation which satisfies the following weaker version of the deterministic prop-
erty.

A labeled graph G has finite local anticipation (or, in short, finite anticipation) if there
is an integer N such that any two paths of length N+1 with the same initial state and
labeling must have the same initial edge. The (local) anticipation A(G) of G is the smallest
N for which this holds. Hence, knowledge of the initial state of a path and the first A(G)+1

CHAPTER 2. CONSTRAINED SYSTEMS 42

symbols that it generates is sufficient information to determine the initial edge of the path.
In case G does not have finite anticipation, we define A(G) = co.

We also define the (local) co-anticipation of a labeled graph G as the anticipation of the
labeled graph obtained by reversing the directions of the edges in G.

Note that to say that a labeled graph is deterministic is to say that it has zero anticipation.
The labeled graph in Figure 2.4 is a presentation of the (0,1)-RLL constrained system
with anticipation 1 but not 0. Figure 2.5 depicts a presentation that does not have finite
anticipation.

‘Finite anticipation’ is also called right-closing (in symbolic dynamics [LM95]) or lossless
of finite order [Huff59], [Even65].

2.2.3 Finite memory

A labeled graph G is said to have finite memory if there is an integer N such that the paths
in G of length N that generate the same word all terminate in the same state. The smallest
N for which this holds is called the memory of G and denoted M (G).

2.2.4 Definite graphs

A labeled graph is (m, a)-definite if, given any word w = w_qnw_mi1 ... Wp . .. W,, the set of
paths e_mé_mi1--.€p...€; that generate w all agree in the edge e;. We say that a labeled
graph is definite if it is (m, a)-definite for some finite nonnegative m and a. Definite graphs
are referred to in the literature also as graphs with finite memory-and-anticipation.

Note the difference between this concept and the concept of finite anticipation: we have
replaced knowledge of an initial state with knowledge of a finite amount of memory. Actually,
definiteness is a stronger condition, as we show in Proposition 2.3.

Figure 2.3 shows a labeled graph that is (2, 0)-definite, while Figure 2.6 shows a labeled
graph that has finite anticipation (in fact, is deterministic and co-deterministic) but is not
definite.

Figure 2.6: Labeled graph for a 2-charge constrained system

Note that, in contrast to the anticipation and the memory, we did not require a and m
to be minimal in any sense while talking about (m, a)-definiteness. It would be natural to

CHAPTER 2. CONSTRAINED SYSTEMS 43

require that m+4a be minimal, but even that does not specify m and a uniquely; for instance,
the labeled graph in Figure 2.7 is (1, 0)-definite and also (0, 1)-definite.

Figure 2.7: Labeled graph which is both (1, 0)-definite and (0, 1)-definite.

2.2.5 Lossless graphs
A labeled graph is lossless if any two distinct paths with the same initial state and terminal

state have different labelings. All of the pictures of labeled graphs that we have presented so
far are lossless. Figure 2.8 shows a presentation of the (0, 1)-RLL constrained system that

is not lossless.
0
1 -GQ- 1

Figure 2.8: Graph which is not lossless.

2.2.6 Summary of terms

The following proposition summarizes the relationships among the labeling properties intro-
duced so far.

Proposition 2.3 For essential graphs,

Co-determinaistic

4
Finite memory = Definite = Finite co-anticipation
4 Y 4

Deterministic = Finite anticipation = Lossless

CHAPTER 2. CONSTRAINED SYSTEMS 44

Proof. Finite memory = Deterministic and Finite memory = Definite: Let G be a
labeled graph with finite memory M. All paths, representing the same word, of length M+1
in G must agree in their last two states. Furthermore, since G' does not contain parallel edges
with the same label, all these paths agree in their last edge. Hence, G is (M, 0)-definite.
This also implies that G is deterministic: For a state u in G, let v be a path of length M
that terminates in u. Then for every edge e outgoing from u, the labeling of ve determines
e.

Definite = Finite anticipation: Suppose that G is (m,a)-definite for some m and a. Let
u be a state in G and let v = ege; ...e, and ¥ = epe] ... e}, be paths of length a+1 which
start at v and generate the same word. We need to show that ey = ej. Let 7" be any path
of length m which terminates in state u. Then, the concatenated paths "+ and 7"+" both
generate the same word. Since G is (m,a)-definite, we have ey = e[, as desired. A similar
proof yields the implication Definite = Finite co-anticipation.

Deterministic = Finite anticipation: As pointed out earlier, a labeled graph is deter-
ministic if and only if it has zero anticipation. The implication Co-deterministic = Finite
co-anticipation is similar.

Finite anticipation = Lossless: Let G have anticipation A. Given two paths, v and +/,
with the same initial state u, terminal state v, and the same labeling w, let v be a path of
length A which starts at v. Then 7" and 7'~" start at the same state and generate the same
word; so, v = 7/, as desired. The implication Finite co-anticipation = Lossless is proved in
a similar way. (]

2.2.7 State labeling

In the graph presentations that we have seen so far, the labels are put on the edges. However,
in the literature, one can find graph presentations where the labels are put on the states,
and the respective constrained system is defined as the set of words that are obtained by
reading off the labels of states along the finite paths in the graph. It is straightforward to
see that every such constrained system can be presented by an (edge-)labeled graph, where
the incoming edges to each state all have the same label. In fact, every constrained system
can be presented by such a labeled graph, as we now show.

Let G be a labeled graph. The Moore form of G is a labeled graph H where Vg = Eg
and e; — ey is an edge in H if and only if 7¢(e1) = og(e2) and Lg(ez) = a. For example,
Figure 2.3 shows the Moore form of the labeled graph in Figure 2.2 that presents the (0, 1)-
RLL constrained system. It can be easily verified that S(H) = S(G) and that the edges
incoming to each state in H all have the same labeling. It thus follows that every constrained
system can be presented by a state-labeled graph. The anticipation of G is preserved in H
and the co-anticipation is increased by 1. In particular, if G is deterministic, so is its Moore
form. Also, by construction, there are no parallel edges in a Moore form, so its adjacency

CHAPTER 2. CONSTRAINED SYSTEMS 45

matrix is always a 0-1 matrix.

We have also the notion of a Moore co-form of a labeled graph G' which is identical to
the Moore form except for the labeling: The edge e; = e, in a Moore co-form inherits the
labeling of e; in G, rather than that of e;. For example, Figure 2.4 is the Moore co-form
of the labeled graph of Figure 2.2. If H is a Moore co-form of a labeled graph G, then
S(H) = S(G) and the edges outgoing from each state in H all have the same labeling. The
co-anticipation of GG is preserved in H and the anticipation is increased by 1. Therefore, if
(G is co-deterministic, so is H.

2.3 Finite-type constraints

In this section, we consider some special classes of constraints. The properties that define
these constraints will be useful for encoder construction.

A constrained system S is finite-type (in symbolic dynamics, shift of finite type [LM95])
if it can be presented by a definite graph. As an example, the (d, k)-RLL constraint is finite-
type: the labeled graph in Figure 1.3 is (k, 0)-definite—i.e., for any given word w of length
at least k+1, all paths that generate w end with the same edge.

It is important to recognize that there are “bad” presentations of finite-type constrained
systems, meaning labeled graphs that are not definite. For example, the labeled graph in
Figure 2.5 represents the (0, 1)-RLL constrained system, but it is not definite, as can be seen
by considering the paths that generate words consisting of all 1’s.

Given the existence of bad labeled graphs, one might begin to worry about potential
problems in determining whether or not a constrained system is finite-type. However, there
is an intrinsic characterization of finite-type constrained systems that resolves this difficulty.

A constrained system S is said to have finite memory if there is an integer IV such that,
for any symbol b € ¥(S) and any word w € S of length at least IV, we have wb € S if and
only if w'b € S where w' is the suffix of w of length N. The smallest such integer NV, if any,
is called the memory of S and is denoted by M(S).

It is can be readily verified that the (d, k)-RLL constrained system has memory k.

Lemma 2.4 A constrained system S has finite memory if and only if there is a presen-
tation G of S with finite memory. Furthermore, the memory of S is the smallest memory of
any presentation of S with finite memory.

Proof. Clearly, if a constrained system S has a presentation G with finite memory

M(G), then M(S) < M(G).

CHAPTER 2. CONSTRAINED SYSTEMS 46

On the other hand, let S be a constrained system with finite memory M(S) = M. Then
all presentations of S have memory which is bounded from below by M. We construct a
labeled graph H with M(H) = M as follows: For each word w of length M in S, we

associate a state uy in H. Given two words, w = wyws ... wy and z = 2125 ... 2, In S, We
draw an edge Uy LN Uy in H if and only if the following three conditions hold:

(a) zj =wj4q for j=1,2,... , M—1;
(c) wbeS.

It is easy to verify that H is a presentation of S (and, so M(H) > M). On the other
hand, the paths in H of length M that generate the word w all terminate in state uy.
Hence, M(H) < M. O

Proposition 2.5 A constrained system is finite-type if and only if it has finite memory.

Proof. Suppose that S has finite memory and let G be a presentation of S with finite
memory M. As such, G is also (M, 0)-definite and, so, S is finite-type.

Now, suppose that S is finite-type and let G be an (m, a)-definite presentation of S. If
a = 0, then G has memory < m+1 and we are done. When a > 0, it suffices to find a
presentation of S which is (m+a, 0)-definite.

Such a presentation H can be obtained as follows: The states of H are pairs [u, w|, where
u € Vg and w is a word of length a that can be generated by a path in G that starts at u.
Let u and v be states in G and w = wywy...w, and z2 = 212y ...2, be two words that can
be generated in G from u and v, respectively. We draw an edge [u, w] % [v,2] in H if and
only if the following three conditions hold:

(a) Zj = Wj41 for j = 1,2, ce ,a—1;
(b) b= za;
(c) there is an edge u =3 v in G.

We now define a mapping from the set of all paths of length m+a+1 in G onto the set
of paths of length m+1 in H as follows. The path

b1 bm bm+1 bmy2 bm+ bmtat1
’VG:UO—)"'—)Um—>Ufm+1—>"‘;;um+a—Jgum+a+1
in G is mapped to the path

a bm bm+a
YH = [U'Ou b1b2 s ba] —+1> e —+; [umu bm+lbm—|—2 s bm+a] :51 [um+1; bm—|—2bm+3 ce. bm+a+1]

CHAPTER 2. CONSTRAINED SYSTEMS 47

in H. It is easy to verify that this mapping is indeed onto. Since G is (m, a)-definite, the

word b1by . ..bm1ar1 uniquely defines the edge un bm—“> Umy1 in the path 5 in G. It thus
follows that the last two states in yg are uniquely defined, and so is the last edge of vg.
Hence, H is (m+a+1, 0)-definite. m

The following result gives another equivalent formulation of the notion of finite-type
systems in terms of lists of forbidden words. This notion was alluded to at the end of
Section 1.2 and in Section 1.5.2.

Proposition 2.6 A constrained system S is finite-type if and only if there is a finite list
L of words such that w € S if and only if w does not contain any word of L as a sub-word.

We leave the proof of Proposition 2.6 as an exercise for the reader (Problem 2.7).

Not every constrained system of interest is finite-type. For example, the 2-charge con-
strained system described by Figure 2.6 is not. This can be seen easily by considering the
condition above: the symbol ‘+’ can be appended to the word

—t—+—F s —F

but not to the word
ettt =+

As a second example, consider the (0, 0o, 2)-RLL constrained system, which is commonly
referred to as the even constraint. This constrained system consists of all binary words in
which the runs of 0’s between successive 1’s have even lengths. A graph presentation of this
constraint is shown in Figure 2.9. We leave it as an exercise to show that this constraint is

0
(==

Figure 2.9: Shannon cover of the even constrained system.

not finite-type (Problem 2.26, part 1).

However, both the charge constraint and the even constraint fall into a natural broader
class of constrained systems, called almost-finite-type systems; these systems should be
thought of as “locally finite-type” (perhaps that would have been a better name). A con-
strained system is almost-finite-type if it can be presented by a labeled graph that has both
finite anticipation and finite co-anticipation.

By Proposition 2.3, we know that definiteness implies finite anticipation and finite co-
anticipation. Thus, every constrained system which is finite-type is also almost-finite-type,

CHAPTER 2. CONSTRAINED SYSTEMS 48

and so the almost-finite-type systems do indeed include the finite-type systems. From Fig-
ure 2.6, we see that the charge constrained systems are presented by labeled graphs with
zero anticipation (i.e., deterministic) and zero co-anticipation (i.e., co-deterministic); thus,
these systems are almost-finite-type, but not finite-type. Most constrained systems used in
practical applications are in fact almost-finite-type.

Recall that every constrained system has a deterministic presentation (and hence finite
anticipation); likewise, every constrained system has a co-deterministic presentation (and
hence finite co-anticipation). So, the essential feature of the almost-finite-type definition
is that there is a presentation that simultaneously has finite anticipation and finite co-
anticipation.

As with finite-type systems, we have the problem that a given constrained system may
have some presentation that satisfies the finite anticipation and co-anticipation conditions
and another presentation that does not. There is an intrinsic condition that defines almost-
finite-type, but it is a bit harder to state [Will88]. We will give an example of a constrained
system which is not almost-finite-type at the end of Section 2.6.

2.4 Some operations on graphs

In this section, we introduce three graph constructions that create new constraints from old.

2.4.1 Power of a graph

As mentioned in Chapter 1, a rate p : ¢ finite-state encoder will generate a word, composed of
g-codewords (g-blocks) that when hooked together belong to the desired constrained system
S. For a constrained system S presented by a labeled graph G, it will be very useful to have
an explicit description of the words in S, decomposed into such non-overlapping “chunks”
of length q¢.

Let G be a labeled graph. The gth power of G, denoted GY, is the labeled graph with the
same set of states as GG, but one edge for each path of length ¢ in G, labeled by the ¢-block
generated by that path. For a constrained system S presented by a labeled graph G, the gth
power of S, denoted S, is the constrained system presented by G?. So, S? is the constrained
system obtained from S by grouping the symbols in each word into non-overlapping “chunks”
of length ¢ (in particular, the definition of S? does not depend on which presentation G of
S is used).

For example, Figure 2.10 shows the third power G® of the labeled graph G in Figure 2.2
that presents the (0,1)-RLL constrained system.

CHAPTER 2. CONSTRAINED SYSTEMS 49

Figure 2.10: Third power of labeled graph in Figure 2.2.

2.4.2 Higher edge graph

The gth higher edge graph G'9 is the labeled graph whose states are paths in G of length ¢—1
with an edge for each path of length ¢ in G: the edge eje; .. . ¢, has initial state ejes ... €41,
terminal state e;...eq, and inherits the labeling of ejes...e,. For a constrained system
S presented by a labeled graph G, the gth higher order system of S, denoted Sl9, is the
constrained system presented by Gl9.

Observe that S9! is the constrained system whose alphabet is the set of g-blocks of S,

obtained from S by replacing each word wyws . ..w, by the word

(wrwg ... we)(Wows . .. Wes1) - .. (Wo—gr1We—gy2 - . . W) -

Note how S? differs from S¥: the former divides words into non-overlapping blocks; the
latter divides words into blocks which overlap by ¢—1 symbols.

Figure 2.11 shows the edge graph G for the (0,1)-RLL labeled graph G in Figure 2.2,
and GP is shown in Figure 2.12. The reader should contrast this with the third power G®
in Figure 2.10.

Figure 2.11: Second higher edge graph of labeled graph in Figure 2.2.

The Moore form and co-form of G which were introduced in Section 2.2.7 are almost
identical to G!?: To obtain the Moore form (respectively, the Moore co-form), just delete
the first (respectively, the second) symbol in each edge label of GI2l.

CHAPTER 2. CONSTRAINED SYSTEMS 20

Figure 2.12: Third higher edge graph of labeled graph in Figure 2.2.

2.4.3 Fiber product of graphs

Let G and H be two labeled graphs. We define the fiber product of G and H as the labeled
graph G x H, where

Vowr = Vo x Vi = {{u,v) |u € Vg, v' € Vg },

and (u,u') = (v,v') is in Eg,p if and only if u = v € Eg and v’ % v' € Ey. It is easy to
verify that the fiber product presents the intersection of the constraints defined by G' and
H, namely, S(G* H) = S(G)NS(H).

Finally, we state a result which asserts that the operations introduced in this section all
preserve the properties of labelings introduced in Section 2.2. We leave the proof to the
reader.

Proposition 2.7 The power of a graph, higher edge graph, and fiber product graph all
preserve the deterministic, finite anticipation (co-anticipation), and definiteness properties.

2.5 Irreducibility

2.5.1 Irreducible graphs

A graph G is irreducible (or strongly-connected) if, for any ordered pair of states u, v, there
is a path from u to v in G. A graph is reducible if it is not irreducible. Note our use of the
term ‘ordered’: for a given pair of states u, v, we must be able to travel from u to v and from
v to u.

All of the graphs in Figures 2.2 through 2.5 are irreducible, while Figure 2.13 shows a
reducible graph which presents the system of unconstrained binary words.

Observe that the property of being irreducible does not depend on the labeling and can

CHAPTER 2. CONSTRAINED SYSTEMS 51

Figure 2.13: Reducible labeled graph for unconstrained binary words.

be described in terms of the adjacency matrix: namely, for every (ordered) pair of states
u, v, there exists some ¢ such that (A%),, > 0.

It will be useful later to know that any reducible graph can, in some sense, be broken
down into “maximal” irreducible pieces. To make this more precise we introduce the concept
of an irreducible component. An irreducible component of a graph G is a maximal (with
respect to inclusion) irreducible subgraph of G. The irreducible components of a graph are
simply the subgraphs consisting of all edges whose initial and terminal states both belong
to an equivalence class of the following relation: v ~ v if there is a path from u to v and a
path from v to u (we allow paths to be empty so that u ~ u).

An irreducible sink is an irreducible component H such that any edge which originates
in H must also terminate in H. An irreducible source is an irreducible component H such
that any edge which terminates in H must also originate in H.

Any graph can be broken down into irreducible components with ‘transient’ connections
between the components. The irreducible sinks can have transient connections entering
but not exiting. Every graph has at least one irreducible sink (and, similarly, at least one
irreducible source). To see this, we argue as follows. Pick an irreducible component and
check if it is an irreducible sink. If so, stop. If not, there must be a path leading to another
irreducible component. Repeat the procedure on the latter component. The process must
eventually terminate in an irreducible sink H; otherwise, the original decomposition into
irreducible components would be contradicted. The picture of the irreducible components
and their connections is perhaps best illustrated via the adjacency matrix: by reordering the
states, A = Ag can be written in block upper triangular form with the adjacency matrices
of the irreducible components as block diagonals, as shown in Figure 2.14.

Al Bl,2 B1,3 Tt Bl,k
AZ B2,3 Tt B2,k
A - A3)
Bk—l,k
Ay,

Figure 2.14: Writing matrix in upper triangular form.

Figure 2.15 shows the irreducible components of the graph in Figure 2.13; one is an

CHAPTER 2. CONSTRAINED SYSTEMS 52

irreducible sink and the other is an irreducible source.

“® O

Figure 2.15: Irreducible components of labeled graph in Figure 2.13.

From the point-of-view of finite-state encoder construction, it turns out that, by passing to
irreducible components, we can concern ourselves primarily with irreducible labeled graphs;
we explain why in Section 4.1.

There are times when the gth power of a graph G will not be irreducible, even when G
is. For example, Figure 2.6 shows a labeled graph describing a 2-charge constrained system.
Its second power G2, shown in Figure 2.16, has two irreducible components, Gy and G,
(note that in these graphs, the label +— is different from —+). This example illustrates the
general situation: it can be shown that, if G is an irreducible graph, then any power G? is
either irreducible or decomposes into isolated, irreducible components (see also Figures 2.2
and 2.10). We elaborate upon this in Section 3.3.2.

Gy

Figure 2.16: Second power of labeled graph in Figure 2.6.

2.5.2 Irreducible constrained systems
A constrained system S is irreducible, if for every pair of words w, w’ in S, there is a word
z such that wzw' is in S. A constrained system that is not irreducible is called reducible.

The following shows that irreducibility of a constrained system can be reformulated in
terms of irreducible labeled graphs.

Lemma 2.8 Let S be a constrained system. The following are equivalent:
(a) S is irreducible;
(b) S is presented by some irreducible (and in fact, deterministic) labeled graph.

CHAPTER 2. CONSTRAINED SYSTEMS 93

Proof. For (b) = (a), simply connect the terminal state of a path that generates w to
the initial state of a path that generates w'. For (a) = (b), replace inclusion with equality
in the stronger statement of the next lemma. (]

Lemma 2.9 Let S be an irreducible constrained system and let G' be a labeled graph such
that S C S(G). Then for some irreducible component G' of G, S C S(G").

Proof. Let Gy, s, ..., Gy denote the irreducible components of G. We prove the lemma
by contradiction. Suppose that for each ¢ = 1,2,...,k, there is a word w; in S but not in
S(G}). Since S is irreducible, there is a word w that contains a copy of each w;; moreover,
there is a word z that contains |Vg|+1 non-overlapping copies of w. Let be a path in G
that generates z. Then -y can be written as v = y172. .. ¥jy,|+1, where each v; has a sub-path
which generates w. For some r < ¢, the initial states of v, and 7, coincide and, therefore,
YrYri1 - - - Vi—1 18 a cycle and has a sub-path that generates w. Now, by definition, any cycle
in a graph must belong to some irreducible component, say G;, and thus w; is in S(G;),
contrary to the definition of w;. L]

All of the constrained systems that we have considered so far are irreducible, while
Figure 2.17 presents a reducible constrained system.

Figure 2.17: Reducible constrained system.

2.6 Minimal presentations

When treating constrained systems, it is useful to present them in a standard manner.
Among the various possible presentations of a given constrained system S, the Shannon
cover is usually chosen as the canonical presentation of S.

A Shannon cover of a constrained system S is a deterministic presentation of S with a
smallest number of states.

In general, the Shannon cover is not unique [Jon95], [LM95, Section 3.3]. However, it is
unique, up to labeled graph isomorphism, for irreducible constrained systems. We show this
in Theorem 2.12 below.

CHAPTER 2. CONSTRAINED SYSTEMS 04

2.6.1 Follower sets and reduced labeled graphs

Let u be a state in a labeled graph G. The follower set of u in G, denoted Fg(u), is the set
of all (finite) words that can be generated from u in G. Two states v and «’ in a labeled
graph G are said to be follower-set equivalent, denoted u ~ u', if they have the same follower
set. It is easy to verify that follower-set equivalence satisfies the properties of an equivalence
relation.

A labeled graph G is called reduced if no two states in G are follower-set equivalent. If a
labeled graph G presents a constrained system S, we can construct a reduced labeled graph
H from G that presents the same constrained system S by merging states in G which are
follower-set equivalent. More precisely, each equivalence class C' of follower-set equivalent
states becomes a state in H, and we draw an edge C % C' in H if and only if there exists
an edge u = u' in G for states v € C and v’ € C'. It is easy to verify that, indeed,
S(H) = S(G), and, if G is deterministic, so is H; see [LM95].

2.6.2 The Moore algorithm

The Moore algorithm is an efficient procedure for finding the equivalence classes of the

follower-set equivalence relation of states in a deterministic graph. The algorithm is described
in [Huff54], [Koh78, Ch. 10], [Moore56].

Let G be a deterministic graph. For a state u in G, let F5(u) denote the set of all
words of length ¢ that can generated from v in G. Two states v and v in G are said to be
L-(follower-set-)equivalent in G, if Fl(u) = Fo(v) for m = 1,2,. .., L. Indeed, f-equivalence
is an equivalence relation, and we denote by II, the partition of Vi; which is induced by the
classes of this relation. Also, we denote by |II,| the number of classes in IL,.

The Moore algorithm iteratively finds the partitions II, for increasing values of ¢, until
we reach the partition induced by the follower-set equivalence relation. The partition I,
contains one class, namely, V. As for 1-equivalence, two states u and v belong to the same
equivalence class if and only if the sets of labels of the edges outgoing from state u and from
state v are the same. Therefore, the partition II; is easily found from G.

The following is a typical iteration of the Moore algorithm. Assume we have found II, for
some ¢ > 1. Now, every two (¢+1)-equivalent states in G must also be f-equivalent. Hence,
[y 1 is a refinement of I, (and so |I1g 1| > |II,]). More specifically, we put two states u and
v in the same class in II,y; if and only if (i) u and v belong to the same class in II,;, and
(ii) for each pair of edges, u —» ' and v = ¢/, in G (with the same label a), the states v’
and v’ belong to the same class in II,.

Example 2.1 Consider the deterministic graph G' in Figure 2.18. We start with the

CHAPTER 2. CONSTRAINED SYSTEMS 95

Y
S

Figure 2.18: Graph G for Example 2.1.

trivial partition, IIy, which consists of one equivalence class that contains all states, namely,
II,={A,B,C,D,E, F,G} .

The partition II; is obtained by looking at the set of labels of the outgoing edges from each
state. That set is {0} for states B, C, and G it is {1} for state F’; and it is {0, 1} for states
A, D, and E. Hence,

I, = {B,C, G}{F}{AaD: E} :

To obtain the partition I, we see that the outgoing edges (labeled 0) from states B, C,
and G terminate in E, A, and F, respectively, and these terminal states belong to the same
equivalence class in II;. Hence, {B, C, G} will form an equivalence class also in the partition
[I5. On the other hand, the outgoing edges labeled 0 from A, D, and E terminate in D,
F, and D, respectively, thus implying that state D should be separated from states A and
E in II,. Since the outgoing edges labeled 1 from A and E both terminate in state B, we
conclude that A and E are 2-equivalent and, so,

I, ={B,C,G}H{F}{A, E}{D}.

The next iteration will generate no refinement i.e., we end up with I3 = II,. []

In general, the algorithm finds the partitions I, for increasing values of £ until II,,, = II,.
Denote by /. the smallest ¢ for which this equality is met. For £ > /., we will have
IT, = 1,,,, and, so, the follower-set equivalence relation is identical to the #;,,x-equivalence
relation. Furthermore,

L= [Ip| <] < -+ < Hppge—1] < Mepr| = Mpppant1| < [V -

Therefore, £ < |Vg|—1, which thus bounds from above the number of iterations in the
Moore algorithm. In fact, we have also the following.

CHAPTER 2. CONSTRAINED SYSTEMS o6

Proposition 2.10 Let G be a deterministic essential graph. Then, for every pair of
states u and v in G,

Fa(u) = Fg(v) if and only if .7-'(|;VG|_1(U) = .7-'(|;VG|_1(U) .

Having found the partition II, , induced by the follower-set equivalence relation, we
can construct a reduced deterministic graph H from G that presents the same constrained
system S(G), as was described in Section 2.6.1.

If we apply the reduction to the deterministic graph in Example 2.1, we obtain the
graph presentation of the (1,3)-RLL constraint as shown in Figure 1.16, with the following
equivalence relation between the states in that figure and the partition elements of II,:

0+—{B,C,G}, 1+—{AE}, 2«—{D}, and 3+— {F}.

2.6.3 Homing words

A homing word for a state v in a labeled graph G is a word w such that all paths in G that
generate w terminate in v.

We will make use of the following lemma.

Lemma 2.11 Let G be a reduced deterministic graph. Then there is a homing word for
at least one state in G. Furthermore, if G is also irreducible, then there is a homing word
for every state in G.

Proof. Since G is reduced, for any two distinct states u,v € Vg, there is a distinguishing
word w that can be generated in G from one of these states but not from the other. Start
with the set V5 = Vi and assume that |V;| > 1. Let w; be a distinguishing word for some
pair of states in V. Clearly, w; can be generated in G by at most |V3| — 1 paths starting
in V. Let V; denote the set of terminal states of these paths. We can now apply the same
argument on V; with a distinguishing word ws for two states in V; and continue this way
until we end up with a set V,,, = {v}. The word wyws...w,, is a homing word for v in G.

If G is also irreducible, then we can extend the homing word for v to a homing word for
every state in G.]

We can use the notion of homing words to obtain the following equivalent definition for
labeled graphs with finite memory: a labeled graph G has finite memory if there is an integer
N such that all words of length N in S(G) are homing (and the memory of G is then the
smallest such N).

CHAPTER 2. CONSTRAINED SYSTEMS o7

2.6.4 Shannon cover of irreducible constrained systems

The following result summarizes the main properties of the Shannon cover of irreducible
constrained systems. See [Fi75a|, [Fi75b], [KN90].

Theorem 2.12 Let S be an irreducible constrained system.

(a) The Shannon cover of S is unique, up to labeled graph isomorphism. In fact, the
Shannon cover is the unique presentation of S which s irreducible, deterministic, and re-
duced.

(b) For any irreducible deterministic presentation G of S, the follower sets of G coincide
with the follower sets of the Shannon cover.

Proof. First, note that any minimal deterministic presentation of S must be reduced.
Otherwise we could merge all states with the same follower sets, as was described in Sec-
tion 2.6.1. Furthermore, by Lemma 2.9, any minimal deterministic presentation must be
irreducible.

For the proof of (a), suppose that H and H' are irreducible reduced deterministic graphs
that present S. Let u be an arbitrary state in H. By Lemma 2.11, there is a homing word
w for u in H and a homing word w’ for some state in H'. Since S is irreducible, there exists
a word z such that w"” = w'zw € S. Clearly, w” is a homing word for the state v in H
and for some state v’ in H'. Since S(H) = S(H') = S, we must have Fy(u) = Fp(u').
Furthermore, since both H and H' are deterministic, the ‘outgoing picture’ from state u in
H must be the same as that from state u’ in H'. Hence, if ©u % v € Ey, then we must have
' % v € Egr and Fy(v) = Fg(v'). Continuing this way, it follows that for every state
u € Vg there is a state u' € Vi with the same follower set, and vice versa. Since both H
and H' are reduced, we must have H = H', up to labeled graph isomorphism.

For the proof of (b), we form a new graph H from G by merging all states of the latter
with the same follower sets. It is not hard to see that H is irreducible, deterministic, and
reduced. Then, apply part (a) to see that H is isomorphic to the Shannon cover. Clearly, G
and H have the same follower sets. (]

The following lemma generalizes part (b) of Theorem 2.12 to the situation where H
presents a subsystem of S(G).

Lemma 2.13 Let G and H be two irreducible deterministic graphs. Then S(H) C S(G)
if and only if for every v € Vi there exists u € Vg such that Fy(v) C Fg(u).

Proof. The sufficiency is immediate. As for the necessity, by Lemma 2.8, S(H) is
irreducible. Thus, by Lemma 2.9, there is an irreducible component G’ of the fiber product

CHAPTER 2. CONSTRAINED SYSTEMS o8

G x H such that S(G') = S(Gx H) = S(G)NS(H) = S(H). By Theorem 2.12 (part (b)),
for every state v € Viy there exists a state (u,u’) € Vi C Viguy such that

Fu(v) = For((u,u')) C Fourr ((u, v')) € Fo(u),
as desired.]

Given some presentation of an irreducible constrained system S, the Shannon cover can
be constructed as follows: First, use the determinizing construction of Section 2.2.1 to find
a deterministic presentation G of S. By Lemma 2.9, S is presented by one of the irreducible
components, say H, of G. Using Lemma 2.13, we can identify H among the irreducible
components of G: for every other irreducible component H' of G, we must have S(H') C
S(H). Next, use the Moore algorithm of Section 2.6.2 (in particular, Proposition 2.10)
to merge follower-set equivalent states in H to obtain an irreducible reduced deterministic
graph. The latter is, by Theorem 2.12(a), the Shannon cover of S.

As an example, the labeled graph in Figure 2.3 is a deterministic presentation of the
(0,1)-RLL constrained system, but it is not the Shannon cover because states 0 and 2 have
the same follower set. Indeed, the labeled graph in Figure 2.2 is the Shannon cover of the
(0,1)-RLL constrained system because it is deterministic, irreducible, and 0 is the label of
an outgoing edge from state 0, but not from state 1. Note that if we merge states 0 and 2
in the labeled graph of Figure 2.3, we get the Shannon cover in Figure 2.2. The reader can
verify that the Shannon cover of an RLL constrained system is the labeled graph depicted
in Figure 1.3 in Chapter 1 and that Figure 1.14 displays the Shannon cover of a charge
constrained system.

We end this section by pointing out the intrinsic nature of the follower sets of the states
in the Shannon cover of an irreducible constrained system.

For a constrained system S and a word w € S, the tail set Fg(w) is the set of all words

z such that wz € S. A word w € S is a magic word if, whenever zw and wz' are in S, so is

zwz'.

Proposition 2.14 Let S be an irreducible constrained system. The homing words of the
Shannon cover of S coincide with the magic words of S, and the follower sets of the states
of the Shannon cover coincide with the tail sets of the magic words of S.

The proof of this proposition is left to the reader (Problem 2.22).

2.6.5 Shannon cover of finite-type constrained systems

The Shannon cover can be used to detect the finite-type and almost-finite-type properties.

CHAPTER 2. CONSTRAINED SYSTEMS 99

Proposition 2.15 An irreducible constrained system is finite-type (respectively, almost-
finite-type) if and only if its Shannon cover has finite memory (respectively, finite co-
anticipation).

Proof. We first prove this for finite-type systems. Let S be an irreducible finite-type
constrained system. By Proposition 2.5 and Lemma 2.4, there is a presentation G of S
with finite memory. Also, by Lemma 2.9, there is an irreducible component G’ of G such
that S = S(G'). Since G’ is an irreducible graph with finite memory, then it must be
deterministic. By merging states in G’, we obtain the Shannon cover of S. Therefore, the
Shannon cover of an irreducible finite-type constrained system S must have finite memory.

Now, assume that S is an irreducible almost-finite-type constrained system. There is a
presentation H of S which has finite co-anticipation and finite anticipation. It is not hard
to see that the determinizing construction, introduced in Section 2.2.1, preserves finite co-
anticipation. Thus, by Lemma 2.1, we may assume that H is actually deterministic. By
Lemma 2.9, we may assume that H is irreducible. Then, by Theorem 2.12, the reduced
labeled graph obtained from H is the Shannon cover G of S. In particular, this gives a
graph homomorphism from H to G; that is, there is a mapping f* from states of H to states
of G and a mapping f from edges of H to edges of Gg such that f is label-preserving and
the initial (respectively, terminal) state of f(e) is f*(on(e)) (respectively, f*(7x(e))).

Suppose, for the moment, that H is also co-deterministic. Create a new labeled graph H
from H by replacing the edge label of an edge e by f(e). Then H presents the constrained
system S defined by labeling the edges of G distinctly. Moreover, H is co-deterministic since
H is. When we merge H to form G, we are also merging H to form the Shannon cover G
of S, and by reversing the arrows, we see that any two states in H that are merged via f*
have the exact same set of incoming f-labels. So, whenever f*(v') = v, the set of f-labels of
the incoming edges to v’ is precisely the set of incoming edges to v.

We claim that GG is co-deterministic. If not, then there are two edges e; and e; in G with
the same terminal state v and label. Let v’ be any state of H such that f*(v') = v. Then
there are edges €} and ¢}, in H with terminal state v’ and labels e; and e;. The edges €} and
ey, viewed as edges in H, then have the same labels, contradicting the co-determinism of H.
Thus, G is co-deterministic and in particular has finite co-anticipation.

Now, the general case can be reduced to the special case where H is co-deterministic by a
backwards determinizing procedure. This procedure shows that, in fact, the co-anticipation
of G is at most the co-anticipation of H. We leave the details of this to the reader. (]

From the previous result, we see that the constrained system presented by the labeled
graph in Figure 2.19 is not almost-finite-type. Specifically, one can easily verify that the
labeled graph in Figure 2.19 is the Shannon cover of the constrained system it presents.
However, it does not have finite co-anticipation, as can be confirmed by looking at the paths
that generate words of the form - - - aaaab.

CHAPTER 2. CONSTRAINED SYSTEMS 60

Figure 2.19: Constrained system which is not almost-finite-type.
2.7 Testing algorithms

In this section, we outline efficient algorithms for testing losslessness, finite anticipation,
finite memory, and definiteness of a given labeled graph.

2.7.1 Testing for losslessness

The algorithm for testing losslessness of a given labeled graph is due to Even [Even65] and
is based on the following proposition (see also [Huff59] and [Koh78, Ch. 14]).

Proposition 2.16 A labeled graph G is lossless if and only if for every u,u’ € Vg, there
is no path in the fiber product G x G from state (u,u) to state (u',u') that passes through a
state of the form (v,v"), v # v'.

(Recall that we assume that labeled graphs do not contain parallel edges that are labeled
the same; such graphs would necessarily be lossy and Proposition 2.16 would not apply to
them.)

Proposition 2.16 implies the following algorithm for testing the losslessness of a given
labeled graph G. We start by constructing the fiber product G« GG. Let U denote the states
in GG of the form (u, u) for some u € Vg, and let W be the set of all states (v, v') in G *G,
v # v', with an incoming edge from a state in U. To verify that no path which starts in W
terminates in U, we proceed as follows: For £ = 0,1,...,|Vg|?—1, we mark iteratively the
states in G * G that can be reached from W by a path of length < ¢ (this is known as the
breadth-first-search (BFS) procedure [Even79]). Then check whether any of the states in U
has been marked.

CHAPTER 2. CONSTRAINED SYSTEMS 61
2.7.2 Testing for finite anticipation

A similar algorithm, also due to Even [Even65], allows us to find the anticipation of a given
labeled graph. The algorithm is based on the following.

Proposition 2.17 Let G be a labeled graph and denote by W the set of all states (v,v")
in Gx G, v#v, with an incoming edge from a state of the form (u,u). Then, G has finite
anticipation if and only if no path in G x G that starts at any state in W contains a cycle.
If W is empty, then G is deterministic and A(G) = 0. Otherwise, the length of the longest
path from W equals A(G) — 1.

The anticipation of G can therefore be efficiently computed by constructing a sequence
of graphs Hy, Hy, Hs, ..., H;, where Hy = G x G and H; is obtained from H; ; by deleting all
states in H; | with no outgoing edges. The procedure terminates when H; ; = H; or when
H; contains no states that belong to the set . In the latter case, the number of iterations,
t, equals the anticipation of G. Otherwise, if H; does contain states of W, then G has infinite
anticipation.

Noting that (v,v") and (v’, v) are follower-set equivalent states in G« G, we can construct
a reduced labeled graph G’ out of G * G, where each such pair of states merges into one state
of G'. The labeled graph G’ will contain at most |Vg| states of the form (u,u), v € V, and
at most |Vg|(|Vg|—1)/2 states of the form (v,v'), v # v'. Now, Proposition 2.17 applies also
to the paths in G’. The longest path in G’ that neither visits the same state twice, nor visits
states of the form (u, u), is of length |V|(|Vg|—1)/2 — 1. Hence, we have the following.

Corollary 2.18 Let G be a labeled graph. If G has finite anticipation, then A(G) <
Val(|Val=1)/2.

There are constructions of labeled graphs GG that attain the bound of Corollary 2.18 for
every value of |V| [Koh78, Appendix 14.1].
2.7.3 Testing for finite memory

The following is basically contained in [PRS63] and [Koh78, Ch. 14] (see Problem 2.24).

Proposition 2.19 Let G be a labeled graph. Then, G has finite memory if and only if
there exists an integer N such that all paths in G x G of length N terminate in states of the
form {u,u), u € V. The smallest such N, if any, equals M(QG).

CHAPTER 2. CONSTRAINED SYSTEMS 62
In particular, in view of Proposition 2.15, given an irreducible constrained system S, we
can apply Proposition 2.19 to the Shannon cover of S to check whether S has finite memory.

The following corollary is the counterpart of Corollary 2.18 for the memory of a labeled
graph.

Corollary 2.20 Let G be a labeled graph. If G has finite memory, then M(G) <
Val([Val—=1)/2.

The bound of Corollary 2.20 is tight [Koh78, Ch. 14, Problems].

2.7.4 Testing for definiteness

Next we outline an efficient test for determining whether a given labeled graph G is (m, a)-
definite. (Note that we could use a test for definiteness also for testing finite memory.
However, to this end, Proposition 2.19 provides a faster algorithm.)

Let G be a labeled graph and let Ag.¢ be the adjacency matrix of G*G. Denote by Bg.a
the |Vg|? x |Vg|? matrix whose rows and columns are indexed by the states of G * G and for
every u,u’,v,v" € Vg, the entry (Bg.a)(uw), vy €quals the number of pairs of distinct edges
u — v and v’ — v’ in G that have the same label. In other words,

_ (AG’*G’)(u,u’),(U,v’) if u 7é u' or v ?é v
(BG*G)<U7U’>7(U7’U’> o { (AG’*G’)(u,u'),(U,'U’) — (Ag)u,v fu=u and v =2’

Proposition 2.21 A labeled graph G is (m,a)-definite if and only if

ArCnv’*G BG*G AaG*G =0.

The proof is left as an exercise (Problem 2.25).

Problems

Problem 2.1 Let G be a labeled graph.

1. Show that G has a unique maximal essential subgraph H.

2. Let S be the constrained system defined by G, and let S’ be the subset of S consisting of
all words w such that for any integer £ there are words z and z' of length £ such that zwz'
belongs to S. Show that S’ is the constrained system presented by H.

CHAPTER 2. CONSTRAINED SYSTEMS 63

Problem 2.2 Let G be a graph and let G’ and G” be the Moore form and Moore co-form of G,
respectively. Prove the following claims:

1. Edges with the same terminal state in G’ have the same labels, and edges with the same
initial state in G’ have the same labels.

2. If the out-degrees of the states in G are all equal to n, then so are the out-degrees of the
states in G’ and G".

3. A(G") = A(G).
4. A(G") < A(G) + 1. When is this inequality strict?

Problem 2.3 Let G be the graph in Figure 2.20 with labels over the alphabet ¥ = {a, b, c}. Show

(r——D

A

Figure 2.20: Graph G for Problem 2.3.

that the anticipation of G is 3.

Problem 2.4 Let G be the graph in Figure 2.21 with labels over the alphabet ¥ = {a, b, c}. Show
that the anticipation of G is 4.

Problem 2.5 Find the memory of the graph G in Figure 2.22.

Problem 2.6 Let S be a constrained system with finite memory M > 1 over an alphabet X..

1. Show that for every constrained system S’ over X,
S'C S ifandonlyif (S'N¥Y)C(SNYY) forevery i=1,2,..., M+1.
2. Show that there exists a constrained system S’ that is not contained in S, yet satisfies the

containment . _
('N¥)Cc(SNx’) forevery i=1,2,..., M.

CHAPTER 2. CONSTRAINED SYSTEMS 64

Figure 2.22: Graph G for Problem 2.5.

Problem 2.7 Prove Proposition 2.6.

Problem 2.8 Show that if S; and Sy are constrained systems that are almost-finite-type, then so
is Sl N SQ.

Problem 2.9 Let G; and G5 be graphs and G * G4 be the fiber product of G; and Gs.

1. Show that S(Gl * Gg) = S(Gl) N S(GQ)
2. Prove or disprove the following:

(a) If G; and G are both lossless, then so is G1 * Go.
(b) If Gy x G4 is lossless, then so are both G; and G».

Problem 2.10 Let G; and G2 be graphs with finite memory. Show that

M(G1 * GQ) < max{M(Gl),M(Gg)} .

Problem 2.11 Let G be the graph presentation of a 4-charge constrained system in Figure 2.23.

CHAPTER 2. CONSTRAINED SYSTEMS

@ +1 ‘/i\ +1 ‘/2\ +1 ‘/3\ +1 ‘@
| 1 | 1 | 1 | 1
) _]- \/‘ _]- U‘ _1 v‘ _1

Figure 2.23: Graph G for Problem 2.11.

1. Find a shortest homing word for every state in G.

2. What can be said about the memory of G7

Problem 2.12 Let G be the graph in Figure 2.24.

Uag

Figure 2.24: Graph G for Problem 2.12.

1. Find a shortest homing word in G.

2. What can be said about the memory of G7

Problem 2.13 Let S be the constrained system presented by the graph G in Figure 2.25.

b a

A

Figure 2.25: Graph G for Problem 2.13.

1. Find a shortest homing word for every state in G.

2. Construct the graph G2.

65

CHAPTER 2. CONSTRAINED SYSTEMS 66

3. Find the memory of each irreducible component of G2.

4. What can be said about the memory of G??

Problem 2.14 Let G; and G2 be graphs. Show that w is a homing word of G * G2 if and only
if w is a homing word of both G; and Gbs.

Problem 2.15 Let G be an irreducible graph and let G’ and G” be the Moore form and Moore
co-form of G, respectively. Show that both G’ and G” are irreducible.

Problem 2.16 Let G be the fiber product of the graphs in Figure 1.15 and Figure 1.16; note that
G presents the 6—(1,3)-CRLL constrained system.
1. Draw the graph G.

2. Show that one of the irreducible components of G? can be reduced to the graph H in Fig-
ure 2.26.

Figure 2.26: Graph H for Problem 2.16.

Problem 2.17 Let Sy be an irreducible constrained system and let G be a graph such that Sy C
S(G). Show that there is an irreducible component H of G such that Sy C S(H).

Problem 2.18 Let S; and S5 be irreducible constrained systems such that S; C So.

1. Show that there is an irreducible deterministic presentation H; of S; that is a subgraph of
an irreducible deterministic presentation Hy of Ss.

Hint: Let G; and G2 be the Shannon covers of S and So, respectively, and, as in the proof
of Lemma 2.13, consider an irreducible component Hi of G * G2 that presents Si. Show
how H; can be extended to an irreducible deterministic graph Hy such that S(Hs) = So.

CHAPTER 2. CONSTRAINED SYSTEMS 67

2. Show by example that not always can Hy be taken as the Shannon cover of Si; that is, for the
provided example, the Shannon cover of Sy is not a subgraph of any irreducible deterministic
presentation of Ss.

3. Show by example that not always can Hy be taken as the Shannon cover of Ss.

Problem 2.19 Let G and H be deterministic graphs where H is irreducible. Suggest an efficient
algorithm for determining whether S(H) C S(G).

Problem 2.20 Let G be a deterministic graph that presents an irreducible constrained system
S (but G is not necessarily irreducible). It follows from Lemmas 2.8 and 2.9 that G contains an
irreducible component G’ such that S(G) = S(G’). Suggest an efficient algorithm for finding G'.

Hint: See Problem 2.19

Problem 2.21 Let S be an irreducible constrained system with finite memory. Show that the
memory of S equals the memory of the Shannon cover of S.

Problem 2.22 Prove Proposition 2.14.

Problem 2.23 Let G be a labeled graph and let W be the subset of states of G * G as defined
in Proposition 2.17. Denote by x = (m@,v/))(v,,ﬂ) the characteristic vector of W as a subset of the
states of G x G; that is, the entries of x are indexed by the states of G x G, and

)1 i) ew
T@v) =Y 0 otherwise

1. Show that G has finite anticipation if and only if there is a nonnegative integer £ such that

2. Show that if G has finite anticipation, then its anticipation is the smallest nonnegative integer
¢ that satisfies the equality in 1.

Problem 2.24 Let G = (V, E, L) be a deterministic graph and let H be the graph obtained from
G * G by deleting the set of states {(v,v) : v € V'}, with their incident edges.

1. Show that G has finite memory if and only if H has no cycles.

2. Show that if G has finite memory, then the memory is bounded from above by |V |(|]V|—1)/2.

Problem 2.25 Prove Proposition 2.21.

CHAPTER 2. CONSTRAINED SYSTEMS 68

Problem 2.26 Let U be a set of positive integers (U may be either finite or infinite). The U-gap
system is defined as the set of all sub-words of all binary words in which each runlength of 0’s
belongs to U.

1. Let U be the set of even integers. Show that the U-gap system is a constrained system but
has no finite memory.

2. Let U be the set of prime integers. Show that the U-gap system is not a constrained system.
3. Formulate complete necessary and sufficient conditions on U for the U-gap system to be—

(a) a constrained system;

(b) a constrained system with finite memory.

