Chapter 3
Capacity

In this chapter we introduce and study the notion of capacity, which is one of the most im-
portant parameters related to constrained systems. In the context of coding, the significance
of capacity will be made apparent in Chapter 4, where we show that it sets an (attainable)
upper bound on the rate of any finite-state encoder for a given constrained system.

The definition of capacity is given in Section 3.1. We then provide two other characteriza-
tions of capacity—an algebraic and a probabilistic one. The algebraic characterization leads
to a method for computing capacity from any lossless graph presentation of the constrained
system (see Theorem 3.4 below).

3.1 Combinatorial characterization of capacity

Let S be a constrained system over an alphabet ¥ and denote by N(¢;S) the number of
words of length ¢ in S. The base-2 Shannon capacity, or simply capacity of S, is defined by

cap(S) = limsup % log N(¢;S) .

£—o0

Hereafter, if the base of the logarithms is omitted then it is assumed to be 2.

The Shannon capacity cap(S) of S measures the growth rate of the number of words of
length £ in S, in the sense that the N (¢; S) is well-approximated by 2¢<P(%) for large enough
L.

If |S| = oo then 0 < cap(S) < log|X|. Otherwise, if S is finite, then cap(S) = —oo. In
the latter case, there are no cycles in any presentation G of S; so each irreducible component
of GG is a trivial graph with one state and no edges.

Example 3.1 Let S be the (0,1)-RLL constrained system which is presented by the

69
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graph G shown in Figure 3.1. For u € {0, 1}, denote by z,(¢) the number of words of length
0
(==

Figure 3.1: Shannon cover of the (0,1)-RLL constrained system.

¢ that can be generated from state v in G. Then for ¢ > 1,
zo(l) = xo(f—1) +z1(L-1),
z1(f) = ze(£-1),
and the initial conditions are obtained for ¢ = 0 (the empty word) by
2o(0) = 21(0) =1.
So, for £ > 2,
zo(£) = o(£—1) + 20 (¢—2)

with the initial conditions z¢(0) = 1, zo(1) = 2. Hence, z((¢) are Fibonacci numbers and
can be written as
.’L'()(E) = Cl/\e + CQ(—)\)ilZ .

where A = (14+1/5)/2 (the golden mean ratio) and ¢; > 0. Since Fg(1) C F¢(0) we have
Fi(0) = S and
N(;S) = zo(¥) .

Therefore,

~ .6942 .

cap(S) =log 1+2\/5

O

The ‘limsup’ in the definition of capacity can be replaced by a proper limit, and
this can be shown in two ways. The most direct method is as follows: first, one
shows that log N(¢; S) is a subadditive function—i.e., for all £ and m, (log N(¢/4+m;S)) <
(log N(¢;S)) + (log N(m; S)); then one shows that for any subadditive function f(¢), the
limit limy_, o (f(¢)/¢) exists (see [LM95, Lemma 4.1.7]). An alternative method is provided
by Theorem 3.4 below.

The following theorem shows that the capacity of a constrained system S is determined
by the irreducible components of a graph presentation of S.

Theorem 3.1 Let S = S(G) be a constrained system and let G1, Gy, ..., Gy be the irre-
ducible components of G, presenting the irreducible systems S; = S(G;). Then,

cap(S) = max cap(S;) -
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Proof. Clearly, cap(S) > cap(S;) for all i = 1,2,..., k. We now prove the inequality in
the other direction. Any word w € S N ¢ can be decomposed into sub-words in the form

W = W21 WoZo...2r_1 Wy,

where each w; (possibly the empty word) is generated wholly within one of the irreducible
components of G and each z; is a label of an edge that links two irreducible components. Due
to the partial ordering on the irreducible components of (G, once we leave such a component
we will not visit it again in the course of generating w. Hence, » < k and

k
NES)=[snEf| <282t 37 [N S), (3.1)
(01,02,...,85) =1

where ({1, 05, ..., /) ranges over all nonnegative integer k-tuples such that £;+0o+. . .+£ < L.
In (3.1), the term 2* stands for the number of combinations of the traversed irreducible
components; the term |X|*~! bounds from above the number of possible linking symbols z;;
and /; stands for the length of the sub-word of w € SN that is generated in the irreducible
component G;.

Without loss of generality we assume that cap(S;) is nonincreasing with 7 and that h
is the largest index i, if any, for which cap(S;) > 0; namely, Gjy1,Ghyo,. .., Gy are the
irreducible components of G with one state and no edges. Note that when no such h exists
then cap(S) = —oco and the theorem holds trivially.

By the definition of capacity, it follows that for every ¢+ < h and m € IN we have
N(m; 8;) < exp{m(cap(S;) +¢(m))} < exp{m(cap(S1) +&(m))} ,

where exponents are taken to base 2 and lim,, ,,,£(m) = 0. Plugging this with m = ¢;
into (3.1) we obtain

h h

NSy < @ > exp{(Dt)cap(S1)} - exp{}" tie(t:) }
(£1,02,...,03) i=1 i=1
< Q) 1) epfecap(s} - man, {3 et} |

where (¢1, 4o, ..., ¢,) ranges over all nonnegative integer h-tuples such that ¢, + 0 +. ..+, <
. Defining
1 h
6(0) =~ max Y lie(l),

L (e1t2etn) =

we obtain
1
/¢

klog(2||(£ + 1))

log N(¢4; S) < cap(S1) + 7

+5(0) .
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Hence, in order to complete the proof, it suffices to show that lim,,,, d(¢) = 0. We leave
this as an exercise (Problem 3.2). ]

The following useful fact is a straightforward consequence of the definition of capacity.
The proof is left as an exercise (see Problem 3.1).

Proposition 3.2 For any constrained system S and positive integer £,

cap(S%) = £- cap(S) .

3.2 Algebraic characterization of capacity

In this section, we present an algebraic method for computing the capacity of a given con-
strained system. This method is based on Perron-Frobenius theory of nonnegative matrices.
Our full treatment of Perron-Frobenius theory is deferred to Section 3.3. Still, we will pro-
vide here a simplified version of the theorem so that we can demonstrate how it is applied
to the computation of capacity. We start with the following definition.

A nonnegative real square matrix A is called irreducible if for every row index u and
column index v there exists a nonnegative integer ¢, , such that (Ae"v”)uﬂ, > 0.

For a square real matrix A, we denote by A(A) the spectral radius of A—i.e., the largest
of the absolute values of the eigenvalues of A.

The following is a short version of Perron-Frobenius theorem for irreducible matrices.

Theorem 3.3 Let A be an irreducible matriz. Then A(A) is an eigenvalue of A and
there are right and left eigenvectors associated with A\(A) that are strictly positive; that is,
each of their components is strictly positive.

The following theorem expresses the capacity of an irreducible constrained system S in
terms of the adjacency matrix of a lossless presentation of S.

Theorem 3.4 Let S be an irreducible constrained system and let G be an irreducible
lossless (in particular, deterministic) presentation of S. Then,

cap(S) =log A(Ag) -

We break the proof of Theorem 3.4 into two lemmas.
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Lemma 3.5 Let A be an irreducible matriz. Then, for every row index u,

lim %log (zv:(Af)u,v) —=log A(4) .

£—00

Furthermore,
o1
Jim log (D-(AYu0) =1log A(4) .

U,V

Proof. We make use of a positive right eigenvector x associated with the eigenvalue
A = A(A). Let Ty and zpni, denote the maximal and minimal components of x, respectively.
Both x,.¢ and z,;, are strictly positive. For each row index u we have

Lmin Z(Az)u,v < Z(Ae)u,vx'u = )‘exu .

v

Thus,
Ly

S(AYy, < A8

v Lmin
Replacing Zmin by Tmax and reversing the direction of the inequalities, we get

S T(AYy, > DL

v xma.x

Ly

It thus follows that the ratio of 3, (A%, to A* is bounded above and below by positive
constants and, so, these two quantities grow at the same rate. The same holds with respect

t0 X, (AK)W,. ]

Lemma 3.6 Let S be an irreducible constrained system and let G be an irreducible loss-
less presentation of S. Then,

cap(S) = Jim élog (Z(Aé)uv) :

—00 v

Proof. Recall that 3, ,(A%)u,» is the number of paths of length £ in G. Now, every word
of length 7 in S can be generated by at least one path in G. On the other hand, since G is

lossless, every word in S can be generated by at most |Vg|? paths in G. Hence, the number,
N(¢;S), of words of length £ in S is bounded from below and above by

5 Y (AG)uy < N(ES) < Y (Ab)u

|VG‘2 u,v u,v

Therefore,

cap(S) = lim llog N(;S) = lim 1log (Z(Az)u,v) =logA(4) .

{—o0 { 1500 f -

Note that we have established here that ‘lim sup’ can indeed be replaced by a proper limit.[
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Example 3.2 For the (0,1)-RLL constrained system presented by the deterministic
graph in Figure 3.1, the adjacency matrix is

11
AG - ( 1 0 > ’
with largest eigenvalue A = (14++/5)/2 and capacity log A ~ .6942. O]

Example 3.3 For 0 < d < k < o0, let G(d, k) denote the Shannon cover in Figure 1.3
of the (d, k)-RLL constrained system. It can be shown that A(Ag(4x)) is the largest positive
solution of the equation

A2 kLl k—dtl L

(see Problem 3.19). This in turn, allows to compute the capacity of any (d, k)-RLL con-
strained system. Table 3.1 (taken from [Imm91]) contains the capacity values of several

(d, k)-RLL constrained systems. ]
k\d 0 1 2 3 4 5 6

1 .6942
2 | .8791 .4057
3 9468 .5515 .2878
4 9752 6174 4057 .2232
5 9881  .6509 .4650 .3218 .1823
6 | .9942 6690 .4979 .3746 .2669 .1542
7 9971 6793 5174 40567 3142 2281 .1335
8 | .9986 .6853 .5293 .4251 .3432 .2709 .1993
9 | .9993 .6888 .5369 .4376 .3630 .2979 .2382
10 | 9996 .6909 .5418 .4460 .3746 .3158 .2633
11 | 9998 .6922 .5450 .4516 .3833 .3282 .2804
12 | 19999 .6930 .5471 4555 .3894 .3369 .2924
13 | 9999 .6935 .5485 .4583 .3937 .3432 .3011
14 | 9999 .6938 .5495 .4602 .3968 .3478 .3074
15 | .9999 .6939 .5501 .4615 .3991 .3513 .3122
oo | 1.0000 .6942 .5515 .4650 .4057 .3620 .3282

Table 3.1: Capacity values of several (d, k)-RLL constrained systems.

Example 3.4 Consider the 2-charge constrained system whose Shannon cover is given
by the graph G in Figure 3.2. The adjacency matrix of GG is given by

010
01|,
10
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+ +
— \ /" =

Figure 3.2: Shannon cover of the 2-charge constrained system.

with eigenvalues ++/2 and 0. Hence, the capacity of the 2-charge constrained system is

logv/2 =1/2.

More generally, if Gg is the Shannon cover in Figure 1.14 of the B-charge constrained
system, then it can be shown that

AMAg,) = 2cos (BLH)

(see Problem 3.20). Table 3.2 lists the values of log A(Ag,) for several values of B. ]

B| 1 2 3 4 5 6 7 8 9 10 11 12
| .0000 .5000 .6942 .7925 .8495 .8858 .9103 .9276 .9403 .9500 .9575 .9634

Table 3.2: Capacity values of several B-charge constrained systems.

It turns out that Theorem 3.4 and Lemma 3.6 hold for any constrained system S and
lossless graph (G, irreducible or reducible. We show this next.

Theorem 3.7 Let S be a constrained system and let G be a lossless presentation of S.
Then, there is an irreducible constrained system S’ C S such that

cap(S’") = cap(S) = log A\(4¢) -

Proof. Let G1,G,,..., Gy be the irreducible components of G and denote by A; the
adjacency matrix of GG;. By reordering the states, we can assume that the adjacency matrix
A of G has the block-triangular form of Figure 3.3. Since the set of eigenvalues of A is the
union of the set of eigenvalues of the matrices A;, we obtain

A(A) = mhx A(4;) .

=1

The result now follows from Theorem 3.1. ]
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Al Bl,2 B1,3 Bl,k
A2 B2,3 B2,k:
A == A3
Bk—l,k
Ay

Figure 3.3: Block-triangular form.
3.3 Perron-Frobenius theory

In this section, we present a more extensive treatment of Perron-Frobenius theory. We have
already exhibited one application of this theory—namely, providing a means for computing
capacity. In fact, as we show in Chapters 5 and 7, this theory also serves as a major tool for
constructing and analyzing constrained systems.

3.3.1 Irreducible matrices

Recall that a nonnegative real square matrix A is called irreducible if for every row index
u and column index v there exists a nonnegative integer £, , such that (Aeu’v)u,,, > 0. A
nonnegative real square matrix that is not irreducible is called reducible .

The 1 x 1 matrix A = (0) will be referred to as the trivial irreducible matrix. The
trivial irreducible matrix is the adjacency matrix of the trivial irreducible graph (which has
one state and no edges).

Irreducibility of a nonnegative real square matrix A depends on the locations (row and
column indexes) of the nonzero entries in A, and not on their specific values. For example,
irreducibility would be preserved if we changed each nonzero entry in A to 1. Therefore, the
following definition is useful.

Let A be a nonnegative real square matrix. The support graph of A is a graph G with
a state for each row in A and an edge v — v if and only if (A4),, > 0. Note that A is
irreducible if and only if its support graph G is irreducible, and G is irreducible if and only
if its adjacency matrix Ag is irreducible.

In analogy with graphs, we can now define an #rreducible component of a nonnegative
real square matrix A as an irreducible submatrix of A whose support graph is an irreducible
component of the support graph of A. The term irreducible sink extends to matrices in a
straightforward manner. By applying the same permutation on both the rows and columns
of A, we can obtain a matrix in upper block-triangular form with its irreducible components,
Ay, As, ..., Ay, as the block diagonals, as shown in Figure 3.3.
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We will use in the sequel the following notations. Let A and B be real matrices (in
particular, vectors) of the same order. We write A > B (respectively, A > B) if the weak
(respectively, strict) inequality holds component by component. We say that A is strictly
positive if A > 0.

3.3.2 Primitivity and periodicity

Let G be a nontrivial irreducible graph. We say that G is primitive if there exists a (strictly)
positive integer ¢ such that for every ordered pair of states (u,v) of G there is a path of
length ¢ from u to v. Equivalently, A% is strictly positive; note that this implies that A7 is
strictly positive for every m > /, since the adjacency matrix of a nontrivial irreducible graph
cannot have all-zero rows or columns. Observe that the trivial matrix is not a primitive
matrix.

Let G be a nontrivial irreducible graph. The period of G is the greatest common divisor
of the lengths of all cycles in G. We say that G is aperiodic if its period is 1.

It is not difficult to check that the graph in Figure 3.1 (which presents the (0,1)-RLL
constrained system) is aperiodic and the graph in Figure 3.2 (which presents the 2-charge
constrained system) has period 2.

Proposition 3.8 A nontrivial irreducible graph is aperiodic if and only if it is primitive.

Proof. Let G be a primitive graph. Then there exists a positive integer £ such that A%
is strictly positive, and therefore so is Aé“. In particular, there exist cycles in G of lengths
£ and /+1. Hence, GG is aperiodic.

Conversely, assume that G = (V, E, L) is aperiodic and let I';, T's, . .., T’y be cycles in G of
lengths t1, 1o, . . . , t, respectively, such that ged(¢y, to, . . ., tx) = 1. By the extended Euclidean
algorithm, there exist integers by, by, ..., by such that >F  bit; = ged(ty,ta,..., 1) = 1.
Define the constants

M = (21V] = 1) miax b

and
ai;j:M_jbi’ 7;:1,25"'51{:’ ]:0’1”2|V|_2

Note that each a;; is a positive integer.

Fori=1,2,...,k, let u; be the initial (and terminal) state of the cycle I'; and let 7; be a
path from u; to u;;1 in G (see Figure 3.4). For j =0,1,...,2|V| — 2, define the path v; by

— %5 a2,j Ak, j
vj—Pl 7TlF2 7r2...7rk_1Pk .

That is, 7; starts at state u, then circles a, ; times along I'y, then follows the edges of m; to
reach us, next circles ay; times along I';, and so on, until it terminates in u;. Denote by r
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Uy m U T2 Us Ug—1 Tg—1 Ug
Figure 3.4: Paths for the proof of Proposition 3.8.

the length of the path mymy...m_;. Foreach j =0,1,...,2|V|—2, the length of v, is given
by

k
T+Za”t—r+z —jbi)ti = (r+ M - Z )—ij,-ti:E—j,

=1 i=1
where £ = r + M - ¥ | t; is independent of j.

Now, let u and v be states in G and let my and 7, be the shortest paths in G from u to
w1 and from uy to v, respectively. Since 7y and 7, each has length smaller than [V, there
exists one path +; such that the length of myy;7 is exactly £. Hence, (AL > 0. O

Lemma 3.9 Let u and v be two states in a nontrivial irreducible graph G with period p.
Then all paths in G from state u to state v have congruent lengths modulo p.

Proof. Let 7; and 7, be two paths from u to v in G of lengths /1 and ¢, respectively.
Also, let 3 be a path of length /3 from v to u. Since ;73 and 7,73 are cycles, their lengths
must be divisible by p. Therefore,

b+ l3=0+/¢3=0 (modp).
Hence the result. ]

Let G be a nontrivial irreducible graph with period p. Two states u and v in G are called
congruent, denoted u = v, if there is a path in G from u to v of length divisible by p. It can
be readily verified that congruence is an equivalence relation that induces a partition on the
states into equivalence classes.

Let Cy be such an equivalence class, and for r = 1,2,...,p—1, let C, be the set of terminal
states of edges in G whose initial states are in C,._q, thus forming the sequence

Co—=Ci—...=Ch1.

The sets Cy, C1, ..., Cp_1 are necessarily all distinct, or else we would have a cycle in G whose
length is less than p. The outgoing edges from C,_; end path of length p that originate in
Cy and, so, their terminal states belong to Cy. It follows that the sets C). form a partition of
the set of states of G. In fact, each C) is an equivalence of the congruence relation. Indeed,
consider two states u,v € C,. There are paths in G,

U Upq1l = Upy2 — ... = Up—1 — U,
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and
Vg =V =V —> ... 2>Up_1 =V,

of lengths p—r and r, respectively, where u,,v, € C,; and since ug and vy are congruent,
then so are u and v.

Example 3.5 The graph in Figure 3.2 has period 2, and the equivalence classes of the
congruence relation are given by Cy = {0,2} and C; = {1}. L

The definitions of period and primitivity extend to irreducible matrices through their
support graphs as follows. Let A be a nontrivial irreducible matrix. The period p = p(A)
of A is the period of the support graph of A. A nontrivial irreducible matrix A is called
primitive if the support graph of A is primitive.

Theorem 3.10 Let A be a nontrivial irreducible matriz with period p and let
Co,Ch,y...,Ch

be the equivalence classes of the congruence relation defined on the states of the support graph
of A, where edges that start in C, terminate in Cryq (Co if 7 = p—1).

(a) The nonzero entries of A all belong to p submatrices By, By, ..., By_1 of A, where
each B, has order |Cy| x |Cry1| (|Co-1] X |Col if m = p—1).

(b) AP decomposes into p irreducible components Ay, Ai, ..., Ap_1, where
A= BrBr—i—l Tt Bp—lBO B

Furthermore, the entries of AP that do not belong to any of the irreducible components are
all zero (i.e., the irreducible components of the support graph of AP are isolated).

(¢) Each irreducible component A, of AP is primitive.

(d) The irreducible components of AP all have the same set of nonzero eigenvalues, with
the same multiplicity.

We present below a (partial) proof of the theorem. The statement of the theorem can be
seen more clearly if we apply the same permutation on the rows and columns of A so that
for r =1,2,...,p—1, the states of C, follow those of C._;. In such a case, A and AP take
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the form

BO AO

and )

Bp_1 AP—1

respectively. Note that the classes C, need not necessarily be of the same size and the
irreducible components A, thus do not necessarily have the same order: different orders
indicate different multiplicity of the zero eigenvalue.

Example 3.6 Continuing Example 3.5, consider again the graph G in Figure 3.2, which
has period 2 and the equivalence classes of the congruence relation are Cy = {0,2} and
C; = {1}. As mentioned in Example 3.4, the adjacency matrix of G is given by

0
AG: 1
0

=N
o = O

and after permuting the rows and columns of Ag so that the element(s) of C; follow those
of Cy, we obtain the matrix

0 | By
where

The second power of A is given by

1 1]0
= BB ‘ " =1 1]o
0 |BiB, 0 0|2
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The irreducible components Gy and G, of G? are shown in Figure 2.16, and their adjacency

matrices are
11

A0=3031=<1 1

> and A1=BlBOZ(2),

respectively. The eigenvalues of Ay are 2 and 0, out of which only 2 is an eigenvalue of A;.L]

Proof of Theorem 3.10. (a) follows from the definition of C,, and the expression
for A, in (b) follows from the rules of matrix multiplication. It is left as an exercise (see
Problem 3.10) to show that each A, is irreducible and primitive and that the nonzero entries
in AP all belong to the submatrices A,.

As for (d), let u be a nonzero eigenvalue of A,; that is, there exists a nonzero vector x
such that
Ax = px .

Multiplying both sides by B,_; we obtain
B, 1A, x = uB,_1x .
Now, B,_1A, = A,_1B,_1; so,
Ar 1 (Broax) = p(Broix) -

Furthermore, the vector B,_;x is nonzero, or else we would have A,x = B, B,11... B,_1x =
0, contrary to our assumption that u # 0. Hence, it follows that p is an eigenvalue of A, ;.

By perturbation it can be shown that p has the same algebraic multiplicity as an eigenvalue
of A, and A,_;. U]

3.3.3 Perron-Frobenius Theorem

Theorem 3.11 (Perron-Frobenius Theorem for irreducible matrices) [Gant60, Ch. XIII],
[Minc88, Ch. 1], [Sen80, Ch. 1], [Var62, Ch. 2|) Let A be a nontrivial irreducible matriz. Then
there exists an eigenvalue X of A such that the following holds.

(a) X is real and X > 0.

(b) There are right and left eigenvectors associated with A that are strictly positive; that
18, each of their components is strictly positive.

(c) X\ > |u| for any other eigenvalue p of A.

(d) The geometric multiplicity of A is 1; that is, the right and left eigenvectors associated
with A are unique up to scaling.
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Proof. Parts (a) and (b). Let A be of order m x m and define the set
B={yeR":y>0}.

For y = (yu)u € B, let p(y) be defined by

o (A
ply) = min e

Denoting by . the index u for which y, is maximal, we have

Ay)u
0<p(y) < (A Junee D At Smaxy | Ay,

yumax

Therefore, the values p(y) are uniformly bounded for every y € B. Define

A= sup p(y) =supp(y) ,
yeB* yeB

where B* = {(yy)u € B : >, yu = 1}. Since the function y — p(y) is continuous over the
compact set B*, there is some x € B* for which p(x) = A. Observing that Ay > p(y) -y for

every y € B, it follows that
Ax > dx . (3.2)

Next we show that the latter inequality holds with equality.

Suppose to the contrary that Ax — Ax is nonzero (and nonnegative). Define B = (A +
™1 where I is the identity matrix; the matrix B is strictly positive (see Problem 3.14)
and, therefore,

B(Ax — Xx) > 0.

Letting z = (z,),, denote the vector Bx and noting that B commutes with A, we have

Az > Mz,
and, so,
Az),
M@=mm(z)>A:$mmw,
u Ry yeB

thereby reaching a contradiction. We thus conclude that Ax = Ax, i.e., A is an eigenvalue
of A with an associated nonnegative right eigenvector x = ().

Next we show that both A and x are strictly positive. Let the index v be such that
Z, > 0, and for any index u # v, let £, , be a positive integer for which (AZ“’”)U,U > 0. Then,
from A%vx = Mevx we obtain

Novg, = (Merx), = (A%vx), > (AZ“’”)uy,,xU >0.
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Hence, A > 0 and x > 0. This completes the proof of part (a) and the first half of part (b):
we still need to show that there is a strictly positive left eigenvector associated with A.
However, the existence of such a vector will follow from having, by (c), the same value of A
for the transpose of A.

Part (c). Let p be a complex eigenvalue of A with an associated complex right eigenvector
¥ = (Yu)u and define the vector & = (&,), by & = |yu|- Taking the absolute value of both

sides of
Z(A)u,vyv = MUYy,

v

we obtain, by the triangle inequality,

(A = 3 (Aunlvel > [ (Auotin| = 1l ,
i.e.,
A€ > [ul€ .
Therefore,
ul < p(§) <A. (3.3)

Part (d). Let x = (x,), be a strictly positive right eigenvector associated with the
eigenvalue A. Since ) is real, the linear space of the eigenvectors associated with X is spanned
by real eigenvectors. Let y = (y,), be a real right eigenvector associated with A and suppose
to the contrary that y is linearly independent of x. Then, for o = max,{y./z,}, the vector
z = (zy)u = ax — Yy is a nonnegative (nonzero) right eigenvector associated with A and
zy = 0 for some index u. From Az = Az we obtain that z, = 0 for every index v such that
(A)yp > 0. Iterating inductively with each such v, we reach by the irreducibility of A the
contradiction z = 0. The respective proof for left eigenvectors is similar. (]

Hereafter, we denote the transpose of a vector y by y'.

Proposition 3.12 Let A and B be nonnegative real square submatrices of the same
order such that A > B and A is irreducible. Then, \(A) > \(B), with equality if and only
if A= B.

Proof. Let z = (z,), be a right eigenvector of B associated with an eigenvalue p such
that |u| = Ap = A(B) and let x = (z,), be defined by x, = |z,|; from Bz = uz and the
triangle inequality we have

Ax > Bx > A\px, (3.4)

where the first inequality follows from A > B. Let y' be a strictly positive left eigenvector
of A associated with Ay = A\(A). Multiplying by y ' yields

My x =y Ax >y 'Bx > \gy ', (3.5)
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and dividing by the positive constant y 'x, we obtain A4 > Ag.

Now, if A4 = Ap, then the inequalities in (3.5) must hold with equality. In fact, this is
also true for the inequalities in (3.4), since y ' is strictly positive; that is,

Ax = Bx = A\gX = \4X.

It follows that x is a nonnegative right eigenvector of A associated with A4; as such, it must
be strictly positive. Combining this with Bx = Ax and A > B yields A = B. (]

Proposition 3.13 Let A be an irreducible matriz. Then the algebraic multiplicity of the
eigenvalue A = X\(A) is 1; that is, \ is a simple root of the characteristic polynomial of A.

Proof. The result is obvious for 1 x 1 matrices, so we exclude this case hereafter in the
proof.

It is known that for every square matrix M,
M - Adj(M) = det(M) - I,
where Adj(M) is the adjoint of M and [ is the identity matrix. In particular,
(zI = A) - Adj(zl — A) = xa(2) - T,

where x 4(z) = det(zf —A) is the characteristic polynomial of A. Differentiating with respect
to z we obtain

d
Adj(zI — A) + (2] — A) - d—(Adj(zI —A)) =xal2)- I

z
We now substitute z = X and multiply each term by a strictly positive left eigenvector y '
associated with ); since y' (Al — A) = 0", we end up with

y A = A) = x4V y " -

Now, A is a simple root of x 4(z) if and only if x’,(A) # 0. Hence, to complete the proof, it
suffices to show that the matrix Adj(AI — A) is not all-zero. We do this next.

Let the matrix B be obtained from A by replacing the first row with the all-zero row.
Denoting by xz(2) the characteristic polynomial of B, it is easy to see that the upper-left
entry in Adj(A — A) is given by

)‘_1XB()‘) .

However, from Proposition 3.12 it follows that A is not an eigenvalue of B and, thus, cannot
be a root of xz(2). ]
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Proposition 3.14 Let A be an irreducible matriz. Then,
min D (A < AA) < mng(A)u,v )

where equality in one side implies equality in the other.

Proof. Let y' = (y,), be a strictly positive left eigenvector associated with A = A\(A).
Then Y2, yyu(A)up = Ay, for every index v. Summing over v, we obtain,

Zyu Z(A)u,v = )‘Zyv )

or
\ = Zu Yu Eu (A)u,'u
20 Yo
That is, A is a weighted average (over v) of the values Y-, (A)y,- ]

Theorem 3.15 (Perron-Frobenius Theorem for nonnegative matrices.) Let A be a non-
negative real square matriz. Then, the following holds.

(a) The set of eigenvalues of A is the union (with multiplicity) of the sets of eigenvalues
of the irreducible components of A.

(b) AM(A) is an eigenvalue of A and there are nonnegative right and left eigenvectors
associated with \(A).

Proof. Part (a) follows from the block-triangular form of Figure 3.3 (see the proof of
Theorem 3.7). Part (b) is left as an exercise (see Problem 3.21). O

Since A(A) is actually an eigenvalue of A, we will refer to A(A) as the largest eigenvalue
of A or the Perron eigenvalue of A.

When all the irreducible components of a nonnegative real m x m matrix A are trivial,
then all the eigenvalues of A are zero. In this case, the characteristic polynomial of A is
given by x 4(z) = 2™. Such a matrix is called nilpotent. Notice that the support graph of a
nilpotent matrix A does not contain cycles and, so, there is no path in that graph of length m.
Therefore, A™ = 0, consistently with Caley-Hamilton Theorem that states that the all-zero
matrix is obtained when a square matrix is substituted in its characteristic polynomial.

3.3.4 Stronger properties in the primitive case

The following proposition says that in the primitive case, the inequality in Theorem 3.11(c)
is strict.
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Proposition 3.16 Let A be a primitive matriz with A(A) = A. Then |u| < X for every
eigenvalue p # X of A.

Proof. We use the notations y = (yu)u, €& = (|¥u|)u, and p(-) as in the proof of Theo-
rem 3.11(c). If |u| = A then it follows from (3.3) that p(§) = A, i.e.,

A > \E.

Re-iterating the arguments in the proof of parts (a) and (b) of Theorem 3.11 (see (3.2)), we
conclude that & is a right eigenvector associated with the eigenvalue A. Therefore, for every
positive integer ¢ and every index u,

‘Z(Ae)u,vyv = ‘:u|e|yu| = Z(Ae)u,v

v v

Yol

i.e., the triangle inequality holds with equality. In such a case we have for every v,

(Ae)u,vyv - (Ae)u,v yv| . ﬁ y

where 3 = B(u, £) is such that |3| = 1. Taking £ so that A® > 0, we obtain that y is a scalar
multiple of £ and pu = A. (]

Theorem 3.17 Let A be a primitive matriz and x and y' be strictly positive right and
left eigenvectors of A associated with the eigenvalue A = \(A), normalized so that y'x = 1.
Then,

lim (A4 =xy .

£—00

Proof. The 1 x 1 case is immediate, so we exclude it from now on. Let yu be the largest
absolute value of any eigenvalue of A other than A; by Proposition 3.16 we have u < A. Also,
let h be the algebraic multiplicity of any eigenvalue of A whose absolute value equals u. We
show that

AZ — )\ZXyT + E(Z) ,

where E® is a matrix of the same order of A whose entries satisfy

12

U,

= 0" 'f) (3.6)

for every u and v.

Write A = PAP~!, where A is a matrix in Jordan canonical form; that is, A is a block-
diagonal matrix where each block, A;, is a square matrix that corresponds to an eigenvalue
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A; and takes the elementary Jordan form: the entries on the main diagonal equal );, and
the other nonzero entries in the matrix are 1’s below the main diagonal, as follows:

Each eigenvalue of A appears in the main diagonal of A a number of times which equals its
algebraic multiplicity. We assume that the upper-left block A; corresponds to the largest
eigenvalue \; that is, A; = (/\) (by Proposition 3.13, this block has order 1 x 1). The
first column of P and the first row of P~! are, respectively, a right eigenvector x and a left
eigenvector y ' associated with A\, and P - P~! = I implies that x and y' are normalized so
that y 'x = 1.

Now, A* = PA‘P~!, where A’ is a block-diagonal matrix with blocks A¢. It is easy to
see that a each block Af is a lower-triangular matrix of the form

Qy
Ap—1 Gy

Af: Qo—2  Qp—1 Qg ,
Ag—s+1  --- Qg2 Gg1 Og

where s in the order of A; and a; = (f) M. Hence, the absolute value of each entry in Af is
bounded from above by £~ \;|*. Noting that s < h, it follows that the upper-left entry of
A? equals )¢, whereas the absolute values of the other entries of A¢ are bounded from above
by ¢#~1u¢ for sufficiently large ¢. Therefore,

AP = PA'P7' = \xy " + EO |
where E¥) satisfies (3.6). O

When A is not primitive, there are eigenvalues of A other than A\ for which Theo-
rem 3.11(c) holds with equality. Those eigenvalues are identified in the next theorem, which
is quoted here without proof.

Theorem 3.18 Let A be a nontrivial irreducible matriz with period p and let A = A(A).
Then there are exactly p eigenvalues p of A for which |u| = A: those eigenvalues have the
form \w', where w is a root of order p of unity, and each of those eigenvalues has algebraic
multiplicity 1.
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3.4 Markov chains

In Section 3.1, we defined the capacity of a constrained system S combinatorially as the
growth rate of the number of words in S. Then, in Section 3.2, we showed how the capacity
of S was related to the largest eigenvalue of a lossless presentation of S. In Section 3.5 below,
we present yet another characterization of capacity, now through probabilistic means.

The following concept plays a major role in our discussion.

Let G = (V, E) be a graph. A Markov chain on G is a probability distribution P on the
edges of GG; namely, the mapping
e — Ple)

takes nonnegative values and Y .. P(e) = 1.

For a state u € V, let E, denote the set of outgoing edges from u in G, i.e.,
E,={e€E : o(e) =u},

where o(e) = o¢(e) is the initial state of e in G. The state probability vector ™' = (Ty)uev
of a Markov chain P on G is defined by

=Y Ple).

ecFy,

The conditional probability of an edge e € E is defined by

. ”P(e)/w(,(e) if To(e) >0
e = 0 otherwise

A Markov chain P on G induces the following probability distribution on paths of G: given
a path v =ejey ... e in G, its probability is given by
,P(rY) = WU(@1)Q€1Q€2 *r ey - (37)

The transition matriz associated with P is a nonnegative real |V| x |V| matrix ) where for
every u,v € V,
(Q)u,v = Z Ge ;
eEEy :T(e)=v

that is, (Q)u, is the sum of the conditional probabilities of all edges from u to v in G. Note
that @ is stochastic: the sum of entries in each row is 1.

A Markov chain P on G is called stationary if for every u € V,

> Ple) =Tu;

e€E:1(e)=u
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that is, the sum of the probabilities of the incoming edges to state u equals the respective
sum of the outgoing edges from u. Equivalently,

m'Q=n".

A stationary Markov chain P on G is called irreducible (or ergodic) if the associated
transition matrix ) is irreducible. Similarly, P is called primitive (or mizing) if @ is a
primitive matrix. Clearly, ) is irreducible (respectively, primitive) only if G is. Hereafter,
when we say an irreducible (respectively, primitive) Markov chain, we mean an irreducible
(respectively, primitive) stationary Markov chain.

Proposition 3.19 Let Q be an irreducible stochastic |V| x |V'| matriz. Then there is a
unique positive vector w' = (my)uey such that >, m, =1 and

T Q=x".

Proof. The matrix @ is irreducible and the sum of elements in each row is 1. By
Proposition 3.14 we thus have A\(Q) = 1. The existence and uniqueness of =" now follow
from parts (b) and (d) of Theorem 3.11. O

It follows from Proposition 3.19 that an irreducible Markov chain on G = (V, E) is
uniquely determined by its conditional edge probabilities (g.)ecrz- That is, these conditional
probabilities determine the state probability vector. We refer to the state probability vector
of an irreducible Markov chain as the stationary probability vector.

The entropy (or entropy rate) of a Markov chain P on G = (V, E) is defined as the
expected value—with respect to the probability measure P on the edges of G—of the random
variable log (1/¢.); i.e.,

H(P) =Ep {log (1/(]6)} = Z Ty Z gelogqe .

ueV ecky

Example 3.7 Let G be the Shannon cover of the (0, 1)-RLL constrained system as shown
in Figure 3.1, and consider the following stochastic matrix (whose support graph is G):

o=(11)

"= )

= N |
O

One can verify that

is a left eigenvector of () associated with the Perron eigenvalue 1. The vector w' is the
stationary probability vector of the (unique) stationary Markov chain on G whose transition
matrix is Q. The entropy of this Markov chain is — >, 7y X ecp, ge log ge = 2/3. ]
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Proposition 3.20 Let Q be a primitive stochastic |V | x |V | matriz and let €' = (&,)uey
be such that > ,cv & = 1. Then,
Jim £ =n",
—00

where 7' is the vector as in Proposition 3.19.

Proof. Since () is stochastic we have Q1 = 1, where 1 is the all-one column vector;
that is, 1 is a right eigenvector associated with the Perron eigenvalue A(Q) = 1. Hence, by
Theorem 3.17 we have

limé' Q' =¢"1n" =x",
£—00
as claimed. O

Suppose that P is a (not necessarily stationary) Markov chain on G with an associated
primitive transition matrix @ and a state probability vector €. Also, let w' = (7u)u be
a left positive eigenvector of () associated with the Perron eigenvalue 1, normalized so that
> Ty = 1. It follows from Proposition 3.20 that as the lengths of paths go to infinity, the
probability of terminating in state u of G' converges to .

Theorem 3.21 (Law of large numbers for irreducible Markov chains) Let P be an ir-
reducible Markov chain on a labeled graph G = (V,E,L) where L : E — R (i.e., the labels
are over the real field). For a positive integer ¢, define the random variable Z; on paths
v =eiey...e of length £ in G by

1 4

i=1
Then, for every e > 0,
lim Prob{ |Z,—L| <e}=1,
{—00

where L = Ep {L(e)} = X.cx P(e)L(e).

The proof of Theorem 3.21 is left as a guided exercise (see Problems 3.35 and 3.36).
Observe that since P is stationary, we have in fact L = Ep {Z,}.

Let P be a Markov chain on G. A path « in G of length ¢ is called (P, ¢€)-typical if the
probability P(7), as defined by (3.7), satisfies
1

HP) +

logP(y) | <e,
or, equivalently,
2—£(H(P)+€) S ,P(’)/) S 2—€(H(73)—€) )

The set of (P, ¢)-typical paths of length ¢ in G will be denoted by 7;(P, ¢) (the dependency
of this set on G is implied by the dependency on P).
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Theorem 3.22 (Asymptotic Equipartition Property, in short AEP) Let P be an irre-
ducible Markov chain on a graph G. Then, for every e > 0,
lim Y P(y)=1.

fro0 YET(Pye)

Proof. We apply Theorem 3.21 to the graph G and the labeling L(e) = log (1/¢.), where
g. is the conditional probability of an edge e; we assume that ¢, > 0, or else we delete the
edge e from G. Here,
L = Ep{log(1/¢.)} = H(P)
and, therefore,
eli)r&Prob{\Zg—H(’P)\ <e}=1. (3.8)

On the other hand, letting (), be the stationary probability vector of P, we have for every
path vy =ejes...¢e/ in G,

1 ¢ log(1/qe,)  log (1/Toe,
__logap(,y): szl Og( /q 7,) + g( /7T ( ))

14 14 l
where o(1) stands for an expression that goes to zero as £ goes to infinity. Hence, by (3.8)
we obtain

= ZZ(fY) + 0(1) ’

. . 1
Jim Y P(y) = Jim Prob{ ‘ H(P) + 7 log P(7) ‘ < e} =1,
VET(Pse)

as claimed. ]

The AEP thus states that for large ¢, ‘most’ paths of length ¢ in G have probability
roughly 2-H(P): here, the quantifier ‘most’ does not refer to the actual count of the paths,
but rather to their measure as induced by the probability distribution P.

We remark that Theorem 3.22 holds also for the following stronger property of paths.
Let P be a Markov chain on G. A path « in G of length / is called (P, €)-strongly-typical if
for every edge e in GG, the number of times that e is traversed in v is bounded from below
by £(P(e)—e¢) and from above by £(P(e)+€). It can shown that if P is irreducible, then this
property implies that v is typical (see Problem 3.37). The re-statement of Theorem 3.22 for
strongly-typical paths is left as an exercise (Problem 3.38).

3.5 Probabilistic characterization of capacity

Theorem 3.23 Let S be a constrained system which is presented by an irreducible loss-
less graph G. Then,
sup H(P) = log A(Ag) = cap(S5) ,
P

where the supremum is taken over all stationary Markov chains on G.
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Proof. By continuity, every stationary Markov chain P on GG can be expressed as a limit
of irreducible Markov chains Py, Py, - - on G, and lim; o H(P;) = H(P). Hence, it suffices
to prove the theorem for irreducible Markov chains on G.

By Theorem 3.22, for every €¢,6 > 0 there is a positive integer N such that for every

>N
> P(y)>1-4.
YETL(Pse)

?

On the other hand, for every v € T;(P, €) we have
P(y) < 2-HP-
Summing over v € T;(P, €) yields

1-6< > P(y) <|Te(Pye)| - 27 HHPI=9 |
YETe(Pe)

or
ITe(P,e)| > (1 —6) - 26HP)I=9)

Assuming that 6 < 1, by Lemma 3.5 we obtain

H(P) — e <log A\(Ag)
for every € > 0. Hence, H(P) < log A(Ag). To complete the proof, it suffices to exhibit a
stationary Markov chain P on G = (V, E) for which H(P) =log A(Ag).

Let X = (Zy)uev and y' = (yu)uev be positive right and left eigenvectors of A¢; associated
with the eigenvalue A = A(A¢) and normalized so that y 'x = 1. Define a stationary Markov
chain P through the conditional probabilities

g = 7@
¢ )\.Tg(e)

The entries of the transition matrix () are given by

(AG)u,vxu
ALy,

(Q)u,v = Z Ge =

e€EEy :T(e)=v

, (3.9)

and it is easy to verify that () is, indeed, a stochastic matrix on G. A simple computation
shows that the vector w' = (ZyYy Jucv satisfies m'Q = ' and, so, it is the stationary

probability vector of P.

Now,

H(P) = _Z’/Tu Z QElong

ueV ecE,y,
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= Y m Y a.(log)) + (logam,) - (logar))

u€eV eckE,
= (log /\) Z Ty Z Ge +(Z (7ru logxu) Z Qe) - (Z Ty Z(long) Z Qe)
u€V  e€Ey ueV ecky u€V  weV e€E, :T(e)=v
N — ——
! ! (@u,v

1

= (logA) + Z (my log zy) — Z (log xy) Z 7Tu(Q)u,v
ueV veV ueV
= log\.
See also [Imm91, p. 48]. O

A stationary Markov chain P on G for which H(P) = log \(Ag) is called a mazentropic
Markov chain on G. We have shown in the proof of Theorem 3.23 that a maxentropic Markov
chain exists for every irreducible graph. In fact, it can be shown that such a stationary
Markov chain is unique [Par64] (see also [PT82]). It follows from Theorem 3.23 that if P
is a maxentropic Markov chain on an irreducible graph G, then for every ¢ > 0, the growth
rate of the (P, ¢)-typical paths in G is essentially the same as the number of paths in G.
We can thus say that the (P, ¢€)-typical paths form a ‘substantial subset’ within the set of
all paths in G. The same can be said about the (P, ¢)-strongly-typical paths in G and, as
such, a maxentropic Markov chain defines the frequency with which a symbol appears in
a ‘substantial subset’ of words of S(G). For the analysis of such frequency in (d, k)-RLL
constrained systems, see [How89].

Example 3.8 Let G be the Shannon cover of the (0,1)-RLL constrained system, as
shown in Figure 3.1. The adjacency matrix of G is

1 1
AG:<1 O)’

with Perron eigenvalue A = (1++/5)/2 ~ 1.618 and an associated right eigenvector

- (2).

By (3.9), the transition matrix @ of the maxentropic Markov chain on G is given by

(13 1A%\ [ 618 .382
Q= 1 0 - 1 0

and the respective stationary probability vector is

' = (35 15) ~ (.724 .276) .
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This means that in a ‘substantial subset’ of words of the (0,1)-RLL constrained system,
approximately 27.6% of the symbols are 0.

The entropy of the maxentropic Markov chain is log A &~ .6942. Note that the stationary
Markov chain in Example 3.7 has smaller entropy. []

3.6 Approaching capacity by finite-type constraints
The next two propositions exhibit an important feature of finite-type constrained systems.

Proposition 3.24 Let S be a constrained system. Then, there is a sequence of finite-type
constrained systems { Sy, }5o_, such that S C S, for every m and lim,, , cap(S,,) = cap(S5).

Proof. Given a positive integer m, we let S5,, be the constrained system which is pre-
sented by the following deterministic graph G,,: For each word w of length m in S, we
associate a state uy in Gp,. Given two words of length m in S, w = wyws...w, and
Z = 2129 ...2%y, Wwe draw an edge U LN Uz in G, if and only if b = 2, and z; = w;y; for
ji=1,2,...,m—1.

It is easy to verify that all paths in GG, that generate a word w terminate in u.,. Hence,
G, has memory < m. To show that S C S,,, let z = 2125... 2, be a word of length ¢ > m
in S. Then, by construction, the word z is generated in G,, by a path

21 22 23 24
Ui ws... W, ? Uwows... wm 21 ? Uwswy...2mz122 P ? U'ze,m+1zg,m+2...zg -

Hence, z is a word in S,,. Furthermore, we also have S,,.; C S,, and, so, the values of
cap(S,,) are nonincreasing with m. Therefore, the limit lim,,_, cap(S,,) exists and it is at
least cap(S). It remains to show that it is actually equal to cap(S5).

Let N(m;S) be the number of words of length m in S. Every word of length ¢m in S,
can be written as a concatenation of ¢ words of length m in S. Therefore, the number of
words of length tm in S,, is at most (N(m; S))*. Thus, cap(S,,) < (log N(m; S))/m and, so,

cap($) < lim cap(S,) < lim (log N(m; S))/m = cap(S) ,
as desired. ]

The following dual result is proved in [Mar85].

Proposition 3.25 Let S be a constrained system. Then, there is a sequence of finite-type
constrained systems { Sy, }5o_, such that S,, C S for every m and lim,, , cap(S,,) = cap(5).



CHAPTER 3. CAPACITY 95

Sketch of proof (in the irreducible case): Let S, be the constrained system which is
presented by the following deterministic graph G,,: For every magic word w of length m in
S (see Section 2.6.4), we associate a state uyw in G,. Given two magic words of length m in
S, W=wiws ... Wy, and z = 2125 ... 2y, we draw an edge U LN Uy in G, if and only if the
following three conditions hold:

(a) Zj = Wj41 for ] = 1,2,. . .,m—l;
(b) b= zm;
(c) wbeS.

It is easy to verify that G, has memory < m and that S,, C S. The approach of cap(S,)
to cap(S) follows from the fact that most long enough words in S are magic words. The
precise proof is given in [Mar85]. O]

Problems

Problem 3.1 Let S be a constrained system and £ a positive integer. Based on the definition of
capacity, show that
cap(S*) = £-cap(9) .
The following is a skeleton of a proof for the inequality cap(S¢) > £- cap(S). Justify each step.

Denote by X the alphabet of S and let 41 < £y < --- < ¥¢; < --- be such that
o1
Jim e—ilogN(&', S) = cap(S5)

(why do such ¢;’s exist?). Define m; = |¢;/£]. Then

cap(8) > hmsup—logN(mzé S)

i—00 mz
> hmsup—logN(éz,S)
i—o0 1My
> _
= zli‘?omzzzli?oe log N (£, )
= £-cap(S).

Problem 3.2 Let ¢ : IN — IR" be a function such that lim,, ,o, €(m) = 0 and for a positive
integer h define

1
§(0) = 7 el,Ier;,aX, ;Es

where (£1,%s,...,¢,) ranges over all nonnegative integer h-tuples such that 1 + 4o + ... + £ < £.
Complete the proof of Theorem 3.1 by showing that limy_, ., (£) = 0.
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Hint: Let 3 be a finite upper bound on the values of €(m). Justify each of the following steps:

h_ g,
5 = Z?

(Zl 7£2’ ,

b,
T Gl (( v’ )Jr(i:gﬂze(&)))

oo
< \/Z +(€1,I£, 4 ( Z> )

and then deduce that limy ., §(£) = 0.

Problem 3.3 Let Sy denote the (d,00)-RLL constrained system.

1. Show that
log (d+2)

<
Cap(Sd,OO) — d+ 1

Hint: Show that when a word in Sy o is divided into nonoverlapping blocks of length d + 1,
then each such block may contain at most one 1.

2. Show that for every positive integer m,

log (m+1)

C2P(Sioo) >~

Hint: Consider the concatenation of binary blocks of length m + d, each containing at most
one 1 which is located in one of the first m positions of the block.

3. Show that
d

logd -

lim cap(Sg,c0)
d—oo ’

Hint: Substitute m = ed in 2 and let d — oo for every fixed small ¢.

Problem 3.4 Compute the capacity of the (d,00,2)-RLL constraint for d = 0, 1; recall that this
constraint consist of all binary words in which the runlengths of 0’s between consecutive 1’s are
even when d = 0 and odd when d = 1.

Problem 3.5 Identify the values of d and k for which the Shannon cover in Figure 1.3 is periodic.

Problem 3.6 Let G be a nontrivial irreducible graph and let G’ and G" be the Moore form and
Moore co-form of G, respectively. Show that the periods of G, G, and G” are equal.
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Problem 3.7 Let G; and G2 be nontrivial irreducible graphs with periods p; and pa, respectively.
Show that the period of each nontrivial irreducible component of Gy * G is divisible by the least
common multiplier (l.c.m.) of p; and pa.

Problem 3.8 A path
Ug —> UL —>UQ —> -+ —> Uy

in a graph is called a simple cycle if ug = uy and u; # u; for 0 <7 < j < £. Let G be a nontrivial
irreducible graph with period p. Show that p is the greatest common divisor of the lengths of all
the simple cycles in G.

Problem 3.9 Let G be a nontrivial irreducible graph with period p and let v be a state in G.
Show that p is the greatest common divisor of the lengths of all cycles in G that pass through v.

Problem 3.10 Let G be a nontrivial irreducible graph with period p.

1. Show that for every pair of states u and v in G there exist nonnegative integers 1, and 7y,
such that for every integer m > m,,, there is a path in G of length m - p + r, , originating in
state u and terminating in v.

2. Show that GP has p irreducible components which are primitive and isolated from each other.

3. Let ¢ be a positive integer relatively prime to p (i.e., ged(p,£) = 1). Show that G? is
irreducible.
Hint: Make use of 1 and the fact that there is a positive integer b such that b-p =1 (mod #).

4. Generalize 2 and 3 as follows. Let £ be a positive integer and d = ged(p,£). Show that G*
composes of d isolated irreducible components, each with period p/d.

Problem 3.11 Let G be a nontrivial irreducible (not necessarily lossless) graph with period p and
let Go,G1,...,Gp—1 be the irreducible components of GP. Show from the definition of capacity
that

cap(S(G;)) = p - cap(S(G))

for every irreducible component G;.

Problem 3.12 Let A be a nonnegative real square matrix and let ¢ be a positive integer. Show
that the irreducible components of A¢ all have the same set of nonzero eigenvalues, with the same
multiplicity.

Problem 3.13 Let A be the matrix given by

A=

= O N
W = Ot
w o O
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1. Compute the eigenvalues of A and respective left and right integer eigenvectors.
2. Find a diagonal matrix A and an invertible matrix P such that A = PAP L.
3. Compute the limit
1
B = lim _; - A°.

£—00 7@

4. Find integer vectors that span the row space and column space, respectively, of B.

Problem 3.14 Let A be a nonnegative real square matrix of order m x m. Show that A is
irreducible if and only if (A + I)™ ! > 0.

Problem 3.15 Let G be a graph with an adjacency matrix

01000
10100
A¢=|010 10|,
00101
000710

1. What is the period p of Ag?
2. Write the matrix AP..

3. Compute the absolute values of the eigenvalues of Ag.

Problem 3.16 Let G be the graph in Figure 2.24.

1. What is the period p of G7

2. Find the irreducible components G; of GP.

3. For every component G; found in 2, compute the value of A\(Ag;).
4. Compute A(Ag).

5. For every component G; found in 2, compute a positive integer eigenvector associated with
A(Ag,), such that the largest entry in the vector is the smallest possible.

6. Compute an eigenvector x = (z,,)5_; of Ag associated with A(Ag) such that z,, = 1. How
many such vectors exist?

7. Is there an integer eigenvector of Ag associated with A(Ag)?
8. Repeat 6 except that now x is an eigenvector of Ag» associated with A(Age2).

9. Compute a nonnegative integer eigenvector of Ag2 associated with A(Ag2) where the largest
entry in that eigenvector is the smallest possible.
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Problem 3.17 Let Gi = (V4, E1, L1) and Go = (Va, Es, L) be two labeled graphs with labeling
Li: E1 — %1 and Lo : Ey — 39. The Kronecker product of G1 and G» is the labeled graph

G = Gl ®G2 = (Vl X V2aEaL) ’
where the set of edges E and the labeling L : E — 3 X Yo are defined as follows:

(1, uz) %) (01, 09)

is an edge in F if and only if
u By and us B vy

are edges in G; and (9, respectively.
Let S1, So, and S be the constrained systems that are generated by G1, Ga, and G, respectively.
Hereafter assume that G1 and Go are nontrivial irreducible graphs and let p; and ps denote
their periods, respectively.
1. Show that
cap(S) = cap(S1) + cap(S2)
(do not assume that G; and G4 are lossless).

2. Show that the anticipation of G is given by

A(G) = max{A(Gl),A(Gg)} .

3. Show that if G; and G are deterministic and have finite memory, then the memory of G is
given by
M(G) = max{M(G1), M(G2)} .

4. Show that G has gcd(p1, p2) irreducible components, which are isolated from each other.

5. Show that the period of each irreducible component of G is the least common multiplier
(lcm) of p; and po.

6. Show that the adjacency matrix A is the Kronecker (or direct) product of Ag, and Ag,,
namely, for every (ui,us) and (v1,vz) in V,

(AG)(u1,U2),(v1,v2) = (AG1)U1,111 . (AGz)m,Uz .

7. Show that
AMAg) = MAa,) - MAg,)

(this is a known property of Kronecker product of matrices, but it can be proved also by
counting paths in G1, G2, and G).
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Problem 3.18 Let G = (V, E, L) be a primitive graph and let A = A(Ag). Denote by p the largest
absolute value of any eigenvalue of A other than A (let 4 = 0 if |V'| = 1). Show that the number,
®;(4), of cycles of length £ in G satisfies

Ba(6) — X| < (V] = 1)t

Hint: Recall that the trace of a square matrix B, which is the sum of the entries along the main
diagonal of B, is preserved in the Jordan form of B (as well as in any other matrix that is similar
to B).

Problem 3.19 For 0 < d < k < oo, let G(d, k) be the Shannon cover in Figure 1.3 of the (d, k)-
RLL constrained system and let x,.(2) = det(2] — Ag(ar)) be the characteristic polynomial of

Ac(dk)-

1. Show that

k—d
Xap(2) =21 =327
=0

2. Show that A(Ag(q,)) is the largest positive solution of the equation

K2kl k—dtl L _ g

3. Show that for d = 0,
1
MAgx) <2- oFFT

4. Extending the definition of G(d, k) to k = oo, show that A(Ag(g,c)) is the largest positive
solution of the equation
2l _1=09.

5. [AS87] Show that for d > 1,

MAg(d,o0)) = MAg(d-1,2d-1)) -

(=2

. [ForsB88] Show that for d > 0,

MAg(a2d) = MAga+1,3d+1)) -

Problem 3.20 [C70] For a nonnegative integer B, let Gp be the Shannon cover in Figure 1.14 of
the B-charge constraint and let xz(z) = det(z] — Ag,) be the characteristic polynomial of Ag,.
1. Show that x,(z) = z and x; (2) = 22 — 1.

2. Show that for B > 2,
Xp(2) =2z - xp_1(2) — xp_2(2) .
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3. Show that i (B+2)
sin (b+2)x
2 = I
Xp(2cos z) sinz
and, so, for |z| < 2,
_sin((B+2) cos™*(z/2))
X8(?) = = eos1(2/2))

Hint: Make use of the trigonometric identity
sin (Bz) + sin (B+2)z = 2cos z - sin (B+1)z .
The polynomials x 5(2z) are known as Chebyshev polynomials of the second kind. See [AbS65,

pp. 774-776).

4. Show that the eigenvalues of Ag, are given by

A = 2cos (B”—J;) . i=1,2,...,B+1.

5. Let the graph Hp be obtained from Gp by adding an edge from state 0 (the leftmost state
in Figure 1.14) to state B (the rightmost state), and another edge from state B to state 0.
Denote by xg(z) the characteristic polynomial of Hg. Show that

Xg(2cosz) =2cos (B+1)z — 2

and, so, for |z| < 2,
X5 (z) = 2cos ((B+1) cos™'(z/2)) — 2.

The polynomials X z(2z) + 2 are known as Chebyshev polynomials of the first kind.

6. Show that the eigenvalues of Ap, are given by

e) .
)\i:2COS (B—-|—]_> s Z:].,Z,...,B—i-]..

Problem 3.21 [Sen80] Let A be a nonnegative square matrix, not necessarily irreducible.

1. Show that there always exists a nonnegative real eigenvector associated with the largest
eigenvalue A\(A).

Hint: Present A as a limit of an infinite sequence of irreducible matrices A;. Show that the
largest eigenvalues A(A;) converge to A\(A), and a respective eigenvector of A can be presented
as a limit of eigenvectors of (a subsequence of) the A;’s.

2. Does there always exist such an eigenvector that is strictly positive?

Problem 3.22 Let A be a nonnegative irreducible matrix and let 4 be an eigenvalue of A. Show
that there exists a nonnegative real eigenvector associated with p only if 4 = A(A).
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Problem 3.23 Let H be the graph in Figure 2.26. Show that A\(Ax) = 2 by finding a strictly
positive vector x such that Agx = 2x.

Problem 3.24 Let A be a nonnegative irreducible matrix.

1. Show that (A)y, < A(A) for every row index u. When does the inequality hold with equality?
2. Two rows in A indexed by u and v’ are called twin rows if the following two conditions hold:

(a) (A)up = (A)yp for every column index v ¢ {u,u'};
(b) (A)u,u + (A)u,u’ = (A)u',u + (A)u’,u’-

Let x = (z,), be an eigenvector of A associated with an eigenvalue p. Show that if u and
v’ index twin rows and (A)yu — (A)y u # p, then z, = z,7. Provide an example where

(A)u,’u - (A)’U/,’u, f u and xu # (Eu’.

3. Show that if x = (z,), is an eigenvector of A associated with A\(A) and u and v’ index twin
rows, then z,, = z,,.

4. Suppose that A is the adjacency matrix of a deterministic graph G and let the states u
and v/ index twin rows in A (note that the sets of outgoing edges of u and ' in G do not
necessarily have the same sets of labels). Let the graph H be obtained from G by redirecting
the incoming edges of u in G into u' and deleting state u with its outgoing edges. Show that
H is irreducible and that cap(S(G)) = cap(S(H)).

Problem 3.25 Let A be a nonnegative integer irreducible matrix of order m and let x = (), be
a positive real eigenvector associated with A(A). Denote by Zyax and zy,, the largest and smallest
entries in x, respectively. Show that

T ()™

T'min

Hint: Think of A as the adjacency matrix of a graph G, and show that if there is an edge from
u to v in G, then z, = A(A)zy.

Problem 3.26 Let G be a nontrivial irreducible lossless graph and let G’ be obtained from G by

deleting an edge from G. Show that
cap(S(G')) < cap(S(G)) -

Hint: Use Proposition 3.12.

Problem 3.27 Let G be a nontrivial irreducible graph. It follows from Proposition 3.12 that if
G’ is obtained from G by deleting any edge from G, then A\(Ag) < A(Ag). Show that there exists
at least one edge in G, the deletion of which produces a graph G’ for which

AMAg) =1 < MAe) £ MAg) -
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Problem 3.28 Let S; and S5 be irreducible constrained systems with the same capacity. Show
that if Sl - 52 then Sl = SQ.

Hint: Assume to the contrary that there is a word in S \ S1 whose length, £, is relatively prime
to the period of the Shannon cover of S; then consider the constrained systems Sf and Sf.

Problem 3.29 Let Sy be an irreducible constrained system and let G be a graph such that Sy C
S(G) and cap(Sy) = cap(S(G)). Show that there is an irreducible component H of G such that
So = S(H).

Problem 3.30 Let S be the constrained system over the alphabet ¥ = {a,b, ¢, d, ¢, f,g} generated
by the graph G in Figure 2.22.

1. Obtain the matrices Ag and Age.

2. Show that A\(Ag) = 3 and find a nonnegative integer right eigenvector and a nonnegative
integer left eigenvector associated with the eigenvalue 3.

3. Compute the other eigenvalues of Ag.
4. Compute the eigenvalues of Age.

5. Compute the capacity of S.
Problem 3.31 Let G be an irreducible lossy graph. Show that cap(S(G)) < log A(Ag).

Problem 3.32 (Graphs with extremal eigenvalues [LM95])

1. Among all irreducible graphs with m states, find an irreducible graph G, for which A\(Ag,,)
is minimal.

2. Among all primitive graphs with three states, find a primitive graph H,, for which A(Apy,)

is minimal.

3. Find a primitive graph H,, with m states for which A(Ag,,) is minimal.

Problem 3.33 Show by example that there are nonstationary Markov chains P on irreducible
graphs G such that H(P) > log A\(4g).

Problem 3.34 Let Q be an irreducible stochastic |[V| x V| matrix and let @' = (my)uer be
the vector as in Proposition 3.19. Denote by p the period of @ and let Cy,C1,...,Cp—1 be the
equivalence classes of the congruence relation defined on the states of the support graph of Q.
Assume that rows in @) that are indexed by C, precede those that are indexed by Cj ;.
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1. Show that for r =0,1,...,p—1,

Zﬂuzl/p.

ueCyr

2. Denote by mr, the subvector of 7 that is indexed by C;; that is, 7, = (7y)uec,- Also, let 1,
be an all-one vector of length |Cy|. Define the |V| x |V| matrix IIg by

1071'3—
117‘(']— O
g = :

0

o=

T
1P*17Tp—1

Show that for every ¢ > 0,
Q™ =Tg + E® |

where E® satisfies

Z |(E(t))u,v| <pB- ot

u,veEV
for some 0 < a <1 and 8> 0 and every t > 0.

Hint: Apply Theorems 3.10 and 3.17 and make use of the rate of convergence of the limit in
Theorem 3.17, as stated in (3.6).

Problem 3.35 (Autocorrelation and power spectral density) Let P be an irreducible Markov chain
with period p on a labeled graph G = (V, E, L) where L : E — IR. Denote by Cy,C1,...,Cp_1 the
equivalence classes of the congruence relation defined on the states of G, and for r =0,1,...,p—1,
let L, be the conditional expectation

L, =Ep{L(e)|o(e) € C} ,
where o(e) = o(e) is the initial state of the edge e in G. Define the random sequence
X =X_ X 1. XoX1... Xo

on paths

€_¢€_y¢4+1€0€1..-€¢
of length 2/+1 in G by B
Xi= L(ei) - Lr(

€;)

where r(e;) is the index r such that o(e;) € C,. The autocorrelation of X is defined by
Rx(t,i) = Ep {XiXiye}
for every —¢ < 4,1+t < 4.

Denote by @ the transition matrix associated with 7 and by 7 | the state probability vector of
P.
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1. Let e; and e;44 be the ith and (i+t)th edge, respectively, along a random path on G. Show
that for every t > 0,

Prob {ei =eand e = el} =P(e) - (Qt_l)r(e),a(e’) “qe’

where the probability is taken with respect to P and ¢, is the conditional probability of the
edge €.

2. Let B be the |V| x |V| matrix whose entries are defined for every u,v € V' by

(B)u,v = Z (L(e) — f7"(6)) “Ge -

e€E, :7(e)=v

Show that for every ¢t > 0,
Rx(t,i) =7 ' BQ" 'B1.

In particular, Rx(¢,7) does not depend on i (provided that £ < 4,7+t < £) and will therefore
be denoted hereafter by Rx(t).

3. Let IIg be the matrix defined in part 2 of Problem 3.34. Show that WTBHQ =1IgB1 =0.

4. Show that there exist 0 < a < 1 and S > 0 such that for every ¢ > 0,

|Rx(t)| < B- a7t

Hint: Apply Problem 3.34.

5. Show that the semi-infinite series

oo

Z Rx (t)z —t

t=1
converges for all complex values z with |z] > 1.

6. Show that -
Y Rx(t)z ' =n"B(xI-Q) 'B1
t=1

for all |z| > 1, except when 2P = 1 (in particular, verify that the matrix zI — @ is nonsingular
in this range of convergence). Extend the result also to the limit z — e /P where 3 = v/—1
and r=0,1,...,p—1.

7. The power spectral density of the random sequence X is defined as the two-sided Fourier
transform of Rx(t); namely, it is the function ¥x(f) : [0,1] — C which is given by

Ux(f)= 3 Rx(t)e P!

t=—00

(note that Rx(—t) = Rx(t) and that by part 5 the bi-infinite sum indeed converges). Show
that for every f € [0,1]\ {r/p}"Z;,

Ux(f) = Rx(0) +2-Re {ﬂ'TB(eﬂ”fI - Q)—lBl} ,
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where Re{-} stands for the real value and

= > PEL(e) - L)’ -

ecE

8. Let f — ®x(f) be the (two-sided) Fourier transform of X, namely,

£l
— Z Xief_]Qﬂ'if .

i=—f
Show that

Ux(f) = Jim o —Ep {lox ()P} -

9. Let G be the Shannon cover of the 2-charge constrained system, as shown in Figure 3.2.
Consider the irreducible Markov chain P on G that is defined by the transition matrix

010
Q=40
010

Show that P is a maxentropic Markov chain and that

Ux(f)=1—cos2rf .

Problem 3.36 The purpose of this problem is proving Theorem 3.21 for every irreducible Markov
chain P on GG. As with the case of independent random variables, the proof is based upon Chebyshev
inequality, which states that for every random variable Y with zero expected value,

Prob {|Y| > ¢} = Prob{Y—2 > 1} < E{Y;} = {7} .

€ €2

Letting p be the period of G, we use the notations C, and L, as in Problem 3.35.

For a positive integer £, define the random variable Yy(vy) on a path v = ejey ... ey by

SHnd

Yo(y

NI)—‘

where B
X; = L(ez) — Lr(e)

and r(e) is the index r such that og(e) € C,. Hereafter, all the expectations are taken with respect
to P.

1. Show that

1-;50.

'Ol'—‘

Hint: Apply part 1 of Problem 3.34.
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2. Show that E{Y;} = E{X;} =0.
3. Let Z; and L be defined as in the statement of Theorem 3.21. Show that Y, = Z, — L.

4. Show that there is a real constant 1 such that

)= et} o)
Hint: Write

E {(EleXi)Q} _ Z (E{Xg} +2§E{X,~X,~+t}> .

=1 t=1
Then use part 4 in Problem 3.35.

5. Complete the proof of Theorem 3.21 by applying Chebyshev inequality to Yy.

Problem 3.37 Let P be an irreducible Markov chain on G. Show that for every § > 0 there exist
e and N such that every (P, ¢)-strongly-typical path v of length £ > N in G is (P, §)-typical.

Hint: Let @ = (), be the stationary probability vector of P and let g. denote the conditional
probability of an edge e in G. Consider a (P, €)-strongly-typical path of length £ in G that starts
at state ug. First argue that

Z(Wa e q€+€) e("ro' e qe*e)
Tug ] ge "9 <PO) <mup [] g 9T 7.
e:qe>0 e:qe>0

Then deduce that

1 I w
H(P) + 0g7;('y) — oggr 01 < —e Z log g .
e:qe>0

Finally, given 4, pick € and N so that

log (min,,
52_W_6 Z 10g g, -
€:qe>0

Problem 3.38 Show that Theorem 3.22 holds also when 7 ranges over all (P, €)-strongly-typical
paths of length 2.

Hint: Apply Theorem 3.21 with L : £ — IR being the indicator function Z, of an edge e € F;
i.e., Z(€') takes the value 1 if ¢/ = e and is zero for €' € E \ {e}.



