Chapter 9

Error-Correcting Constrained Coding

In this chapter, we consider codes that have combined error-correction and constrained
properties. We begin with a discussion of error mechanisms in recording systems and the
corresponding error types observed. We then discuss associated metrics imposed on con-
strained systems—primarily the Hamming, Lee, and Euclidean metrics—and we survey the
literature on bounds and code constructions. In addition, we consider two important classes
of combined error-correction/constrained codes: spectral null codes and forbidden list codes.

9.1 Error-mechanisms in recording channels

Magnetic recording systems using peak detection, as described in Chapter 1 of this chapter,
are subject to three predominant types of errors at the peak detector output. The most
frequently observed error is referred to as a bitshift error, where a pair of recorded symbols
01 is detected as 10 (a left bitshift), or the pair 10 is detected as 01 (a right bitshift). Another
commonly occurring error type is called a drop-out error or, sometimes, a missing-bit error,
where a recorded symbol 1 is detected as a 0. Less frequently, a drop-in error or extra-bit
error results in the detection of a recorded 0 as a 1. It is convenient to refer to the drop-in
and drop-out errors as substitution errors.

Hamming-metric constrained codes are most pertinent in recording channels that behave
like a binary symmetric channel, in which drop-in and drop-out errors occur with equal
probability. However, there are alternative models of interest that suggest the use of codes
designed with other criteria in mind beyond optimization of minimum Hamming distance.
Among these models, the two that have received the most attention are: the asymmetric
channel—where only drop-in errors or drop-out errors, but not both, are encountered; and
the bitshift channel—where a symbol 1 is allowed to shift position by up to a prespecified
number of positions.
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Another error type we will consider is a synchronization error, resulting in an insertion
or deletion of a symbol 0 in the detected symbol sequence. In practical digital recording
systems on disks and tape, this type of error can have catastrophic consequences with re-
gard to recovery of information that follows the synchronization loss. As a result, recording
devices use synchronization and clock generation techniques in conjunction with code con-
straints, such as the k constraint in RLL codes for peak detection and the G constraint in
PRML (0,G/I) codes, to effectively preclude such errors. Nevertheless, RLL-constrained
synchronization-error-correcting codes have some intrinsic coding-theoretic interest, and we
will discuss them below. Codes capable of correcting more than one insertion and deletion
error may also be used to protect against bitshift errors, which result from the insertion and
deletion of 0’s on either side of a 1. The edit distance, or Levenshtein metric, and the Lee
metric arise naturally in the context of synchronization errors.

In recording systems using partial-response with some form of sequence detection, ex-
emplified by the PRML system described in Chapter 1, the maximum-likelihood detector
tends to generate burst errors whose specific characteristics can be determined from the error
events associated with the underlying trellis structure. We will briefly survey various trellis-
coded modulation approaches for PRML that yield codes which combine (0, G/I) constraints
with enhanced minimum Euclidean distance.

In practice, constrained codes must limit error propagation. Sliding-block decoders of the
most frequently used (d, k)-RLL codes and PRML (0, G/I) codes typically will propagate
a single detector error into a burst of length no more than eight bits. For example, the
maximum error propagation of the industry standard (2,7)-RLL and (1,7)-RLL codes are
four bits and five bits, respectively, and the PRML (0, 4/4) code limits errors to a single byte.
The conventional practice in digital recording devices is to detect and correct such errors by
use of an outer error-correcting code, such as a Fire code, interleaved Reed-Solomon code,
or a modification of such a code.

9.2 Gilbert-Varshamov-type lower bounds

9.2.1 Classical bound for the Hamming metric

There are several error metrics that arise in the context of digital recording using constrained
sequences. For substitution-type errors and bitshift errors, possibly propagated into burst
errors by the modulation decoder, it is natural to consider error-correcting codes based upon
the Hamming metric. It is therefore of interest to investigate Hamming distance properties
of constrained sequences.

The Gilbert-Varshamov bound provides for unconstrained sequences over a finite alphabet
> a lower bound on the size of codes with prespecified minimum Hamming distance. In this
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section we present bounds of the Gilbert-Varshamov type and apply them to the class of
runlength-limited binary sequences.

Let X denote a finite alphabet of size || and denote the Hamming distance between two
words w, w' € 3¢ by Apamming(W, W'). For a word w € X9, let Byq(w;7) be the Hamming
sphere of radius r in X7 centered at w, that is,

Bse(w;r) = {W' : Agamming(W, W) <7} .

Let Vsq(w;r) be the cardinality or wvolume of the sphere Bsq(w;r). This quantity is
o (3)(|E|—1)i, independent of the center word w, so we will use the shorthand nota-
tion Vs (7).

The Gilbert-Varshamov bound provides a lower bound on the achievable cardinality M
of a subset of X9 with minimum Hamming distance at least d. We will refer to such a subset
as a (X9, M, d)-code.

Theorem 9.1 There ezists a (29, M, d)-code with

=]
M>—"
= Ve (d—1)

For future reference, we recall that the proof of this bound is obtained by iteratively
selecting the /th codeword w; in the code from the complement of the union of Hamming
spheres of radius ¢—1 centered at the previously selected codewords, 9 — Ué;%ng (wi;d—1).
Continuing this procedure until the union of spheres exhausts X7, an (X% M,d)-code is
obtained whose size M satisfies the claimed inequality. []

Let 6 = d/q denote the relative minimum distance and let H(0;2) = —0 - logd — (1 —
J) - log(1—6) + d - log(z—1), for 0 < § <1 — (1/2), be a z-ary generalization of the entropy
function. The Gilbert-Varshamov bound in terms of the rate R of the resulting code can be
expressed as

log M

R= > log |X]

_ % > log |3 — H(5; |%))

(for the last inequality, we refer the reader to [Berl84, pp. 300-301].

9.2.2 Hamming-metric bound for constrained systems

Any generalization of the Gilbert-Varshamov bound to a constrained system S must take
into account that the volumes of Hamming spheres in S N3¢ are not necessarily independent,
of the specified centers. Before deriving such bounds, we require a few more definitions. Let
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X denote an arbitrary subset of 39. For a word w € X, we define the Hamming sphere of
radius r in X by
Bx(w;r) = Bse(w;r)N X .

The maximum volume of the spheres of radius r in X is
Vx max(r) = max |Bx (w;r)|,
weX

and the average volume of spheres of radius r in X is given by
1
Vi(r) = = 3 By (wir)]
‘X‘ weX

We also define the set Bx(r) of pairs (w, w') of words in X at distance no greater than r,
Bx(r) ={(w,w') : Apamming(W,w') <7r}.

Note that |Bx (r)| = Vx(r)-|X|. Finally, we define an (X, M, d)-code to be a (39, M, d)-code
that is a subset of X.

A straightforward application of the Gilbert-Varshamov construction yields the following
result.

Lemma 9.2 Let X be a subset of 3¢ and d be a positive integer. Then, there exists an
(X, M,d)-code with

X
M> ——— .
- VX,max(d_l)

The following generalization of the Gilbert-Varshamov bound, first proved by Kolesnik
and Krachkovsky [KolK91], is the basis for the more refined bounds derived later in the
section. It provides a bound based upon the average volume of spheres, rather than the
mazimum volume, as was used in Lemma 9.2.

Lemma 9.3 Let X be a subset of ¢ and d be a positive integer. Then, there exists an
(X, M,d)-code with

" RS X2
> = .
- 4VX(d—1) 4|Bx(d—1)|

Proof. Consider the subset X' of words w € X whose Hamming spheres of radius d—1
satisfy |Bx(w;d—1)| < 2Vx(d—1). The subset X' must then satisfy |X'| > |X|/2. If we
iteratively select codewords from X', following the procedure used in the derivation of the
Gilbert-Varshamov bound, we obtain an (X, M, d)-code, where

e XX |xp
- QVX(d—l) o QVX(d—l) 4‘BX(d—1)| ’
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as desired. ]

In general, neither of the bounds in the preceding two lemmas is strictly superior to the
other, as observed by Gu and Fuja [GuF93]|. However, using an analysis of a new code search
algorithm—dubbed the “altruistic algorithm” to distinguish it from the “greedy algorithm”
that lies at the heart of the standard Gilbert-Varshamov form of bound—they eliminated
the factor of 4 in the denominator of the bound in Lemma 9.3. This improved lower bound,
stated below as Lemma 9.4, is always at least as good as the bound in Lemma 9.2, and a
strict improvement over Lemma 9.3.

The key element of the improved code search algorithm is that, at each codeword selection
step, the remaining potential codeword with the largest number of remaining neighbors at
distance d—1 or less takes itself out of consideration. As noted in [GuF93]|, a similar approach
was developed independently by Ytrehus [Yt91a], who applied it to compute bounds for
runlength-limited codes with various error detection and correction capabilities [Yt91b].

Lemma 9.4 Let X be a subset of X9 and d be a positive integer. Then, there exists an
(X, M,d)-code with
S
T Vx(d-1)  [Bx(d-1)]

M

Kolesnik and Krachkovsky [KolK91] applied Lemma 9.3 to sets X consisting of words
of length ¢ in runlength-limited and charge constrained systems. Their asymptotic lower
bound was based upon an estimate of the average volume of constrained Hamming spheres,
whose centers ranged over all of S N X9 Their estimate made use of a generating function
for pairwise g-block distances in these families of constrained systems.

9.2.3 Improved Hamming-metric bounds

Marcus and Roth [MR92| found improved bounds by considering subsets X of SN 37 where
additional constraints, depending upon the designed relative minimum distance ¢, are im-
posed upon the frequency of occurrence of code symbols w € ¥. We now discuss the
derivation of these bounds.

Let S be a constrained system over X presented by an irreducible deterministic graph
G = (V, E, L). Denote by A(G) the set of all stationary Markov chains on G (see Section 3.5).
The entropy of P € A(G) is denoted by H(P).

Given a stationary Markov chain P € A(G), along with a vector of real-valued functions
f=(fifo... f1): Eq — R', we denote by Ep(f) the expected value of f with respect to P:

Er(f) = Y Ple)f(e)

ecEq
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For a subset W = {wy,wy,...,w;} of ¥, we define the vector indicator function Zy, :
Eq = R' by Ty = (Zw,, Zws, - - -, Lw,), where I, : Eg — IR is the indicator function for a
symbol w € X:

|1 ifLgle)=w
TLu(e) = { 0  otherwise

Let G x G denote the labeled product graph defined by Vgyxg = Vg x Vo = {(u, ) :
u,u’ € Vg} and Egxg = Eg X Eg. There is an edge (e,€¢’') in G x G from state (u,u’) to
state (v,v’) whenever e is an edge in G from state u to state v’ and €’ is an edge in G from
state v to v'. The labeling on G x G is defined by Lgyc(e,€') = (La(e), La(€')). We define
on Egy«q the coordinate indicator functions II(,‘I,) and II(,[Q,), given by I‘(,[l,)((e, e')) = Zw(e) and
I&Q,)((e, €')) = Zw(€'). Finally, we define the coordinate distance function D : Egyxc — R by

D((e,¢')) :{ 1 if Lg(e) # La(e)

0 otherwise

For a given symbol subset W of size ¢ and a vector p € [0, 1]’, we now define the quantities

Sw(p) = sup H(P)
P e A(G)
EP(IW) =p

and
Tw(p,d) = sup H(P') .
P e A(G x G)
Ep(Z) =p, i=1,2
Ep (D) € [0’ 5]

Finally, to concisely state the bounds, we introduce the following function of the relative
designed distance §:

p€(0,1]t

The following theorem is proved in [MR92]. It is obtained by application of Lemma 9.3
to the words in S N X9 generated by cycles in G starting and ending at a specified state
u € G, with frequency of occurrence of the symbols w; € W given approximately by p;, for
i=1,2,....t

Theorem 9.5 Let S be a constrained system over X2 presented by a primitive determinis-
tic graph, let 6 > 0, and let W be a subset of & of size t. Then there exist (SNX9, M, dq)-codes
satisfying

log M

2 RW((S) - 0(1) )

where o(1) stands for a term that goes to zero as q tends to infinity.
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Computation of the quantities Sy (p) and Ty (p, §) requires the solution of a constrained
optimization problem in which the objective function P — H(P) is concave, and the con-
straints are linear. The theory of convex duality based upon Lagrange multipliers provides a
method to translate the problem into an unconstrained optimization with a convex objective
function [MR92].

In order to reformulate the problem, we need to introduce a vector-valued matrix function
that generalizes the adjacency matrix Ag. For a function f : Eg — R’ and x € R, let
Ag.£(x) be the matrix defined by

Agg(x)) = 2
( G )u,'u 6:0(6)57(5):’}

We remark that for any function f, the matrix Ag.¢(0) is precisely the adjacency matrix of
G.

The following lemma, is the main tool in translating the constrained optimization problem
to a more tractable form. It is a consequence of standard results in the theory of convex
duality.

Lemma 9.6 Let G and f be as above. Let g : Eq — R!, and define ¢ = [f,g] : Eq —
IR™. Then, for anyr € R' and s € R,

sup H(P) = inf . {x-r+z-s+log)\(AG;¢(x,z))} :
P e AG) x € R
Er(f) =t z € (R")
Er(g) <s

Applying Lemma 9.6 to Theorem 9.5, we can derive dual formulas for the lower bounds
Ry (9), for a specified symbol set W and relative minimum distance §. For the case where
W consists of a single symbol w € X, the resulting formula is particularly tractable. To
express it succinctly, we define

Jw = [Ty + T(2). D] : Egxa — R?
and, to simplify notation, S, (p) = Sfwy ((p)), Tw(P,0) = Tiw) ((p), (5), and R, (6) = Ry} (6)-

The lower bound on attainable rates follows from the following theorem.

Theorem 9.7 Let S be a constrained system over ¥ presented by a primitive graph G,
let § >0, and let w € . Then

"
Sulp) = inf {pe +log\(Aaz, (@)} -
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b)

Tw(p,d) = inf  {2pz + 9z + log AM(Agxe,7, (2, 2))} ;
z€R,z€RT

Ro(®) = sup {2 inf {po+log A4z, (2)))

p€(0,1]

z€R, 2z€RT

— inf {me + 6z + log MAgxa;7, (2, z))}} :

In particular, if P € A(G) has maximal entropy rate

H(P) = sup H(P'),
PIEA(G)

and the symbol probability p equals Ep(Z,), then
Suw(p) = log A(Aq)
and, setting x = 0 in part b) of Theorem 9.7,

Tw(p,6) < inf, {62 + log A(Agxg;7. (0, 2)) } -
z€

From Theorem 9.5 and part ¢) of Theorem 9.7, we recover the lower bound of Kolesnik
and Krachkovsky.

Corollary 9.8
log M

q

> Rix(d) —o(1),

where
RKK(é) =2 log A(Ag) — 1611}5{4' {52 + log )\(AGXG;jw (0, Z))} .

Better lower bounds can be obtained by prescribing the frequency of occurrence of words
w of arbitrary length, rather than only symbols. See [MR92] for more details.

Example 9.1 For the (0,1)-RLL constrained system, consider the cases where W =
{11} and W = {111}, with corresponding lower bounds R;; and Rj;1. It is not difficult to
see that Ry;(d) must equal R;(d). Table 9.1 from [MR92] gives the values of Ry (), R1(9),
and Ryq1(0) for selected values of 0. O

We remark that, in some circumstances, one might assign to each edge e € Eg a cost
associated to its use in a path generating a sequence in S. Lower bounds on the rate of
codes into S with specified relative minimum distance § and average cost constraint have
been derived by Winick and Yang [WY93] and Khayrallah and Neuhoff [KN96].
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§  Rxx(®) Ri(6) Rin(o)
0.00 0.6942 0.6942 0.6942
0.05 0.4492 0.4504 0.4507
0.10 0.3055 0.3096 0.3109
0.15 0.2014 0.2094 0.2119
0.20 0.1241 0.1361 0.1399
0.25 0.0679 0.0831 0.0877
0.30  0.0205 0.0461 0.0506
0.35 0.0073 0.0218 0.0254
040 0 0.0077 0.0097
0.45 0 0.0013 0.0016
050 0 0 0

Table 9.1: Attainable rates for (0,1)-RLL constrained system.

9.3 Towards sphere-packing upper bounds

In comparison to lower bounds, much less is known about upper bounds on the size of
block codes for constrained systems. We describe here a general technique introduced by
Abdel-Ghaffar and Weber in [AW91]. Let S be a constrained system over ¥ and let X be
a nonempty subset of 3. For a word w € 39, denote by Bx(w;t) the set of words w’ € X
which are at distance ¢ or less from w according to some distance measure A(w,w’). If C is
an (SN X% M,d = 2t+1) code, then, by the sphere-packing bound, we must have

> [Bx(w;t)] < |X]| (9-1)
wel
for any nonempty subset X C »%. In the conventional sphere-packing bound, the subset X

is taken to be the whole set »X%. Improved bounds may be obtained by taking X to be a
proper subset of ¥¢. Specifically, define

N(S, X;i)=|{we SNX? : |Bx(w;t)| =i} .
Now, if X is contained in Uyegnze Bse(W;t), then

| X
Y iN(S, X;i) > |X],
i=0
so there exists an integer j, 1 < j < |X]|, such that
j—1
Y iN(S, X;i) < |X],
i=0
and .
j
Y iN(S, X; i) > | X .

=0
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Abdel-Ghaffar and Weber [AW91] used these inequalities to establish the following upper
bound on the code cardinality.

Theorem 9.9 Let C be an (SN XY, M,d = 2t+1) code and let X be a nonempty subset
of Uwesnse Bsa(w;t). Then

j—1
IC| < ZN(S,X;Z’)—{—

1=0

VX‘ — Y15 iN(S, X;49)
j

Proof. If |C| < 770 N(S, X; i), then we are done already. So, we may assume that [C| >
SJ_3 N(S, X;4). Divide C into two subsets Cy,Cy; where C; consists of the S/ N (S, X;1)
elements w of C with the smallest |Bx(w;¢)|. Then

j—1
Y iN(S, X;i) < Y |Bx(wit)],
1=0

wel

and

J(c] — ZN (S, X;1) < > |Bx(ws;t)].

=0 wels

Now, use the preceding two inequalities to lower bound the left-hand side of inequality (9.1):

]ZO N(S, X;i)+j5(/C| — ZNSX@)) > Bx(w;t)] < |X]|.

wel

The theorem follows from this. L]

For the special case of bitshift errors, Abdel-Ghaffar and Weber obtain in [AW91] upper
bounds on single-bitshift correcting codes C for (d, k)-RLL constrained systems S as follows.
First, partition every code C C S N X7 into constant-weight subsets C = U,C,,, such that
each element of C,, has Hamming weight w; then apply Theorem 9.9 to the subsets C,,, for
suitably chosen sets X. Table 9.2 shows results for selected RLL constraints and codeword
lengths.

Constructions of codes for channels with substitution, asymmetric, and bitshift errors, as
well as bounds on the mazimum cardinality of such codes of fixed length, have been addressed
by numerous other authors, for example Blaum [Blaum91]; Ferreira and Lin [FL91]; Fredrick-
son and Wolf [FW64]; Immink [Imm91]; Kolesnik and Krachkovsky [KolK94]; Kuznetsov and
Vinck [KuV93a], [KuV93b]; Lee and Wolf [Lee88|, [LW87], [LW89]; Patapoutian and Ku-
mar [PK92]; Shamai and Zehavi [SZ91]; and Ytrehus [Yt91a], [Yt91b].
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g (k) =27 (dk =310 (dk) =412 (dFk) =(515)
3 1

4 1 1

5 1 1 1

6 2 1 1 1
7 2 2 1 1
8 3 3 2 1
9 4 2 2 2
10 5 3 3 2
11 8 5 2 2
12 10 6 3 3
13 14 7 5 3
14 18 9 5 3
15 2 13 7 5
16 35 16 8 6
17 48 21 11 7
18 68 29 14 9
19 91 38 18 11
20 126 49 22 13
21 176 63 28 16
22 239 84 36 21
23 329 110 46 25
24 455 147 57 32
25 627 194 73 40
26 877 955 93 49
27 1204 335 117 61
28 1670 440 151 75
29 2302 581 193 95
30 3206 774 244 117
31 4464 1024 311 143
32 6182 1356 396 179

Table 9.2: Upper bounds on sizes of (d, k)-RLL constrained single shift-error correcting codes
of length 3 < ¢ < 32.
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9.4 Distance properties of spectral-null codes

Finally, we mention that spectral-null constrained codes—in particular, dc-free codes—with
Hamming error-correction capability have received considerable attention. See, for example,
Barg and Litsyn [BL91|; Blaum and van Tilborg [TiB189]; Blaum, Litsyn, Buskens, and
van Tilborg [BLBT93]; Calderbank, Herro, and Telang [CHT89]; Cohen and Litsyn [CLI1];
Etzion [Etz90]; Ferreira [Fe84]; Roth [Roth93]; Roth, Siegel, and Vardy [RSV94]; Waldman
and Nisenbaum [WNO95]. Spectral-null codes also have inherent Hamming-distance proper-
ties, as shown by Immink and Beenker [ImmB87]. They considered codes over the alphabet
{+1,—1} in which the order-m moment of every codeword x = (z; o ... x,) vanishes for
m=0,1,..., K—1, i.e.,

>y iz =0, m=0,1,...,K-1.
=1

They referred to a code with this property as a code with order-(K —1) zero-disparity. For
each codeword x, the discrete Fourier transform, given by ®,(f) = Y)_, mee 2™ where

7= +/—1, satisfies

d™ Oy (f)

aFm =0 for m=0,1,..., K-1.

f=0

This implies by part 8 of Problem 3.35 that the power spectral density of the ensemble of
sequences generated by randomly concatenating codewords vanishes at f = 0, along with its
order-/ derivatives for £ =1,2,...,2K—1. A code, or more generally a constraint, with this
property is said to have an order-K spectral-null at f = 0.

The following theorem, from [ImmB87], provides a lower bound on the minimum Ham-
ming distance of a code with spectral null at f = 0.
Theorem 9.10 Let C be a code with order-K spectral null at f = 0. Let x,y be distinct
codewords in C. Then, their Hamming distance satisfies
AHamming(xa Y) Z 2K .

This result will play a role in the subsequent discussion of codes for the Lee and Euclidean
metrics.

9.5 Synchronization/bitshift error correction

Synchronization errors, resulting from the insertion or deletion of symbols, and coding meth-
ods for protection against such errors have been the subject of numerous investigations. The
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edit distance, introduced by Levenshtein and often referred to as the Levenshtein metric, is
particularly appropriate in this setting, as it measures the minimum number of symbol in-
sertions and deletions required to derive one finite-length sequence from another. The reader
interested in codes based upon the Levenshtein metric is referred to Bours [Bours94]; Iizuka,
Hasahara, and Namahawa [IKN80]; Kruskal [Krusk83|; Levenshtein [Lev65], [Lev67], [Lev71],
[Lev9l]; Levenshtein and Vinck [LV93]; Tanaka and Kasai [TK76]; Tenengolts [Ten76],
[Ten84]; and Ullman [U66], [U67].

When dealing with synchronization errors (insertions and deletions of 0’s) in (d, k)-RLL
constrained systems, it is convenient to represent a constrained sequence as a sequence of
“runs,” where a run corresponds to a symbol 1 along with the subsequent string of con-
tiguous symbols 0 preceding the next consecutive symbol 1. We associate to each run a
positive integer called the “runlength” representing the number of symbols in the run. As an
example, the (1,7)-RLL sequence 10100000001000100 corresponds to the sequence of runs
with runlengths 2, 8, 4, 3.

Let w be a (d, k)-constrained sequence with n runs and corresponding runlength sequence

S = S1,S9,...,Sy. Insertion of e symbols 0 in the jth run of w generates the sequence with
runlengths s’ = s1,...,5;+¢€,S;41,. .., Sn, while deletion of e symbols 0 from run j generates
the sequence of runlengths s’ = s1,...,5; —e€,541,...,5,. (In the latter, e cannot exceed

s;.) An e-synchronization error denotes such a pattern of e insertions or deletions occurring
within a single run. Note, also, that a bitshift error, or more generally, an e-bitshift error
consisting of e left-bitshift errors or e right-bitshift errors occurring at the boundary between
two adjacent runs, may be viewed as a pair of e-synchronization errors in consecutive runs,
one being an insertion error, the other a deletion error.

This “runlength”-oriented viewpoint has been used in the design of RLL codes capable
of detecting and correcting bitshift and synchronization errors. Hilden, Howe, and Wel-
don [Hild91] constructed a class of variable length codes, named Shift-Error-Correcting
Modulation (SECM) codes, capable of correcting up to some prespecified number of ran-
dom e-bitshift errors, for a preselected shift-error size e. The runlengths are regarded as
elements of a finite alphabet F' whose size, usually taken to be an odd prime integer, satis-
fies k —d+1 > |F| > 2e + 1. The binary information string is viewed as a sequence of k
runs r = 1,79, ..., 7k, satisfying (d, k) constraints, with runlengths s = s1, s9,...,sk. The
sequence of transition positions t = ¢, t,,..., % is then defined by:

J
tj:ZSZ' (mod |F|), for j=1,2,...,k.
i=1

These values are then applied to a systematic encoder for an [n, k,d] BCH code over a finite
field F' of prime size, yielding parity symbols tx;1, tki2,--.,tn. A (d, k)-constrained binary
codeword is then generated by appending to the original information runs the sequence of
parity runs ryi1, rki2, - - ., 7n Whose runlengths syi1, sgyo, - - -, Sy satisfy

d+1<sj<d+1+|F|, for j=k+1,k+2,...,n
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and

J
tj=>_s; (mod|F|), for j=k+1,k+2,...,n.
i1

In particular, for |F'| = 2t+1, the resulting code may be used to correct up to ¢ random
1-bitshift errors, where ¢ is the designed error-correcting capability of the BCH code. Note
that a similar construction provides for correction of random e-synchronization errors by
encoding the runlengths themselves, rather than the transition positions. The interpretation
of bitshift and, more generally, synchronization errors in terms of their effect on runlengths
leads naturally to the consideration of another metric, the Lee metric.

The Lee distance Apee(x,y) of two symbols z, y in a finite field F' of prime size is
the smallest absolute value of any integer congruent to the difference x — y modulo |F)|.
For vectors x, y in F", the Lee distance Are(X,y) is the sum of the component-wise Lee
distances. The Lee weight wiee(x) of a vector x is simply Apee(x,0), where 0 denotes the
all-zero vector of length n.

Among the families of codes for the Lee-metric are the well-known negacyclic codes
introduced by Berlekamp [Berl84, Ch. 9], the family of cyclic codes devised by Chiang and
Wolf [CWT1], and the Lee-metric BCH codes investigated by Roth and Siegel [RS92], [RS94].

All of these Lee-metric code constructions have the property that the redundancy required
for correction of a Lee-metric error vector of weight ¢ is approximately ¢ symbols. In contrast,
codes designed for the Hamming metric require approximately 2¢ check symbols to correct
t random Hamming errors. In a recording channel subject to e-synchronization errors and
e-bitshift errors, where the predominant errors correspond to small values of e, one might
anticipate reduced overhead using a Lee-metric coding solution. This observation was made
independently by Roth and Siegel [RS94], Saitoh [Sai93a|, [Sai93b], and Bours [Bours94] (see
also Davydov [Dav93] and Kabatiansky, Davydov, and Vinck [KDV92]), who have proposed
a variety of constrained code constructions based on the Lee-metric, and have derived bounds
on the efficiency of these constructions, as we now describe.

For bitshift-error correction, Saitoh proposed a construction yielding codes with fixed
binary symbol length. He showed that the construction is asymptotically optimal with
respect to a Hamming bound on the redundancy for single-bitshift error-correcting (d, k)-
RLL codes.

The construction of Saitoh requires that the codewords begin with a symbol 1 and end
with at least d symbols 0. The codewords will have a fixed number of runs and, consequently,
a variable length in terms of binary symbols. The codewords are defined as follows. If the
runlengths are denoted s;, 1 = 0,1,...,n, the sequence of runlengths s;, for even values of 7,
comprise a codeword in a single-error correcting code over the Lee metric. The sequence of
runlengths s;, for i = 3 (mod 4), comprise a codeword in a single error-detecting code for the
Lee metric. It is evident that, in the presence of a single bitshift error, the Lee-metric single
error-correcting code will ensure correct determination of the runlengths s; for even values of
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i, indicating if the erroneous runlength, say s,;, suffered an insertion or deletion of a symbol
0. The Lee-metric error-detecting code will then complete the decoding by determining if
the corresponding deletion or insertion applies to runlength sq;_; or sg;41.

In the broader context of synchronization errors, Roth and Siegel described and analyzed
a construction of (d, k)-RLL codes for detection and correction of such errors as an application
of a class of Lee-metric BCH codes [RS92]. The shortened BCH code of length n over a finite
prime field F', denoted C(n,r; F'), is characterized by the parity-check matrix

1 1 ... 1
B B .. D
H(n,r; F) = g B ... B ,
il SN
where (81 (2 ... [Bn) is the locator vector, consisting of distinct nonzero elements of the

smallest h-dimensional extension field F}, of F' of size greater than n.
Hence, a word x = (1 z3 ... x,) € F" is in C(n,r; F') if and only if it satisfies the

following r parity-check equations over Fj,:

inﬂg":(], for m=0,1,...,r—1.
i=1

The following theorem provides a lower bound on the minimum Lee distance of C(n, r; F),
denoted diee(n,r; F).

Theorem 9.11

_ 2r  forr < (JF|—-1)/2
dree(n, 75 F) > { \F|  for (|[F|+1)/2<r < |F|

This bound follows from Newton’s identities ImmB87],[KS91a] and can be regarded, in
a way, as the analogue of the BCH lower bound r+1 on the minimum Hamming distance
of C(n,r; F), although the proof of the 2r lower bound is slightly more complicated. For
r > |F| we can bound dje(n, r; F) from below by the minimum Hamming distance r+1.

The 27 lower bound does not hold in general for all values of r; however, it does hold for
all 7 in the base-field case n < |F|—1. The 2r lower bound for the base-field case takes the
following form.

Theorem 9.12 Forr < n < |F|-1,

dree(n,r; F) > 2r .
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The primitive case corresponds to codes C(n, r; F') for which n = |F|"—1. The redundancy
of such codes is known to be bounded from above by 1+ (r—1)h. This bound, along with
the following lower bound derived by a sphere-packing argument, combine to show that the
primitive codes are near-optimal for sufficiently small values of r.

Lemma 9.13 (Sphere-packing bound, Golomb and Welch [GoW68], [GoWT70]) A code
over a finite prime field F' of length n, size M, and minimum Lee distance > 2r—1 for some
r < (|F|+1)/2 must satisfy the inequality

= (n\ (r-1 N
M-ZZ(Z,)( Z, )gm |
=0

Theorem 9.14 A code over a finite prime field F' of length n, size M, and minimum
Lee distance > 2r—1 for some r < (|F| + 1)/2 must satisfy the inequality

(r—1) (log‘F|(n—r+2) - log|F|(r—1)) <n — logp M.

Proof. By Lemma 9.13 we have

(n—r+2)7!

L |FIM /M .
e 2 S ET

The theorem now follows by taking the logarithm to base | F'| of both sides of this inequality.[]

The construction of synchronization-error correcting codes based upon the Lee-metric
BCH codes is as follows. Given constraints (d, k), we choose |F| < k—d+1. We re-
gard every run of length s in the (d, k)-constrained information sequence as an element
(s—d—1) (mod |F|) of F, and use a systematic encoder for C(n,r; F') to compute the cor-
responding check symbols in F. Each check symbol a, in turn, is associated with a run of
length @ 4+ d + 1, where @ is the smallest nonnegative integer such that ¢ = @ - 1, where
1 stands for the multiplicative unity in F. The code C(n,r; F'), with r < (|F| — 1)/2 and
n < |F|" — 1 can simultaneously correct b bitshift errors and s non-bitshift synchronization
errors whenever 2b + s < r. (Observe that, when counting errors, an e-bitshift error is
counted as e bitshift errors; this applies respectively also to synchronization errors. Also,
bitshift or synchronization errors may create runlengths that violate the (d, k)-constraint.
In such a case we can mark the illegal runlength as an erasure rather than an error.) The
redundancy required will be no more than 1 + (r—1)h symbols from the alphabet F, and
we recall that Theorem 9.14 indicates the near-optimality of the Lee-metric primitive BCH
codes C(|F|" — 1,r; F), for values r < |F|" — 1.

Example 9.2 Two typical choices for parameters (d, k) are (1,7) and (2,8), both sat-
isfying k — d 4+ 1 = 7. Setting |F| = 7 and r = 3, we obtain a family of codes for these
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constraints, based upon C(n, 3;7), that can correct any error pattern of Lee weight 2 (and
detect error patterns of Lee weight 3). In particular, the codes will correct one single-bitshift
(1-bitshift) error or any other combination of two insertions/deletions of symbols 0. For
n < |F|* — 1, the required redundancy is no more than 1 + 2h symbols. ]

As mentioned above, the class of Hamming-metric SECM codes are directed primarily
toward the situation when only bitshift-type errors occur. The constructions based upon Lee-
metric codes can be modified to improve their efficiency in this type of error environment by
recording, instead of the nominal codeword x = (x1 z2 ... x,), the differentially precoded
word y = (y1 y2 ... yn) defined by y; = z; and y; = z; — x; 1 for 2 < i < n, where all
operations are taken modulo |F|. If y is recorded, and no bitshift errors occur, the original
word x is reconstructed by an “integration” operation:

%
Ty = Zyj .
j=1

If, however, an e-bitshift error occurs at the boundary between runs j and j+1 of y, the
integration operation converts the error into an e-synchronization error in run j of x. In other
words, the original bitshift error pattern of Lee weight 2e is converted into a synchronization
error pattern of Lee weight e. In order to ensure the correctness of the first run y;, it suffices
to require that the code contain the all-one word (11 ... 1) and all of its multiples.

For the Lee-metric BCH codes, this construction provides the capability to correct up
to r—1 bitshift errors and detect up to r bitshift errors, when 2r < |F| < k—d+1. The
construction can be extended to the base-field case as well.

Example 9.3 Let |F'| = 7 and r = 3 as in the previous example. The construction above
will generate codes with length n a multiple of 7. For n = 7, the redundancy is 1+ (r—1) = 3
runs; for n = 14,21, ..., 49 the redundancy is 1+2(r—1) = 5 runs; for n = 56,63, ..., 343 the
redundancy is 1 4+ 3(r—1) = 7 runs. All of these codes will correct up to two single-bitshift
errors or one double-bitshift (2-bitshift) error. By way of comparison, in [Hild91] Hilden et
al. describe SECM codes of lengths 26, 80, and 242 for correcting two single-bitshift errors,
requiring redundancy of 7, 9, and 11 runs, respectively. These SECM codes do not handle
double-bitshift errors. O

Example 9.4 As |F| increases, so does the discrepancy in the number of check symbols
(runs) compared to the SECM codes in [Hild91]. For |F| = 11, suitable for representing
(d, k) = (1,11) for example, and r = 5, the Lee-metric BCH code with n = 11 requires 5 check
symbols; for n = 22,33, ...,121, the redundancy is 9 symbols; for n = 132,143, ...,1331 the
redundancy will be 13 symbols. These codes will correct up to four single-bitshift errors;
two single-bitshift and one double-bitshift errors; or two double-bitshift errors. The codes
presented in [Hild91] for correcting up to four single-bitshift errors have lengths 26, 80, and
242 and require redundancy of 16, 21, and 26, respectively. (]
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Bours [Bours94] provided a construction of synchronization-error correcting RLL codes
with fized length over the binary alphabet that also relies on an underlying Lee-metric code.
He did not require the underlying code to be a Lee-metric BCH code, however, and thereby
avoided having the error-correction capability limited by the code alphabet size.

The definition of the Lee metric can also be generalized in a straightforward manner to
integer rings. Orlitsky described in [Or93] a nonlinear construction of codes over the ring
of integers modulo 2" for correcting any prescribed number of Lee errors. His construction
is based on dividing a codeword of a binary BCH code into nonoverlapping h-tuples and
regarding the latter as the Gray-code representations of the integers between 0 and 2" — 1.

It is also worth remarking that all of the Lee-metric codes mentioned above can be
efficiently decoded algebraically.

We close the discussion of Lee-metric codes by noting that the definition of the class of
Lee-metric BCH codes was motivated by a Lee-metric generalization of the result of Immink
and Beenker in Theorem 9.10 to integer-valued spectral-null constraints [KS91a|, [EC91].

Theorem 9.15 Let S be a constrained system over an integer alphabet with order-K
spectral null at f = 0, presented by a labeled graph G. Let x,y be distinct sequences in S
generated by paths in G, both of which start at a common state u and end at a common state
v. Then, the Lee distance satisfies

ALee(Xa Y) Z 2K .

This result will play an important role in the next section in the context of Euclidean-
metric codes for PRML.

When combining bitshift and synchronization errors, any bitshift error can obviously be
regarded as two consecutive synchronization errors in opposite directions — one e-insertion,
one e-deletion — thus reducing to the synchronization-only model of errors. However, such
an approach is not optimal, and better constructions have been obtained to handle a limited
number of bitshift and synchronization errors (combined). See Hod [Hod95], Klgve [K195],
and Kuznetsov and Vinck [KuV93a|, [KuV93b].

9.6 Soft-decision decoding through Euclidean metric

Let x and y be sequences of length n over the real numbers. The squared-Euclidean distance
between these sequences, denoted A% ..4(X,y) is given by

n

A]%luclid(xa Y) = Z(l'z - yz’)2 .

i=1
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The Euclidean metric is most relevant in channels with additive white Gaussian noise
(AWGN). In particular, it is of interest in connection with the model of the magnetic record-
ing channel as a binary input, partial-response system with AWGN. The success of trellis-
coded modulation, as pioneered by Ungerboeck, in improving the reliability of memoryless
channels with AWGN provided the impetus to design coding schemes for channels with
memory, such as partial-response channels, in AWGN. For binary input-restricted partial-
response channels suitable as models for recording channels, such as the Class-4 channel
characterized by the input-output relation y; = x; — z; o, several approaches have been
proposed that make use of binary convolutional codes. These approaches typically require a
computer search of some kind to determine the codes that are optimal with respect to rate,
Euclidean distance, and maximum-likelihood detector complexity. See, for example, Wolf
and Ungerboeck [WUB86]; Calderbank, Heegard, and Lee [CHL86|, Hole [Hole91]; and Hole
and Ytrehus [HoY94].

There is another approach, however, that relies upon the concepts and code construction
techniques that have been developed in the previous chapters. The underlying idea is as
follows. First, find a constrained system S, presented by a labeled graph G, that ensures a
certain minimum Euclidean distance between the partial-response channel output sequences
generated when channel inputs are restricted to words in S. Then, apply state-splitting (or
other) methods to construct an efficient encoder from binary sequences to S. Since the graph
structure £ underlying the encoder is often more complex (in terms of number of states and
interconnections) than the original graph G, use G rather than £ as the starting point for
the trellis-based Viterbi detector of the coded channel.

Karabed and Siegel [KS91a] showed that this approach can be applied to the family of
constrained systems S whose spectral null frequencies coincide with those of the partial-
response channel transfer function. The resulting codes are referred to as matched-spectral-
null codes. We conclude this section with a brief summary of the results that pertain to the
application of this technique to the Class-4 and related partial-response systems. We will
refer to the dicode channel, which is characterized by the input-output relation y; = x; —x;_1,
and has a first-order spectral null at f = 0, and we remark that the Class-4 partial-response
channel may be interpreted as a pair of interleaved dicode channels, one operating on inputs
with even indices, the other on inputs with odd indices.

Lemma 9.16 Let S be a constrained system over an integer alphabet with order-K spec-
tral null at zero frequency. Let S’ be the constrained system of sequences at the output of
a cascade of N dicode channels, with inputs restricted to words in S. Then, S' has an
order-(K+N ) spectral null at zero frequency.

Noting that any lower bound on Lee distance provides a lower bound on squared-
Euclidean distance for sequences over integer alphabets, we obtain from the preceding lemma
and Theorem 9.15 the following lower bound on the minimum squared-Euclidean distance of
a binary, matched-spectral-null coded, partial-response channel with spectral null at f = 0.
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Theorem 9.17 Let S be a constrained system over the alphabet {41, —1}, with order-K
spectral null at zero frequency. Let x and y be distinct sequences in S, differing in a finite
number of positions. If X' andy' are the corresponding output sequences of a partial-response
channel consisting of a cascade of N dicode channels, then

A%, y) > 8(K + N) .

It is easy to see that the lower bound of Theorem 9.17 remains valid in the presence
of J-way, symbol-wise interleaving of the constrained sequences and the partial-response
channel. In particular, for the Class-4 partial-response channel (i.e., the 2-way interleaved
dicode channel), the application of sequences obtained by 2-way interleaving a code having a
first-order spectral null at zero frequency doubles the minimum squared-Euclidean distance
at the channel output, relative to the uncoded system.

We remark that J-way interleaving of sequences with an order-K spectral null at f =0
generates sequences with order-K spectral nulls at frequencies f = r/J, forr =0,1,...,J—1
[MS87]. Thus, a 2-way interleaved, dc-free code has spectral nulls at zero frequency and at
frequency f = 1/2, corresponding to the spectral null frequencies of the Class-4 partial-
response channel.

Graph presentations for spectral null sequences are provided by canonical diagrams, in-
troduced by Marcus and Siegel [MS87] for first-order spectral null constraints and then
extended to high-order constraints by, among others, Monti and Pierobon [MPi89]; Karabed
and Siegel [KS91a|; Eleftheriou and Cideciyan [EC91]; and Kamabe [Kam94].

Discussion of the canonical diagrams requires the notion of a labeled graph with an infinite
number of states. Specifically, a countable-state labeled graph G, = (V, E, L) consists of a
countably-infinite set of states V'; a set of edges E, where each edge has an initial state and
a terminal state, both in V', and the states in V' have bounded out-degree and in-degree; and
an edge labeling L : E — ¥, where X is a finite alphabet.

We say that a countable-state graph G, is a period-p canonical diagram for a spectral
null constraint if:

1. Every finite subgraph H C G, generates a set of sequences with the prescribed spectral
null constraint.

2. For any period-p graph G that presents a system with the specified spectral null
constraint, there is a label-preserving graph homomorphism of G into G, meaning
a map from the edges of G to the edges of G, that preserves initial states, terminal
states, and labels.

The canonical diagram G, for a first-order spectral null constraint at zero frequency,
with symbol alphabet {41, —1}, is shown in Figure 9.1. As mentioned in Example 3.4,
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HO=0=—0=0="0="0==Of

Figure 9.1: Canonical diagram for first-order spectral null at f = 0.

the capacity of the constrained system generated by a subgraph Gp, consisting of B+1
consecutive states and the edges with beginning and ending states among these, is given by

cap(S(Gp)) = log (2 cos BZQ) :

From this expression, it follows that

lim cap(S(Gpg)) =

B—oo

We pointed out in Chapter 2 that the constrained system generated by any finite subgraph
of G, is almost-finite-type. Applying Theorem 4.12, we see that by choosing B large enough,
we can construct a sliding-block decodable finite-state encoder for the constrained system
S(Gp) at any prespecified rate p : ¢ with p/q < 1.

From the structure of the canonical diagram, it is clear that any constrained system with
first-order spectral null at f = 0 limits the number of consecutive zero samples at the output
of the dicode channel. When the constrained sequences are twice-interleaved and applied to
the Class-4 partial-response channel, the number of zero samples at the output is limited
“globally” as well as in each of the even/odd interleaved subsequences. This condition is
analogous to that achieved by the (0, G/I) constraints for the baseline PRML system.

The subgraph G'g chosen for the code construction may be augmented to incorporate
the dicode channel memory, as shown in Figure 9.2 for the case M = 6, providing the
basis for a dynamic programming (Viterbi) detection algorithm for the coded-dicode channel
with AWGN. Each state in the trellis has a label of the form v™, where v is the state in
Figure 9.1 from which it is derived, and the superscript m denotes the sign of the dicode
channel memory. Just as does the uncoded dicode detector graph, represented by the trellis
in Figure 1.20 of Chapter 1, the coded-dicode detector graph supports sequences that can
cause potentially unbounded delays in the merging of survivor sequences and, therefore, in
decoding. The spectral-null code sequences that generate these output sequences are called
quasicatastrophic sequences, and they are characterized in the following proposition.

Proposition 9.18 The quasicatastrophic sequences in the constrained system presented
by G are those generated by more than one path in Gp.

To limit the merging delay, the matched-spectral-null code is designed to avoid these
sequences, and it is shown in [KS91a] that this is always possible without incurring a rate
loss for any Gg, with B > 3.
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Figure 9.2: Graph underlying coded-dicode channel Viterbi detector for Gj.

Further details and developments regarding the design and application of matched-
spectral-null codes to PRML systems may be found in [Shung91], [Thap92], [Thap93],
[Fred94], and [Rae94].

9.7 Forbidden list codes for targeted error events

This section (which is yet to be written) will be based on results taken from Karabed-Siegel-
Soljanin [KSS00].

Problems

Problem 9.1 A graph G is called binary if its labels are over the alphabet {0,1}. The (Hamming)
weight of a word w generated by a binary graph G is the number of 1’s in w. The weight of a path
in a binary graph G is the weight of the word generated by that path.
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Given a binary graph G and states u and v in G, denote by T,IE?)’ i the number of paths of length
£ and weight k in G that originate in u and terminate in v. For states u and v in G, define the

length-¢ weight-distribution polynomial (of paths from u to v), in the indeterminate z, by

¢
V4
PO(z) =37l 2.
k=0

As an example, for the graph H in Figure 9.3, PX% = 22 + 223, since there are three paths of
length 4 that originate in A and terminate in C: one path has weight 2, and the other paths each

has weight 3.

Figure 9.3: Graph H for Problem 9.1.

For a binary graph G = (V, E, L), let Bg(z) be the |V| x |V| matrix in the indeterminate z,
where

(BG(2))uw = PL(2)

for every u,v € V. Each entry in Bg(z) is therefore a polynomial in z of degree at most 1.

1. Compute By (z) for the graph in Figure 9.3.
2. For the matrix By(z) found in 1, compute (Bgy(z))? and (By(z))*.

3. Let Bg(z) be the matrix associated with a binary graph G, and let v and v be states in G.
Given a positive integer £, obtain an expression for the polynomial P,Eﬁ),(z) in terms of Bg(z).

4. Identify the matrix Bg(1) associated with a binary graph G.
5. Identify the matrix Bg(0).

6. Let G be a binary graph and let zy be a positive real number. Show that G is irreducible if
and only if the matrix Bg(%) is irreducible. Does this hold also when zy = 07

Problem 9.2 Recall the definitions from Problem 9.1. Let G be a binary lossless graph and let u
and v be states in G. For positive integers £ and d, denote by Jfbf%,d the number of words of length

£ and weight < d that can be generated in G by paths that originate in u and terminate in v.
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1. Show that for every 0 < d </,
d
o _ 0
Ju,v,d - Z Tu,v,k .
k=0
2. Based on 1, show that for every real z in the range 0 < z < 1,

)
[/ ¢ _
J( ) < Z quikzk d
k=0

u,v,

and, therefore,
O o —dplt
Tuga < i, 27 PLY(2)

3. Based on 2 and 3, derive an upper bound on the number of words of length £ and weight < d
in S(G), as a function of Bg(z), ¢, and d.

Problem 9.3 Recall the definitions from Problem 9.1. Let S be a constrained system presented
by a deterministic binary graph G with finite memory M. For nonnegative integers ¢ and k, denote
by Yk(z) the number of (ordered) pairs (w, w') of words of length £ in S such that w and w’ are at
Hamming distance k; i.e., they differ on exactly k locations. Define the polynomial Y9 (z) by

4
YO (z) = z Yk(e)zk .
k=0

1. Show that Y©)(0) = |S N {0,1}¢|.
2. Show that YO (1) = (Y(9(0))2.

3. Let Sy, denote the (0,1)-RLL constrained system. Show that when S = .Sy 1, the polynomial
Y®(2) can be written as

YO>2)=(1221)(Baa(z)'1,

where 1 is the all-one column vector and

Bgia(z) =

e
S N O W
O O N W
SO O =

4. Compute Y, (z) explicitly for S = Sp ;.

5. Find the largest integer n for which there exists a block (Sgyl, n)-encoder whose codewords
are at Hamming distance at least 2 from each other.

6. Generalize 3 for any constrained system S over {0,1} with finite memory M.



