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Big Ideas 1.1 Drawing Tangents

RATES OF CHANGE

Suppose the population of a small country was 1 million individuals
in 1990, and is growing at a steady rate of 20,000 individuals per year.
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Big Ideas 1.1 Drawing Tangents

Definition
The slope of a line that passes through the points (x1, y1) and (x2, y2)
is “rise over run”

∆y
∆x

=
y2 − y1

x2 − x1
.

This is also called the rate of change of the function.
If a line has equation y = mx + b, its slope is m.
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4/13



Big Ideas 1.1 Drawing Tangents

Suppose the population of a small country is given in the chart below.
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5/13



Big Ideas 1.1 Drawing Tangents

Definition
Let y = f (x) be a curve that passes through (x1, y1) and (x2, y2). Then
the average rate of change of f (x) when x1 ≤ x ≤ x2 is

∆y
∆x

=
y2 − y1

x2 − x1
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x

x

1990 2000 2010 2020
0.1 mil
0.9 mil

2.5 mil

4.9 mil P(x)

0.8 mil ppl
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Average rate of change from 1990 to 2000:
80, 000 people per year.

Average rate of change from 2010 to 2020:
240, 000 people per year.
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Average Rate of Change and Slope
The average rate of change of a function f (x) on the interval [a, b]
(where a 6= b) is “change in output” divided by “change in input:”

f (b)− f (a)

b− a

If the function f (x) is a line, then the slope of the line is “rise over
run,”

f (b)− f (a)

b− a
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If a function is a line, its slope is the same as its average rate of
change, which is the same for every interval.

If a function is not a line, its average rate of change might be different
for different intervals, and we don’t have a definition (yet) for its
“slope.”
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How fast was this population growing in the year 2010? (What was
its instantaneous rate of change?)
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Big Ideas 1.1 Drawing Tangents

Definition
The secant line to the curve y = f (x) through points R and Q is a line
that passes through R and Q.

We call the slope of the secant line the average rate of change of f (x)
from R to Q.

Definition
The tangent line to the curve y = f (x) at point P is a line that

• passes through P and
• has the same slope as f (x) at P.

We call the slope of the tangent line the instantaneous rate of change
of f (x) at P.
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On the graph below, draw the
secant line to the curve through
points P and Q.

x

y

P

Q

On the graph below, draw the
tangent line to the curve at point
P.
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