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DERIVATIVES OF LINES

f(x)=2x—-15

The equation of the tangent line to f(x) at x = 100 is:

A0 B.1 C.2 D. -15 E. -13

f(-13) =
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g(x)=13

A0 B.1 C.2 D. 13
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ADDING A CONSTANT

Adding or subtracting a constant to a function does not change its

derivative.
We saw
d
— (3-0.8£2 =-16
dx ( ) t=1
So,
d
— (10 — 0.8¢* =
dx ( ) 1
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DIFFERENTIATING SUMS
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CONSTANT MULTIPLE OF A FUNCTION

Let a be a constant.

d )
dx {rfx)} =

6/25
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Rules — Lemma 2.4.1

Suppose f(x) and g(x) are differentiable, and let ¢ be a constant
number. Then:

> S @) +s@)}r=F(x) +8'()
> S @) s} =f(x) -8
> SlF@ =

For instance: let f(x) = 10 ( + 10— /x). Thenf'(x) =

7/25 Example 2.6.1
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Now .|..a|.|.
You AL
Calculate:

Suppose f'(x) = 3x, ¢’ (x) = —x%, and I’ (x) = 5.

e (x) +5g(x) — h(x) + 22}

A. 3x — 5x?

B. 3x —5x* -5
C.3x—5x2—-5+22
D. none of the above

8/25
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DERIVATIVES OF PRODUCTS

%{x} =1
% 2x} = % {x+x}
= [1)+01)
=2

%{xz}:%{mx}
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WHAT TO DO WITH PRODUCTS?

Suppose f(x) and g(x) are differentiable functions of x. What about

f(x)g(x)?

10/25
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Product Rule — Theorem 2.4.3

For differentiable functions f(x) and g(x):

% (0)g(x)] = f(0)8"(x) +g(x)f"(x)

Example:

Example: suppose / (x) = 3x7, f/(x) = 6x, g(x) = sin(x), ¢'(x) = cos(x).

d )
O [3x7sin(x)] =
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Given & [2x+5] =2

.|..a..|
T{gfj E7 f(x) = (2x+ 5) sin(x?)

A. f(x) = (2) (2xcos(x?)) (2x)

B. f'(x) = (2) (2x cos(x?))

C. f'(x) = (2x 4+ 5)(2) + sin(x?) (2x cos(x?))
D. f'(x) = (2x + 5) (2x cos(x?)) + (2) sin(x?)

E. none of the above

4 [sin(x?)] = 2xcos(x?),

d

dx

[x?] = 2x
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Now Flx) = a(x) - b(x) - c(x)
N What is f/(x)?

13/25 Example 2.6.6
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Quotient Rule — Theorem 2.4.5

Let f(x) and g(x) be differentiable and g(x) # 0. Then:

d {f(x) } _ 8W)f'(x) —f(x)8'(x)
dx (g(x) g2 (%)

Mnemonic: Low d’high minus high d’low over lowlow.

14/25
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Quotient Rule — Theorem 2.4.5

Let f(x) and g(x) be differentiable and g(x) # 0. Then:

d {f(x) } _ 8W)f'(x) —f(x)8'(x)
dx (g(x) g2 (%)

Mnemonic: Low d’high minus high d’low over lowlow.

i 2x+5]
dr | 3x—6[

15/25
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Quotient Rule — Theorem 2.4.5

Let f(x) and g(x) be differentiable and g(x) # 0. Then:

d {f(x) } _ 8W)f'(x) —f(x)8'(x)
dx (g(x) g2 (%)

Mnemonic: Low d’high minus high d’low over lowlow.
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{J0=0{}
Now Differentiate the following.
You i

flx) = 2x+5
gx)=2x+5)(3x—-7)+25
2x +5
() = 8x —2

0= (553)

17/25
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y

 x*43
Cox—1

For which values of x is the tangent line to the curve horizontal?
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The position of an object moving left and right at time ¢, ¢ > 0, is
given by

s(t) = —#(t - 2)
where a positive position means it is to the right of its starting

position, and a negative position means it is to the left. First it moves
to the right, then it moves left forever.

What is the farthest point to the right that the object reaches?

19/25
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MORE ABOUT THE PRODUCT RULE

402 = Llx - x}=x(1) + x(1) function | derivative
=2 X 1

d 31 _ d 2 x 2x
it = Hlx-x%} 3 322

= (1)(2%) + (x*)(1) = 3x* X 423

d x*} = Ay, x}

Z3) 43 (1) = 40 9;30 sgxi

Where are these functions
defined?

20/25 Lemma 2.6.9
S
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CAUTIONARY TALE

WITH functions RAISED TO A POWER, IT’S MORE COMPLICATED.

Differentiate (2x + 1)?

21/25
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Power Rule — Corollary 2.6.17

4 (¥} = ax"~! (where defined)

%{3355 +7x% —x+ 15} =

22/25
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Power Rule — Corollary 2.6.17

4 (¥} = ax"~! (where defined)

4 3 4
Differentiate (F + DX+ V7)
2x+5
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Power Rule — Corollary 2.6.17

4 (¥} = ax"~! (where defined)

Suppose a motorist is driving their car, and their position is given by
s(t) = 10> — 90#> + 180t kilometres. At t = 1 (t measured in hours), a
police officer notices they are driving erratically. The motorist claims
to have simply suffered a lack of attention: they were in the act of
pressing the brakes even as the officer noticed their speed.

Att =1, how fast was the motorist going, and were they pressing the
gas or the brake?

Challenge: What about t = 2?

24/25
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Power Rule — Corollary 2.6.17

4 (¥} = ax"~! (where defined)

Recall that a sphere of radius r has volume V = 3773

Suppose you are winding twine into a gigantic twine ball, filming the
process, and trying to make a viral video. You can wrap one cubic
meter of twine per hour. (In other words, when we have V cubic
meters of twine, we’re at time V hours.) How fast is the radius of
your spherical twine ball increasing?

25/25
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