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RATES OF CHANGE

Suppose the population of a small country was 1 million individuals
in 1990, and is growing at a steady rate of 20,000 individuals per year.

x

y

1 mil

1990 2000

1.2 mil

2010

1.4 mil

P(x)
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Definition
The slope of a line that passes through the points (x1, y1) and (x2, y2)
is “rise over run”

∆y
∆x

=
y2 − y1

x2 − x1
.

This is also called the rate of change of the function.
If a line has equation y = mx + b, its slope is m.
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x

y

1 mil

1990 2000

1.2 mil

2010

1.4 mil

P(x)

∆x

∆y

Rate of change:
400, 000 people

20 years
= 20, 000

people
year

(doesn’t depend on the year)
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Suppose the population of a small country is given in the chart below.

x

y

1990 2000 2010 2020
0.1 mil

0.9 mil

2.5 mil

4.9 mil P(x)

0.8 mil ppl
10 years

2.4 mil ppl
10 years

Rate of change
∆ pop
∆ time

depends on time interval
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Definition
Let y = f (x) be a curve that passes through (x1, y1) and (x2, y2). Then
the average rate of change of f (x) when x1 ≤ x ≤ x2 is

∆y
∆x

=
y2 − y1

x2 − x1
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x

x

1990 2000 2010 2020
0.1 mil
0.9 mil

2.5 mil

4.9 mil P(x)

0.8 mil ppl
10 years

2.4 mil ppl
10 years

Average rate of change from 1990 to 2000:
80, 000 people per year.

Average rate of change from 2010 to 2020:
240, 000 people per year.
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Average Rate of Change and Slope
The average rate of change of a function f (x) on the interval [a, b]
(where a 6= b) is “change in output” divided by “change in input:”

f (b)− f (a)

b− a

If the function f (x) is a line, then the slope of the line is “rise over
run,”

f (b)− f (a)

b− a
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If a function is a line, its slope is the same as its average rate of
change, which is the same for every interval.

If a function is not a line, its average rate of change might be different
for different intervals, and we don’t have a definition (yet) for its
“slope.”
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How fast was this population growing in the year 2010? (What was
its instantaneous rate of change?)

x

y

1990 2000 2010 2020
0.1 mil

0.9 mil

2.5 mil

4.9 mil P(x)

0.8 mil ppl
10 years

2.4 mil ppl
10 years

2009 2011
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Definition
The secant line to the curve y = f (x) through points R and Q is a line
that passes through R and Q.

We call the slope of the secant line the average rate of change of f (x)
from R to Q.

Definition
The tangent line to the curve y = f (x) at point P is a line that

• passes through P and
• has the same slope as f (x) at P.

We call the slope of the tangent line the instantaneous rate of change
of f (x) at P.

R

P

Q
tangent line

secant line
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On the graph below, draw the
secant line to the curve through
points P and Q.

x

y

P

Q

On the graph below, draw the
tangent line to the curve at point
P.

x

y

P
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t

km

y = s(t)

8 : 00 8 : 30

3

6

8:07
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t
km

y = s(t)

8 : 00 8 : 30

3

6

1/2 hour

6

It took 1
2 hour to bike 6 km. 12 kph represents the:

A. secant line to y = s(t) from t = 8 : 00 to t = 8 : 30
B. slope of the secant line to y = s(t) from t = 8 : 00 to t = 8 : 30
C. tangent line to y = s(t) at t = 8 : 30
D. slope of the tangent line to y = s(t) at t = 8 : 30
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t

km
y = s(t)

8 : 00 8 : 30

3

6

8:25

At 8:25, the speedometer on my bike reads 5 kph. 5 kph represents
the:
A. secant line to y = s(t) from t = 8 : 00 to t = 8 : 25
B. slope of the secant line to y = s(t) from t = 8 : 00 to t = 8 : 25
C. tangent line to y = s(t) at t = 8 : 25
D. slope of the tangent line to y = s(t) at t = 8 : 25
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Suppose the distance from the ground s (in meters) of a helium-filled
balloon at time t over a 10-second interval is given by s(t) = t2. Try to
estimate how fast the balloon is rising when t = 5.

t

y
y = s(t)

1

10

2

20

3

30

4

40

5

50

6

60

7

70

8

80

9

90

10

100

One way:
Estimate the
slope of the
tangent line to
the curve

Another way:
Calculate
average rate of
change for
intervals around
5 that get smaller
and smaller.
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Let’s look for an algebraic way of determining the velocity of the
balloon when t = 5.

Suppose the interval [5, ] has length h. What is the right endpoint of
the interval? Write the equation for the average (vertical) velocity
from t = 5 to t = 5 + h. What happens to the velocity when h is very,
very small?
What do you think is the slope of the tangent line to the graph when

t = 5?

t

y
y = s(t) = t2

5

h

5 + h

vel =
∆ height
∆ time

=
s(5 + h)− s(5)

(5 + h)− 5
=

(5 + h)2 − 52

h
19/515

OUR FIRST LIMIT

Average Velocity, t = 5 to t = 5 + h:

∆s
∆t

=
s(5 + h)− s(5)

h

=
(5 + h)2 − 52

h
= 10 + h when h 6= 0

When h is very small,
Vel ≈ 10
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LIMIT NOTATION

We write:
lim
h→0

(10 + h) = 10

We say: “The limit as h goes to 0 of (10 + h) is 10.”

It means: As h gets extremely close to 0, (10 + h) gets extremely close
to 10.
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Notation 1.3.1 and Definition 1.3.3

lim
x→a

f (x) = L

where a and L are real numbers
We read the above as “the limit as x goes to a of f (x) is L.”
Its meaning is: as x gets very close to (but not equal to) a, f (x) gets
very close to L.
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FINDING SLOPES OF TANGENT LINES

We NEED limits to find slopes of tangent lines.

Slope of secant line:
∆y
∆x

, ∆x 6= 0.
Slope of tangent line: can’t do the same way.

If the position of an object at time t is given by s(t), then its
instantaneous velocity is given by

lim
h→0

s(t + h)− s(t)
h
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EVALUATING LIMITS

Let f (x) =
x3 + x2 − x− 1

x− 1
.

We want to evaluate lim
x→1

f (x).

25/515 Example 1.3.4

ONE-SIDED LIMITS

f (x) =


x if x < 3
1 if x = 3

x− 1 if x > 3

x

y = f (x)

0 1 2 3 4 5 6
0

1

2

3

4

5

What do you think lim
x→3

f (x) should be?

26/515 Example 1.3.6

Definition 1.3.7
The limit as x goes to a from the left of f (x) is written

lim
x→a−

f (x)

We only consider values of x that are less than a.

The limit as x goes to a from the right of f (x) is written

lim
x→a+

f (x)

We only consider values of x greater than a.
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Theorem 1.3.8
In order for lim

x→a
f (x) to exist, both one-sided limits must exist and be

equal.

x

y
y = f (x)

0 1 2 3 4 5 6
0

1

2

3

4

5
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Consider the function f (x) =
1

(x− 1)2 . For what value(s) of x is f (x)

not defined?

A subtle point: we say that this limit does not exist. It “does not exist”
in a way that we can, nonetheless, describe.
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A STRANGER LIMIT EXAMPLE

x

y
f (x) = sin

(
1
x

)

What is lim
x→∞

f (x) ?

30/515 Example 1.3.5

A STRANGER LIMIT EXAMPLE

x

y
f (x) = sin

(
1
x

)

What is lim
x→0

f (x) ?

31/515 Example 1.3.5

A STRANGER LIMIT EXAMPLE

x

y
f (x) = sin

(
1
x

)

What is lim
x→π

f (x) ?

32/515 Example 1.3.5



OPTIONAL: SKETCHING f (x) = sin
(1

x

)

θ y = sin θ
π
2

x y = sin 1
x

2
π

3π
2

5π
2

7π
2

9π
2

11π
2
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LIMITS AND THE NATURAL LOGARITHM

Where is f (x) defined, and where is it not defined?

x

y

−4

−2

2

−2 2 4 6

f (x) = log x
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LIMITS AND THE NATURAL LOGARITHM

What can you say about the limit of f (x) near 0?

x

y

−4

−2

2

−2 2 4 6

f (x) = log x
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f (x) =

{
x2 x 6= 1
2 x = 1

x
−2 −1 1 2

1

2

3

4

What is lim
x→1

f (x)?

A. lim
x→1

f (x) = 2

B. lim
x→1

f (x) = 1

C. lim
x→1

f (x) DNE

D. none of the above
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f (x) =

{
4 x ≤ 0

x2 x > 0

x

y

−2 −1 1 2

1

2

3

4

What is lim
x→0

f (x)? What is

lim
x→0+

f (x)? What is f (0)?

A. lim
x→0+

f (x) = 4

B. lim
x→0+

f (x) = 0

C. lim
x→0+

f (x) =

{
4 x ≤ 0
0 x > 0

D. none of the above

lim
x→0

f (x) DNE
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Suppose lim
x→3−

f (x) = 1 and lim
x→3+

f (x) = 1.5.

Does lim
x→3

f (x) exist?

A. Yes, certainly, because the limits from both sides exist.

B. No, never, because the limit from the left is not the same as the
limit from the right.

C. Can’t tell. For some functions is might exist, for others not.

38/515

Suppose lim
x→3−

f (x) = 22 = lim
x→3+

f (x).

Does lim
x→3

f (x) exist?

A. Yes, certainly, because the limits from both sides exist and are
equal to each other.

B. No, never, because we only talk about one-sided limits when the
actual limit doesn’t exist.

C. Can’t tell. We need to know the value of the function at x = 3.
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CALCULATING LIMITS IN SIMPLE SITUATIONS

Direct Substitution – Theorem 1.4.10
If f (x) is a polynomial or rational function, and a is in the domain of f ,
then:

lim
x→a

f (x) = f (a).

Calculate: lim
x→3

(
x2 − 9
x + 3

)

Calculate: lim
x→3

(
x2 − 9
x− 3

)

Can’t find in the same way: 3 not in domain
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Algebra with Limits: Theorem 1.4.2
Suppose lim

x→a
f (x) = F and lim

x→a
g(x) = G, where F and G are both real

numbers. Then:
- lim

x→a
(f (x) + g(x)) = F + G

- lim
x→a

(f (x)− g(x)) = F− G

- lim
x→a

(f (x)g(x)) = FG

- lim
x→a

(f (x)/g(x)) = F/G provided G 6= 0

Calculate: lim
x→1

[
2x + 4
x + 2

+ 13
(

x + 5
3x

)(
x2

2x− 1

)]
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LIMITS INVOLVING POWERS AND ROOTS

Which of the following gives a real number?

A. 4
1
2 B. (−4)

1
2 C. 4−

1
2 D. (−4)−

1
2

E. 81/3 F. (−8)1/3 G. 8−1/3 H. (−8)−1/3
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Powers of Limits – Theorem 1.4.8
If n is a positive integer, and lim

x→a
f (x) = F (where F is a real number),

then:
lim
x→a

(f (x))
n

= Fn.

Furthermore, unless n is even and F is negative,

lim
x→a

(f (x))
1/n

= F1/n

lim
x→4

(x + 5)1/2
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CAUTIONARY TALES

I lim
x→0

(5 + x)2 − 25
x

→ 0
0

; need another way

I lim
x→3

(
x− 6

3

)1/8

→ 8
√
−1; danger danger

I lim
x→0

32
x

→ 32
0

; this expression is meaningless

I lim
x→5

(
x2 + 2

)1/3

= (52 + 2)1/3 = 3
√

27 = 3
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Suppose you want to evaluate lim
x→1

f (x), but f (1) doesn’t exist. What

does that tell you?

A lim
x→1

f (x) may exist, and it may not exist.

B We can find lim
x→1

f (x) by plugging in 1 to f (x).

C Since f (1) doesn’t exist, it is not meaningful to talk about
lim
x→1

f (x).

D Since f (1) doesn’t exist, automatically we know lim
x→1

f (x) does not

exist.

E lim
x→1

f (x) does not exist if we are “dividing by zero,” but may

exist otherwise.
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Which of the following statements is true about lim
x→0

sin x
x3 − x2 + x

?

A lim
x→0

sin x
x3 − x2 + x

=
sin 0

03 − 02 + 0
=

0
0

B Since the function
sin x

x3 − x2 + x
is not rational, its limit at 0 does

not exist.

C Since the numerator and denominator of
sin x

x3 − x2 + x
are both 0

when x = 0, the limit exists.

D Since the function
sin x

x3 − x2 + x
is not defined at 0, plugging in

x = 0 will not tell us the limit.

E Since the function
sin x

x3 − x2 + x
consists of the quotient of

polynomials and trigonometric functions, its limit exists
everywhere.
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Which of the following statements is true about lim
x→1

sin x
x3 − x2 + x

?

A lim
x→1

sin x
x3 − x2 + x

=
sin 1

13 − 12 + 1
= sin 1

B Since the function
sin x

x3 − x2 + x
is not rational, its limit at 1 does

not exist.

C Since the function
sin x

x3 − x2 + x
is not defined at 1, plugging in

x = 1 will not tell us the limit.

D Since the numerator and denominator of
sin x

x3 − x2 + x
are both 0

when x = 1, the limit exists.
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Functions that Differ at a Single Point – Theorem 1.4.12
Suppose lim

x→a
g(x) exists, and f (x) = g(x)

when x is close to a (but not necessarily equal to a).

Then lim
x→a

f (x) = lim
x→a

g(x).

x

y

f (x)

g(x)

a

49/515

Evaluate lim
x→1

x3 + x2 − x− 1
x− 1

.

50/515

Evaluate lim
x→5

√
x + 20−

√
4x + 5

x− 5

51/515 Example 1.4.16

A FEW STRATEGIES FOR CALCULATING LIMITS

First, hope that you can directly substitute (plug in). If your function
is made up of the sum, difference, product, quotient, or power of
polynomials, you can do this provided the function exists where
you’re taking the limit.

lim
x→1

(√
35 + x5 +

x− 3
x2

)3

=

(√
35 + 15 +

1− 3
12

)3

= 64
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To take a limit outside the domain of a function (that is made up of
the sum, difference, product, quotient, or power of polynomials) try
to simplify and cancel.

lim
x→0

x + 7
1
x −

1
2x

Otherwise, you can try graphing the function, or making a table of
values, to get a better picture of what is going on.
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DENOMINATORS APPROACHING ZERO

lim
x→1

1
(x− 1)2

lim
x→1

−1
(x− 1)2

lim
x→1−

1
x− 1

lim
x→1+

1
x− 1

54/515

DENOMINATORS APPROACHING ZERO

NOW
YOU

lim
x→2+

x
x2 − 4

lim
x→2−

x
4− x2

lim
x→2

x− 2
x2 − 4
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Squeeze Theorem – Theorem 1.4.17
Suppose, when x is near (but not necessarily equal to) a, we have
functions f (x), g(x), and h(x) so that

f (x) ≤ g(x) ≤ h(x)

and lim
x→a

f (x) = lim
x→a

h(x). Then lim
x→a

g(x) = lim
x→a

f (x).

lim
x→0

x2 sin

(
1
x

)
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Evaluate:

lim
x→0

x2 sin

(
1
x

)

x

y y = sin
( 1

x

)
x

y

y = x2

57/515 Example 1.4.18

lim
x→0

x2 sin

(
1
x

)

−1 ≤ sin

(
1
x

)
≤ 1

58/515 Example 1.4.18
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END BEHAVIOR

We write:
lim

x→∞
f (x) = L

to express that, as x grows larger and larger, f (x) approaches L.

Similarly, we write:
lim

x→−∞
f (x) = L

to express that, as x grows more and more strongly negative, f (x)
approaches L.

If L is a number, we call y = L a horizontal asymptote of f (x).

60/515 Definition 1.5.1



HORIZONTAL ASYMPTOTES

x

y

y = 0 is a horizontal asymptote for y = sin
( 1

x

)

61/515

COMMON LIMITS AT INFINITY

lim
x→∞

13 =

13

lim
x→∞

x3 =

∞

lim
x→−∞

13 =

13

lim
x→−∞

x3 =

−∞

lim
x→∞

1
x

=

0

lim
x→−∞

x5/3 =

−∞

lim
x→−∞

1
x

=

0

lim
x→−∞

x2/3 =

∞

lim
x→∞

x2 =

∞

lim
x→−∞

x2 =

∞
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ARITHMETIC WITH LIMITS AT INFINITY

lim
x→∞

(
x +

x2

10

)
=

∞

NOW
YOU

lim
x→∞

(
x− x2

10

)
=

lim
x→∞

x
(

1− x
10

)
= −∞

lim
x→−∞

(
x2 + x3 + x4) =

lim
x→−∞

x4
(

1
x2 +

1
x

+ 1
)

=∞

lim
x→−∞

(x + 13)
(
x2 + 13

)1/3
=

−∞
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CALCULATING LIMITS AT INFINITY

lim
x→∞

x2 + 2x + 1
x3

64/515 Example 1.5.5



CALCULATING LIMITS AT INFINITY

lim
x→−∞

(x7/3 − x5/3)

Again: factor out largest power of x.

65/515 Example 1.5.8

CALCULATING LIMITS AT INFINITY

Suppose the height of a bouncing ball is given by h(t) = sin(t)+1
t , for

t ≥ 1. What happens to the height over a long period of time?

66/515

CALCULATING LIMITS AT INFINITY

NOW
YOU

lim
x→∞

√
x4 + x2 + 1−

√
x4 + 3x2

67/515

NOW
YOU

Evaluate lim
x→−∞

√
3 + x2

3x

68/515
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CONTINUITY

Definition 1.6.1
A function f (x) is continuous at a point a if lim

x→a
f (x) exists AND is

equal to f (a).

y = f (x)

−2 −1 1 2

1

2

3

4 Does f (x) exist at x = 1?
Is f (x) continuous at x = 1?

70/515 Example 1.6.4

Definitions 1.6.1 and 1.6.2
A function f (x) is continuous from the left at a point a if lim

x→a−
f (x)

exists AND is equal to f (a).

y = f (x)

0
0

1

1

2

2

3

3

4

4

5

5 Is f (x) continuous at x = 3?

Is f (x) continuous from the left at
x = 3?

Yes.

Is f (x) continuous from the right
at x = 3?

No.

This kind of discontinuity is
called a jump.

71/515 Example 1.6.4

Definition
A function f (x) is continuous at a point a if lim

x→a
f (x) exists AND is

equal to f (a).

y = f (x)

1

1

2

2

3

3

4

4

5

5

Since no one-sided limits exist at
x = 1, there’s no hope for
continuity there – not even “from
the left” or “from the right.”

This is called an infinite
discontinuity

72/515 Example 1.6.4



Definition
A function f (x) is continuous at a point a if lim

x→a
f (x) exists AND is

equal to f (a).

f (x) =

{
x2 sin

( 1
x

)
, x 6= 0

0 , x = 0

Is f (x) continuous at 0?
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CONTINUOUS FUNCTIONS

Functions made by adding, subtracting, multiplying, dividing, and
taking appropriate powers of polynomials are continuous for every
point in their domain.

f (x) =
x2

2x− 10
−

(
x2 + 2x− 1

x− 1
+

5
√

25− x− 1
x

x + 2

)1/3

A continuous function is continuous for every point in R.

We say f (x) is continuous over (a, b) if it is continuous at every point
in (a, b).
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Common Functions – Theorem 1.6.8
Functions of the following types are continuous over their domains:

- polynomials and rationals
- roots and powers
- trig functions and their inverses
- exponential and logarithm
- The products, sums, differences, quotients, powers, and

compositions of continuous functions

75/515

Where is the following function continuous?

f (x) =

(
sin x

(x− 2)(x + 3)
+ e
√

x
)3

Over its domain: [0, 2) ∪ (2,∞).

76/515



A TECHNICAL POINT

Definition 1.6.3
A function f (x) is continuous on the closed interval [a, b] if:
I f (x) is continuous over (a, b), and
I f (x) is continuous from the left at b, and
I f (x) is continuous from the right at a

a b
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Intermediate Value Theorem (IVT) – Theorem 1.6.12
Let a < b and let f (x) be continuous over [a, b]. If y is any number
between f (a) and f (b), then there exists c in (a, b) such that f (c) = y.

x

a b

f (a)

f (b)

y

c

y

c

78/515

Intermediate Value Theorem (IVT) – Theorem 1.6.12
Let a < b and let f (x) be continuous over [a, b]. If y is any number
between f (a) and f (b), then there exists c in (a, b) such that f (c) = y.

Suppose your favourite number is 45.54. At noon, your car is parked,
and at 1pm you’re driving 100kph.
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USING IVT TO FIND ROOTS: “BISECTION METHOD”

Let f (x) = x5 − 2x4 + 2. Find any value x for which f (x) = 0. Let’s find
some points:

f (0) = 2 f (1) = 1 f (−1) = −1

x

y

−1

1

2

1−1

80/515 Example 1.6.14



USING IVT TO FIND ROOTS: “BISECTION METHOD”

Let f (x) = x5 − 2x4 + 2. Find any value x for which f (x) = 0.

f (0) = 2, f (−1) = −1

, f
(
− 1

2

)
≈ 1.84, f

(
− 3

4

)
≈ 1.13, f (−.9) = 0.097

x

y

−1

1

2

−1

− 1
2− 3

4

−0.9
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Use the Intermediate Value Theorem to show that there exists some
solution to the equation ln x · ex = 4, and give a reasonable interval
where that solution might occur.
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NOW
YOU

Use the Intermediate Value Theorem to give a

reasonable interval where the following is true: ex = sin(x). (Don’t
use a calculator – use numbers you can easily evaluate.)
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NOW
YOU

Is there any value of x so that sin x = cos(2x) + 1
4 ?
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NOW
YOU

Is the following reasoning correct?

- f (x) = tan x is continuous over its domain, because it is a
trigonometric function.

- In particular, f (x) is continuous over the interval
[
π
4 ,

3π
4

]
.

- f
(
π
4

)
= 1, and f

( 3π
4

)
= −1.

- Since f
( 3π

4

)
< 0 < f

(
π
4

)
, by the Intermediate Value Theorem,

there exists some number c in the interval
(
π
4 ,

3π
4

)
such that

f (c) = 0.
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x

y π
2

y = tan x

π
4

3π
4

1

−1
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CONTINUITY

Section 1.6 Review

87/515

Suppose f (x) is continuous at x = 1. Does f (x) have to be defined at
x = 1?
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Suppose f (x) is continuous at x = 1 and lim
x→1−

f (x) = 30.

True or false: lim
x→1+

f (x) = 30.
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Suppose f (x) is continuous at x = 1 and f (1) = 22. What is lim
x→1

f (x)?

90/515

Suppose lim
x→1

f (x) = 2. Must it be true that f (1) = 2?
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f (x) =

{
ax2 x ≥ 1
3x x < 1

For which value(s) of a is f (x) continuous?
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f (x) =

{ √
3x+3

x2−3 x 6= ±
√

3
a x = ±

√
3

For which value(s) of a is f (x) continuous at x = −
√

3?
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f (x) =

{ √
3x+3

x2−3 x 6= ±
√

3
a x = ±

√
3

For which value(s) of a is f (x) continuous at x =
√

3?
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SLOPE OF SECANT AND TANGENT LINE

Slope
Recall, the slope of a line is given by any of the following:

rise
run

∆y
∆x

y2 − y1

x2 − x1

96/515



x

y
y = f (x)

a a + h

f (a)
f (a + h)

Slope of secant line: f (a+h)−f (a)
h

Slope of tangent line: lim
h→0

f (a+h)−f (a)
h
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DERIVATIVE AT A POINT

Definition 2.2.1
Given a function f (x) and a point a, the slope of the tangent line to
f (x) at a is the derivative of f at a, written f ′(a).

So, f ′(a) = lim
h→0

f (a + h)− f (a)

h
.

f ′(a) is also the instantaneous rate of change of f at a.
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Derivative

f ′(a) = lim
h→0

f (a + h)− f (a)

h

If f ′(a) > 0, then f is increasing at a. Its graph “points up.”

If f ′(a) < 0, then f is decreasing at a. Its graph “points down.”

If f ′(a) = 0, then f looks constant or flat at a.
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PRACTICE: INCREASING AND DECREASING

x

y

a b c d

Where is f ′(x) < 0? Where is f ′(x) > 0? Where is f ′(x) ≈ 0?
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Use the definition of the derivative to find the slope of the tangent
line to f (x) = x2 − 5 at the point x = 3.

102/515 Example 2.2.5

Let’s keep the function f (x) = x2 − 5. We just showed f ′(3) = 6.
We can also find its derivative at an arbitrary point x:
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x

y

f (x) = x2 − 5

f ′(x) = 2x
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INCREASING AND DECREASING

In black is the curve y = f (x). Which of the coloured curves
corresponds to y = f ′(x)?

x

y
y = f (x)

x

y

A

x

y

B

x

y

C
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INCREASING AND DECREASING

In black is the curve y = f (x). Which of the coloured curves
corresponds to y = f ′(x)?

x

y y = f (x)

x

y

A

x

y

B

x

y

C
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Derivative as a Function – Definition 2.2.6
Let f (x) be a function.
The derivative of f (x) with respect to x is given by

f ′(x) = lim
h→0

f (x + h)− f (x)

h
,

provided the limit exists. Notice that x will be a part of your final
expression: this is a function.

If f ′(x) exists for all x in an interval (a, b), we say that f is
differentiable on (a, b).
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Notation 2.2.8
The “prime” notation f ′(x) and f ′(a) is sometimes called Newtonian
notation. We will also use Leibnitz notation:

df
dx

df
dx

(a)
d
dx

f (x)
d
dx

f (x)

∣∣∣∣
x=a

function number function number
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Newtonian Notation:

f (x) = x2 + 5 f ′(x) = 2x f ′(3) = 6

Leibnitz Notation:

df
dx

=
df
dx

(3) =
d

dx
f (x) =

d
dx

f (x)

∣∣∣∣
x=3

=

x

y

f (x) = x2 − 5

f ′(x) = 2x
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Alternate Definition – Definition 2.2.1
Calculating

f ′(a) = lim
h→0

f (a + h)− f (a)

h
is the same as calculating

f ′(x) = lim
x→a

f (x)− f (a)

x− a
.

Notice in these scenarios, h = x− a.

a x

h
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Let f (x) =
√

x. Using the definition of a derivative, calculate f ′(x).

111/515 Example 2.2.9

x

y

y =
√

x

y = 1
2
√

x

Review: lim
x→∞

√
x = lim

x→∞

1
2
√

x
=

lim
x→0+

√
x = lim

x→0+

1
2
√

x
=
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NOW
YOU

Using the definition of the derivative, calculate

d
dx

{
1
x

}
.

113/515 Example 2.2.7

Using the definition of the derivative, calculate
d

dx

{
2x

x + 1

}
.
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Using the definition of the derivative, calculate
d

dx

{
1√

x2 + x

}
.
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Memorize
The derivative of a function f at a point a is given by the following
limit, if it exists:

f ′(a) = lim
h→0

f (a + h)− f (a)

h
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ZOOMING IN

For a smooth function, if we zoom in at a point, we see a line:

1 2

1

2

1 1.5 1 1.25 1 1.25

In this example, the slope of our zoomed-in line looks to be about:

∆y
∆x
≈ −1

2
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ZOOMING IN ON FUNCTIONS THAT AREN’T SMOOTH

For a function with a cusp or a discontinuity, even though we zoom
in very closely, we don’t see simply a single straight line.

Cusp:

1 2 1 1.5 1 1.25

Discontinuity:

1 2 1 1.5 1 1.25
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Alternate Definition – Definition 2.2.1
Calculating

f ′(a) = lim
h→0

f (a + h)− f (a)

h
is the same as calculating

f ′(x) = lim
x→a

f (x)− f (a)

x− a
.

Notice in these scenarios, h = x− a.

The derivative of f (x) does not exist at x = a if

lim
x→a

f (x)− f (a)

x− a

does not exist.
Note this is the slope of the tangent line to y = f (x) at x = a, ∆y

∆x .
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WHEN DERIVATIVES DON’T EXIST

What happens if we try to calculate a derivative where none exists?

Find the derivative of f (x) = x1/3 at x = 0.

f ′(0) = lim
h→0

f (h)− f (0)

h

= lim
h→0

h1/3 − 0
h

= lim
h→0

1
h2/3 =∞

Since the limit does not exist, we
conclude f ′(x) is not defined at
x = 0.

We can go a little farther: since
the limit goes to infinity, the
graph y = f (x) looks vertical at
x = 0.

x

y

120/515 Example 2.2.12



Theorem 2.2.14
If the function f (x) is differentiable at x = a, then f (x) is also
continuous at x = a.

Proof:

If f ′(a) exists, that means:

lim
h→0

f (a + h)− f (a)

h
exists

=⇒ lim
h→0

[
h · f (a + h)− f (a)

h

]
=

[
lim
h→0

h
]
·
[

lim
h→0

f (a + h)− f (a)

h

]
=⇒ lim

h→0

[
h · f (a + h)− f (a)

h

]
= 0

=⇒ lim
h→0

[f (a + h)− f (a)] = 0

=⇒ lim
h→0

f (a + h) = f (a)

and that is the definition of f (x) being continuous at x = a.
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Let f (x) be a function and let a be a constant in its domain. Draw a
picture of each scenario, or say that it is impossible.

f (x) continuous at x = a
f (x) differentiable at x = a

f (x) continuous at x = a
f (x) differentiable at x = a

f (x) continuous at x = a
f (x) differentiable at x = a

f (x) continuous at x = a
f (x) differentiable at x = a
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Interpreting the Derivative
The derivative of f (x) at a, written f ′(a), is the instantaneous rate of
change of f (x) when x = a.
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Interpreting the Derivative
The derivative of f (x) at a, written f ′(a), is the instantaneous rate of
change of f (x) when x = a.

Suppose P(t) gives the number of people in the world at t minutes
past midnight, January 1, 2012. Suppose further that P′(0) = 156.
How do you interpret P′(0) = 156?
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Interpreting the Derivative
The derivative of f (x) at a, written f ′(a), is the instantaneous rate of
change of f (x) when x = a.

Suppose P(n) gives the total profit, in dollars, earned by selling n
widgets. How do you interpret P′(100)?
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Interpreting the Derivative
The derivative of f (x) at a, written f ′(a), is the instantaneous rate of
change of f (x) when x = a.

Suppose h(t) gives the height of a rocket t seconds after liftoff. What
is the interpretation of h′(t)?
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Interpreting the Derivative
The derivative of f (x) at a, written f ′(a), is the instantaneous rate of
change of f (x) when x = a.

Suppose M(t) is the number of molecules of a chemical in a test tube t
seconds after a reaction starts. Interpret M′(t).
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Interpreting the Derivative
The derivative of f (x) at a, written f ′(a), is the instantaneous rate of
change of f (x) when x = a.

Suppose G(w) gives the diameter in millimetres of steel wire needed
to safely support a load of w kg. Suppose further that G′(100) = 0.01.
How do you interpret G′(100) = 0.01?
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A paper1 on the impacts of various factors in average life expectancy
contains the following:

The only statistically significant variable in the model is physician den-
sity. The coefficient for this variable 20.67 indicating that a one unit in-
crease in physician density leads to a 20.67 unit increase in life expectancy.
This variable is also statistically significant at the 1% level demonstrating
that this variable is very strongly and positively correlated with quality of
healthcare received. This denotes that access to healthcare is very impactful
in terms of increasing the quality of health in the country.

1Natasha Deshpande, Anoosha Kumar, Rohini Ramaswami, The Effect of National
Healthcare Expenditure on Life Expectancy, page 12.
Remark: physician density is measured as number of doctors per 1000 members of the
population.
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If L(p) is the average life expectancy in an area with a density p of
physicians, write the statement as a derivative: “a one unit increase in
physician density leads to a 20.67 unit increase in life expectancy.”

131/515

EQUATION OF THE TANGENT LINE

The tangent line to f (x) at a has slope f ′(a) and passes through the
point (a, f (a)).
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Tangent Line Equation – Theorem 2.3.2
The tangent line to the function f (x) at point a is:

(y− f (a)) = f ′(a)(x− a)

Point-Slope Formula
In general, a line with slope m passing through point (x1, y1) has the
equation:

(y− y1) = m(x− x1)

Find the equation of the tangent line to the curve f (x) =
√

x at x = 9.
(Recall d

dx

[√
x
]

= 1
2
√

x ).
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Memorize
The tangent line to the function f (x) at point a is:

(y− f (a)) = f ′(a)(x− a)

134/515

NOW
YOU

Let s(t) = 3− 0.8t2. Then s′(t) = −1.6t. Find the

equation for the tangent line to the function s(t) when t = 1.
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DERIVATIVES OF LINES

f (x) = 2x− 15

The equation of the tangent line to f (x) at x = 100 is:

f ′(1) =
A. 0 B. 1 C. 2 D. −15 E. −13

f ′(5) =

f ′(−13) =

137/515

g(x) = 13

g′(1) =

A. 0 B. 1 C. 2 D. 13
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ADDING A CONSTANT

Adding or subtracting a constant to a function does not change its
derivative.

We saw

d
dx
(
3− 0.8t2)∣∣∣∣

t=1
= −1.6

So,

d
dx
(
10− 0.8t2)∣∣∣∣

t=1
=
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DIFFERENTIATING SUMS

d
dx
{f (x) + g(x)} =

lim
h→0

[
[f (x + h) + g(x + h)]− [f (x) + g(x)]

h

]
= lim

h→0

[
f (x + h)− f (x) + g(x + h) + g(x)

h

]
= lim

h→0

[
f (x + h)− f (x)

h
+

g(x + h)− g(x)

h

]
= lim

h→0

[
f (x + h)− f (x)

h

]
+ lim

h→0

[
g(x + h)− g(x)

h

]
= f ′(x) + g′(x)
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CONSTANT MULTIPLE OF A FUNCTION

Let a be a constant.

d
dx
{a · f (x)} =

lim
h→0

[
a · f (x + h)− a · f (x)

h

]
= lim

h→0

[
a · f (x + h)− f (x)

h

]
= a · lim

h→0

[
f (x + h)− f (x)

h

]
= a · f ′(x)
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Rules – Lemma 2.4.1
Suppose f (x) and g(x) are differentiable, and let c be a constant
number. Then:
I d

dx {f (x) + g(x)} = f ′(x) + g′(x)

I d
dx {f (x)− g(x)} = f ′(x)− g′(x)

I d
dx {cf (x)} = cf ′(x)

←Multiply by a constant: keep the constant

For instance: let f (x) = 10
(
(2x− 15) + 13−

√
x
)
. Then f ′(x) =

142/515 Example 2.6.1

NOW
YOU

Suppose f ′(x) = 3x, g′(x) = −x2, and h′(x) = 5.

Calculate:
d

dx
{f (x) + 5g(x)− h(x) + 22}

A. 3x− 5x2

B. 3x− 5x2 − 5
C. 3x− 5x2 − 5 + 22
D. none of the above
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DERIVATIVES OF PRODUCTS

d
dx{x} =1

True or False:

d
dx
{2x} =

d
dx
{x + x}

= [1] + [1]

= 2

True or False:

d
dx
{

x2} =
d

dx
{x · x}

= [1] · [1]

= 1
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WHAT TO DO WITH PRODUCTS?

Suppose f (x) and g(x) are differentiable functions of x. What about
f (x)g(x)?
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Product Rule – Theorem 2.4.3
For differentiable functions f (x) and g(x):

d
dx

[f (x)g(x)] = f (x)g′(x) + g(x)f ′(x)

Example:
d

dx
[
x2] =

d
dx

[x · x] = x(1) + x(1) = 2x

Example: suppose f (x) = 3x2, f ′(x) = 6x, g(x) = sin(x), g′(x) = cos(x).

d
dx
[
3x2sin(x)

]
=
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Given d
dx [2x + 5] = 2, d

dx

[
sin(x2)

]
= 2x cos(x2), d

dx

[
x2
]

= 2x

NOW
YOU

f (x) = (2x + 5) sin(x2)

A. f ′(x) = (2)
(
2x cos(x2)

)
(2x)

B. f ′(x) = (2)
(
2x cos(x2)

)
C. f ′(x) = (2x + 5)(2) + sin(x2)

(
2x cos(x2)

)
D. f ′(x) = (2x + 5)

(
2x cos(x2)

)
+ (2) sin(x2)

E. none of the above
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NOW
YOU

f (x) = a(x) · b(x) · c(x)

What is f ′(x)?

148/515 Example 2.6.6



Quotient Rule – Theorem 2.4.5
Let f (x) and g(x) be differentiable and g(x) 6= 0. Then:

d
dx

{
f (x)

g(x)

}
=

g(x)f ′(x)− f (x)g′(x)

g2(x)

Mnemonic: Low d’high minus high d’low over lowlow.
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Quotient Rule – Theorem 2.4.5
Let f (x) and g(x) be differentiable and g(x) 6= 0. Then:

d
dx

{
f (x)

g(x)

}
=

g(x)f ′(x)− f (x)g′(x)

g2(x)

Mnemonic: Low d’high minus high d’low over lowlow.

d
dx

{
2x + 5
3x− 6

}
=
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Quotient Rule – Theorem 2.4.5
Let f (x) and g(x) be differentiable and g(x) 6= 0. Then:

d
dx

{
f (x)

g(x)

}
=

g(x)f ′(x)− f (x)g′(x)

g2(x)

Mnemonic: Low d’high minus high d’low over lowlow.

d
dx

{
5x√
x− 1

}
=
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NOW
YOU

Differentiate the following.

f (x) = 2x + 5
g(x) = (2x + 5)(3x− 7) + 25

h(x) =
2x + 5
8x− 2

j(x) =

(
2x + 5
8x− 2

)2

Rules
Product: d

dx{f (x)g(x)} = f (x)g′(x) + g(x)f ′(x)

Quotient:
d

dx

{
f (x)

g(x)

}
=

g(x)f ′(x)− f (x)g′(x)

g2(x)

152/515



x

y

f (x) =
x2 + 3
x− 1

For which values of x is the tangent line to the curve horizontal?
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The position of an object moving left and right at time t, t ≥ 0, is
given by

s(t) = −t2(t− 2)

where a positive position means it is to the right of its starting
position, and a negative position means it is to the left. First it moves
to the right, then it moves left forever.

t = 0

t = 2

What is the farthest point to the right that the object reaches?
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MORE ABOUT THE PRODUCT RULE

d
dx{x

2} = d
dx{x · x} = x(1) + x(1)

= 2x

d
dx{x

3} = d
dx{x · x

2}
= (x)(2x) + (x2)(1) = 3x2

d
dx {x

4} = d
dx{x · x

3}
= x(3x2) + x3(1) = 4x3

Where are these functions
defined?

function derivative
x 1
x2 2x
x3 3x2

x4 4x3

x30 30x29

xn nxn−1

155/515 Lemma 2.6.9

CAUTIONARY TALE
WITH functions RAISED TO A POWER, IT’S MORE COMPLICATED.

Differentiate (2x + 1)2
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Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

d
dx
{3x5 + 7x2 − x + 15} =
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Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

Differentiate
(x4 + 1)( 3

√
x + 4
√

x)

2x + 5
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Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

Suppose a motorist is driving their car, and their position is given by
s(t) = 10t3 − 90t2 + 180t kilometres. At t = 1 (t measured in hours), a
police officer notices they are driving erratically. The motorist claims
to have simply suffered a lack of attention: they were in the act of
pressing the brakes even as the officer noticed their speed.

At t = 1, how fast was the motorist going, and were they pressing the
gas or the brake?

Challenge: What about t = 2?
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Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

Recall that a sphere of radius r has volume V = 4
3πr3.

Suppose you are winding twine into a gigantic twine ball, filming the
process, and trying to make a viral video. You can wrap one cubic
meter of twine per hour. (In other words, when we have V cubic
meters of twine, we’re at time V hours.) How fast is the radius of
your spherical twine ball increasing?
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EXPONENTIAL FUNCTIONS

Consider d
dx {17x}

x

y

1

f (x) = 17x

small large

f (x) is always increasing, so f ′(x) is always positive.
f ′(x) might look similar to f (x).

162/515

EXPONENTIAL FUNCTIONS

d
dx
{17x} =

163/515

d
dx
{17x} = 17x · lim

h→0

(17h − 1)

h︸ ︷︷ ︸
constant

Given what you know about d
dx{17x}, is it possible that

lim
h→0

17h − 1
h

= 0?

A. Sure, there’s no reason we’ve seen that would make it
impossible.

B. No, it couldn’t be 0, that wouldn’t make sense.
C. I do not feel equipped to answer this question.

164/515



d
dx
{17x} = 17x · lim

h→0

(17h − 1)

h︸ ︷︷ ︸
constant

Given what you know about d
dx{17x}, is it possible that

lim
h→0

17h − 1
h

=∞?

A. Sure, there’s no reason we’ve seen that would make it
impossible.

B. No, it couldn’t be∞, that wouldn’t make sense.
C. I do not feel equipped to answer this question.
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d
dx
{17x} = 17x · lim

h→0

(17h − 1)

h︸ ︷︷ ︸
constant

h
17h − 1

h
0.001 2.83723068608
0.00001 2.83325347992
0.0000001 2.83321374583
0.000000001 2.83321344163

166/515 Example 2.7.1

d
dx
{17x} = lim

h→0

17x+h − 17x

h

= lim
h→0

17x17h − 17x

h

= lim
h→0

17x(17h − 1)

h

= 17x lim
h→0

(17h − 1)

h

In general, for any positive number a,

d
dx
{ax} = ax lim

h→0

ah − 1
h
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EXPONENTIAL FUNCTIONS

x

y

y = 8xy = d
dx {8

x}

d
dx {8

x} = 8x lim
h→0

8h − 1
h

y = 5xy = d
dx {5

x}

d
dx {5

x} = 5x lim
h→0

5h − 1
h

y = 4xy = d
dx {4

x}

d
dx {4

x} = 4x lim
h→0

4h − 1
h

y = 3xy = d
dx {3

x}

d
dx {3

x} = 3x lim
h→0

3h − 1
h

y = 2x y = d
dx {2

x}

d
dx {2

x} = 2x lim
h→0

2h − 1
h
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EXPONENTIAL FUNCTIONS

x

y

y = 8xy = d
dx {8

x}

d
dx {8

x} = 8x lim
h→0

8h − 1
h

y = 5xy = d
dx {5

x}

d
dx {5

x} = 5x lim
h→0

5h − 1
h

y = 4xy = d
dx {4

x}

d
dx {4

x} = 4x lim
h→0

4h − 1
h

y = 3xy = d
dx {3

x}

d
dx {3

x} = 3x lim
h→0

3h − 1
h

y = 2x y = d
dx {2

x}

d
dx {2

x} = 2x lim
h→0

2h − 1
h
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In general, for any positive number a, d
dx{a

x} = ax lim
h→0

ah − 1
h

Euler’s Number – Theorem 2.7.4
We define e to be the unique number satisfying

lim
h→0

eh − 1
h

= 1

e ≈ 2.7182818284590452353602874713526624... (Wikipedia)
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Theorem 2.7.4 and Corollary 2.10.6
Using this definition of e,

d
dx
{ex} = ex lim

h→0

eh − 1
h︸ ︷︷ ︸

1

= ex

In general, lim
h→0

ah − 1
h

= loge(a), so d
dx{a

x} = ax loge(a)

That lim
h→0

ah − 1
h

= loge(a) and d
dx{a

x} = ax loge(a) are consequences of

ax =
(
eloge(a))x

= ex loge(a)

For the details, see the end of Section 2.7.
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Things to Have Memorized
d

dx
{ex} = ex

When a is any constant,

d
dx
{ax} = ax loge(a)

Let f (x) =
ex

3x5 . When is the tangent line to f (x) horizontal?
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Evaluate d
dx

{
e3x
}
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Suppose the deficit, in millions, of a fictitious country is given by

f (x) = ex(4x3 − 12x2 + 14x− 4)

where x is the number of years since the current leader took office.
Suppose the leader has been in power for exactly two years.

1. Is the deficit increasing or decreasing?

2. Is the rate at which the deficit is growing increasing or
decreasing?
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Basic Trig Functions

θ

adj

opphyp

sin(θ) =
opp
hyp

cos(θ) =
adj
hyp

tan(θ) =
opp
adj

csc(θ) =
1

sin(θ)

sec(θ) =
1

cos(θ)

cot(θ) =
1

tan(θ)
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COMMONLY USED FACTS

I Graphs of sine, cosine, tangent

I Sine, cosine, and tangent of reference angles: 0,
π

6
,
π

4
,
π

3
,
π

2

I How to use reference angles to find sine, cosine and tangent of
other angles

I Identities: sin2 x + cos2 x = 1; tan2 x + 1 = sec2 x;

sin2 x =
1− cos(2x)

2
; cos2 x =

1 + cos 2x
2

I Conversion between radians and degrees

CLP-1 has an appendix on high school trigonometry that you should
be familiar with.
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REFERENCE ANGLES

0π

π
2

π
4

3π
4

π 3

2π3

π
6

5π
6
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DERIVATIVE OF SINE

x

y

y = sin(x)

Consider the derivative of f (x) = sin(x).

d
dx
{sin(x)} ?

= cos(x).

179/515

d
dx{sin x} = lim

h→0

sin(x + h)− sin(x)

h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

= lim
h→0

sin(x)(cos(h)− 1)

h
+ lim

h→0

cos(x) sin(h)

h

= sin(x)lim
h→0

cos(0 + h)− cos(0)

h
+ cos(x)lim

h→0

sin(h)

h

= sin(x) d
dx{cos(x)}

∣∣
x=0 + cos(x)lim

h→0

sin(h)

h
= cos(x)lim

h→0

sin(h)

h

since cos(x) has a horizontal tangent, and hence has derivative zero, at x = 0.
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1

h

si
n

(h
) h

ta
n

(h
)

sin(h)≤h so
sin(h)

h
≤ 1

Now for the proof that
sin(h)

h
≥ cos(h).

green area:
h
2

h
2
≤ tan(h)

2
Blue area:

tan h
2

cos(h) ≤ sin(h)

h

We are now ready for the Squeeze Theorem. We have

cos h ≤ sin h
h

≤ 1

lim
h→0

cos h = 1 lim
h→0

1 = 1

By the Squeeze Theorem,

lim
h→0

sin h
h

= 1

181/515 Lemma 2.8.1

DERIVATIVES OF SINE AND COSINE

¿From before,

d
dx
{sin(x)} = cos(x) · lim

h→0

sin(h)

h
= cos(x)
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DERIVATIVE OF COSINE

Now for the derivative of cos. We already know the derivative of sin,
and it is easy to convert between sin and cos using trig identities.

a

bc

x

θ

π
2 − x sin x =

b
c

= cos
(π

2
− x
)

cos x =
a
c

= sin
(π

2
− x
)

d
dx [cos(x)] = d

dx

[
sin
(
π
2 − x

)]
= − d

dx

[
sin
(
x− π

2

)]
= − cos

(
x− π

2

)
= − sin x

since sin(−θ) = − sin(θ) and cos(−θ) = cos(θ).
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When we use radians:

Derivatives of Trig Functions
d
dx{sin(x)} = cos(x)
d
dx{cos(x)} = − sin(x)
d
dx{tan(x)} =

d
dx{sec(x)} =
d

dx{csc(x)} =
d

dx{cot(x)} =

Honorable Mention

lim
x→0

sin x
x

= 1

184/515 Lemma 2.8.3



y = sin x, radians

1

1

y = sin x, degrees

1

1
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OTHER TRIG FUNCTIONS

tan(x) =
sin(x)

cos(x)
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OTHER TRIG FUNCTIONS

sec(x) =
1

cos(x)

d
dx

[sec(x)] =
d

dx

[
1

cos(x)

]
=

cos(x)(0)− (1)(− sin(x))

cos2(x)

=
sin(x)

cos2(x)

=
1

cos(x)

sin(x)

cos(x)

= sec(x) tan(x)
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OTHER TRIG FUNCTIONS

csc(x) =
1

sin(x)

d
dx

[csc(x)] =
d

dx

[
1

sin(x)

]
=

sin(x)(0)− (1) cos(x)

sin2(x)

=
− cos(x)

sin2(x)

=
−1

sin(x)

cos(x)

sin(x)

= − csc(x) cot(x)
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OTHER TRIG FUNCTIONS

cot(x) =
cos(x)

sin(x)

d
dx

[cot(x)] =
d
dx

[
cos(x)

sin(x)

]
=

sin(x)(− sin(x))− cos(x) cos(x)

sin2(x)

=
−1

sin2(x)

= − csc2(x)
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MEMORIZE

d
dx{sin(x)} = cos(x) d

dx{sec(x)} = sec(x) tan(x)

d
dx{cos(x)} = − sin(x) d

dx{csc(x)} = − csc(x) cot(x)

d
dx{tan(x)} = sec2(x) d

dx{cot(x)} = − csc2(x)

lim
x→0

sin x
x

= 1

190/515 Theorem 2.8.5

Let f (x) =
x tan(x2 + 7)

15ex . Use the definition of the derivative to find

f ′(0).

191/515

Differentiate (ex + cot x)
(
5x6 − csc x

)
.
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Let h(x) =

{
sin x

x , x < 0
ax+b
cos x , x ≥ 0

Which values of a and b make h(x) continuous at x = 0?

193/515

Practice and Review

194/515

f (x) =

{
x2 cos

( 1
x

)
, x 6= 0

0 , x = 0

Is f (x) differentiable at x = 0?

g(x) =

{
e

sin x
x , x < 0

(x− a)2 , x ≥ 0

What value(s) of a makes g(x) continuous at x = 0?
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A ladder 3 meters long rests against a vertical wall. Let θ be the angle
between the top of the ladder and the wall, measured in radians, and
let y be the height of the top of the ladder. If the ladder slides away
from the wall, how fast does y change with respect to θ?
When is the top of the ladder sinking the fastest? The slowest?

θ

y3

196/515



Suppose a point in the plane that is r centimetres from the origin, at
an angle of θ (0 ≤ θ ≤ π

2 ), is rotated π/2 radians. What is its new
coordinate (x, y)? If the point rotates at a constant rate of a radians
per second, when is the x coordinate changing fastest and slowest
with respect to θ?

x

y

r
(a, b)

θ

r

(x, y)

π
2
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INTUITION: sin x VERSUS sin(2x)

f (x) = sin x

f ′(x) = cos x

g(x) = sin(2x)

g′(x) = 2 cos(2x)

199/515

COMPOUND FUNCTIONS

Video: 2:27-3:50

Morton, Jennifer. (2014). Balancing Act: Otters, Urchins and Kelp.
Available from https://www.kqed.org/quest/67124/
balancing-act-otters-urchins-and-kelp
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http://ww2.kqed.org/quest/2014/02/25/balancing-act-otters-urchins-and-kelp/
https://www.kqed.org/quest/67124/balancing-act-otters-urchins-and-kelp
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KELP POPULATION

k kelp population
u urchin population
o otter population
p public policy

k(u) k(u(o)) k(u(o(p)))

These are examples of compound functions.

Should d
do k
(
u(o)

)
be positive or negative?

A. positive B. negative C. I’m not sure

Should k′(u) be positive or negative?
A. positive B. negative C. I’m not sure
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DIFFERENTIATING COMPOUND FUNCTIONS

d
dx
{f (g(x))} = lim

h→0

f (g(x + h))− f (g(x))

h

= lim
h→0

f (g(x + h))− f (g(x))

h

(
g(x + h)− g(x)

g(x + h)− g(x)

)
= lim

h→0

f (g(x + h))− f (g(x))

g(x + h)− g(x)
· g(x + h)− g(x)

h

= lim
h→0

f (g(x + h))− f (g(x))

g(x + h)− g(x)
· lim

h→0

g(x + h)− g(x)

h

= lim
h→0

f
(

g(x + h)
)
− f
(

g(x)
)

g(x + h) − g(x)
· g′(x)

Set H = g(x + h)− g(x). As h→ 0, we also have H→ 0. So

= lim
H→0

f (g(x) + H)− f (g(x))

H
· g′(x)

= f ′(g(x)) · g′(x)

202/515

CHAIN RULE

Chain Rule – Theorem 2.9.3
Suppose f and g are differentiable functions. Then

d
dx
{f
(
g(x)

)
} = f ′

(
g(x)

)
g′(x) =

df
dg
(
g(x)

)dg
dx

(x)

In the case of kelp,
d
do

k
(
u(o)

)
=

dk
du
(
u(o)

)du
do

(o)
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Chain Rule
Suppose f and g are differentiable functions. Then

d
dx
{f
(
g(x)

)
} = f ′

(
g(x)

)
g′(x) =

df
dg
(
g(x)

)dg
dx

(x)

Example: suppose F(x) = sin(ex + x2).

204/515



F(v) =

(
v

v3 + 1

)6

205/515

NOW
YOU

Let f (x) = (10x + csc x)
1/2. Find f ′(x).

f (x) = ( 10x + csc x )1/2

Using the chain rule,

f ′(x) =
1
2

( 10x + csc x )−1/2(10x loge 10− csc x cot x)

=
10x loge 10− csc x cot x

2
√

10x + csc x

206/515

NOW
YOU

Suppose o(t) = et, u(o) = 1
o+sin(o) , and t ≥ 10 (so all

these functions are defined). Using the chain rule, find d
dt u
(
o(t)
)
.

Note: your answer should depend only on t: not o.

o′(t) = et

u′(o) =
(o + sin o)(0)− (1)(1 + cos o)

(o + sin o)2

=
−(1 + cos o)

(o + sin o)2

d
dt

u
(
o(t)
)

= u′
(
o(t)
)

o′(t)

= −et

(
1 + cos

(
o(t)
)[

o(t) + sin(o(t))
]2
)

= −et

(
1 + cos(et)[
et + sin(et)

]2
)
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Evaluate
d

dx

{
x2 + sec

(
x2 +

1
x

)}

d
dx

{
x2 + sec

(
x2 +

1
x

)}

= 2x + sec

(
x2 +

1
x

)
· tan

(
x2 +

1
x

)
· d

dx

{
x2 +

1
x

}

= 2x + sec

(
x2 +

1
x

)
· tan

(
x2 +

1
x

)
· d

dx

{
x2 + x−1

}

= 2x + sec

(
x2 +

1
x

)
· tan

(
x2 +

1
x

)
·
(

2x− x−2
)

Notice: That first term, 2x, is not multiplied by anything else.
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Evaluate
d

dx


1

x +
1

x + 1
x



d
dx


1

x +
1

x + 1
x

 =
d

dx

{(
x +

(
x + x−1

)−1
)−1

}

= −
(

x +
(

x + x−1
)−1

)−2

·
d

dx

{
x +

(
x + x−1

)−1
}

= −
(

x +
(

x + x−1
)−1

)−2

·
[

1 + (−1)
(

x + x−1
)−2

·
d

dx

{
x + x−1

}]

= −
(

x +
(

x + x−1
)−1

)−2

·
[

1 + (−1)
(

x + x−1
)−2

· (1− x−2)

]
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INVERTIBILITY GAME

I A function y = f (x) is known to both players
I Player A chooses a secret value x in the domain of f (x)

I Player A tells Player B what f (x) is
I Player B tries to guess Player A’s x-value.

Round 1: f (x) = 2x

Round 2: f (x) = 3
√

x

Round 3: f (x) = |x|

Round 4: f (x) = sin x

211/515

FUNCTIONS ARE MAPS

domain range

f (x) = 3
√

x

f−1(x) = x3

212/515 Definition 0.6.3



FUNCTIONS ARE MAPS

domain range

f (x) = |x|

f−1(x) DNE

213/515

x

y

x2 − 4, x ≥ 0

A. invertible B. not invertible

214/515 Definition 0.6.2

x

y

x2 − 4, x ≥ 0

A. invertible B. not invertible

215/515 Definition 0.6.2

x

y

x2 − 4, x ≥ 0

A. invertible B. not invertible

216/515 Definition 0.6.2



RELATIONSHIP BETWEEN f (x) AND f−1(x)

Let f be an invertible function.
What is f−1(f (x))?
A. x
B. 1
C. 0
D. not sure

domain range

125 5

f (x)

f−1(x)
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Invertibility
In order for a function to be invertible , different x values cannot map
to the same y value.
We call such a function one-to-one, or injective.

Suppose f (x) = 3
√

19 + x3. What is f−1(3)? (simplify your answer)

What is f−1(10)? (do not simplify)

What is f−1(x)?

218/515 Definition 0.6.1

Let f (x) = x2 − x.

1. Sketch a graph of f (x), and choose a (large) domain over which it is
invertible.

2. For the domain you chose, evaluate f−1(20).

3. For the domain you chose, evaluate f−1(x).

4. What are the domain and range of f−1(x)? What are the (restricted)
domain and range of f (x)?

219/515

x

y

a

b

y = x2 − x

220/515



f (x) = x2 − x, domain:
[ 1

2 ,∞
)

f−1(x) = 1+
√

1+4x
2

domain of f (x) range of f (x)

f (x)

f−1(x)

range of f−1(x) domain of f−1(x)

[ 1
2 ,∞

) [
− 1

4 ,∞
)
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INVERTIBILITY GAME: f (x) = ex f−1(x) = loge x

I I’m thinking of an x. Your clue: f (x) = e. What is my x?

x = 1
loge(e) = 1

I I’m thinking of an x. Your clue: f (x) = 1. What is my x?

x = 0
loge(1) = 0

I I’m thinking of an x. Your clue: f (x) = 1
e . What is my x?

x = −1
loge

( 1
e

)
= −1

I I’m thinking of an x. Your clue: f (x) = e3. What is my x?

x = 3
loge(e3) = 3

I I’m thinking of an x. Your clue: f (x) = 0. What is my x?

Trick
question: no x gives f (x) = 0.

loge(x) is undefined at x = 0

222/515

1. Suppose 0 < x < 1. Then loge(x) is...

2. Suppose −1 < x < 0. Then loge(x) is...

3. Suppose e < x. Then loge(x) is...

A. positive
B. negative

C. greater than one
D. less than one

E. undefined
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EXPONENTS AND LOGARITHMS

f (x) = ex f−1(x) = loge(x) = ln(x)= log(x)

x ex e fact↔ loge fact x loge(x)
0 1

e0 = 1 ↔ loge(1) = 0 1 0

1 e

e1 = e ↔ loge(e) = 1 e 1

−1 1
e

e−1 = 1
e ↔ loge(

1
e ) = −1 1

e −1

n en

en = en ↔ loge(en) = n en n

224/515



x

y y = ex

y = loge(x)
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LOGS OF OTHER BASES: logn(x) IS THE INVERSE OF nx

log10 108 =

A. 0
B. 8
C. 10
D. other

log2 16 =

A. 1
B. 2
C. 3
D. other

226/515

Logarithm Rules
Let A and B be positive, and let n be any real number.
log(A · B) = log(A) + log(B)
Proof: log(A · B) = log(elog Aelog B) = log(elog A+log B) = log(A) + log(B)
log(A/B) = log(A)− log(B)

Proof: log(A/B) = log
(

elog A

elog B

)
= log(elog A−log B) = log A− log B

log(An) = n log(A)

Proof: log(An) = log
((

elog A
)n
)

= log
(
en log A

)
= n log A
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Logarithm Rules
Let A and B be positive, and let n be any real number.
log(A · B) = log(A) + log(B)
log(A/B) = log(A)− log(B)
log(An) = n log(A)

Write as a single logarithm:

f (x) = log

(
10
x2

)
+ 2 log x + log(10 + x)
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BASE CHANGE

Fact: blogb(a) = a

⇒ log
(
blogb(a)) = log(a)

⇒ logb(a) log(b) = log(a)

⇒ logb(a) =
log(a)

log(b)

In general, for positive a, b, and c:

logb(a) =
logc(a)

logc(b)

229/515

In general, for positive a, b, and c:

logb(a) =
logc(a)

logc(b)

Suppose your calculator can only compute logarithms base 10. What
would you enter to calculate log(17)?

log10(17)
log10(e)

Suppose your calculator can only compute natural logarithms. What
would you enter to calculate log2(57)?

log(57)
log(2)

Suppose your calculator can only compute logarithms base 2. What
would you enter to calculate log(2)?

log2 2
log2 e = 1

log2 e
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Decibels: For a particular measure of the power P of a sound wave,
the decibels of that sound is:

10 log10(P)

So, every ten decibels corresponds to a sound being ten times louder.

A lawnmower emits a 100dB sound. How much sound will two
lawnmowers make?
A. 100 dB
B. 110 dB
C. 200 dB
D. other
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DIFFERENTIATING THE NATURAL LOGARITHM

Calculate d
dx{loge x}.

One Weird Trick:

x = eloge x

d
dx
{x} =

d
dx
{

eloge x}
1 = eloge x · d

dx
{loge x} = x · d

dx
{loge x}

1
x

=
d
dx
{loge x}
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Derivative of Natural Logarithm
d
dx
{loge |x|} =

1
x

(x 6= 0)

Differentiate: f (x) = loge |x2 + 1|

234/515

Derivatives of Logarithms – Corollary 2.10.6
For a > 0:

d
dx

[loga |x|] =
1

x log a

In particular:
d

dx
[log |x|] =

1
x

Differentiate: f (x) = loge | cot x|

235/515

LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

I log(f · g) = log f + log g

multiplication turns into addition

I log
(

f
g

)
= log f − log g

division turns into subtraction

I log (f g) = g log f

exponentiation turns into multiplication

We can exploit these properties to differentiate!
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Logarithmic Differentiation

In general, if f (x) 6= 0, d
dx [log |f (x)|] =

f ′(x)
f (x) .

f (x) =

(
(2x + 5)4(x2 + 1)

x + 3

)5

Find f ′(x).

237/515 Example 2.10.8

LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

f (x) =

(
(2x + 5)4(x2 + 1)

x + 3

)5
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LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

Differentiate:
f (x) = xx

239/515

LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

Differentiate:

f (x) =

(
(x15 − 9x2)10(x + x2 + 1)

(x7 + 7)(x + 1)(x + 2)(x + 3)

)5
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f (x) =
(x8 − ex)(

√
x + 5)

csc5 x

241/515

f (x) = (x2 + 17)(32x5 − 8)(x98 − x57 + 32x2)4(32x10 − 10x32)

Find f ′(x).

242/515
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IMPLICITLY DEFINED FUNCTIONS

y2 + x2 + xy + x2y = 1

Which of the following points are on the curve?
(0, 1), (0,−1), (0, 0), (1, 1)

If x = −3, what is y?
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y2 + x2 + xy + x2y = 1

Still has a slope: ∆y
∆x

Locally, y is still a function of x.

245/515

y2 + x2 + xy + x2y = 1

Consider y as a function of x. Can we find dy
dx ?

d
dx [y] = d

dx [x] = d
dx [1] =

246/515

y2 + x2 + xy + x2y = 1

dy
dx

= −2x + y + 2xy
2y + x + x2

Necessarily, dy
dx depends on both y and x. Why?

247/515

NOW
YOU

Suppose x4y + y4x = 2. Find dy
dx at the point (1, 1).

x4y(x) + y(x)4x = 2

4x3y(x) + x4 dy
dx

(x) + y(x)4 + 4y(x)3 dy
dx

(x) x = 0

We may only replace variables with constants after differentiating.
When x = 1 and y(1) = 1,

4(1)3y(1) + (1)4 dy
dx

(1) + y(1)4 + 4y(1)3 dy
dx

(1) = 0

4 +
dy
dx

(1) + 1 + 4
dy
dx

(1) = 0

5
dy
dx

(1) = −5

dy
dx

(1) = −1
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NOW
YOU

Suppose
3y2 + 2y + y3

x2 + 1
= x. Find

dy
dx

when x = 0, and

the equations of the associated tangent line(s).

To avoid the quotient rule, we start by simplifying our expression.

3y(x)2 + 2y(x) + y(x)3

x2 + 1
= x

3y(x)2 + 2y(x) + y(x)3 = x3 + x

6y(x)
dy
dx

(x) + 2
dy
dx

(x) + 3y(x)2 dy
dx

(x) = 3x2 + 1

When x = 0:

dy
dx

(0) =
1

6y(0) + 2 + 3y(0)2

249/515

Use implicit differentiation to differentiate log(x), x > 0.

log x = y(x)

x = ey(x)

1 = ey(x) · dy
dx

(x)

dy
dx

(x) =
1

ey(x)
=

1
x

Use implicit differentiation to differentiate log |x|, x < 0.

log |x| = y(x)

log(−x) = y(x)

−x = ey(x)

−1 = ey(x) · dy
dx

(x)

dy
dx

(x) =
−1
ey(x)

=
−1
−x

=
1
x

250/515

Use implicit differentiation to differentiate loga(x), where a > 0 is a
constant and x > 0.

Use implicit differentiation to differentiate loga |x|, a > 0.

251/515
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INVERTIBILITY GAME

x

y

y = sin x

π
2−π2 3π

2
ππ 2π

I’m thinking of a number x. Your hint: sin(x) = 0. What number am I
thinking of?

I’m thinking of a number x, and x is between −π2 and π
2 . Your hint:

sin(x) = 0. What number am I thinking of?

253/515

ARCSINE

x

y

y = sin x

π
2−π2 3π

2
ππ 2π

arcsin(x) is the inverse of sin x restricted to
[
−π2 ,

π
2

]

arcsin x is the (unique) number θ such that:
I −π2 ≤ θ ≤

π
2 , and

I sin θ = x

254/515 Example 2.12.1

ARCSINE

Reference Angles:

θ sin θ

0 0

−

π
6

−

1
2

−

π
4

−

1√
2

−

π
3

−

√
3

2

−

π
2

−

1

I arcsin(0)

= 0

I arcsin
(

1√
2

)

=π
4

I arcsin
(
− 1√

2

)

=−π4

I arcsin
(
π
2

)

undefined

I arcsin
(
π
4

)

defined, but we
haven’t covered tools (yet) to
figure it out

255/515 Example 2.12.2

ARCCOSINE

x

y
y = cos x

arccos(x) is the inverse of cos x restricted to [0, π].

arccos(x) is the (unique) number θ such that:
I cos(θ) = x and

←←← inverse

I 0 ≤ θ ≤ π

←←← inverse exists

256/515 Definition 2.12.3



ARCTANGENT

x

y

y = tan(x)

arctan(x) = θ means:
(1) tan(θ) = x and
(2) −π/2 < θ < π/2

257/515 Definition 2.12.3

ARCSECANT, ARCSINE, AND ARCCOTANGENT

arcsec(x) =

arccos
( 1

x

)

258/515 Definition 2.12.3

ARCSECANT, ARCSINE, AND ARCCOTANGENT

arccsc(x) = arcsin
( 1

x

)
arccsc(x) = y

csc y = x
1

sin y
= x

sin y =
1
x

y = arcsin
( 1

x

)
arccsc(x) = arcsin

( 1
x

)

arccot(x) = arctan
( 1

x

)
arccot(x) = y

cot y = x
1

tan y
= x

tan y = 1
x

y = arctan
( 1

x

)
arccot(x) = arctan

( 1
x

)

259/515 Definition 2.12.3

arcsec(x) = arccos
( 1

x

)
The domain of arccos(y) is −1 ≤ y ≤ 1, so the domain of arcsec(y) is

(−∞,−1] ∪ [1,∞).

y = 1
x

1

−1

x

y
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arccsc(x) = arcsin
( 1

x

)
Domain of arcsin(y) is −1 ≤ y ≤ 1, so the domain of arccsc(x) is

(−∞,−1] ∪ [1,∞).

y = 1
x

1

−1

x

y

261/515

arccot(x) = arctan
( 1

x

)
Domain of arctan(x) is all real numbers, so the domain of arccot(x) is

(−∞, 0) ∪ (0,∞).

y = 1
x

x

y

262/515

y = arcsin x

Find dy
dx .

263/515

y = arctan x

Find dy
dx .

264/515 Example 2.12.5



y = arccos x

Find dy
dx .

265/515 Example 2.12.4

To differentiate arcsecant, arccosecant, and arccotangent, you can use
the chain rule!

d
dx

[arccsc(x)] =
d
dx

[
arcsin

(
1
x

)]
=

d
dx
[
arcsin

(
x−1)]

266/515 Example 2.12.6

Derivatives of Inverse Trigonometric Functions –
Theorem 2.12.7
Memorize:

d
dx [arcsin x] =

1√
1− x2

d
dx [arccos x] = − 1√

1− x2

d
dx [arcsin x] =

1
1 + x2

Be able to derive:

d
dx [arccsc x] = − 1

|x|
√

x2 − 1
d

dx [arcsec x] =
1

|x|
√

x2 − 1
d

dx [arccot x] = − 1
1 + x2
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ROLLE’S THEOREM

x

y

269/515

Rolle’s Theorem – Theorem 2.13.1
Let a and b be real numbers, with a < b. And let f be a function with
the properties:

• f (x) is continuous for every x with a ≤ x ≤ b;
• f (x) is differentiable when a < x < b;
• and f (a) = f (b).

Then there exists a number c with a < c < b such that

f ′(c) = 0.

270/515

Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Example: Let f (x) = x3 − 2x2 + 1, and observe f (2) = f (0) = 1. Since
f (x) is a polynomial, it is continuous and differentiable everywhere.

x

y

2

0 = f ′(x) = 3x2 − 4x
= x(3x− 4)

x = 0 and x =
4
3

f ′
(

4
3

)
= 0
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

x

y

a b
Suppose a < b and f (a) = f (b),
f (x) is continuous over [a, b], and
f (x) is differentiable over (a, b).

How many different values of x
between a and b have f ′(x) = 0?

A. 0 or 1
B. 1
C. 0, 1, or more
D. 1 or more
E. I’m not sure
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and f (x) has precisely
seven roots, all different. How
many roots does f ′(x) have?

A. precisely six

B. precisely seven

C. at most seven

D. at least six
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and f ′(x) is also
continuous and differentiable for
all real numbers, and f (x) has
precisely seven roots, all
different. How many roots does
f ′′(x) have?

A. precisely six
B. precisely five
C. at most five
D. at least five
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and there are precisely
three places where f ′(x) = 0.
How many distinct roots does
f (x) have?

A. at most three

B. at most four

C. at least three

D. at least four
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and f ′(x) = 0 for
precisely three values of x. How
many distinct values x exist with
f (x) = 17?

A. at most three

B. at most four

C. at least three

D. at least four
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APPLICATIONS OF ROLLE’S THEOREM

Prove that the function f (x) = x3 + x− 1 has at most one real root.

How would you show that f (x) has precisely one real root?

277/515 Example 2.13.3

Use Rolle’s Theorem to show that the function
f (x) = 1

3 x3 + 3x2 + 9x− 3 has at most two distinct real roots.
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AVERAGE RATE OF CHANGE

x

y

1 3

5

3

1

What is the average rate of
change of f (x) from x = 1 to
x = 3?

A. 0
B. 1
C. 2
D. 4
E. I’m not sure
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AVERAGE RATE OF CHANGE

x

y

2 7

30

15

∆y
∆x

=
15− 15
7− 2

=
0
5

= 0

What is the average rate of
change of f (x) from x = 2 to
x = 7?

A. 0

B. 3

C. 5

D. 15

E. I’m not sure
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Rolle’s Theorem and Average Rate of Change
Suppose f (x) is continuous on the interval [a, b], differentiable on the
interval (a, b), and f (a) = f (b). Then there exists a number c strictly
between a and b such that

f ′(c) = 0 =
f (b)− f (a)

b− a
.

So there exists a point where the derivative is the same as the average
rate of change.
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Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that:

f ′(c) =
f (b)− f (a)

b− a

That is: there is some point c in (a, b) where the instantaneous rate of
change of the function is equal to the average rate of change of the
function on the interval [a, b].

283/515

Suppose you are driving along a long, straight highway with no
shortcuts. The speed limit is 100 kph. A police officer notices your car
going 90 kph, and uploads your plate and the time they saw you to
their database. 150 km down this same straight road, 75 minutes
later, another police officer notices your car going 85kph, and
uploads your plates to the database. Then they pull you over, and
give you a speeding ticket. Why were they justified?
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According to this website, Canada geese may fly 1500 miles in a
single day under favorable conditions. It also says their top speed is
around 70mph. Does this seem like a typo? (If it contradicts the Mean
Value Theorem, it’s probably a typo.)

285/515

The record for fastest wheel-driven land speed is around 700 kph. 2

However, non-wheel driven cars (such as those powered by jet
engines) have achieved higher speeds. 3

Suppose a driver of a jet-powered car starts a 10km race at 12:00, and
finishes at 12:01. Did they beat 700kph?

2(at time of writing) George Poteet,
https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record

3https://en.wikipedia.org/wiki/Land_speed_record
286/515

Suppose you want to download a file that is 3000 MB (slightly under
3GB). Your internet provider guarantees you that your download
speeds will always be between 1 MBPS (MB per second) and 5 MBPS
(because you bought the cheap plan). Using the Mean Value
Theorem, give an upper and lower bound for how long the
download can take (assuming your providers aren’t lying, and your
device is performing adequately).

287/515

Suppose 1 ≤ f ′(t) ≤ 5 for all values of t, and f (0) = 0. What are the
possible solutions to f (t) = 3000?
Notice: since the derivative exists for all real numbers, f (x) is
differentiable and continuous for all real numbers!
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Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) = 0 for all x in (a, b), then

If f (c) 6= f (d), then f (d)−f (c)
d−c 6= 0, so f ′(e) 6=

0 for some e.

289/515 Corollary 2.13.11

Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) = g′(x) for all x in (a, b), then

Define a new function k(x) = f (x) − g(x).
Then k′(x) = 0 everywhere, so (by the last
corollary) k(x) = A for some constant A.

290/515 Corollary 2.13.12

Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) > 0 for all x in (a, b), then

If f (c) > f (d) and c < d, then f (d)−f (c)
d−c =

(negative)
(positive) < 0. Then f ′(e) < 0 for some e
between c and d.

291/515 Corollary 2.13.11

Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) < 0 for all x in (a, b), then

If f (c) < f (d) and c < d, then f (d)−f (c)
d−c =

(positive)
(positive) > 0. Then f ′(e) > 0 for some e
between c and d.

292/515 Corollary 2.13.11



Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that

f ′(c) =
f (b)− f (a)

b− a

WARNING: The MVT has two hypotheses.
I f (x) has to be continuous on [a, b].
I f (x) has to be differentiable on (a, b).

If either of these hypotheses are violated, the conclusion of the MVT
can fail. Here are two examples.
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Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that

f ′(c) =
f (b)− f (a)

b− a

Example: Let a = −1, b = 1 and f (x) = |x|.

x

y

1−1

f ′(x) =


1 if x > 0
−1 if x < 0
undefined if x = 0

f ′(x) is never 0 =
f (b)−f (a)

b−a .
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Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that

f ′(c) =
f (b)− f (a)

b− a

Example: Let a = 0, b = 1 and f (x) =

{
0 if x ≤ 0
1 if x > 0

.

x

y

1

f ′(x) =


0 if x > 0
0 if x < 0
undefined if x = 0

f ′(x) is never 1 =
f (b)−f (a)

b−a .
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HIGHER ORDER DERIVATIVES

Evaluate d
dx

[
d
dx [x5 − 2x2 + 3]

]
d

dx
[x5 − 2x2 + 3] =

d
dx

[
d

dx
[x5 − 2x2 + 3]

]
=

d
dx
[
5x4 − 4x

]
= 20x3 − 4

Notation 2.14.1
The derivative of a derivative is called the second derivative, written

f ′′(x) or
d2y
dx2 (x)

Similarly, the derivative of a second derivative is a third derivative,
etc.
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Notation 2.14.1
I f ′′(x) and f (2)(x) and d2f

dx2 (x) all mean d
dx

( d
dx f (x)

)
I f ′′′(x) and f (3)(x) and d3f

dx3 (x) all mean d
dx

( d
dx

( d
dx f (x)

))
I f (4)(x) and d4f

dx4 (x) both mean d
dx

( d
dx

( d
dx

( d
dx f (x)

)))
I and so on.
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TYPICAL EXAMPLE: ACCELERATION

I Velocity: rate of change of position
I Acceleration: rate of change of velocity.

The position of an object at time t is given by s(t) = t(5− t). Time is
measured in seconds, and position is measured in metres.

1. Sketch the graph giving the position of the object.
2. What is the velocity of the object when t = 1? Include units.
3. What is the acceleration of the object when t = 1? Include units.

299/515 Example 2.14.3

CONCEPT CHECK

True or False: If f ′(1) = 18, then f ′′(1) = 0,
since the d

dx{18} = 0.

Which of the following is
always true of a QUADRATIC
polynomial f (x)?
A. f (0) = 0
B. f ′(0) = 0
C. f ′′(0) = 0
D. f ′′′(0) = 0
E. f (4)(0) = 0

Which of the following is
always true of a CUBIC
polynomial f (x)?
A. f (0) = 0
B. f ′(0) = 0
C. f ′′(0) = 0
D. f ′′′(0) = 0
E. f (4)(0) = 0

300/515 Warning 2.14.5Example 2.14.2



IMPLICIT DIFFERENTIATION

Suppose y(x) is a function such that

y(x) = y3x + x2 − 1

Find y′′(x) at the point (−2, 1).

We start by differentiating both
sides of the function. Remember that y is a function, not a variable.

y(x) = y(x)3x + x2 + 1
dy
dx

(x)
prod
= y(x)3 + 3xy(x)2 dy

dx
(x) + 2x (∗)

Let’s differentiate both sides again. Remember we have a rule for the
product of three functions.

d2y
dx2 = 3y2 dy

dx
+ 3

(
y2 dy

dx
+ x · 2y

dy
dx
· dy

dx
+ xy2 d2y

dx2

)
+ 2 (∗∗)
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The position of a unicyclist along a tightrope is given by

s(t) = t3 − 3t2 − 9t + 10

where s(t) gives the distance in meters to the right of the middle of
the tightrope, and t is measured in seconds, −2 ≤ t ≤ 4.

Describe the unicyclist’s motion: when they are moving right or left;
when they are moving fastest and slowest; and how far to the right or
left of centre they travel.

303/515 Example 3.1.1

A solution in a beaker is undergoing a chemical reaction, and its
temperature (in degrees Celsius) at t seconds from noon is given by

T(t) = t3 + 3t2 + 4t− 273

1. When is the reaction increasing the temperature, and when is it
decreasing the temperature?

2. What is the slowest rate of change of the temperature?

304/515 Example 3.1.1Example 3.1.1



You roll a magnetic marble across the floor towards a metal fridge,
giving it an initial velocity of 50 centimetres per second. The magnet
imparts an acceleration on the magnet of 1 meter per second per
second. If the magnet hits the fridge after 2 seconds, how far away
was it when you rolled it?
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The deceleration of a particular car while braking is 9 m/s2.
1. Suppose the car needs to stop in 30m. How fast can it be going?
(Give your answer in kph.)

2. Suppose the car needs to stop in 50m. How fast can it be going?
(Give your answer in kph.)

306/515 Example 3.1.3

Suppose your brakes decelerate your car at a constant rate. That is, d
meters per second per second, for some constant d.
Is it true that if you double your speed, you double your stopping
time?

307/515 Example 3.1.3Example 3.1.3
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RELATED RATES - INTRODUCTION

“Related rates” problems involve finding the rate of change of one
quantity, based on the rate of change of a related quantity.

309/515

Suppose P and Q are quantities that are changing over time, t.
Suppose they are related by the equation

3P2 = 2Q2 + Q + 3.

If
dP
dt

(t) = 5 when P(t) = 1 and Q(t) = 0, then what is
dQ
dt

at that
time?

310/515 Example 3.2.3

Related rates problems often involve some kind of geometric or
trigonometric modeling

A garden hose can pump out a cubic meter of water in about 20
minutes. Suppose you’re filling up a rectangular backyard pool, 3
meters wide and 6 meters long, with a garden hose. How fast is the
water rising?

311/515

SOLVING RELATED RATES

1. Draw a Picture

2. Write what you know, and what you want to know. Note units.

3. Relate all your relevant variables in one equation.

4. Differentiate both sides (with respect to the appropriate variable!)

5. Solve for what you want.
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A weight is attached to a rope, which is attached to a pulley on a
boat, at water level. The weight is taken 8 (horizontal) metres from its
attachment point on the boat, then dropped in the water.
The weight sinks straight down. The rope stays taught as it is let out
at a constant rate of one metre per second, and two seconds have
passed. How fast is the weight descending?

8
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You are pouring water through a funnel with an extremely small
hole. The funnel lets water out at 100mL per second, and you are
pouring water into the funnel at 300mL per second. The funnel is
shaped like a cone with height 20 cm and with the diameter at the top
also 20 cm. (Ignore the hole in the bottom.) How fast is the height of
the water in the funnel rising when it is 10 cm high?

A cone with radius r and height h has volume π
3 r2h.
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A sprinkler is 3m from a long, straight wall. The sprinkler sprays
water in a circle, making three revolutions per minute. Let P be the
point on the wall closest to the sprinkler. The water hits the wall at
some spot, and that spot moves as the sprinkler rotates. When the
spot where the water hits the wall is 1m away from P, how fast is the
spot moving horizontally?
(You may assume the water travels from the sprinkler to the wall
instantaneously.)

315/515 Example 3.2.1

A roller coaster has a track shaped in part like the folium of
Descartes: x3 + y3 = 6xy. When it is at the position (3, 3), its
horizontal position is changing at 2 units per second in the negative
direction. How fast is its vertical position changing?

316/515 Example 3.2.1



Two dogs are tied with elastic leashes to a lamp post that is 2 metres
from a straight road. At first, both dogs are on the road, at the closest
part of the road to the lamp post. Then, they start running in opposite
directions: one dog runs 3 metres per second, and the other runs 2
metres per second. After one second of running, how fast is the angle
made by the two leashes increasing?

road

lamp post

doggy 1 doggy 2

θ
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A crow is one kilometre due east of the math building, heading east
at 5 kph. An eagle is two kilometres due north of the math building,
heading north at 7kph. How fast is the distance between the two
birds increasing at this instant?

318/515 Example 3.2.5

A triangle has one side that is 1cm long, and another side that is 2cm,
and the third side is formed by an elastic band that can shrink and
stretch. The two fixed sides are rotated so that the angle they form, θ,
grows by 1.5 radians each second. Find the rate of change of the area
inside the triangle when θ = π/4.

319/515 Example 3.2.5
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RADIOACTIVE DECAY

The number of atoms in a sample that decay in a given time interval
is proportional to the number of atoms in the sample.

Differential Equation
Let Q = Q(t) be the amount of a radioactive substance at time t. Then
for some positive constant k:

dQ
dt

= −kQ

Solution – Theorem 3.3.2

Let Q(t) = Ce−kt , where k and C are constants. Then:

321/515 Equation 3.3.1

RADIOACTIVE DECAY

Quantity of a Radioactive Isotope

Q(t) = Ce−kt

Q(t): quantity at time t

What is the sign of Q(t)?
A. positive or zero
B. negative or zero
C. could be either
D. I don’t know

What is the sign of C?
A. positive or zero
B. negative or zero
C. could be either
D. I don’t know
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Seaborgium Decay
The amount of 266Sg (Seaborgium-266) in a sample at time t
(measured in seconds) is given by

Q(t) = Ce−kt

Let’s approximate the half life of 266Sg as 30 seconds. That is, every 30
seconds, the size of the sample halves.

What are C and k?

323/515 Example 3.3.3

A sample of radioactive matter is stored in a lab in 2000. In the year
2002, it is tested and found to contain 10 units of a particular
radioactive isotope. In the year 2005, it is tested and found to contain
only 2 units of that same isotope. How many units of the isotope
were present in the year 2000?

324/515 Example 3.3.3Example 3.3.6



Q′(t) = kQ(t)

The number of atoms in a sample that decay in a given time interval
is proportional to the number of atoms in the sample.

The rate of growth of a population in a given time interval is
propotional to the number of individuals in the population, when the
population has ample resources.

The amount of interest a bank account accrues in a given time
interval is proportional to the balance in that bank account.
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Exponential Growth – Theorem 3.3.2
Let Q = Q(t) satisfy:

dQ
dt

= kQ

for some constant k. Then for some constant C = Q(0),

Q(t) = Cekt

Suppose y(t) is a function with the properties that

dy
dt

+ 3y = 0 and y(1) = 2.

What is y(t)?
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POPULATION GROWTH

Suppose a petri dish starts with a culture of 100 bacteria cells and a
limited amount of food and space. The population of the culture at
different times is given in the table below. At approximately what
time did the culture start to show signs of limited resources?

time population
0 100
1 1000
3 100000
5 1000000
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FLU SEASON

The CDC keeps records (link) on the number of flu cases in the US by
week. At the start of the flu season, the 40th week of 2014, there are
100 cases of a particular strain. Five weeks later (at week 45), there
are 506 cases. What do you think was the first week to have 5,000
cases? What about 10,000 cases?

328/515 Example 3.3.13

http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


Newton’s Law of Cooling – Equation 3.3.7
The rate of change of temperature of an object is proportional to the
difference in temperature between that object and its surroundings.

dT
dt

(t) = K[T(t)− A]

where T(t) is the temperature of the object at time t, A is the
(constant) ambient temperature of the surroundings, and K is some
constant depending on the object.
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dT
dt

(t) = K[T(t)− A]

T(t) is the temperature of the object, A is the ambient temperature, K
is some constant.

What is true of K?
A. K ≥ 0
B. K ≤ 0
C. K = 0
D. K could be positive, negative, or zero, depending on the object
E. I don’t know
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Newton’s Law of Cooling – Equation 3.3.7
dT
dt

(t) = K[T(t)− A]

T(t) is the temperature of the object, A is the ambient temperature,
and K is some constant.

T(t) = [T(0)− A]eKt + A

is the only function satisfying Newton’s Law of Cooling

If T(10) < A, then:
A. K > 0
B. T(0) > 0
C. T(0) > A
D. T(0) < A

Evaluate lim
t→∞

T(t).

A. A
B. 0
C. ∞
D. T(0)
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What assumptions are we making that might not square with the real
world?

Newton’s Law of Cooling – Equation 3.3.7
dT
dt

= K[T(t)− A]

T(t) is the temperature of the object, A is the ambient temperature,
and K is some constant.

Temperature of a Cooling Body – Corollary 3.3.8

T(t) = [T(0)− A]eKt + A
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A farrier forms a horseshoe heated to 400◦ C, then dunks it in a river
at room-temperature (25◦ C). The water boils for 30 seconds. The
horseshoe is safe for the horse when it’s 40◦ C. When can the farrier
put on the horseshoe?

T(t) = [T(0)− A]eKt + A

333/515 Example 3.3.9

A glass of just-boiled tea is put on a porch outside. After ten minutes,
the tea is 40◦, and after 20 minutes, the tea is 25◦. What is the
temperature outside?

334/515 Example 3.3.11

In 1963, the US Fish and Wildlife Service recorded a bald eagle
population of 487 breeding pairs. In 1993, that number was 4015.
How many breeding pairs would you expect there were in 2006?
What about 2015?
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link: Wood Bison Restoration in Alaska, Alaska Department of Fish
and Game

Excerpt:
Based on experience with reintroduced populations elsewhere, wood
bison would be expected to increase at a rate of 15%-25% annually
after becoming established.... With an average annual growth rate
of 20%, an initial precalving population of 50 bison would increase
to 500 in approximately 13 years.

NOW
YOU

Are they using our same model?
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http://www.adfg.alaska.gov/static/species/speciesinfo/woodbison/pdfs/er_no_appendices.pdf
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COMPOUND INTEREST

Suppose you invest $10,000 in an account that accrues interest each
month. After one month, your balance (with interest) is $10,100. How
much money will be in your account after a year?

Compound interest is calculated according to the formula Pert, where
r is the interest rate and t is time.

337/515

CARRYING CAPACITY

For a population of size P with unrestricted access to resources, let β
be the average number of offspring each breeding pair produces per
generation, where a generation has length tg. Then b = β−2

2tg
is the net

birthrate (births minus deaths) per member per unit time. This yields
dP
dt (t) = bP(t), hence:

But as resources grow scarce, b might change.
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CARRYING CAPACITY

b is the net birthrate (births minus deaths) per member per unit time.
If K is the carrying capacity of an ecosystem, we can model
b = b0(1− P

K ).

P

b

K

NOW
YOU

Describe to your neighbour what the following mean in

terms of the model:
I b > 0, b = 0, b < 0
I P = 0, P > 0, P < 0
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CARRYING CAPACITY

Then:
dP
dt

(t) = b0

(
1− P(t)

K

)
︸ ︷︷ ︸
per capita birthrate

P(t)

This is an example of a differential equation that we don’t have the
tools to solve. (If you take more calculus, though, you’ll learn how!)
It’s also an example of a way you might tweak a model so its
assumptions better fit what you observe.
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RADIOCARBON DATING

Researchers at Charlie Lake in BC have found evidence2 of habitation
dating back to around 8500 BCE. For instance, a butchered bison bone
was radiocarbon dated to about 10,500 years ago.

Suppose a comparable bone of a bison alive today contains 1µg of
14C. If the half-life of 14C is about 5730 years, roughly how much 14C
do you think the researchers found in the sample?

A. About 1
10,500 µg

B. About 1
4 µg

C. About 1
2 µg

D. About 1 µg

E. I’m not sure how to estimate
this

2http://pubs.aina.ucalgary.ca/arctic/Arctic49-3-265.pdf
341/515 Example 3.3.5

Suppose a body is discovered at 3:45 pm, in a room held at 20◦, and
the body’s temperature is 27◦, not the normal 37◦. At 5:45 pm, the
temperature of the body has dropped to 25.3◦. When did the
inhabitant of the body die?

342/515 Example 3.3.10
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APPROXIMATING A FUNCTION

y = sin x

0.2 y = sin 0

Constant Approximation – Equation 3.4.1
We can approximate f (x) near a point a by

f (x) ≈ f (a)

Google: sin(0.2) ≈ 0.198669... Constant approx: sin(0.2) ≈ 0
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APPROXIMATING A FUNCTION

y = sin x

0.2

y = x

Linear Approximation (Linearization) – Equation 3.4.3
We can approximate f (x) near a point a by the tangent line to f (x) at a,
namely

f (x) ≈ L(x) = f (a) + f ′(a)(x− a)

Google:
sin(0.2) ≈ 0.198669...

Linear approx:
sin(0.2) ≈ 0 + 1(0.2− 0) = 0.2
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To find a linear approximation of f (x) at a particular point x, pick a
point a near to x, such that f (a) and f ′(a) are easy to calculate.

f (x) ≈ L(x) = f (a) + f ′(a)(x− a)

x

y

f (x)

L(x)

a x

Let f (x) =
√

x. Approximate f (8.9).
First we note that 8.9 ≈ 9 and we can easily calculate f (9) = 3.
Constant approximation: 8.9 ≈ 9, so f (8.9) ≈ f (9) = 3
Linear approximation: Using a = 9,

f ′(a) = 1
2
√

a = 1
2
√

9
= 1

6

f (8.9) ≈ f (9) + f ′(9)(8.9− 9) = 3 + 1
6 (−.1)

f (8.9) ≈ 3− 1
60 = 2.9833

Google:
√

8.9 = 2.98328677804...

346/515 Example 3.4.5

To find a linear approximation of f (x) at a particular point x, pick a
point a near to x, such that f (a) and f ′(a) are easy to calculate.

f (x) ≈ L(x) = f (a) + f ′(a)(x− a)

Let f (x) =
√

x. Approximate f (8.9).

First we note that 8.9 ≈ 9 and we can easily calculate f (9) = 3.

Constant approximation: 8.9 ≈ 9, so f (8.9) ≈ f (9) = 3

Linear approximation: Using a = 9,

f ′(a) = 1
2
√

a = 1
2
√

9
= 1

6

f (8.9) ≈ f (9) + f ′(9)(8.9− 9) = 3 + 1
6 (−.1)

f (8.9) ≈ 3− 1
60 = 2.9833

Google:
√

8.9 = 2.98328677804...

347/515 Example 3.4.5

CAN WE COMPUTE?

Suppose we want to approximate the value of cos(1.5). Which of the
following linear approximations could we calculate by hand? (You
can leave things in terms of π.)
A. tangent line to f (x) = cos x when x = π/2
B. tangent line to f (x) = cos x when x = 3/2
C. both
D. neither

We know cos(π/2) = 0 and sin(π/2) = 1, so we can easily compute
the linear approximation if we centre it at π/2. However, what kind
of ugly number is cos(3/2)?
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CAN WE COMPUTE?

Which of the following tangent lines is probably the most accurate in
approximating cos(1.5)?
A. tangent line to f (x) = cos x when x = π/2
B. tangent line to f (x) = cos x when x = π/4
C. constant approximation: cos 1.5 ≈ cos(π/2) = 0
D. the linear approximations should be better than the constant

approximation, but both linear approximations should have the
same accuracy

π/2 is very close to 1.5.
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LINEAR APPROXIMATION

Approximate sin(3) using a linear approximation. You may leave
your answer in terms of π.
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LINEAR APPROXIMATION

Approximate e1/10 using a linear approximation.

If f (x) = ex and a = 0 :

f ′(x) = ex

f (1/10) ≈ f (0) + f ′(0)(1/10− 0) = e0 + e0(1/10− 0) = 1 + 1/10
= 1.1

If g(x) = x1/10:
The closest number to e with a simple tenth root is a = 1.

g′(x) = 1
10 x−9/10

g(e) ≈ g(1) + g′(1)(e− 1) = 1 + 1
10 (e− 1) = e+9

10

... but what’s e?

Google: e1/10 = 1.10517091808...
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LINEAR APPROXIMATION WRAP-UP

Let L(x) = f (a) + f ′(a)(x− a), so L(x) is the linear approximation
(linearization) of f (x) at a.

What is L(a)?

L(a) = f (a)

What is L′(a)?

L′(a) = f ′(a)

What is L′′(a)? (Recall L′′(x) is the derivative of L′(x).)

L′′(a) = 0

y = f (x)

y = L(x)

a

352/515



LINEAR APPROXIMATION WRAP-UP

Let L(x) be a linear approximation of f (x).
f (a) L(a) same
f ′(a) L′(a) same
f ′′(a) L′′(a) different3

3unless f ′′(a) = 0
353/515

QUADRATIC APPROXIMATION

Imagine we approximate f (x) at x = a with a parabola, P(x).

y = f (x)

y = P(x)

a

354/515

Constant Linear Quadratic
Function value
matches at x = a X X X

First derivative
matches at x = a × X X

Second derivative
matches at x = a × × X

355/515

Constant: f (x) ≈ f (a)

Linear: f (x) ≈ f (a) + f ′(a)(x− a)

Quadratic: f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2 (x− a)2
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QUADRATIC APPROXIMATION

P(x) = f (a) + f ′(a)(x− a) +
1
2

f ′′(a)(x− a)2

Approximate log(1.1) using a quadratic approximation.

357/515 Example 3.4.7

QUADRATIC APPROXIMATION

P(x) = f (a) + f ′(a)(x− a) +
1
2

f ′′(a)(x− a)2

Approximate 3
√

28 using a quadratic approximation.
You may leave your answer unsimplified, as long as it is an expression you
could figure out from integers using only plus, minus, times, and divide.
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Determine what f (x) and a should be so that you can approximate the
following using a quadratic approximation.

log(.9)

f (x) = log(x), a = 1

e−1/30

f (x) = ex, a = 0

5
√

30

f (x) = 5
√

x, a = 32 = 25

(2.01)6

f (x) = x6, a = 2
It is possible to compute the last one without an approximation, but an
approximation might save time while being sufficiently accurate for your
purposes.
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Constant Linear Quadratic degree n
match f (a)

X X X X
match f ′(a) × X X X
match
f ′′(a)

× × X X

· · ·
match
f (n)(a)

× × × X

match
f (n+1)(a)

× × × ×
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Constant:
f (x) ≈ f (a)

Linear:
f (x) ≈ f (a) + f ′(a)(x− a)

Quadratic:

f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2 (x− a)2

Degree-n:

f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2 (x− a)2 + · · ·?
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BRIEF DETOUR: SIGMA (SUMMATION) NOTATION

b∑
i=a

f (i)

I a, b (integers) “bounds”
I i “index”: runs over integers from a to b
I f (i) “summand”: compute for every i, add

362/515 Notation 3.4.8

SIGMA NOTATION

4∑
i=2

(2i + 5)
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SIGMA NOTATION

4∑
i=1

(i + (i− 1)2)
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Write the following expressions in sigma notation:
1. 3 + 4 + 5 + 6 + 7
2. 8 + 8 + 8 + 8 + 8
3. 1 + (−2) + 4 + (−8) + 16

365/515

Factorial – Definition 3.4.9
We read “n!” as “n factorial.”
For a natural number n, n! = 1 · 2 · 3 · . . . · n.
By convention, 0! = 1.

We write f (n)(x) to mean the nth derivative of f (x). By convention,
f (0)(x) = f (x).

Taylor Polynomial – Definition 3.4.11
Given a function f (x) that is differentiable n times at a point a, the
n-th degree Taylor polynomial for f (x) about a is

Tn(a) =

n∑
k=0

f (k)(a)

k!
(x− a)k

If a = 0, we also call it a Maclaurin polynomial.
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Tn(a) =

n∑
k=0

f (k)(a)

k!
(x− a)k

=

f (a)︸︷︷︸
k=0

+ f ′(a)(x− a)︸ ︷︷ ︸
k=1

+
1
2!

f ′′(a)(x− a)2︸ ︷︷ ︸
k=2

+

1
3!

f ′′′(a)(x− a)3︸ ︷︷ ︸
k=3

+
1
4!

f (4)(a)(x− a)4︸ ︷︷ ︸
k=4

+

· · ·+ 1
n!

f (n)(a)(x− a)n︸ ︷︷ ︸
k=n
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Tn(a) = f (a) + f ′(a)(x− a) + 1
2! f ′′(a)(x− a)2 + · · ·+ 1

n! f (n)(a)(x− a)n

Find the 7th degree Maclaurin4 polynomial for ex.

4A Maclaurin polynomial is a Taylor polynomial with a = 0.
368/515 Example 3.4.12



Tn(a) = f (a) + f ′(a)(x− a) + 1
2! f ′′(a)(x− a)2 + · · ·+ 1

n! f (n)(a)(x− a)n

Find the 8th degree Maclaurin polynomial for f (x) = sin x.

369/515 Example 3.4.16

Tn(a) = f (a) + f ′(a)(x− a) + 1
2! f ′′(a)(x− a)2 + · · ·+ 1

n! f (n)(a)(x− a)n

NOW
YOU

Find the 7th degree Taylor polynomial for f (x) = log x, centered at
a = 1.

370/515 Example 3.4.13

skip ∆x notation

Notation 3.4.18
Let x, y be variables related such that y = f (x). Then we denote a
small change in the variable x by ∆x (read as “delta x”). The
corresponding small change in the variable y is denoted ∆y (read as
“delta y”).

∆y = f (x + ∆x)− f (x)

Thinking about change in this way can lead to convenient
approximations.

371/515

Let y = f (x) be the amount of water needed to produce x apples in an
orchard.
A farmer wants to know how a much water is needed to increase
their crop yield. ∆x is shorthand for some change in the number of
apples, and ∆y is shorthand for some change in the amount of water.

I Consider changing the
number of apples grown
from a to a + ∆x

I Then the change in water
requirements goes from
y = f (a) to y = f (a + ∆x)

∆y = f (a + ∆x)− f (a)

372/515 Example 3.4.19



LINEAR APPROXIMATION OF ∆y

I Using a linear approximation, setting x = a + ∆x:

f (x) ≈ f (a) + f ′(a)(x− a) linear approximation
f (a + ∆x) ≈ f (a) + f ′(a)(∆x) set x = a + ∆x

∆y = f (a + ∆x)− f (a) ≈ f ′(a)∆x subtract f (a) both sides

Linear Approximation of ∆y (Equation 3.4.20)

∆y ≈ f ′(a)∆x

If we set ∆x = 1, then ∆y ≈ f ′(a). So, if we want to produce a + 1
apples instead of a apples, the extra water needed for that one extra
apple is about f ′(a). We call this the marginal water cost of the apple.

373/515 Example 3.4.19

QUADRATIC APPROXIMATION OF ∆y

If we wanted a more accurate approximation, we can use other Taylor
polynomials. For example, let’s try the quadratic approximation.

Quadratic Approximation of ∆y (Equation 3.4.21)

∆y ≈ f ′(a)∆x +
1
2

f ′′(a)(∆x)2
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skip further examples

Approximate tan(65◦) three ways: using constant, linear, and
quadratic approximation.
Your answer may consist of the sum, difference, product, and
quotient of integers, roots of integers, and π.

All our derivatives were based on radians, so first, let’s do a
conversion:

65 degrees ·
(

2π radians
360 degrees

)
=

13π
36

radians

13π
36 is pretty close to π

3 (and 65 is pretty close to 60), so we centre our
approximation at a = π

3 (or 60◦). This is the closest reference angle to
our desired angle.

375/515 Example 3.4.22

You measure an angle x ≈ π
2 , and use it to calculate y = sin x ≈ 1.

However, you suspect the angle was not exactly equal to π
2 , which

means the actual value y is slightly less than 1. In order for your value
of y to have an error of no more than 1

200 , how accurate does your
measurement of θ have to be?

Let the actual angle x be x0 + ∆x with x0 = π
2 , so ∆x is the error in

your measurement. Then let y0 = sin x0 = 1 and y = sin x. Then the
error in y is ∆y = y− y0.
We want to solve

− 1
200

= ∆y = y− y0 = sin x− sin x0 = sin
(π

2
+ ∆x

)
− 1

for (the maximum allowed) ∆x.

We’ll show two solutions.

376/515 Example 3.4.22Example 3.4.22Example 3.4.24



Definition 3.4.25
Let Q0 be the exact value of a quantity and let Q0 + ∆Q be the
measured value. We call

|∆Q|

the absolute error of the measurement, and

100
|∆Q|
Q0

the percentage error of the measurement.

Suppose a bottle of water is labelled as having 500 mL of water, but in
fact contains 502.

377/515 Example 3.4.24Example 3.4.24

Once again, you find yourself in the position of measuring an angle x,
which you use to compute y = sin x. Let’s say both x and y are
positive. If your percentage error in measuring x is at most 1%, what
is the corresponding maximum percentage error in y?
Use a linear approximation.

Let x0 be the actual value of the angle, x be the measured angle, and
∆x = x− x0. Then let y(x) = sin x (the computed y) and y0 = sin x0 (the
actual y), with ∆y = y− y0.
Using the linear approximation y(x0 + ∆x) ≈ y(x0) + y′(x0)(∆x):

∆y = y(x0 + ∆x)− y(x0) ≈ y′(x0)∆x = cos x0 ·∆x

Note: 1 = 100
|∆x|

x0
=⇒ ∆x = ± x0

100

=⇒ ∆y ≈ ±x0 cos x0

100

=⇒ 100
|∆y|

y0
≈ 100

|x0 cos x0|
100

y0
=

x0| cos x0|
y0

=
x0| cos x0|

sin x0

Note that when x0 ≈ π
2 , this percentage error, x0| cos x0|

sin x0
, is close to 0; when

x0 ≈ 0, it is about 1. (For the second fact, remember lim
x→0

sin x
x = 1.)

378/515 Example 3.4.26

ERROR: WHAT “CAUSES” ERROR IN AN ESTIMATION?

Constant approximation: We assume the function doesn’t change, but
in fact the function does change (its derivative is not always zero).

379/515

CONTROLLING THE “CAUSE” OF THE ERROR

Constant approximation: We assume the function doesn’t change, but
in fact the function does change (its derivative is not always zero).
BUT: suppose we know the max and min values of the function’s
slope.

380/515



Error
The error in an estimation f (x) ≈ Tn(x) is f (x)− Tn(x). We often use
|f (x)− Tn(x)| if we don’t care whether the approximation is too big or
too little, but only that it is not too egregious.

Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

The trick is bounding f (n+1)(c). It’s usually OK to be sloppy here!
Also, usually what we care about is the magnitude of the error:
|f (x)− Tn(x)|.
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Third degree Maclaurin polynomial for f (x) = ex:

T3(x) = f (0) + f ′(0)(x− 0) + 1
2! f
′′(0)(x− 0)2 + 1

3! f
′′′(0)(x− 0)3

= e0 + e0x +
1
2!

e0x2 +
1
3!

e0x3

= 1 + x +
x2

2!
+

x3

3!

Bound the error associated with using T3(x) to approximate e1/10.
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Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Bound the error associated with using T3(x) to approximate e1/10.

383/515

Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Suppose we use the 5th degree Taylor polynomial centered at a = π/2
to approximate f (x) = cos x. What could the magnitude of the error
be if we approximate cos(2)?

384/515 Example 3.4.34



Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Suppose we use a third degree Taylor polynomial centred at 4 to
approximate f (x) =

√
x. If we use this Taylor polynomial to

approximate
√

4.1, give a bound for our error.
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Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Suppose you want to approximate the value of e, knowing only that it
is somewhere between 2 and 3. You use a 4th degree Maclaurin
polynomial for f (x) = ex to approximate f (1) = e1 = e. Bound your
error.

386/515

Computing approximations uses resources. We might want to use as
few resources as possible while ensuring sufficient accuracy.

A reasonable question to ask is: which approximation will be good
enough to keep our error within some fixed error tolerance?

387/515

WHICH DEGREE?

Suppose you want to approximate sin 3 using a Taylor polynomial of
f (x) = sin x centered at a = π. If the magnitude of your error must be
less than 0.001, what degree Taylor polynomial should you use?

388/515



WHICH DEGREE?

Suppose you want to approximate e5 using a Maclaurin polynomial
of f (x) = ex. If the magnitude of your error must be less than 0.001,
what degree Maclaurin polynomial should you use?

389/515

WHICH DEGREE?

Suppose you want to approximate log 4
3 using a Taylor polynomial of

f (x) = log x centred at a = 1. If the magnitude of your error must be
less than 0.001, what degree Taylor polynomial should you use?

390/515

WHICH DEGREE?

Let f (x) = 4
√

x. Suppose you use a second-degree Taylor polynomial
of f (x) centered at a = 81 to approximate 4

√
81.2. Bound your error,

and tell whether T2(10) is an overestimate or underestimate.

391/515
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Optimisation:
finding the biggest/smallest/highest/lowest, etc.

Lots of non-standard problems! Opportunities to work on your
problem-solving skills.

393/515

ENGINEERING DESIGN EXAMPLE

A lever of density 3 lbs/ft is being used to lift a 500-pound weight,
attached one foot from the fixed point.

500

P
1 ft

For an L-foot-long lever, the force P required to lift the system satisfies

500(1) + 3L
( L

2

)
− PL = 0

What length of lever will require the least amount of force to lift?

Source: Drexel (2006)
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MEDICAL DOSING EXAMPLE

Let D be the size of a dose, α be the absorption rate, and β the
elimination rate of a drug.
Caffeine is absorbed and eliminated by first-order kinetics. Its blood
concentration over time is modelled as

c(t) =
D

1− β/α
(
e−βt − e−αt)

Will the blood concentration reach a toxic level?

Source (including links to a study): Vectornaut (2015)
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CIRCUIT EXAMPLE

When a critically damped RLC circuit is connected to a voltage
source, the current I in the circuit varies with time according to the
equation

I(t) =

(
V
L

)
te−

Rt
2L

where V is the applied voltage, L is the inductance, and R is the
resistance (all of which are constant).

We need to choose wires that will be able to safely carry the current at
all times.

Source: Belk (2014)

396/515



LEAST SQUARES EXAMPLE

You have a lot of data that more-or-less resembles a line.
Which line does it most resemble?

397/515

Extrema – Definition 3.5.3
Let I be an interval, and let the function f (x) be defined for all x ∈ I.
Now let c ∈ I.
I We say that f (x) has a global (or absolute) minimum on the

interval I at the point x = c if f (x) ≥ f (c) for all x ∈ I.
I We say that f (x) has a global (or absolute) maximum on I at x = c

if f (x) ≤ f (c) for all x ∈ I.
I We say that f (x) has a local minimum at x = c if f (x) ≥ f (c) for all

x ∈ I that are near c.
I We say that f (x) has a local maximum at x = c if f (x) ≤ f (c) for all

x ∈ I that are near c.
The maxima and minima of a function are called the extrema of that
function.
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Critical and Singular Points – Definition 3.5.6
Let f (x) be a function and let c be a point in its domain. Then
I If f ′(c) exists and is zero we call x = c a critical point of the

function, and
I If f ′(c) does not exist then we call x = c a singular point of the

function.
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ANATOMY OF A FUNCTION

c is a critical point if f ′(c) = 0.
c is a singular point if f ′(c) does not exist.
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Theorem 3.5.4
If a function f (x) has a local maximum or local minimum at x = c and
if f ′(c) exists, then f ′(c) = 0.

401/515

MULTIPLE CHOICE

Suppose f (x) has domain (−∞,∞).
If f ′(5) = 0, then:
A. f ′(5) DNE
B. f has a local maximum at 5
C. f has a local minimum at 5
D. f has a local extremum (maximum or minimum) at 5
E. f may or may not have a local extremum (max or min) at 5

402/515

SKETCH

Draw a continuous function f (x) with a local maximum at x = 3 and
a local minimum at x = −1.

Draw a continuous function f (x) with a local maximum at x = 3 and
a local minimum at x = −1, but f (3) < f (−1).

Draw a function f (x) with a singular point at x = 2 that is NOT a local
maximum, or a local minimum.
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SECOND DERIVATIVES

x

I Is slope increasing,
decreasing, or constant?

I Is second derivative positive,
negative, or zero?

I Is critical point a local max,
local min, or neither?

x

I Is slope increasing,
decreasing, or constant?

I Is second derivative positive,
negative, or zero?

I Is critical point a local max,
local min, or neither?

404/515 Theorem 3.5.5



Suppose f ′(x) = (x + 5)2(x− 5). Then f has no singular points, and its
critical points are ±5. Identify whether the critical points are local
maxima, local minima, or neither.

Second Derivative Test:
Suppose f ′(a) = 0 and f ′′(a) > 0.
Then x = a is a local

minimum.
+ +

Suppose f ′(a) = 0 and f ′′(a) < 0.
Then x = a is a local

maximum.
− −

We see that, when we are close to −5, whether x is less than or greater
than −5, still f ′(x) is negative. So, f (x) is decreasing before x = −5
and also after it. So, −5 is not a local max or a local min.
Now consider x = 5. When x is a little less, f ′(x) is negative; when x is
a little more than 5, f ′(x) is positive. So, f is decreasing till 5, then
increasing after: so 5 is a local min.
Indeed, x = 5 is the site of a global min.

405/515 Theorem 3.5.5

ENDPOINTS

x

y

global minima; not at critical points

Theorems 3.5.11 and 3.5.12
A function that is continuous on the interval [a, b] (where a and b are
real numbers–not infinite) has a global max and min, and they occur
at endpoints, critical points, or singular points.
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DETERMINING EXTREMA

To find local extrema:
- Could be at

critical points (f ′(x) = 0)

- Could be at

singular points (f ′(x) DNE)

- Could be at

endpoints

- At these points, check whether there is some interval around x
where f (x) is no larger than the other numbers, or no smaller. (A
sketch helps. The signs of the derivatives on either side of x are
also a clue.)

To find global extrema:
- Could be at

critical points (f ′(x) = 0)

- Could be at

singular points (f ′(x) DNE)

- Could be at

endpoints;
also check the limit as the function goes to ±∞.

- Check the value of the function at all of these, and compare.

407/515 Corollary 3.5.13 and Theorem 3.5.17

Find All Extrema4:

f (x) = x3 − 3x

4Extrema: local and global maxima and minima
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Find All Extrema

f (x) =
3
√

x2 − 64, x in [−1, 10]

409/515

Find the largest and smallest value of f (x) = x4 − 18x2.

410/515

Find the largest and smallest values of f (x) = sin2 x− cos x.

411/515

MAX/MIN WORD PROBLEMS

A rancher wants to build a rectangular pen, using an existing wall for
one side of the pen, and using 100m of fencing for the other three
sides. What are the dimensions of the pen built this way that has the
largest area?

wall

fence
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GENERAL IDEA

We know how to find the global extrema of a function over an
interval.

Problems often involve multiple variables, but we can only deal with
functions of one variable.

Find all the variables in terms of ONE variable, so we can find
extrema.

413/515

You want to build a pen, as shown below, in the shape of a rectangle
with two interior divisions. If you have 1000m of fencing, what is the
greatest area you can enclose?

w

`

414/515

Suppose you want to make a rectangle with perimeter 400. What
dimensions give you the maximum area?

415/515

You are standing on the bank of a river that is 1km wide, and you
want to reach the opposite side, two km down the river. You can
paddle 3 kilometres per hour, and walk 6 kph while carrying your
boat. What route takes you to your desired destination in the least
amount of time?

start

end

1

2
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You are standing on the bank of a river that is 1km wide, and you
want to reach the opposite side, two km down the river. You can
paddle 6 kilometres per hour, and walk 3 kph while carrying your
boat. What route takes you to your desired destination in the least
amount of time?

start

end

1

2
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Let C be the circle given by x2 + y2 = 1. What is the closest point on C
to the point (−2, 1)?

x

y

−2

418/515 Example 3.5.19

Suppose you want to manufacture a closed cylindrical can on the
cheap. If the can should have a volume of one litre (1000 cm3), what
is the smallest surface area it can have?

419/515

A cylindrical can is to hold 20π cubic metres. The material for the top
and bottom costs $10 per square metre, and material for the side costs
$8 per square metre. Find the radius r and height h of the most
economical can.

420/515 Example 3.5.15



Suppose a 2-metre high fence stands 1 metre away from a high wall.
What is the shortest ladder that will reach over the fence to the wall?

w
al

l

fe
nc

e
ladder

y 2
L

x

1

421/515

Suppose a file folder is 12 inches long and 9 inches wide. You want to
make a box by opening the folder and capping the ends. What angle
should you open the folder to, to make the box with the greatest
volume?

9

12
θ

422/515 Example 3.5.20

We want to bend a piece of wire
into the perimeter of the shape
shown below: a rectangle of
height h and width 2r, with a half
circle of radius r on the top and
bottom.

If you only have 100cm of wire,
what values of r and h give the
largest enclosed area?

h

r

423/515

Suppose we take a right triangle, with height h and base b. We
inscribe a rectangle in it that shares a right angle, as shown below.
What are the dimensions of the rectangle with the biggest area?

b

h

424/515 Example 3.5.22



ACTIVITY

By cutting out squares from the corners, turn a piece of paper into an
open-topped box that holds a lot of beans.

425/515 Example 3.5.16
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CURVE SKETCHING

Review: find the domain of the following function.

f (x) =

√
3− x2

log(x + 1)

Where might you expect f (x) to have a vertical asymptote? What
does the function look like nearby?
(Recall: a vertical asymptote occurs at x = a if the function has an
infinite discontinuity at a. That is, lim

x→a±
f (x) = ±∞.)

Where is f (x) = 0?

What happens to f (x) near its other endpoint, x = −1?

427/515

CURVE SKETCHING

Good things to check:
• Domain
• Vertical asymptotes: lim

x→a
f (x) = ±∞

• Intercepts: x = 0, f (x) = 0
• Horizontal asymptotes and end behavior: lim

x→±∞
f (x)
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CURVE SKETCHING

Identify: domain, vertical asymptotes, intercepts, and horizontal
asymptotes

f (x) =
x− 2

(x + 3)2

429/515 Example 3.6.1

CURVE SKETCHING

Identify: domain, vertical asymptotes, intercepts, and horizontal
asymptotes

f (x) =
(x + 2)(x− 3)2

x(x− 5)
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FIRST DERIVATIVE

Add complexity: Increasing/decreasing, critical and singular points.

f (x) =
1
2

x4 − 4
3

x3 − 15x2

431/515 Example 3.6.2

What does the graph of the following function look like?

f (x) =
1
3

x3 + 2x2 + 4x + 24
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What does the graph of the following function look like?

f (x) = e
x+1
x−1

433/515

SIGNS OF FACTORED FUNCTIONS

f (x) = (x− 1) (x− 2)2 (x− 3)

x

434/515

SIGNS OF FACTORED FUNCTIONS

f (x) = (x− 3)(x− 1)2x(x + 2)3(x + 5)4

Where is f (x) positive? Where is it negative?

−5 −4 −3 −2 −1 0 1 2 3 4 5
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CONCAVITY

x

y

I Slopes are increasing
I f ′′(x) > 0
I “concave up”
I tangent line below curve

x

y

I Slopes are decreasing
I f ′′(x) < 0
I “concave down”
I tangent line above curve

436/515 Definition 3.6.3



MNEMONIC

+ + − −

437/515

CONCAVITY

438/515 Definition 3.6.3

Sketch graphs with the following properties, or explain that none
exist.

concave up concave down

increasing
x

y

x

y

decreasing
x

y

x

y
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POLL QUESTIONS

Describe the concavity of the function f (x) = ex.
A. concave up
B. concave down
C. concave up for x < 0; concave down for x > 0
D. concave down for x < 0; concave up for x > 0
E. I’m not sure

Is it possible to be concave up and decreasing?

A. Yes B. No C. I’m not sure

Suppose a function f (x) is defined for all real numbers, and is concave
up on the interval [0, 1]. Which of the following must be true?
A. f ′(0) < f ′(1)

B. f ′(0) > f ′(1)

C. f ′(0) is positive
D. f ′(0) is negative
E. I’m not sure
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REVISITING A PREVIOUS EXAMPLE

original example

f (x) =
1
2

x4 − 4
3

x3 − 15x2

x

y

-4.3 7-3
−58.5

5

−229.16

3− 5
3

f ′′(x) = 6x2 − 8x− 30 = 2(x− 3)(3x + 5)

441/515 Example 3.6.4

Sketch:
f (x) = x5 − 15x3

442/515

EVEN AND ODD FUNCTIONS

x

y

f (x) = x5 − 15x3

oddeven function

443/515

EVEN AND ODD FUNCTIONS

x

y

f (x) = x5 − 15x3

oddeven function

444/515



Even Function – Definition 3.6.6
A function f (x) is even if, for all x in its domain,

f (−x) = f (x)

x

y y = f (x)

(3,−1)(−3,−1)

(6, 1)(−6, 1)

445/515

EVEN FUNCTIONS

Even Function – Definition 3.6.6
A function f (x) is even if, for all x in its domain,

f (−x) = f (x)

Examples:
f (x) = x2

f (x) = x4

f (x) = cos(x)

f (x) =
x4 + cos(x)

x16 + 7

446/515

ODD FUNCTIONS

x

y

y = f (x)

Suppose f (1) = 2. Then f (−1) =
Suppose f (3) = −2. Then f (−3) =

Odd Function – Definition 3.6.7
A function f (x) is odd if, for all x in its domain,

f (−x) = −f (x)

447/515

ODD FUNCTIONS

Odd Function – Definition 3.6.7
A function f (x) is odd if, for all x in its domain,

f (−x) = −f (x)

Examples:
f (x) = x
f (x) = x3

f (x) = sin(x)

f (x) =
x(1 + x2)

x2 + 5

448/515



POLL TIIIME

Pick out the odd function.

A:

x

y

B:

x

y

C:

x

y

D:

x

y

449/515

POLL TIIIME

Pick out the even function.

A:

x

y

B:

x

y

C:

x

y

D:

x

y

450/515

EVEN MORE POLL TIIIIIME

Suppose f (x) is an odd function, continuous, defined for all real
numbers. What is f (0)? Pick the best answer.
A. f (0) = f (−0)

← true but uninteresting, for all functions

B. f (0) = −f (0)

← only possible for f (0) = 0

C. f (0) = 0

← this is equivalent to the choice above

D. all of the above are true
E. none of the above are necessarily true

451/515

EVEN MORE AND MORE POLL TIIIIIME

Suppose f (x) is an even function, continuous, defined for all real
numbers. What is f (0)? Pick the best answer.
A. f (0) = f (−0)

B. f (0) = −f (0)

C. f (0) = 0
D. all of the above are true
E. none of the above are necessarily true

452/515



OK OK... LAST ONE

Suppose f (x) is an even function, differentiable for all real numbers.
What can we say about f ′(x)?
A. f ′(x) is also even
B. f ′(x) is odd
C. f ′(x) is constant
D. all of the above are true
E. none of the above are necessarily true

453/515

PERIODICITY

Periodic – Definition 3.6.10
A function is periodic with period P > 0 if

f (x) = f (x + P)

whenever x and x + P are in the domain of f , and P is the smallest
such (positive) number

Examples: sin(x), cos(x) both have period 2π; tan(x) has period π.

454/515

Ignoring concavity, sketch f (x) = sin(sin x).

Challenge: ignoring exact locations of extrema, sketch
g(x) = sin(2π sin x).

455/515

LET’S GRAPH

f (x) = (x2 − 64)1/3

f ′(x) =
2x

3(x2 − 64)2/3 ;

f ′′(x) =
−2( 1

3 x2 + 64)

3(x2 − 64)5/3

456/515



LET’S GRAPH

f (x) =
x2 + x

(x + 1)(x2 + 1)2

Note: for x 6= −1, f (x) =
x(x + 1)

(x + 1)(x2 + 1)2 =
x

(x2 + 1)2

g(x) :=
x

(x2 + 1)2

g′(x) =
1− 3x2

(x2 + 1)3

g′′(x) =
12x(x2 − 1)

(x2 + 1)4

457/515 Example 3.6.15

LET’S GRAPH

f (x) = x(x− 1)2/3

• f ′(x) =
5x− 3

3 3
√

x− 1

• f ′′(x) =
2(5x− 6)

9( 3
√

x− 1)4

I f (3/5) ≈ 0.3
I f (6/5) ≈ 0.4

458/515 Example 3.6.15Example 3.6.15Example 3.6.16

Ch 3.6 Review: matching

459/515 Example 3.6.16Example 3.6.16

MATCH THE FUNCTION TO ITS GRAPH

A. f (x) = x3(x + 2)(x− 2) = x5 − 4x3

B. f (x) = x(x + 2)3(x− 2) = x5 + 4x4 − 16x2 − 16x
C. f (x) = x(x + 2)(x− 2)3 = x5 − 4x4 + 16x2 − 16x

I

II

III

460/515



A. f (x) =
x− 1

(x + 1)(x + 2)

B. f (x) =
(x− 1)2

(x + 1)(x + 2)

C. f (x) =
x− 1

(x + 1)2(x + 2)

D. f (x) =
(x− 1)2

(x + 1)2(x + 2)

I.

II.

III.

IV.

461/515

MATCH THE FUNCTION TO ITS GRAPH

A. f (x) = |x|e B. f (x) = e|x| C. f (x) = ex2
D. f (x) = ex4−x

I

IV

II

V

III

VI

462/515

A. f (x) = x5 + 15x3 B. f (x) = x5 − 15x3 C. f (x) = x5 − 15x2

D. f (x) = x3 − 15x E. f (x) = x7 − 15x4

463/515
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BACK TO LIMITS!

lim
x→∞

x2

5

=∞

lim
x→∞

5
x2

= 0

lim
x→0

x2

5

= 0

lim
x→0

5
x2

=∞

Indeterminate Forms – Definition 3.7.1
Suppose lim

x→a
f (x) = lim

x→a
g(x) = 0. Then the limit

lim
x→a

f (x)

g(x)

is an indeterminate form of the type 0
0 .

Suppose lim
x→a

F(x) = lim
x→a

G(x) =∞ (or −∞). Then the limit

lim
x→a

F(x)

G(x)

is an indeterminate form of the type ∞∞ .

When you see an indeterminate form, you need to do more work.

465/515

INDETERMINATE FORMS

lim
x→5

x2 − 3x− 10
x− 5

indeterminate form of the type 0
0

lim
x→∞

3x2 − 4x + 2
8x2 − 5

indeterminate form of the type ∞∞

466/515

INDETERMINATE FORMS AND THE DERIVATIVE

lim
x→0

3 sin x− x4

x2 + cos x− ex indeterminate form of the type 0
0

467/515

L’Hôpital’s Rule: First Part – Theorem 3.7.2
Let f and g be functions such that lim

x→a
f (x) = 0 = lim

x→a
g(x).

If f ′(a) and g′(a) exist and g′(a) 6= 0, then lim
x→a

f (x)

g(x)
=

f ′(a)

g′(a)
.

If f and g are differentiable on an open interval containing a, and if

lim
x→a

f ′(x)

g′(x)
exists, then lim

x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This works even for a = ±∞.

Extremely Important Note:
L’Hôpital’s Rule only works on indeterminate forms.
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L’Hôpital’s Rule: Second Part – Theorem 3.7.2
Let f and g be functions such that lim

x→a
f (x) =∞ = lim

x→a
g(x).

If f ′(a) and g′(a) exist and g′(a) 6= 0, then lim
x→a

f (x)

g(x)
=

f ′(a)

g′(a)
.

If f and g are differentiable on an open interval containing a, and if

lim
x→a

f ′(x)

g′(x)
exists, then lim

x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This works even for a = ±∞.

Extremely Important Note:
L’Hôpital’s Rule only works on indeterminate forms.

469/515

Evaluate:

lim
x→2

3x tan(x− 2)

x− 2

470/515

LITTLE HARDER

lim
x→0

x4

ex − cos x− x
indeterminate form of the type 0

0

471/515 Example 3.7.6

Evaluate:

lim
x→∞

log x√
x

472/515



OTHER INDETERMINATE FORMS

lim
x→∞

e−x log x form 0 · ∞

473/515

VOTE VOTE VOTE

Which of the following can you immediately apply L’Hôpital’s rule
to?

A.
ex

2ex + 1

B. lim
x→0

ex

2ex + 1

C. lim
x→∞

ex

2ex + 1
D. lim

x→∞
e−x(2ex + 1)

E. lim
x→0

ex

x2

474/515

VOTEY MCVOTEFACE

Suppose you want to use L’Hôpital’s rule to evaluate lim
x→a

f (x)

g(x)
, which

has the form 0
0 . How does the quotient rule fit into this problem?

A. You should use the quotient rule because the function you are
differentiating is a quotient.

B. You will not use the quotient rule because you differentiate the
numerator and the denominator separately

C. You may use the quotient rule because perhaps f (x) or g(x) is
itself in the form of a quotient

D. You will not use L’Hôpital’s rule because 0
0 is not an appropriate

indeterminate form
E. You will not use L’Hôpital’s rule because, since the top has limit

zero, the whole function has limit 0

475/515

MORE QUESTIONS

Which of the following is NOT an indeterminate form?

A. ∞∞ for example, lim
x→∞

ex

x2

B. 0
0 for example, lim

x→0

ex − 1
x

C. 0
∞ for example, lim

x→0+

x
log x

=0

D. 0 · ∞ for example, lim
x→∞

x(arctan(x)− π/2)

E. all of the above are indeterminate forms
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I HAVE SO MANY QUESTIONS

Which of the following is NOT an indeterminate form?

A. 1∞ for example, lim
x→∞

(
x + 1

x

)x

B. 0∞ for example, lim
x→∞

(
1
x

)x

= 0

C. ∞0 for example, lim
x→∞

x
1
x

D. 00 for example, lim
x→0+

xx

E. all of the above are indeterminate forms
F. none of the above are indeterminate forms

477/515

EXPONENTIAL INDETERMINATE FORMS

lim
x→∞

x1/x

478/515

EXPONENTIAL INDETERMINATE FORMS

lim
x→∞

(
1 +

2
x

)3x

479/515 Example 3.7.20

Evaluate:
lim

x→∞

log x
log
√

x

lim
x→∞

(log x)
√

x

Not an indeterminate form: huge number to a huge power. Limit is
infinity.

lim
x→0

arcsin x
x

L’Hôpital: lim
x→0

1√
1−x2

1
= 1

480/515



MORE EXAMPLES

lim
x→∞

√
2x2 + 1−

√
x2 + x

lim
x→0

x2√
sin2 x

lim
x→0

x2√
cos x

481/515 Problem Book Section 3.7 Questions 14, 19, 20

Sketch the graph of f (x) = x log x.
Note: when you want to know lim

x→0
f (x), you’ll need to use L’Hôpital.

Evaluate lim
x→0+

(csc x)x

482/515

4.1 Antiderivatives

483/515 Example 3.7.15

Basic Question
What function has derivative f (x)?

If F′(x) = f (x), we call F(x) an antiderivative of f (x).

Examples
d
dx [x2] = 2x, so x2 is an antiderivative of 2x.

d
dx [x2 + 5] = 2x, so x2 + 5 is (also) an antiderivative of 2x.

What is the most general antiderivative of 2x?

484/515 Definition 4.1.1



ANTIDERIVATIVES

Find the most general antiderivative for the following equations.

f (x) = 17

17x + c

f (x) = m

where m is a constant.

mx + c

485/515

differentiation fact antidifferentiation fact
d
dx [x2] = 2x =⇒ antideriv of 2x :

d
dx [x3] = 3x2 =⇒

antideriv of 3x2: x3 + c
antideriv of x2: 1

3 x3 + c

d
dx [x4] = 4x3 =⇒

antideriv of 4x3: x4 + c
antideriv of x3

1
4 x4 + c

d
dx [x5] = 5x4 =⇒

antideriv of 5x4: x5 + c
antideriv of x4:

1
5 x5 + c

antideriv of xn:

1
n+1 xn+1 + c

Check: d
dx

[
1

n+1 xn+1 + c
]

=xn

486/515

Power Rule for Antidifferentiation

The most general antiderivative of xn is
1

n + 1
xn+1 + c if n 6= −1

I
d

dx

[ ]
= x5

I
d

dx

[ ]
= x3

I
d

dx

[ ]
=

1
2

x3

487/515

Power Rule for Antidifferentiation

The most general antiderivative of xn is
1

n + 1
xn+1 + c if n 6= −1

I
d

dx

[ ]
= 5x2 − 15x + 3

I
d

dx

[ ]
= 13

(
5x14 − 3x3/7 + 52ex

)

488/515 Example 4.1.3



Find the most general antiderivatives.

f (x) = cos x

sin x + c

f (x) = sin x

− cos x + c

f (x) = sec2 x

tan x + c

f (x) =
1

1 + x2

arctan x + c

f (x) =
1

1 + x2 + 2x

−1
x+1

489/515

Find the most general antiderivatives.

f (x) = 17 cos x + x5

17 sin x + 1
6 x6 + c

f (x) =
23

5 + 5x2

23
5 arctan x + c

f (x) =
23

5 + 125x2

23
25 arctan(5x) + c

490/515

Find the most general antiderivatives.

f (x) =
1
x
, x > 0

ln x + c

f (x) = 5x2 − 32x5 − 17

5
3 x3 − 16

3 x6 − 17x + c

f (x) = csc x cot x

− csc x + c

f (x) =
5√

1− x2
+ 17

5 arcsin x + 17x + c

491/515

CHOSE YOUR OWN ADVENTURE

Antiderivative of sin x cos x:
A. cos x sin x + c
B. − cos x sin x + c
C. sin2 x + c
D. 1

2 sin2 x + c

E. 1
2 cos2 x sin2 x + c

In general, antiderivatives of xn have the form 1
n+1 xn+1. What is the

single exception?
A. n = −1
B. n = 0
C. n = 1
D. n = e
E. n = 1/2

492/515



ALL THE ADVENTURES ARE CALCULUS, THOUGH

Suppose the velocity of a particle at time t is given by
v(t) = t2 + cos t + 3. What function gives its position?
A. s(t) = 2t− sin t
B. s(t) = 2t− sin t + c
C. s(t) = t3 + sin t + 3t + c
D. s(t) = 1

3 t3 + sin t + 3t + c

E. s(t) = 1
3 t2 − sin t + 3t + c

Suppose the velocity of a particle at time t is given by
v(t) = t2 + cos t + 3, and its position at time 0 is given by s(0) = 5.
What function gives its position?
A. s(t) = 1

3 t3 + sin t + 3t

B. s(t) = 1
3 t3 + sin t + 3t + 5

C. s(t) = 1
3 t3 + sin t + 3t + c

D. s(t) = 5t + c
E. s(t) = 5t + 5

493/515

Find all functions f (x) with f (1) = 5 and f ′(x) = e3x+5.

494/515

Let Q(t) be the amount of a radioactive isotope in a sample. Suppose
the sample is losing 50e−5t mg per second to decay. If
Q(1) = 10e−5mg, find the equation for the amount of the isotope at
time t.

495/515 Example 4.1.6

Suppose f ′(t) = 2t + 7. What is f (10)− f (3)?

496/515



This file contains questions spanning CLP-1. It should not be taken as
a complete review of the course, but rather as a jumping-off point. If
you struggle with one question, go back to review its entire section.
Sections are noted at the bottom of each page.

497/515

S1
Find all solutions to x3 − 3x2 − x + 3 = 0

x3 − 3x2 − x + 3 = x2(x− 3)− (x− 3)

= (x2 − 1)(x− 3)

= (x + 1)(x− 1)(x− 3)

The solutions are x = 1, x = 3, and x = −1.

498/515 Factoring functions is a high-school review topic. It comes in especially handy in Section 3.6, Sketching Graphs

S2
Compute the limit lim

x→2

x− 2
x2 − 4

lim
x→2

x− 2
x2 − 4

= lim
x→2

x− 2
(x− 2)(x + 2)

= lim
x→2

1
x + 2

=
1
4

499/515 Section 1.4: Calculating Limits with Limit Laws

S3
Find all values of c such that the following function is continuous:

f (x) =
{

8− cx if x ≤ c
x2 if x > c

Use the definition of continuity to justify your answer.

When x 6= c, f (x) is continuous. The only difficult spot is when x = c.
I f (c) = 8− c2

I lim
x→c−

f (x) = lim
x→c−

(8− cx) = 8− c2

I lim
x→c+

f (x) = lim
x→c+

(x2) = c2

Since f (x) is continuous at c only if f (c) = lim
x→c

f (x), we see the only

values of c that make f continuous are those that satisfy c2 = 8− c2.
That is, c = ±2.

500/515 Section 1.6: Continuity



S4
Compute

lim
x→−∞

3x + 5√
x2 + 5− x

We start by factoring out x from both the top and the bottom.

lim
x→−∞

3x + 5√
x2 + 5− x

(
1/x
1/x

)
= lim

x→−∞

3 + 5
x

1
x

√
x2 + 5− 1

Since x is approaching negative infinity, we can assume x < 0. Then x = −|x| = −
√

x2.
We’ll use this form to push the 1

x into the square root.

= lim
x→−∞

3 + 5
x

− 1√
x2

√
x2 + 5− 1

= lim
x→−∞

3 + 5
x

−
√

1 + 5
x2 − 1

=
3 + 0

−
√

1− 1
= −

3
2

501/515 Section 1.5: Limits at Infinity

S5
Find the equation of the tangent line to the graph of y = cos(x) at x =

π

4
.

f (x) = cos x f
(π

4

)
=

1√
2

f ′(x) = − sin x f ′
(π

4

)
= − 1√

2

Recall the equation of the tangent line to y = f (x) at x = a is
y = f (a) + f ′(a)(x− a)

y =
1√
2
− 1√

2

(
x− π

4

)

502/515 Section 2.1: Revisiting Tangent Lines Section 2.8: Derivatives of Trigonometric Functions

S6

For what values of x does the derivative of
sin(x)

x2 + 6x + 5
exist?

First, note that x2 + 6x + 5 = (x + 1)(x + 5), so the function does not
exist at either x = −1 or x = −5. For other values of x, using the
quotient rule, we see

f ′(x) =
(x2 + 6x + 5)(cos x)− sin x(2x + 6)

(x2 + 6x + 5)2

which exists over the domain of f (x).

All together, the derivative exists for all values of x except −1 and −5.

503/515 Section 2.6: Using the Arithmetic of Derivatives

S7
Find f ′(x) if f (x) = (x2 + 1)sin(x).

f (x) is neither an exponential function (with a constant base) nor a power
function (with a constant power). When we see a function raised to a
function, we differentiate using logarithmic differentiation.

f (x) = (x2 + 1)sin(x)

log f (x) = log
[
(x2 + 1)sin(x)

]
= sin x · log(x2 + 1)

f ′(x)

f (x)
= sin x · 2x

x2 + 1
+ cos x · log(x2 + 1)

f ′(x) = f (x)

[
sin x · 2x

x2 + 1
+ cos x · log(x2 + 1)

]
= (x2 + 1)sin x

[
2x sin x
x2 + 1

+ cos x · log(x2 + 1)

]

504/515 Section 2.10: The Natural Logarithm



S8
Consider a function of the form f (x) = Aekx where A and k are

constants. If f (0) = 3 and f (2) = 5, find the constants A and k.

3 = f (0) = Ae0 = A

5 = f (2) = 3e2k =⇒ 5
3

= e2k

loge

(
5
3

)
= 2k

k =
loge(5/3)

2

505/515 This is a review of high school material. This type of calculation comes up in Section 3.3: Exponential Growth and Decay

S9

Consider a function f (x) which has f ′′′(x) =
x3

10− x2 . Show that

when we approximate f (1) using its second Maclaurin polynomial,
the absolute error is less than 1

50 = 0.02.

For some c between 0 and 1:∣∣ f (1)− T2(1)︸ ︷︷ ︸
error

∣∣ =

∣∣∣∣ f ′′′(c)
3!

(1− 0)3
∣∣∣∣ =

1
6

∣∣∣∣ c3

10− c2

∣∣∣∣
Since c is between 0 and 1, we note 0 < c3 < 1 and 9 < 10− c2 < 10,
so:

|f (1)− T2(1)| < 1
6

∣∣∣∣19
∣∣∣∣ =

1
54

<
1
50

506/515 Subection 3.4.8: The Error in the Taylor Polynomial Approximations

S10
Estimate

√
35 using a linear approximation

The general form of a linear approximation is

L(x) = f (a) + f ′(a)(x− a)

If f (x) =
√

x and a = 36, then f (a) = 6 and f ′(a) = 1
2
√

a = 1
12 . So,

L(x) = 6 +
1
12

(x− 36)

Then:
√

35 = f (35) ≈ L(35) = 6 + 1
12 (35− 36) = 6− 1

12 = 71
12

507/515 Subsection 3.4.2: First Approximation — the Linear approximation

S11
Let f (x) = x2 − 2πx− sin(x). Show that there exists a real number c

such that f ′(c) = 0.

We note that f (x) is continuous and differentiable over all real
numbers. Since f (0) = f (2π) = 0, by Rolle’s Theorem (also by the
Mean Value Theorem) there exists some c between 0 and 2π such that
f ′(c) = 0.

508/515 Section 2.13: The Mean Value Theorem



S12
Find the intervals where f (x) =

√
x

x+6 is increasing.

We find where the first derivative is positive.

0 < f ′(x) =
(x + 6) 1

2
√

x −
√

x

(x + 6)2 multiply by (x + 6)2

0 < (x + 6)
1

2
√

x
−
√

x multiply by 2
√

x

0 < (x + 6)− 2x
x < 6

Note, however, that the function’s derivative does not exist when x ≤ 0. So the
interval is (0, 6).

509/515 Section 2.13: The Mean Value Theorem Section 3.6: Sketching Graphs

L1

Compute the limit lim
x→1

√
x + 2−

√
4− x

x− 1
.

If we try to do the limit naively we get 0/0, so we simplify.
√

x + 2−
√

4− x
x− 1

=

√
x + 2−

√
4− x

x− 1
·
√

x + 2 +
√

4− x√
x + 2 +

√
4− x

=
(x + 2)− (4− x)

(x− 1)(
√

x + 2 +
√

4− x)

=
2x− 2

(x− 1)(
√

x + 2 +
√

4− x)

=
2√

x + 2 +
√

4− x

lim
x→1

√
x + 2−

√
4− x

x− 1
= lim

x→1

2√
x + 2 +

√
4− x

=
2√

3 +
√

3
=

1√
3
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L2
Show that there exists at least one real number c such that 2 tan(c) = c + 1.

I tan x is continuous on the interval (−π/2, π/2)
I x + 1 is a polynomial and therefore continuous for all real numbers
I So, f (x) = 2 tan(x)− x− 1 is a continuous function on the interval (−π/2, π/2).
I Set a = 0. Then a is in the interval (−π/2, π/2) and

f (a) = 2 tan(0)− 0− 1 = 0− 1 = −1 < 0.

I Set b = π
4 . Then b is in the interval (−π/2, π/2) and

f (b) = 2 tan
(
π

4

)
−
π

4
− 1 = 2−

π

4
− 1 = 1−

π

4
=

4− π
4

> 0.

I All together: f (x) is continuous on [0, π/4], and f (0) < 0 while f (π/4) > 0. Then
the Intermediate Value Theorem guarantees the existence of a real number
c ∈ (0, π/4) such that f (c) = 0.
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L3
Determine whether the derivative of following function exists at

x = 0

f (x) =

2x3 − x2 if x ≤ 0

x2 sin

(
1
x

)
if x > 0

You must justify your answer using the definition of a derivative.

The function is differentiable at x = 0 if the following limit exists:

lim
x→0

f (x)− f (0)

x− 0
= lim

x→0

f (x)− 0
x

= lim
x→0

f (x)

x

Note that we used the fact that f (0) = 0 following the definition of the
first branch, which includes the point x = 0.
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L4
If x2 cos(y) + 2xey = 8, then find y′ at the points where y = 0.

You must justify your answer.

I First we find the x-coordinates where y = 0.

x2 cos(0) + 2xe0 = 8

x2 + 2x− 8 = 0
(x + 4)(x− 2) = 0

So x = 2,−4.
I Now we use implicit differentiation to get y′ in terms of x, y:

x2 cos(y) + 2xey = 8 differentiate both sides

x2 · (− sin y) · y′ + 2x cos y + 2xey · y′ + 2ey = 0
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L5
Two particles move in the cartesian plane. Particle A travels on the

x-axis starting at (10, 0) and moving towards the origin with a speed
of 2 units per second. Particle B travels on the y-axis starting at (0, 12)
and moving towards the origin with a speed of 3 units per second.
What is the rate of change of the distance between the two particles
when particle A reaches the point (4, 0)?

The position of particle A along the x axis starts at (10, 0), and moves
toward the origin at 2 units per second, so its position is given by(
x(t), 0

)
with x(t) = 10− 2t, where t is measured in seconds.

Similarly, the position of B along the y axis is given by
(
0, y(t)

)
with

y(t) = 12− 3t. The distance z(t) between the two particles satisfies
z(t)2 = x(t)2 + y(t)2.
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L6
Find the global maximum and the global minimum for

f (x) = x3 − 6x2 + 2 on the interval [3, 5].

We compute f ′(x) = 3x2 − 12x. So f (x) has no singular points (i.e. it is
differentiable for all x), but has two critical points obtained by solving

f ′(x) = 3x(x− 4) = 0

which yields the two critical points x = 0 and x = 4. Only the critical point
x = 4 is in the allowed interval [3, 5].
In order to compute the global maximum and the global minimum for f (x)
on the interval [3, 5], we compute the value of f at the allowed critical point
and at the end points of the allowed interval.

f (3) = −25, f (4) = −30 and f (5) = −23.

So, the global max is −23 while the global min is −30.
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