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Taylor polynomial

Let a be a constant and let n be a non-negative integer. The nth order
Taylor polynomial for f (x) about x = a is

Tn(x) =
n∑

k=0

1
k!

f (k)(a) · (x− a)k.

Taylor series
The Taylor series for the function f (x) expanded around a is the
power series

∞∑
n=0

1
n!

f (n)(a) (x− a)n.

When a = 0 it is also called the Maclaurin series of f (x).

2/30 CLP–1 Definition 3.4.11 and CLP–2 Definition 3.6.2, first part
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Let’s compute some Taylor series, using the definition.

The method is nearly identical to finding Taylor polynomials, which is
covered in CLP–1.
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Find the Maclaurin series for f (x) = sin x.

4/30
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Find the Maclaurin series for f (x) = cos x.
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The Maclaurin series for f (x) = ex is:
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Let Tn(x) be the n-th order Taylor polynomial of the function f (x),
centred at a.

When we introduced Taylor polynomials in CLP–1, we framed Tn(x)
as an approximation of f (x).

Let’s see how those approximations look in two cases:

7/30



3.6.1 Extending Taylor Polynomials Do the Taylor series match their functions? 3.6.2 Computing with Taylor Series 3.6.4 Evaluating limits

TAYLOR POLYNOMIALS FOR ex
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−50

50
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150 ex

It seems like high-order Taylor polynomials do a pretty good job of
approximating the function ex, at least when x is near enough to 0.
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TAYLOR POLYNOMIALS FOR A DIFFERENT FUNCTION

But that is not the case for all functions. Define

f (x) =

{
e−

1
x x > 0

0 x ≤ 0

Using the definition of the derivative and l’Hôpital’s rule, one can
show that f (n)(0) = 0 for all natural numbers n.
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TAYLOR POLYNOMIALS FOR A DIFFERENT FUNCTION

x

y

f (x) =

{
e−

1
x x > 0

0 x ≤ 0

Tn(x) = 0

Taylor polynomial approximations don’t always get better as their
orders increase – it depends on the function being approximated.
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INVESTIGATION

I We found the Maclaurin series for f (x) = ex is
∞∑

n=0

xn

n!
.

I But, it’s not immediately clear whether ex ?
=

∞∑
n=0

xn

n!
.

I We’re going to demonstrate that ex is in fact equal to
∞∑

n=0

xn

n!
. The

proof involves a particular limit: lim
n→∞

|x|n
n! . We’ll talk about that

limit first, so that it doesn’t distract us later.

11/30
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Intermediate result: lim
n→∞

|x|n
n! , when x is some fixed number.

For large n, we can think of |x|
n

n! as a long multiplication, with
decreasing terms. At some point, those terms are all decreasing and
less than 1.

|x|n

n!
=
|x| · |x| · |x| · |x| · |x| · |x| · . . . · |x|

1 · 2 · 3 · 4 · 5 · 6 · . . . · n
=

12/30 Convenient notation: dxe is the number you get when you round x up to the nearest whole number.



3.6.1 Extending Taylor Polynomials Do the Taylor series match their functions? 3.6.2 Computing with Taylor Series 3.6.4 Evaluating limits

Intermediate result: lim
n→∞

|x|n
n! , when x is some fixed number.

We’re multiplying terms that are closer and closer to 0, so it seems
quite reasonable that this sequence should converge to 0.

For a more formal proof, we can use the squeeze theorem to compare
this sequence to a geometric sequence.

13/30 Convenient notation: dxe is the number you get when you round x up to the nearest whole number.
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INVESTIGATION

I We found the Maclaurin series for f (x) = ex is
∞∑

n=0

xn

n!
.

I But, it’s not immediately clear whether ex ?
=

∞∑
n=0

xn

n!
.

How could we determine this?
I

ex =

∞∑
n=0

xn

n!

⇐⇒ 0 = ex −
∞∑

n=0

xn

n
= ex − lim

n→∞

n∑
k=0

xk

k!︸ ︷︷ ︸
Tn(x)

= lim
n→∞

[ex − Tn(x)]︸ ︷︷ ︸
En(x)

⇐⇒ 0 = lim
n→∞

En(x) (for all x)
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TAYLOR POLYNOMIAL ERROR FOR f (x) = ex

If lim
n→∞

En(x) = 0 for all x, then ex =
∑∞

n=0
xn

n! for all x.

It looks plausible, especially when x is close to 0. Let’s try to prove it.
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E7(4)
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Equation 3.6.1-b
Let Tn(x) be the n-th order Taylor approximation of a function f (x),
centred at a. Then En(x) = f (x)− Tn(x) is the error in the n-th order
Taylor approximation.
For some c strictly between x and a,

En(x) =
1

(n + 1)!
f (n+1)(c) · (x− a)n+1

When f (x) = ex,

En(x) = ec xn+1

(n + 1)!

for some c between 0 and x.

16/30 CLP–1 Equation 3.4.33, CLP–2 Equation 3.6.1-b
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En(x) = ex − Tn(x)

= ec xn+1

(n + 1)!
for some c between 0 and x
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We found 0 ≤ |En(x)| < e|x| |x|
n+1

(n+1)! for large n, hence lim
n→∞

|En(x)| = 0.

−6 −4 −2 2 4

−50

50

100

150 ex

|E1(-5)| < e5
(

52

2!

)
|E1(4)| < e4

(
42

2!

)

|E2(-5)| < e5
(

53

3!

)
|E2(4)| < e4

(
43

3!

)

|E3(-5)| < e5
(

54

4!

)
|E3(4)| < e4

(
44

4!

)

|E4(-5)| < e5
(

55

5!

)
|E4(4)| < e4

(
45

5!

)

|E5(-5)| < e5
(

56

6!

)
|E5(4)| < e4

(
46

6!

)

|E6(-5)| < e5
(

57

7!

)
|E6(4)| < e4

(
47

7!

)

|E7(-5)| < e5
(

58

8!

)
|E7(4)| < e4

(
48

8!

)

For a particular value of x:

We saw 0 = lim
n→∞

|x|n+1

(n + 1)!
so 0 = lim

n→∞
En(x)

That is, 0 = lim
n→∞

[ex − Tn(x)]

So, ex = lim
n→∞

Tn(x)

=

∞∑
n=0

xn

n!

18/30
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TAYLOR POLYNOMIAL ERROR FOR SINE AND COSINE

Equation 3.6.1-b
Let Tn(x) be the n-th order Taylor approximation of a function f (x),
centred at a. Then En(x) = f (x)− Tn(x) is the error in the n-th order
Taylor approximation.
For some c strictly between x and a,

En(x) =
1

(n + 1)!
f (n+1)(c) · (x− a)n+1

Suppose f (x) is either sin x or cos x. Is f (x) equal to its Maclaurin
series?

|En(x)| =
1

(n + 1)!

∣∣∣f (n+1)(c)
∣∣∣ |x|n+1

19/30 CLP–1 Equation 3.4.33, CLP–2 Equation 3.6.1-b
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TAYLOR POLYNOMIALS FOR sin(x)

−10 −5 5 10

−4

−2

2

4

sin(x)
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TAYLOR POLYNOMIALS FOR cos(x)

−10 −5 5 10

−4

−2

2

4

cos(x)
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Selected Taylor series that equal their functions

ex =
∞∑

n=0

xn

n!
for all −∞ < x <∞

sin(x) =
∞∑

n=0
(−1)n 1

(2n + 1)!
x2n+1 for all −∞ < x <∞

cos(x) =
∞∑

n=0
(−1)n 1

(2n)!
x2n for all −∞ < x <∞

1
1− x

=
∞∑

n=0
xn for all −1 < x < 1

log(1 + x) =
∞∑

n=0
(−1)n xn+1

n + 1
for all −1 < x ≤ 1

arctan x =
∞∑

n=0
(−1)n x2n+1

2n + 1
for all −1 ≤ x ≤ 1

22/30 3.6.5
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COMPUTING π

Use the fact that arctan 1 = π
4 to find a series converging to π whose

terms are rational numbers.

23/30

Q

Example 3.6.13
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ERROR FUNCTION

The error function

erf(x) =
2√
π

∫ x

0
e−t2

dt

is used in computing “bell curve” probabilities.

24/30 Example 3.6.14
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x

y
y = ex2

00.10.20.30.40.50.60.70.80.911.1

x

y

0

∫ 0

0
ex2

dx = 0

0.1

∫ 0.1

0
ex2

dx ≈ 0.10

0.10

0.2

∫ 0.2

0
ex2

dx ≈ 0.20

0.20

0.3

∫ 0.3

0
ex2

dx ≈ 0.31

0.31

0.4

∫ 0.4

0
ex2

dx ≈ 0.42

0.42

0.5

∫ 0.5

0
ex2

dx ≈ 0.54

0.54

0.6

∫ 0.6

0
ex2

dx ≈ 0.68

0.68

0.7

∫ 0.7

0
ex2

dx ≈ 0.83

0.83

0.8

∫ 0.8

0
ex2

dx ≈ 1.01

1.01

0.9

∫ 0.9

0
ex2

dx ≈ 1.22

1.22

1

∫ 1

0
ex2

dx ≈ 1.46

1.46

1.1

∫ 1.1

0
ex2

dx ≈ 1.76

1.76

∫ x

0
et2

dt
2√
π

∫ x

0
et2

dt
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ERROR FUNCTION

The error function

erf(x) =
2√
π

∫ x

0
e−t2

dt

is used in computing “bell curve” probabilities.

The indefinite integral of the integrand e−t2
cannot be expressed in

terms of standard functions. But we can still evaluate the integral to
within any desired degree of accuracy by using the Taylor expansion
of the exponential.
For example, evaluate erf

(
1√
2

)
.

26/30
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EVALUATING A CONVERGENT SERIES

Evaluate
∞∑

n=1

1
n · 3n

27/30
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FINDING A HIGH-ORDER DERIVATIVE

Let f (x) = sin(2x3). Find f (15)(0), the fifteenth derivative of f at x = 0.

28/30

Q

Example 3.6.16.
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Given that sin x = x− x3

3! +
x5

5! − · · · , we have a new way of evaluating
the familiar limit

lim
x→0

sin x
x

:

29/30
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Example 3.6.20
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Evaluate lim
x→0

arctan x− x
sin x− x

.

30/30
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Example 3.6.21
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