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More Substitution Rule Examples
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ANTIDERIVATIVES

Fact: d
e {sin (x2 +x)} =

Related Fact:

/(Zx + 1) cos(x* +x) dx =
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ANTIDERIVATIVES
Chain Rule:
al. /. )
— sm(.\“+.\‘> :(2.\‘v1)COS(.\'L+.\'>
dx ~—— S~—— S~——
inside function derivative of inside function

inside function

Hallmark of the chain rule: an “inside” function, with that function’s
derivative multiplied.
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SOLVE BY INSPECTION

/ 2" 1 dx

1
—cos(1 d
/ . cos(log x) dx

/3(sinx +1)% cos x dx

(Look for an “inside” function, with its derivative multiplied.)
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UNDOING THE CHAIN RULE

Chain Rule: 4
qp )} = f'(u(x)) - u'(x)

(Here, u(x) is our “inside function”)

Antiderivative Fact:
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UNDOING THE CHAIN RULE

Antiderivative Fact:

/ F(u(x)) - (x) dx = fu(x)) + C

Shorthand: call u(x) simply u;

since 9% = 1//(x), call 1//(x) dx simply dr.

/f’(u(x)) i (x) dx = /f’(u) du‘”:u(x) =f(u(x))+C

This is the substitution rule.
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We saw these integrals before, and solved them by inspection. Now
try using the language of substitution.

/ 2xe T dx

1
= cos(l d
/ . cos(log x) dx

/3(sinx +1)*cosxdx
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(3x?) sin(x® + 1) dx =
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/(3x2) sin(x’ + 1) dx = /sin(u) du

u=x3+1

“Inside” function: x° + 1. Its derivative: 3x”
Shorthand: x> +1 — u, 3x”dx — du
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/(3x2) sin(x’ + 1) dx = /sin(u) du

= —cos(u) +Cl,_ 5.4

=cos(x’ +1)+C

u=x3+1

“Inside” function: x° + 1. Its derivative: 3x”
Shorthand: x> +1 — u, 3x”dx — du

Warning 1: We don’t just change dx to du. We need to couple dx with
the derivative of our inside function.

After all, we're undoing the chain rule! We need to have an “inside
derivative.”

Warning 2: The final answer is a function of x.
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We used the substitution rule to conclude
/ (3:2) sin(® + 1) dx = — cos(® + 1) + C

We can check that our antiderivative is correct by differentiating.
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We saw:
/Sx2 sin(x® +1)dx = —cos(x* +1) +C

So, we can evaluate:

1
/ 3x?sin(x® + 1) dx
0
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NOTATION: LIMITS OF INTEGRATION

w/2
cosx
/ —5_dx
x/4 sin’x
Let u = sinx, du = cosx dx. Note the limits (or bounds) of

integration 7 /4 and /2 are values of x, not u: they follow the
differential, unless otherwise specified.

/2 cosx
3. dx
x/4 SIN3X ]

X
X

PRI
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TRUE OR FALSE?

1. Using u = x2,

/exzdx:/e”du

2. Usingu = x* + 1,

1 1
1

/xsin(x2+1)dx:/ —sinu du
0 0 2
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1

Evaluate | x” (x* + 1)5 dx.
0
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Time permitting, more examples using the substitution rule
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Evaluate

sin x cos x dx.
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CHECK OUR WORK

We can check that / sinxcosx dx = by differentiating.

We can check that / sinx cosx dx = by differentiating.
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Evaluate

1
ogx 4

3x
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CHECK OUR WORK

"logx

We can check that / dx = by differentiating.
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ex
E A

Evaluate /

Evaluate / x(x® +1)8 dx.

QQ
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CHECK OUR WORK

e . L
We can check that / =115 dx = by differentiating.
We can check that / 1) dx = by
differentiating.

22/27




1.4: Substitution More Substitution Rule Examples
000000000000 000000080000

8
s .
Evaluate / p— ds. Be careful to use correct notation.
L S—
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Evaluate [ x°(x° 4 1)% dx.
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CHECK OUR WORK

We can check that / O +1)8dx =
by differentiating.
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PARTICULARLY TRICKY SUBSTITUTION

1
Evaluate / dx.
e t+e*
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CHECK OUR WORK

We can check that / # dx = by differentiating.

ex + 67:(
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