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1.2 Basic Properties 1.2.1 Even and Odd Functions 1.2.2 (Optional) Inequalities

We defined the definite integral using a limit and a sum.

Definition
Let a and b be two real numbers and let f (x) be a function that is
defined for all x between a and b. Then we define ∆x = b−a

N and

∫ b

a
f (x) dx = lim

N→∞

N∑
i=1

f (x∗i,N) ·∆x

when the limit exists and when the choice of x∗i,N in the ith interval
doesn’t matter.

Many of the operations that work nicely with sums and limits will
also work nicely with integrals.
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ADDING (AND SUBTRACTING) FUNCTIONS

x

y

f (x)

g(x)

f (x) + g(x)

A = f (x) ·∆x

A = g(x) ·∆x

∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx
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ADDING (AND SUBTRACTING) FUNCTIONS
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y

f (x)

g(x)

f (x) + g(x)

A = f (x) ·∆x
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(
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ADDING (AND SUBTRACTING) FUNCTIONS

x

y

f (x)

g(x)

f (x) + g(x)
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ADDING (AND SUBTRACTING) FUNCTIONS

x

y

f (x)

g(x)

f (x) + g(x)

A = f (x) ·∆x

A = g(x) ·∆x

∫ b

a

(
f (x)− g(x)

)
dx =

∫ b

a
f (x) dx−

∫ b

a
g(x) dx
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MULTIPLYING A FUNCTION BY A CONSTANT

x

y

f (x)

3 · f (x)

A = f (x) ·∆x

A = 3 · f (x) ·∆x

∫ b

a
c · f (x) dx = c

∫ b

a
f (x) dx
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MULTIPLYING A FUNCTION BY A CONSTANT

x

y

f (x)

3 · f (x)

A = f (x) ·∆x

A = 3 · f (x) ·∆x

∫ b

a
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∫ b

a
f (x) dx

8/27
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ARITHMETIC OF INTEGRATION

When a, b, and c are real numbers, and the functions f (x) and g(x) are
integrable on an interval containing a and b:

(a)
∫ b

a
[f (x) + g(x)] dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

(b)
∫ b

a
[f (x)− g(x)] dx =

∫ b

a
f (x) dx−

∫ b

a
g(x) dx

(c)
∫ b

a
c · f (x) dx = c

∫ b

a
f (x) dx when c is constant

9/27 Therorem 1.2.1: Arithmetic of Integration
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ARITHMETIC OF INTEGRATION

Suppose
∫ 1

−1
f (x) dx = −6 and

∫ 1

−1
g(x) dx = 10.

x

y

−1 1

f (x)

−6
x

y

g(x)
10

−1 1

∫ 1

−1
(2 f (x) + g(x)) dx =

10/27

Q
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INTERVAL OF INTEGRATION

x

y

f (x)

a∫ a

a
f (x) dx =

0
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INTERVAL OF INTEGRATION

x

y

f (x)

a bc

What rule do you think is being illustrated?

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx
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WHAT HAPPENS IN
∫ b

a f (x) dx WHEN b < a?

x

y

y = f (x)

b

a

∆x

Choose a number of intervals, n.
The (signed) width of each interval is ∆x = b−a

n , which is negative

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i,n) · b− a
n

This is the definition of a definite integral whether or not a < b.

= lim
n→∞

n∑
i=1

f (x∗i,n)

(
−a− b

n

)
= −

∫ a

b
f (x) dx

13/27
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PROPERTY OF DEFINITE INTEGRALS

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

As strictly a measure of area, not usually a super useful fact – but
helps later when we do arithmetic with integrals.

It’s also useful that the definition works without having to worry
about which limit of integration (a or b) is larger.
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ARITHMETIC FOR DOMAIN OF INTEGRATION

When a, b, and c are constants, and f (x) is integrable over a domain
containing all three:

(a)
∫ a

a
f (x) dx = 0

a

(b)
∫ b

a
f (x) dx = −

∫ a

b
f (x) dx ∆x =

b− a
n

= −a− b
n

(c)
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx for constant c

a bc

15/27 Therorem 1.2.3: Arithmetic for the Domain of Integration
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Suppose
∫ 0

−1
f (x) dx = 1,

∫ 1

0
f (x) dx = −3, and

∫ 1

−1
g(x) dx = 10.

x

y

−1 1

f (x)

1
−3

x

y

g(x)
10

−1 1

∫ 1

−1
(2f (x) + g(x)) dx =

16/27

Q



1.2 Basic Properties 1.2.1 Even and Odd Functions 1.2.2 (Optional) Inequalities

Suppose
∫ 0

−1
f (x) dx = 1 and

∫ 1

0
f (x) dx = −3.

x

y

−1 1

f (x)

1
−3

∫ 3

−1
f (x) dx +

∫ 0

3
f (x) dx =
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Even and Odd Functions
Let f (x) be a function.
I We say f (x) is even when f (x) = f (−x) for all x, and
I we say f (x) is odd when f (x) = −f (−x) for all x.

x

y

18/27 Definition 1.2.9 in CLP-2; Definition 3.6.6 and 3.6.7 in CLP-1
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INTEGRALS OF EVEN FUNCTIONS

x

y

a−a

b−b

Suppose f (x) is even. Then ∫ b

a
f (x) dx =
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INTEGRALS OF EVEN FUNCTIONS

x

y

a−a

b−b

Suppose f (x) is even. Then ∫ b

−b
f (x) dx =
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INTEGRALS OF ODD FUNCTIONS

x

y

+

−

+

−

b

−b

Suppose f (x) is odd. Then ∫ b

−b
f (x) dx =
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Theorem 1.2.12 (Even and Odd)
Let a > 0.
(a) If f (x) is an even function, then∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx

(b) If f (x) is an odd function, then∫ a

−a
f (x) dx = 0
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Integral Inequality
Let a ≤ b be real numbers and let the functions f (x) and g(x) be
integrable on the interval a ≤ x ≤ b.
If f (x) ≤ g(x) for all a ≤ x ≤ b, then∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx

x

y
g(x)

f (x)

a b

M

23/27 Theorem 1.2.13
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Integral Inequality
Let a ≤ b and m ≤M be real numbers and let the function f (x) be
integrable on the interval a ≤ x ≤ b.
If m ≤ f (x) ≤M for all a ≤ x ≤ b , then

m(b− a) ≤
∫ b

a
f (x)dx ≤M(b− a)

x

y

a b

m

M

24/27 Theorem 1.2.13



1.2 Basic Properties 1.2.1 Even and Odd Functions 1.2.2 (Optional) Inequalities

Find a lower bound c and an upper bound d such that

c ≤
∫ 5

1
f (x) dx ≤ d

x

y

2
1.5

1 5

f (x)
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Find a lower bound c and an upper bound d such that d− c ≤ 3 and

c ≤
∫ 6

0
f (x) dx ≤ d

x

y

2
1.5

5 6 8f (x)
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ABSOLUTE VALUES

f (x) ≤ |f (x)| for any f (x)
−f (x) ≤ |f (x)| for any f (x)

x

y f (x)

−f (x)

x

y |f (x)|

∫ b

a
f (x) dx ≤

∫ b

a
|f (x)|dx and

∫ b

a
−f (x) dx ≤

∫ b

a
|f (x)|dx

∣∣∣∣∣
∫ b

a
f (x)dx

∣∣∣∣∣ ≤
∫ b

a
|f (x)|dx

because
∣∣∣∫ b

a f (x) dx
∣∣∣ is either

∫ b
a f (x) dx or −

∫ b
a f (x) dx.

27/27 Theorem 1.2.13, Inequalities for Integrals
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