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3.4 Absolute and Conditional Convergence

FOUR SERIES

Let an =
(
− 2

3

)n
. Do the following series converge or diverge?

∞∑
n=0

an

∞∑
n=0

|an|

Let bn = (−1)n

n . Do the following series converge or diverge?

∞∑
n=1

bn

∞∑
n=1

|bn|

2/7



3.4 Absolute and Conditional Convergence

The series
∞∑

n=0

(
−2

3

)n

is called absolutely convergent, because the series converges and if
we replace the terms being added by their absolute values, that series
still converges.

The series
∞∑

n=0

(−1)n

n

is called conditionally convergent, because the series converges, but if
we replace the terms being added by their absolute values, that series
diverges.
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3.4 Absolute and Conditional Convergence

Absolute and conditional convergence

(a) A series
∞∑

n=1
an is said to converge absolutely if the series

∞∑
n=1
|an| converges.

(b) If
∞∑

n=1
an converges but

∞∑
n=1
|an| diverges we say that

∞∑
n=1

an is conditionally convergent.

Theorem

If the series
∞∑

n=1
|an| converges then the series

∞∑
n=1

an also converges.

That is, absolute convergence implies convergence.

4/7 Definition 3.4.1 and Theorem 3.4.2



3.4 Absolute and Conditional Convergence

If
∑

an ... and
∑
|an| ... then we say

∑
an is ...

converges converges

absolutely convergent

converges diverges

conditionally convergent

diverges diverges

divergent

diverges converges

not possible!
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3.4 Absolute and Conditional Convergence

Does the series
∞∑

n=1

(−1)n

n2

converge or diverge?
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Q

Example 3.4.4



3.4 Absolute and Conditional Convergence

Does the series
∞∑

n=1

sin(n)
n2

converge or diverge?
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Q
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