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1.3: The Fundamental Theorem of Calculus

REVIEW: AREA UNDER A CURVE

Methods for finding the area under a curve.

I Limit of a Riemann Sum
I Conceptually easy – cut into rectangles

I Computationally rough lim
n→∞

n∑
i=1

f (x∗i )∆x;
n∑

i=1
i = n(n+1)

2

I Use Geometry
I Computationally nice when it’s available!

(Circles, triangles, symmetry, etc.)
I Often not available – most functions

don’t make such nice shapes.

I Up next: Fundamental Theorem of Calculus
I Conceptually less obvious – we’ll spend

about a day explaining why it works
I Computationally generally nicer than Riemann sums
I Doesn’t work for every function
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1.3: The Fundamental Theorem of Calculus

Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =
∫ x

a
f (t)dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

FTC(I) gives us the derivative of a very specific function (subject to
some fine print).

It shows a close relationship between integrals and derivatives.

3/38 Theorem 1.3.1



1.3: The Fundamental Theorem of Calculus

AREA FUNCTION: A(x) =
∫ x

a f (t)dt FOR a ≤ x ≤ b

t

y

x x x x x x x

x

y = f (t)

a

Notation: the function A depends on the variable x.

We need to know how the function f behaves on the whole interval
(0, x) to find A(x). That’s why we use f (t), not f (x).
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1.3: The Fundamental Theorem of Calculus

AREA FUNCTION NOTATION

It might look strange at first to see two different variables. Let’s
consider the alternatives:

A(x) =
∫ x

0
f (t)dt

A(1) =
∫ 1

0
f (t)dt

t

y

f (t)

1

1 1

B(x) =
∫ x

0
f (x)dt

B(1) =
∫ 1

0
f (1)dt

t

y

f (t)

f (1)

1

f (1)

1

f (1)

1

C(x) =
∫ x

0
f (x)dx

C(1) =
∫ 1

0
f (1) d1︸︷︷︸

??
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1.3: The Fundamental Theorem of Calculus

Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =
∫ x

a
f (t)dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

Question: Why is it true?

7/38 Theorem 1.3.1



1.3: The Fundamental Theorem of Calculus

DERIVATIVE OF AREA FUNCTION, A(x) =
∫ x

a f (t)dt

t

y

xa

y = f (t)

A(x)

x + h

A(x + h)

A(x + h)− A(x)

f (x)

A′(x) = lim
∆x→0

∆A
∆x = lim

h→0

A(x+h)−A(x)
h = lim

h→0

hf(x)
h = f (x)

When h is very small, the purple area looks like a rectangle with base h and
height f (x), so A(x + h) − A(x) ≈ hf (x) and A(x+h)−A(x)

h ≈ f (x). As h tends to
zero, the error in this approximation approaches 0.
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1.3: The Fundamental Theorem of Calculus

Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =
∫ x

a
f (t)dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

Suppose A(x) =
∫ x

2 sin t dt. What is A′(x)?

Suppose B(x) =
∫ 2

x sin t dt. What is B′(x)?

10/38
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1.3: The Fundamental Theorem of Calculus

Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =
∫ x

a
f (t)dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

Suppose C(x) =
∫ ex

2 sin t dt. What is C′(x)?
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1.3: The Fundamental Theorem of Calculus

It’s possible to have two different functions with the same derivative.

A(x) =
∫ x

0 2t dt = x2

t

y

x
A′(x) = 2x

B(x) =
∫ x

1 2t dt = x2 − 1

t

y

x1

B′(x) = 2x

When two functions have the same derivative, they differ only by a
constant.

In this example: B(x) = A(x)− 1

12/38 Lemma 1.3.8



1.3: The Fundamental Theorem of Calculus

x

y

f (x) + 1

f (x) + 2

f (x) + 3

f (x) + 4

f (x) + 5

f (x)

If two continuous functions have the same derivative, then one is a
constant plus the other.

13/38 Lemma 1.3.8



1.3: The Fundamental Theorem of Calculus

Two clues for finding A(x) =
∫ x

a f (t)dt:

I If A(x) =
∫ x

a
f (t)dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =
∫ x

a
et dt. What functions could A(x) be?

1(as long as f (t) is continuous on [a, x])
14/38
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Two clues for finding A(x) =
∫ x

a f (t)dt:

I If A(x) =
∫ x

a
f (t)dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =
∫ x

a
cos t dt. What functions could A(x) be?

1(as long as f (t) is continuous on [a, x])
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1.3: The Fundamental Theorem of Calculus

Two clues for finding A(x) =
∫ x

a f (t)dt:

I If A(x) =
∫ x

a
f (t)dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =
∫ x

−2
5t4 dt. What functions could A(x) be?

1(as long as f (t) is continuous on [a, x])
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1.3: The Fundamental Theorem of Calculus

A(x) =
∫ x

−2
5t4 dt = x5 + 32

t

y

y = 5t4

−2

−1

A(−1) =
∫ −1

−2
5t4 dt = (−1)5 + 32 = 31

0

A(0) =
∫ 0

−2
5t4 dt = (0)5 + 32 = 32

1

A(1) =
∫ 1

−2
5t4 dt = (1)5 + 32 = 33

2

A(2) =
∫ 2

−2
5t4 dt = (2)5 + 32 = 64

3

A(3) =
∫ 3

−2
5t4 dt = (3)5 + 32 = 275
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1.3: The Fundamental Theorem of Calculus

Two clues for finding A(x) =
∫ x

a f (t)dt:

I If A(x) =
∫ x

a
f (t)dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =
∫ x

a
f (t)dt. What functions could A(x) be?

I A′(x) = f (x).
I Guess a function with derivative f (x): F(x).
I Then A(x) = F(x) + C for some constant C.
I Also A(a) = 0, so 0 = F(a) + C, so C = −F(a)
I So, A(x) = F(x)− F(a)

1(as long as f (t) is continuous on [a, x])
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1.3: The Fundamental Theorem of Calculus

Two clues for finding A(x) =
∫ x

a f (t)dt:

I If A(x) =
∫ x

a
f (t)dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(b) =
∫ b

a
f (t)dt. What functions could A(b) be?

I A′(x) = f (x).
I Guess a function with derivative f (x): F(x).
I Then A(x) = F(x) + C for some constant C.
I Also A(a) = 0, so 0 = F(a) + C, so C = −F(a)
I So, A(b) = F(b)− F(a)

1(as long as f (t) is continuous on [a, x])
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1.3: The Fundamental Theorem of Calculus

∫ b

a
f (t)dt = F(b)− F(a) where F′(x) = f (x)

t

y y = f (t)

1−2

∫ 1

−2
f (t)dt = F(1)− F(−2)

2−2

∫ 2

−2
f (t)dt = F(2)− F(−2)

3−3

∫ 3

−3
f (t)dt = F(3)− F(−3)
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1.3: The Fundamental Theorem of Calculus

Fundamental Theorem of Calculus, Part 2
Let F(x) be differentiable, defined, and continuous on the interval
[a, b] with F′(x) = f (x) for all a < x < b. Then∫ b

a
f (x)dx = F(b)− F(a)

Examples:
d
dx

{
5x7
}
= 35x6, so∫ 3

0
35x6 dx =

d
dx {tan x} = sec2 x, so∫ π/4

0
sec2 x dx =

29/38 Theorem 1.3.1



1.3: The Fundamental Theorem of Calculus

∫ 3

0
35x6 dx = F(b)− F(a) where F(x) = 5x7

x

y y = 35x6

3

∫ 3

0
35x6 dx = 5(3)7 − 5(0)7
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1.3: The Fundamental Theorem of Calculus

∫ π/4

0
sec2 x dx = F(b)− F(a) where F(x) = tan x

x

y
y = sec2 x

1

∫ π/4

0
sec2 x dx = tan

(π
4

)
− tan 0 = 1
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1.3: The Fundamental Theorem of Calculus

RELEVANT VOCABULARY

Definition
If F(x) is a function whose derivative is f (x), we call F(x) an
antiderivative of f (x).

Examples:
The derivative of x2 is 2x, so:
x2 is an antiderivative of 2x.

When x > 0, the derivative of log x is 1
x , so:

For all x, the derivative of log |x| is 1
x , so:

An antiderivative of sin x is

32/38
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1.3: The Fundamental Theorem of Calculus

CONVENIENT NOTATION

Definition

f (x)
∣∣∣b
a
= f (b)− f (a)

The function f (x) evaluated from a to b

Examples:

(5x + x2)
∣∣∣2
1
=

x2

x+2

∣∣∣−1

5
=

FTC Part 2, Abridged∫ b

a
f (x)dx = F(x)

∣∣∣b
a

where F(x) is an antiderivative of f (x)

33/38
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1.3: The Fundamental Theorem of Calculus

Definition
The indefinite integral of a function f (x):∫

f (x)dx

means the most general antiderivative of f (x).

Examples:∫
2x dx =

∫
1
x

dx =

Remember: two functions with the same derivative differ by a
constant, so we include the “+C” for indefinite integrals.

34/38
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1.3: The Fundamental Theorem of Calculus

DEFINITE VS INDEFINITE INTEGRALS

For each pair of properties below, decide which applies to definite
integrals, and which to indefinite integrals.

No limits (or bounds) of integration,
∫

f (x)dx
Limits (or bounds) of integration,

∫ b
a f (x)dx

Area under a curve
Antiderivative
Number
Function

35/38



1.3: The Fundamental Theorem of Calculus

ANTIDIFFERENTIATION BY INSPECTION

1.
∫

ex dx

2.
∫

cos x dx

3.
∫
− sin x dx

4.
∫

1
x

dx

5.
∫

1 dx

6.
∫

2x dx

7.
∫

nxn−1 dx (n 6= 0, constant)

8.
∫

xn dx ( n 6= −1, constant)

36/38
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1.3: The Fundamental Theorem of Calculus

Power Rule for Antidifferentiation∫
xn dx =

1
n + 1

xn+1 + C

if n 6= −1 is a constant

Example:∫ (
5x2 − 15x + 3

)
dx =

37/38
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1.3: The Fundamental Theorem of Calculus

ANTIDERIVATIVES TO RECOGNIZE

I
∫

xn dx = 1
n+1 xn+1 + C

I
∫

a dx = ax + C
I
∫

ex dx = ex + C
I
∫ 1

x dx = log |x|+ C
I
∫
sin x dx = − cos x + C

I
∫
cos x dx = sin x + C

I
∫
sec2 x dx = tan x + C

I
∫
sec x tan x dx = sec x + C

I
∫
csc x cot x dx = − csc x + C

I
∫
csc2 x dx = − cot x + C

I
∫ 1

1+x2 dx = arctan x + C

I
∫ 1√

1−x2
dx = arcsin x + C

38/38 Theorem 1.3.16
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