
3.3.4 Alternating Series Test 3.3.5 Ratio Test 3.3.6 List of Tests

TABLE OF CONTENTS

Sequences
and Series

Introduction

3.1
Sequences

3.2
Series

Convergence

3.3
Convergence

Tests

3.4
Absolute and
Conditional

Convergence

Series as
Functions

3.5
Power Series

3.6
Taylor Series

1/30



3.3.4 Alternating Series Test 3.3.5 Ratio Test 3.3.6 List of Tests

REVIEW

Let SN =

N∑
n=1

an.

Simplify: SN − SN−1. (This will come in handy soon.)

SN = a1 + a2 + a3 + · · ·+ aN−1 + aN

SN−1 = a1 + a2 + a3 + · · ·+ aN−1
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ALTERNATING SERIES

Alternating Series
The series

A1 − A2 + A3 − A4 + · · · =
∞∑

n=1

(−1)n−1An

is alternating if every An ≥ 0.

Alternating series:

I 1−2+3−4+5−6+7−8+· · ·

I 1− 1
2
+

1
3
− 1

4
+

1
5
− · · ·

Not alternating:

I cos(1) + cos(2) + cos(3) + · · ·

I 1−
(
−1

2

)
+

1
3
−
(
−1

4

)
+ · · ·
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Consider an alternating series a1 − a2 + a3 − a4 + · · · , where {an} is a
sequence with positive, decreasing terms and with lim

n→∞
an = 0.

n

S1

S3
S5 S7 S9 S11 S13 S15 S17 S19

S2

S4
S6

S8 S10 S12 S14 S16 S18 S20

a2
a3

a4

Since a2 > a3, we have a1 − (a2 − a3) < a1, so S3 < S1.

Odd-indexed partial sums are decreasing.

Since a3 > a4, we have a1 − a2 + (a3 − a4) > a1 − a2, so S4 > S2.
Even-indexed partial sums are increasing.
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n

S1

S3
S5 S7 S9 S11 S13 S15 S17 S19

S2

S4
S6

S8 S10 S12 S14 S16 S18 S20

lim
n→∞

Sn

I For all n ≥ 2, Sn lies between S1 and S2.
I For all n ≥ 3, Sn lies between S2 and S3.
I For all n ≥ 4, Sn lies between S3 and S4.
I For all n ≥ 5, Sn lies between S4 and S5.

The difference between consecutive sums Sn and Sn−1 is:

|an|, which approaches 0.
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Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys
(i) an ≥ 0 for all n ≥ 1;

(ii) an+1 ≤ an for all n ≥ 1 (i.e. the sequence is monotone decreasing);
(iii) and lim

n→∞
an = 0.

Then

a1 − a2 + a3 − a4 + · · · =
∞∑

n=1

(−1)n−1an = S

converges and, for each natural number N, S− SN is between 0 and
(the first dropped term) (−1)NaN+1. Here SN is, as previously, the Nth

partial sum
N∑

n=1
(−1)n−1an.

8/30 Theorem 3.3.14
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Alternating Series Test (abridged)

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys
(i) an ≥ 0 for all n ≥ 1;

(ii) an+1 ≤ an for all n ≥ 1 (i.e. the sequence is monotone decreasing);
(iii) and lim

n→∞
an = 0.

Then

a1 − a2 + a3 − a4 + · · · =
∞∑

n=1

(−1)n−1an

converges.

I True or false: the harmonic series
∞∑

n=1

1
n

converges.

I True or false: the alternating harmonic series
∞∑

n=1

(−1)n

n
converges.
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DIVERGENCE TEST + ALTERNATING SERIES TEST

lim
n→∞

an = ?

∑
an diverges

(divergence test)

6= 0

Alternating and
|an+1| ≤ |an|?

= 0

∑
an may converge or

diverge; use another test

no

∑
an converges

(alternating series test)

yes
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Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys an ≥ 0 for all

n ≥ 1; an+1 ≤ an for all n ≥ 1; and lim
n→∞

an = 0. Then
∞∑

n=1
(−1)n−1an = S

converges and S− SN is between 0 and (−1)NaN+1.

Using a computer, you find
99∑

n=1

(−1)n−1

n
≈ 0.698.

How close is that to the value
∞∑

n=1

(−1)n−1

n
?
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Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys an ≥ 0 for all

n ≥ 1; an+1 ≤ an for all n ≥ 1; and lim
n→∞

an = 0. Then
∞∑

n=1
(−1)n−1an = S

converges and S− SN is between 0 and (−1)NaN+1.

Using a computer, you find
19∑

n=1

(−1)n−1 n2

n2 + 1
≈ 0.6347.

How close is that to the value
∞∑

n=1

(−1)n−1 n2

n2 + 1
?

12/30



3.3.4 Alternating Series Test 3.3.5 Ratio Test 3.3.6 List of Tests

Recall for a geometric series, the ratios of consecutive terms is
constant.

1
2

1
4

1
8

1
16

1
32

+

× 1
2

1/4
1/2 =

+

× 1
2

1/8
1/4 =

+

× 1
2

1/16
1/8 =

+

× 1
2

1/32
1/16 =

· · ·

1
2

If that ratio has magnitude less then one, then the series converges.
If the ratio has magnitude greater than one, the series diverges.
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For series convergence, we are concerned with what happens to
terms an when n is sufficiently large.
Suppose for a sequence an, lim

n→∞
an+1

an
= L for some constant L.

an an+1 an+2 an+3 an+4+

an+1

an
≈

+

an+2

an+1
≈

+

an+3

an+2
≈

+

an+4

an+3
≈

+

an+5

an+4
≈

· · ·

L

Like in a geometric series:

If L has magnitude less then one, then the series converges.
If L has magnitude greater than one, the series diverges.
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Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L < 1, then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L > 1, or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.

15/30 Theorem 3.3.18
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Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L < 1, then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L > 1, or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.

Use the ratio test to determine whether the series
∞∑

n=1

n
3n

converges or diverges.

16/30
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REMARK

The series we just considered,
∞∑

n=1

n
3n , looks similar to a geometric

series, but it is not exactly a geometric series. That’s a good indicator
that the ratio test will be helpful!

We could have used other tests, but ratio was probably the easiest.

I Integral test:
∫

x
3x dx can be evaluated using integration by

parts.
I Comparison test:

I
∑ 1

3n is not a valid comparison series, nor is
∑

n.
I Because n < 2n for all n ≥ 1, the series

∑( 2
3

)n will work.
I The divergence test is inconclusive, and the alternating series test

does not apply. Our series is not geometric, and not obviously
telescoping.
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Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L < 1, then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L > 1, or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.

Let a and x be nonzero constants. Use the ratio test to determine
whether

∞∑
n=1

anxn−1

converges or diverges. (This may depend on the values of a and x.)

18/30
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Let x be a constant. Use the ratio test to determine whether
∞∑

n=1

(−3)n
√

n + 1
2n + 3

xn

converges or diverges. (This may depend on the value of x.)

19/30
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FILL IN IN THE BLANKS

Divergence Test

If the sequence {an}∞n=c

then the series
∞∑

n=c
an diverges.

Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ , then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ , or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.

20/30



3.3.4 Alternating Series Test 3.3.5 Ratio Test 3.3.6 List of Tests

Integral Test
Let N0 be any natural number. If f (x) is a function which is defined
and continuous for all x ≥ N0 and which obeys

(i) and

(ii) and
(iii) f (n) = an for all n ≥ N0.
Then

x

y

1 2 3

a1
a2 a3

y = f (x)

∞∑
n=1

an converges ⇐⇒
∫ ∞

N0

f (x) dx converges

Furthermore, when the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx for all N ≥ N0
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FILL IN IN THE BLANKS

The Comparison Test
Let N0 be a natural number and let K > 0.

(a) If |an| Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an

converges.

(b) If an Kdn ≥ 0 for all n ≥ N0 and
∞∑

n=0
dn diverges, then

∞∑
n=0

an

diverges.
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FILL IN IN THE BLANKS

Limit Comparison Theorem
Let

∑∞
n=1 an and

∑∞
n=1 bn be two series with bn > 0 for all n. Assume

that
lim

n→∞

an

bn
= L

exists.
(a) If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges too.

(b) If L 6= 0 and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges too.

In particular, if , then
∑∞

n=1 an converges if and only if∑∞
n=1 bn converges.
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Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys

(i)
(ii) an+1 ≤ an for all n ≥ 1 (i.e. the sequence is monotone decreasing);

(iii) and
Then

a1 − a2 + a3 − a4 + · · · =
∞∑

n=1

(−1)n−1an = S

converges and, for each natural number N, S− SN is between 0 and
(the first dropped term) (−1)NaN+1. Here SN is, as previously, the Nth

partial sum
N∑

n=1
(−1)n−1an.
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LIST OF CONVERGENCE TESTS

Divergence Test
When the nth term in the series fails to converge to zero as n
tends to infinity.
This is a good first thing to check: if it works, it’s quick, but it
doesn’t always work.

Alternating Series Test
I successive terms in the series alternate in sign
I don’t forget to check that successive terms decrease in

magnitude and tend to zero as n tends to infinity

Integral Test
I works well when, if you substitute x for n in the nth term

you get a function, f (x), that you can easily integrate
I don’t forget to check that f (x) ≥ 0 and that f (x) decreases

as x increases
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LIST OF CONVERGENCE TESTS

Ratio Test
I works well when an+1

an
simplifies enough that you can

easily compute lim
n→∞

∣∣ an+1
an

∣∣ = L
I this often happens when an contains powers, like 7n, or

factorials, like n!
I don’t forget that L = 1 tells you nothing about the

convergence/divergence of the series
Comparison Test and Limit Comparison Test

I Comparison test lets you ignore pieces of a function that
feel extraneous (like replacing n2 + 1 with n2) but there is a
test to make sure the comparison is still valid. Either the
limit of a ratio is the right thing, or an inequality goes the
right way.

I Limit comparison works well when, for very large n, the
nth term an is approximately the same as a simpler,
nonnegative term bn
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I The integral test gave us the p-test. When you’re looking for

comparison series, p-series
∑ 1

np are often good choices,
because their convergence or divergence is so easy to ascertain.

I Geometric series have the form
∑

a · rn for some nonzero
constants a and r. The magnitude of r is all you need to know to
deicide whether they converge or diverge, so these are also
common comparison series.

I Telescoping series have partial sums that are easy to find because
successive terms cancel out. These are less obvious, and are less
common choices for comparison series.
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Test List
I divergence
I integral
I alternating series

I ratio
I comparison
I limit comparison

Determine whether the series
∞∑

n=1

cos n
2n converges or diverges.
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Test List
I divergence
I integral
I alternating series

I ratio
I comparison
I limit comparison

Determine whether the series
∞∑

n=1

2n · n2

(n + 5)5 converges or diverges.

29/30
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Test List
I divergence
I integral
I alternating series

I ratio
I comparison
I limit comparison

Determine whether the series
∞∑

n=1

1
n
sin

(
1
n

)
converges or diverges.

Hint: If θ ≥ 0 then sin θ ≤ θ.
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Included Work

‘Balloon’ by Simon Farkas is licensed under CC-BY (accessed November 2022,
edited), 4

‘Waage/Libra’ by B. Lachner is in the public domain (accessed April 2021,
edited), 4

‘Weight’ by Kris Brauer is licensed under CC-BY(accessed May 2021), 4

https://thenounproject.com/term/balloon/2219929/
https://thenounproject.com/simon1276/
https://opendefinition.org/licenses/cc-by/
https://openclipart.org/detail/191471/waagelibra
https://openclipart.org/artist/B.Lachner
https://thenounproject.com/term/weight/192822/
https://thenounproject.com/Krisb/
https://opendefinition.org/licenses/cc-by/
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