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RADIOACTIVE DECAY

One model for radioactive decay says that the rate at which an
isotope decays is proportional to the amount present. So if Q(t) is the
amount of a radioactive substance, then

dQ
dt

= −kQ(t)

for some constant1 k.

This is a first-order linear differential equation. Its explicit solutions
have the form:

1By including the negative sign, we ensure k will be positive, but of course we could
also write “ dQ

dt = KQ(t) for some [negative] constant K”.
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HALF-LIFE

The half-life of an isotope is the time required for half of that isotope
to decay. If we know the half-life of a substance is t1/2, and its
quantity at time t is given by Q(0)e−kt we can find the constant k:
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Radioactive Decay

The function Q(t) satisfies the equation dQ
dt = −kQ(t) if and only if

Q(t) = Q(0) e−kt

The half–life is defined to be the time t1/2 which obeys
Q
(
t1/2

)
= 1

2 Q(0). The half–life is related to the constant k by
t1/2 = log 2

k . Then

Q(t) = Q(0) e
− log 2

t1/2
t
= Q(0) ·

(
1
2

) t
t1/2

If the half-life of 14C is t1/2 = 5730 years, then the quantity of
carbon-14 present in a sample after t years is:
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A particular piece of flax parchment contains about 64% as much 14C
as flax plants do today. We will estimate the age of the parchment,
using 5730 years as the half-life of 14C.
First, a rough estimate: is the parchment older or younger than 5730
years?

7/23 Example 2.4.10
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Newton’s law of cooling
The rate of change of temperature of an object is proportional to the
difference in temperature between the object and its surroundings.

The temperature of the surroundings is sometimes called the ambient
temperature.

dT
dt

=

8/23 Equation 2.4.4
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Linear First-Order Differential Equations
Let a and b be constants. The differentiable function y(x) obeys the
differential equation

dy
dx

= a(y− b)

if and only if
y(x) = {y(0)− b} eax + b

Find an explicit formula for functions T(t) solving the differential

equation
dT
dt

= K(T(t)− A) for some constants K and A.
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The temperature of a glass of iced tea is initially 5◦. After 5 minutes,
the tea has heated to 10◦ in a room where the air temperature is 30◦.
Assume the temperature of the tea as it cools follows Newton’s law
of cooling,

T(t) = (T(0)− A) eKt + A

(a) Determine the temperature as a function of time.
(b) When the tea will reach a temperature of 14◦ ?
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A glass of room-temperature water is carried out onto a balcony from
an apartment where the temperature is 22◦C. After one minute the
water has temperature 26◦C and after two minutes it has temperature
28◦C. Assuming the water warms according to Newton’s law of
cooling, what is the outdoor temperature?
Assume that the temperature of the water obeys Newton’s law of
cooling.
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Let P the the size of a population, and let K be the carrying capacity
of its environment (i.e. the population size that can be sustainably
supported).

When P is much less than K, our
population has...
A. not enough resources
B. just enough resources
C. extra resources

So when the P is much less than
K, we expect the population to...

A. shrink

B. stay the same

C. grow

Malthusian growth
The Malthusian growth model relates population growth to
population size:

dP
dt

= bP(t)

where b is a constant representing net birthrate per member of the
population.
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Let P the the size of a population, and let K be the carrying capacity
of its environment (i.e. the population size that can be sustainably
supported).

When P is greater than K, our
population has...
A. not enough resources
B. just enough resources
C. extra resources

So when the P is greater than K,
we expect the population to...

A. shrink

B. stay the same

C. grow
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Logistic growth models population growth as:

dP
dt

= b0

(
1− P(t)

K

)
P(t)

I If P << K, then dP
dt ≈

b0P(t)

I If P ≈ K, then dP
dt ≈

0

I If P > K, then dP
dt

< 0
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Before we solve explicitly, let’s sketch some solutions to

dP
dt

= b0

(
1− P(t)

K

)
P(t)

I If P(a) = 0:

dP
dt = 0

I If 0 < P(a) < K:

dP
dt (a) > 0

I If P(a) = K:

dP
dt (a) = 0

I If K < P(0):

dP
dt (a) < 0

t

P

K
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Find the explicit solutions to

dP
dt

= b
(

1− P(t)
K

)
P(t)

when b and K are constants.
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At time t = 0, where t is measured in minutes, a large tank contains 3
litres of water in which 1 kg of salt is dissolved. Fresh water enters
the tank at a rate of 2 litres per minute and the fully mixed solution
leaks out of the tank at the varying rate of 2t litres per minute.
(a) Determine the volume of solution V(t) in the tank at time t.
(b) Determine the amount of salt Q(t) in solution when the amount

of water in the tank is at maximum.

2 L
min

2t L
min
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SETTLING TANK

A settling tank is filled with 100,000 litres of pure water. Every hour,
1,000 litres of water, containing 3 grams of pollutants, enters the tank.

90% of the pollutants in the settling tank sink to the bottom, with the
remaining 10% well-mixed into the water. The tank drains 1,000 litres
of this mixed water into the sewer every hour.

In order to drain the water into the local sewer, the concentration of
pollutants cannot be more than 1 gram per 1,000 litres. How long can
the settling tank take dirty water until the process must be stopped?
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3 g/hr
pollutants

1, 000 L/hr
water

1, 000 L/hr
mixed water

100, 000 L water
P grams pollutants total
(dissolved + settled)
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Let P(t) be the total amount (in grams) of pollutants in the tank.
Pollutants are entering at a rate of 3 grams per hour. How fast are
they leaving?

So, the quantity of pollutants in the tank satisfies the differential
equation:
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You deposit $P in a bank account at time t = 0, and the account pays
r% interest per year, compounded n times per year. Your balance at
time t is B(t).
If one interest payment comes at time t, then the next interest
payment will be made at time t + 1

n and will be:

1
n
× r

100
× B(t) =

r
100n

B(t)

So, calling 1
n = h,

B(t + h) = B(t) +
r

100
B(t)h or

B(t + h)− B(t)
h

=
r

100
B(t)

If the interest is compounded continuously,

dB
dt

(t) = lim
h→0

B(t + h)− B(t)
h

=
r

100
B(t)

=⇒ B(t) = B(0) · ert/100 = P · ert/100

21/23 Example 2.4.19
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Continuously compounding interest
If an account with balance B(t) pays a continuously compounding
rate of r% per year, then:

dB
dt

=
r

100
B

B(t) = B(0) · ert/100
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You invest $200 000 into an account with continuously compounded
interest of 5% annually. You want to withdraw from the account
continuously at a rate of $W per year, for the next 20 years. How big
can W be?

23/23 Example 2.4.21
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