1.7: Integration by Parts

Special Techniques
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REVERSE THE PRODUCT RULE

Product Rule:

%{u(x) co(x)} =u'(x) - o(x) + u(x) - v’ (x)

Related fact:

Rearrange:

= / dx+/[ x)}dx +C
/ (x d\ = u(x)v(s / d\ +C
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INTEGRATION BY PARTS

Example: / xe*dx
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CHECK OUR WORK

In the previous slide, we evaluated
/xe"dx =x* —e+C

for some constant C. We can check that this is correct by
differentiating.
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INTEGRATION BY PARTS (IBP): A CLOSER LOOK

/ [u(x)v’(x)}dx = u(x)v(x) — / [v(x)u’(x)]dx +C

x(e¥) — 1/exdx +C

xe“dx

How to integrate?? Easy to integrate!

We start and end with an integral. IBP is only useful if the new
integral is somehow an improvement.

We differentiate the function we choose as u(x), and antidifferentiate
the function we choose as v’ (x)
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CHOOSING u(x) AND v(x)

/ [u(x)v’(x)}dx = u(x)v(x) — / [v(x)u’(x)]dx +C

/hmﬂm:

Option A: Option B:
u(x) =x u(x) =sinx
v'(x) =sinx U(x)=x
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CHECK OUR WORK

To check our work, we can calculate %{ —xcosx +sinx + C } It
should work out to be xsin x.
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CHOOSING u(x) AND v(x)

/ [u(x)v’(x)}dx = u(x)v(x) — / [v(x)u’(x)]dx +C

/ [xz log x] dx =

Option A: Option B:
u(x) = x? u(x) = logx
v'(x) = log x V' (x) = x?
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CHECK OUR WORK

To check our work, we can calculate < { 3 logx — x>+ C } It

should work out to be x log x.
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/ [u(x)v’(x)}dx = u(x)v(x) — / [v(x)u’(x)]dx +C

/ [3xe®] dx =

Option A: Option B:
u(x) = 3x u(x) = e
v'(x) = e® v'(x) = ix
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CHECK OUR WORK

1 1 .1
We check that / {2xeéx} dx = Exe6" — 566" + C by differentiating.
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MNEMONIC

/ [u(x)z/(x)] dx = u(x)o(x) — / [v(x)u'(x)]dx +C

/udU:uv—/Udu+C

We abbreviate:
> u(x) —u
» i/ (x)dx — du
> o(x) > v
» o'(x)dx — do
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CHOOSING u, dv IN YOUR HEAD

Choose u and dv to evaluate the integral below:

/(Bt + 5) cos(t/4)dt

Thoughts: /u dv = uv — /vdu
u gets differentiated, and dv gets antidifferentiated.
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Evaluate, using IBP or Substitution

/udv:uv—/vdu—i—c
> /xe"zdx

> /xze"dx

» /ex-i-exdx
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DEFINITE INTEGRATION BY PARTS

Method 1: Antidifferentiate first, then plug in limits of integration.

Method 2: Plug as you go.
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e
Evaluate [ log?xdx
1
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SPECIAL TECHNIQUE: v/(x) =1

/udv:uv—/vdu+c

Evaluate / log x dx using integration by parts.
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CHECK OUR WORK

Let’s check that /logxdx =xlogx —x+C.
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/udv:uv—/vdu+c

Evaluate / arctan x dx using integration by parts.
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CHECK OUR WORK

1
Let’s check that /arctanxdx = xarctanx — 5 log |1+ x*| + C.
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Setting dv = 1dx is a very specific technique. You'll probably only
see it in situations integrating logarithms and inverse trigonometric
functions.

/ log x dx, / arcsin x dx, / arccos x dx, / arctanxdx, etc.
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Evaluate / ¢* cos x dx using integration by parts.

Let u = ¢* and dv = cosx dx. Then du = ¢* dx and v = sin x:
/‘ ¢ cosxdx = e sinx — /e" sinx dx
Let u = ¢* and dv = sinx dx. Then du = ¢* dx and v = — cos x:
=¢'sinx — [—ex coS X — / —e¥cosx dx]
=¢'sinx + e cosx — / e* cosx dx
/‘ ¢ cosx dx = e sinx + ¢ cosx — / e* cosx dx
2 / ¢ cosxdx =e sinx + e cosx +C
/

. 1
e cosx dx = 3 (e*sinx + € cosx) + C
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INTEGRATING AROUND IN A CIRCLE

We can use this technique to antidifferentiate products of two
functions that almost, but don’t quite, stay the same under
(anti)differentiation.

Use integration by parts a number of times, ending up with an
expression involving (a scalar multiple of) the original integral.

To do this, be consistent with your choice of u and dv.
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Evaluate | cos(logx) dx.
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CHECK OUR WORK

We check that / cos(logx)dx = %C [ cos(log x) + sin(log x)| + C by

differentiating.
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Evaluate [ ¢**sinx dx using integration by parts.
g g y P
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CHECK OUR WORK

We can check our work by differentiating e**[2sinx — cosx] + C.
We should end up with e sin x.
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