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FOUR SERIES

Leta, = (—%)n. Do the following series converge or diverge?

oo

(o]
D> _an >l
n=0

n=0

Letb, = 2% Do the following series converge or diverge?

n
Z bn Z |b71|
n=1 n=1
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The series
oo n
% (5)
n=0 3
is called absolutely convergent, because the series converges and if

we replace the terms being added by their absolute values, that series
still converges.

The series

n=0 n
is called conditionally convergent, because the series converges, but if
we replace the terms being added by their absolute values, that series
diverges.

3/7




3.4 Absolute and Conditional Convergence
O0®000

Absolute and conditional convergence

o0
(a) A series Y ay, is said to converge absolutely if the series
n=1

(oo}
>~ |an| converges.
n=1

(b) If > a, converges but > |a,| diverges we say that
n=1 n=1

(e}
> a, is conditionally convergent.
n=1

o0 o0

If the series ) |a,| converges then the series > a, also converges.
n=1 n=1

That is, absolute convergence implies convergence.
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If> a,.. | and ) |ay] ... then we say > a, is ...
converges | converges
converges diverges
diverges diverges
diverges converges
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Does the series

converge or diverge?
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Does the series

converge or diverge?
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