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We can imagine the list of numbers below carrying on forever:

a1 = 0.1

+

a2 = 0.01

+

a3 = 0.001

+

a4 = 0.0001

+

a5 = 0.00001
...

0.11111 · · ·

A sequence is a list of infinitely many numbers with a specified order.
It is denoted {a1, a2, · · · , an, · · · } or {an}∞n=1, etc.
Imagine adding up this sequence of numbers.
A series is a sum a1 + a2 + · · ·+ an + · · · of infinitely many terms.
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To handle sequences and series, we should define them more
carefully. A good definition should allow us to answer some basic
questions, such as:
I What does it mean to add up infinitely many things?
I Should infinitely many things add up to an infinitely large

number?
I Does the order in which the numbers are added matter?
I Can we add up infinitely many functions, instead of just

infinitely many numbers?
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Sequence
A sequence is a list of infinitely many numbers with a specified order.

Some examples of sequences:
I {1, 2, 3, 4, 5, 6, 7, 8, · · · } (natural numbers)

I {3, 1, 4, 1, 5, 9, 2, 6, · · · } (digits of π)

I {1,−1, 1,−1, 1, · · · } (powers of −1 : (−1)0, (−1)1, (−1)2, etc.)
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Sequence
A sequence is a list of infinitely many numbers with a specified order.
It is denoted {a1, a2, a3, · · · , an · · · } or {an} or {an}∞n=1, etc.

{an}∞n=1 =

{
1
n

}∞
n=1

I n = 1: this is the index of the first term of our sequence.
Sometimes it’s 0, sometimes something else, for example a year.

I ∞: there is no end to our sequence.
I 1

n : this tells us the value of an.
I Often we omit the limits and even the brackets, writing an = 1

n .
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SEQUENCE NOTATION

For convenience, we write a1 for the first term of a sequence, a2 for
the second term, etc.

In the sequence 1, 1
2 ,

1
3 ,

1
4 , · · · ,

a3 is another name for

Sometimes we can find a rule for a sequence.
In the above sequence, an =

We can write {an}∞n=1 =
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Our primary concern with sequences will be the behaviour of an as n
tends to infinity and, in particular, whether or not an “settles down”
to some value as n tends to infinity.

Convergence

A sequence
{

an
}∞

n=1 is said to converge to the limit A if an approaches
A as n tends to infinity. If so, we write

lim
n→∞

an = A or an → A as n→∞

A sequence is said to converge if it converges to some limit.
Otherwise it is said to diverge.

7/18 Definition 3.1.3
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Convergence

A sequence
{

an
}∞

n=1 is said to converge to the limit A if an approaches
A as n tends to infinity. If so, we write

lim
n→∞

an = A or an → A as n→∞

A sequence is said to converge if it converges to some limit.
Otherwise it is said to diverge.

I {1, 2, 3, 4, 5, 6, 7, 8, · · · } (natural numbers)
This sequence

I {3, 1, 4, 1, 5, 9, 2, 6, · · · } (digits of π)
This sequence

I {1,−1, 1,−1, 1, · · · } (powers of −1 : (−1)0, (−1)1, (−1)2, etc.)
This sequence
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Does the sequence an =
n

2n + 1
converge or diverge?

9/18 Example 3.1.5
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Consider the sequence an =
1

3n + 1
. lim

n→∞
an =

n

f (x) = 1
3x+1

1

a1

2

a2

3

a3

4

a4

5

a5

1
4

1
10
1
28

Theorem 3.1.6
If lim

x→∞
f (x) = L

and if an = f (n) for all positive integers n, then

lim
n→∞

an = L
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CAUTIONARY TALE

Consider the sequence bn = sin(πn) =

lim
n→∞

bn = lim
x→∞

f (x)

n

f (x) = sin(πx)

1

b1

2

b2

3

b3

4

b4

5

b5
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Theorem
If lim

x→∞
f (x) = L and if an = f (n) for all natural n, then lim

n→∞
an = L.

n
1

a1

2

a2

3

a3

4

a4

5

a5 n
1

b1

2

b2

3

b3

4

b4

5

b5
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Arithmetic of Limits
Let A, B and C be real numbers and let the two sequences

{
an
}∞

n=1
and

{
bn
}∞

n=1 converge to A and B respectively. That is, assume that

lim
n→∞

an = A lim
n→∞

bn = B

Then the following limits hold.
(a) lim

n→∞

[
an + bn

]
= A + B

(b) lim
n→∞

[
an − bn

]
= A− B

(c) lim
n→∞

Can = CA.

(d) lim
n→∞

an bn = A B

(e) If B 6= 0, then lim
n→∞

an

bn
=

A
B

13/18 Theorem 3.1.8
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Evaluate the following limits:

I lim
n→∞

e−n =

I lim
n→∞

1+n
n =

I lim
n→∞

1
n2 =

I lim
n→∞

2n2 =

I lim
n→∞

( 1
n2

) (
2n2
)
=
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Continuous functions of limits
If lim

n→∞
an = L and if the function g(x) is continuous at L, then

lim
n→∞

g(an) = g(L)

Evaluate lim
n→∞

[
sin
(

πn
2n+1

)]

15/18 Theorem 3.1.12
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Squeeze Theorem
If an ≤ cn ≤ bn for all sufficiently large natural numbers n, and if

lim
n→∞

an = lim
n→∞

bn = L

then
lim

n→∞
cn = L

n
1 2 3 4 5 6 7 8 9

16/18 Theorem 3.1.10



Introduction to Sequences and Series 3.1 Sequences

Evaluate

lim
n→∞

(
2n + cos n

n + 1

)
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Let an = (−n)−n. Evaluate lim
n→∞

an.
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