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For a convergent geometric or telescoping series, we can easily
determine what the series converges to.

For other types of series, finding out what the series converges to can
be very difficult. It is often necessary to resort to approximating the
full sum by, for example, using a computer to find the sum of the first
N terms, for some large N. But before we even try to do that, we
should at least know whether or not the series converges.
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Suppose a series
∞∑

n=1

an converges to a limit L. Let SN =

N∑
n=1

an.

lim
N→∞

SN =

lim
N→∞

SN−1 =

lim
N→∞

[
SN − SN−1

]
=

lim
N→∞

aN =

a1 a2 a3 aN−1 aN

SN

SN−1

Every convergent series has its Nth term, aN, tending to 0 as N →∞.
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Divergence Test
If the sequence {an}∞n=c fails to converge to zero as n→∞, then the

series
∞∑

n=c
an diverges.

Do the following series diverge?

I
∞∑

n=0

(−1)n

I
∞∑

n=10

(
1

10
+

1
2n

)
I

∞∑
n=15

en

2en − 1

I
∞∑

n=15

1
n

5/33 Theorem 3.3.1
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USING THE DIVERGENCE TEST FOR
∑

an

lim
n→∞

an = ?

∑
an diverges

6= 0

∑
an may converge or diverge;

use another test

= 0

6/33 Warning 3.3.3
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HARMONIC SERIES:
∞∑

n=1

1
n

x

1

1
2

1
3

1 2 3 4 5 6 7 8

y = 1
x

N∑
n=1

1
n
≥
∫ N+1

1

1
x

dx

7/33 Example 3.3.4
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n=1

1
n DIVERGES

1 1
2

1
3

1
4

1
5

1.0000

S1 = 1.0000

1.5000

S2 = 1.5000

1.8333

S3 = 1.8333

2.0833

S4 = 2.0833

2.2833

S5 = 2.2833
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∞∑
n=1

1
n2+1

x
1 2 3 4 5 6 7 8

1

1
2

1
5
1

10 y = 1
x2+1

0 ≤
N∑

n=1

1
n2 + 1

9/33



3.3.1 Divergence Test 3.3.2 Integral Test 3.3.3 Comparison Test

∞∑
n=1

1
n2 + 1

CONVERGES

1
2

1
5

1
10

1
17

1
26

0.5000

S1 = 0.5000

0.7000

S2 = 0.7000

0.8000

S3 = 0.8000

0.8588

S4 = 0.8588

0.8973

S5 = 0.8973
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Integral Test
Let N0 be any natural number. If f (x) is a function which is defined
and continuous for all x ≥ N0 and which obeys

(i) f (x) ≥ 0 for all x ≥ N0 and
(ii) f (x) decreases as x increases and

(iii) f (n) = an for all n ≥ N0.
Then

x

y

1 2 3

a1
a2 a3

y = f (x)

∞∑
n=1

an converges ⇐⇒
∫ ∞

N0

f (x) dx converges

Furthermore, when the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx for all N ≥ N0

11/33 Theorem 3.3.5
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Does the series
∞∑

n=10

1
n log n

converge or diverge?

Divergence Test

If lim
n→∞

an 6= 0, then
∞∑

n=a
an diverges.

No use here: we need another test.

Set f (x) = 1
x log x .

(i) f (x) ≥ 0 for all x ≥ 10 and
(ii) f (x) decreases as x increases and

(iii) f (n) = an for all n ≥ 10.

So, the integral test applies.
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Does the series
∞∑

n=10

1
n log n

converge or diverge?

x

1
10 log(10)

1
11 log(11)

1
12 log(12)

10 11 12 13 14 15 16 17

y = 1
x log x

∫ ∞
10

1
x log x

dx =∞
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Integral Test, abridged
... When the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx

x

y

N

y = f (x)

N∑
n=1

an

∞∑
n=N+1

an (truncation error)
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Integral Test, abridged
When the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx

We already decided that the series
∞∑

n=1

1
n2 + 1

converges.

Suppose we had a computer add up the terms n = 1 through n = 100.

Use the integral test to bound the error,
∞∑

n=1

1
n2 + 1

−
100∑
n=1

1
n2 + 1

.
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By computer,
100∑
n=1

1
n2 + 1

≈ 1.0667. Using the truncation error of about

0.01, give a (small) range of possible values for
∞∑

n=1

1
n2 + 1

.

0 ≤
∞∑

n=1

1
n2 + 1

−
100∑
n=1

1
n2 + 1

≤
∫ ∞

100

1
x2 + 1

dx
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p-TEST

Let p be a positive constant. When we talked about improper
integrals, we showed:∫ ∞

1

1
xp dx

{
converges if p > 1
diverges if p ≤ 1

Set f (x) =
1
xp .

(i) f (x) ≥ 0 for all x ≥ 1, and
(ii) f (x) decreases as x increases

∞∑
n=1

1
np dx

{

17/33 Example 3.3.6
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Consider the series
∞∑

n=1

1
n3 .

By the p-test, we know this series

converges.

How many terms should we add up to approximate the series to
within an error of no more than 0.02?
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∞∑
n=1

1
n3 converges to within 0.02 of

5∑
n=1

1
n3 .

1 1
23

1
33

1
43

1
53

1.0000

S1 = 1.0000

1.1250

S2 = 1.1250

1.1620

S3 = 1.1620

1.1776

S4 = 1.1776

1.1856

S5 = 1.1856
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Observation
In a series with positive terms, the series either converges, or
diverges to infinity.

If terms are “too big,” series will diverge.

a1

a2

a3 ∑
an
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∑ 1
n2 converges

∑ 1
n2 + n

converges, too

1

1
4

1
9

1
2

1
6

1
12

Terms are “small enough” for
sum to converge

Terms are also “small enough”
for sum to converge

21/33



3.3.1 Divergence Test 3.3.2 Integral Test 3.3.3 Comparison Test

The Comparison Test
Let N0 be a natural number and let K > 0.

(a) If |an| ≤ Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an

converges.

(b) If an ≥ Kdn ≥ 0 for all n ≥ N0 and
∞∑

n=0
dn diverges, then

∞∑
n=0

an

diverges.

Consider
∞∑

n=1

1
n−0.1 .

I We know 0 < 1
n < 1

n−0.1

I We know
∞∑

n=1

1
n diverges (harmonic series)

I So, by the comparison test,
∞∑

n=1

1
n−0.1 diverges as well.

22/33 Therorem 3.3.8
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Does the series
∞∑

n=1

n + cos n
n3 − 1/3

converge or diverge?

Step 1: Intuition.
When n is very large, we expect:
I n + cos n ≈

I n3 + 1
3 ≈

I So, we expect
n + cos n
n3 − 1/3

≈

Since
∞∑

n=1

1
n2 ...

we expect
∞∑

n=1

n + cos n
n3 − 1/3

to also ....

23/33 Example 3.3.10
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Does the series
∞∑

n=1

n + cos n
n3 − 1/3

converge or diverge?

Step 2: Choose comparison series.

The Comparison Test, abridged
Let N0 be a natural number and let K > 0.

If |an| ≤ Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an converges.

To show that original series converges, we should find a comparison
series that also converges and whose terms (times some positive
constant) are larger than the original terms. There are many
possibilities. For n ≥ 1,
I n + cos n <

I n3 − 1
3 >

I So
n + cos n
n3 − 1/3

<

24/33 Example 3.3.10



3.3.1 Divergence Test 3.3.2 Integral Test 3.3.3 Comparison Test

Does the series
∞∑

n=1

n + cos n
n3 − 1/3

converge or diverge?

Step 3: Verify.

The Comparison Test, abridged
Let N0 be a natural number and let K > 0.

If |an| ≤ Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an converges.

25/33 Example 3.3.10
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For the comparison test as we have seen it so far, to conclude that a
given series diverges, we have to find a divergent comparison series
whose terms are smaller than (a positive multiple of) those of our
original series .

you must be at
least this tall to
diverge

∑ 1
n

∑ 1
n−
√

n ∑ 1
n+
√

n
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For the comparison test as we’ve seen it so far, to conclude that a
given series converges, we have to find a convergent comparison
series whose terms are larger than (a positive multiple of) those of
our original series .

convergent
series only
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Limit Comparison Theorem
Let

∑∞
n=1 an and

∑∞
n=1 bn be two series with bn > 0 for all n. Assume

that
lim

n→∞

an

bn
= L

exists.
(a) If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges too.

(b) If L 6= 0 and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges too.
In particular, if L 6= 0, then

∑∞
n=1 an converges if and only if

∑∞
n=1 bn

converges.

I For large n, an ≈ L · bn;

I so we expect
∑

an to behave roughly like
∑

(L · bn);

I and since L 6= 0, we expect
∑

(L · bn) to converge if and only if∑
bn converges.

28/33 Theorem 3.3.11, with a very rough justification
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By the p-test,
∞∑

n=1

1
n3/2 converges.

Can we conclude that
∞∑

n=1

1
n3/2 − n + 1

also converges?
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Does the series
∞∑

n=1

√
n + 1

n2 − 2n + 3
converge or diverge?

Step 1: Intuition
For large n,
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Does the series
∞∑

n=1

√
n + 1

n2 − 2n + 3
converge or diverge?

Step 2: Verify Intuition
Let an =

√
n+1

n2−2n+3 and bn = 1
n3/2 .

lim
n→∞

an

bn
=
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COMPARISON STRATEGIES

I Before you can use either comparison test, you need to guess a
series to compare.

I The series you guess should be easy to deal with.

I p-series
I geometric series

I Common guess (especially if monotone): consider “largest”
piece of numerator and denominator
(constant) < (logarithm) < (polynomial) < (exponential)

I After you guess a comparison series, show it works by finding
the correct inequality (comparison test), or computing the limit
of the ratio (limit comparison test).
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CHOOSE A SERIES TO COMPARE

∞∑
n=1

3n
n2 + 1

∞∑
n=1

n2 + n + 1
n5 − n

∞∑
k=1

k(2 + sin k)
k
√

2

∞∑
m=1

3m + sin
√

m
m2
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