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Calculus is build on two operations: differentiation and integration.

Differentiation
I Slope of a line
I Rate of change
I Optimization
I Numerical Approximations

Integration
I Area under a curve
I “Reverse” of differentiation
I Solving differential equations
I Calculate net change from rate of change
I Volume of solids
I Work (in the physics sense)
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Approximate the area of the shaded region using rectangles.

x

y
y = ex

1

We’re going to be doing a lot of adding.
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SUMMATION (SIGMA) NOTATION

b∑
i=a

f (i)

I a, b (integers with a ≤ b) “bounds”
I i “index:” integer which runs from a to b
I f (i) “summands:” compute for every i, add

b∑
i=a

f (i) = f (a) + f (a + 1) + f (a + 2) + · · ·+ f (b)
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SIGMA NOTATION

Expand
4∑

i=2

(2i + 5).
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SIGMA NOTATION

Expand
4∑

i=1

(i + (i− 1)2).
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Write the following expressions in sigma notation:

I 3 + 4 + 5 + 6 + 7

I 8 + 8 + 8 + 8 + 8

I 1 + (−2) + 4 + (−8) + 16
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ARITHMETIC OF SUMMATION NOTATION

Let c be a constant.

I Adding constants:
10∑

i=1
c =

10c

I Factoring constants:
10∑

i=1
5(i2) =

5
10∑

i=1
(i2)

I Addition is Commutative:
10∑

i=1
(i + i2) =

(
10∑

i=1
i
)

+

(
10∑

i=1
i2
)

8/52 Theorem 1.1.5: Arithmetic of Summation Notation
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ARITHMETIC OF SUMMATION NOTATION

Let c be a constant.

I Adding constants:
10∑

i=1
c = 10c

I Factoring constants:
10∑

i=1
5(i2) = 5

10∑
i=1

(i2)

I Addition is Commutative:
10∑

i=1
(i + i2) =

(
10∑

i=1
i
)

+

(
10∑

i=1
i2
)
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COMMON SUMS

Let n ≥ 1 be an integer, a be a real number, and r 6= 1.

n∑
i=0

ari = a + ar + ar2 + · · ·+ arn = a
1− rn+1

1− r
n∑

i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2
n∑

i=1

i2 = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
n∑

i=1

i3 = 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4

10/52 Theorem 1.1.6
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Let n ≥ 1 be an integer, a be a real number, and r 6= 1.

n∑
i=0

ari = a + ar + ar2 + · · ·+ arn = a
1− rn+1

1− r

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2

n∑
i=1

i2 = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

n∑
i=1

i3 = 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4

Simplify:
13∑

i=1

(i2 + i3)
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Let n ≥ 1 be an integer, a be a real number, and r 6= 1.

n∑
i=0

ari = a + ar + ar2 + · · ·+ arn = a
1− rn+1

1− r

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2

n∑
i=1

i2 = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

n∑
i=1

i3 = 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4

Simplify:
50∑

i=1

(1− i2)
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(OPTIONAL) PROOF OF A COMMON SUM

Here is a derivation of
n∑

i=0

ri =
1− rn+1

1− r
:
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(OPTIONAL) PROOF OF ANOTHER COMMON SUM

10∑
i=1

i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =

1 2 3 4 5 6 7 8 9 10

12345678910
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(OPTIONAL) PROOF OF A COMMON SUM

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
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The purpose of these sums is to describe areas.
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Notation
The symbol ∫ b

a
f (x) dx

is read “the definite integral of the function f (x) from a to b.”

I f (x): integrand
I a and b: limits of integration
I dx: differential
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If f (x) ≥ 0 and a ≤ b, one interpretation of∫ b

a
f (x) dx

is “the area of the region bounded above by y = f (x), below by y = 0,
to the left by x = a, and to the right by x = b.”

x

y

y = f (x)

a b

18/52



Introduction 1.1.3 Sum Notation 1.1.4 Definition of the Definite Integral 1.1.5 Using Known Areas 1.1.6 Another Interpretation

If f (x) ≥ 0 and a ≤ b, one interpretation of∫ b

a
f (x) dx

is the signed area of the region between y = f (x) and y = 0, from x = a
to x = b. Area above the axis is positive, and area below it is negative.

x

y

y = f (x)

a b

y = f (x)

a

b
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RIEMANN SUMS

A Riemann sum approximates the area under a curve by cutting it
into equal-width segments, and approximating each segment as a
rectangle.

x

y

y = f (x)

a b

There are different ways to choose the height of each rectangle.
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TYPES OF RIEMANN SUMS (RS)

h

Left RS

h

Right RS

h

Midpoint RS
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Approximate
∫ 4

2 log(x) dx using a right Riemann sum with n = 4
rectangles. For now, do not use sigma notation.

x

y

y = log x

2 4
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Approximate
∫ 0

−1
ex dx using a left Riemann sum with n = 3

rectangles. For now, do not use sigma notation.

x

y
y = ex

−1 0
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Approximate
∫ √π

0
sin
(
x2)dx using a midpoint Riemann sum with

n = 5 rectangles. For now, do not use sigma notation.

x

y

y = sin(x2)0 √
π
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Approximate
∫ 17

1

√
x dx using a midpoint Riemann sum with 8

rectangles. Write the result in sigma notation.

x

y
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8∑
i=1

2
√

2i = 2
√

2︸︷︷︸
i=1

+ 2
√

4︸︷︷︸
i=2

+ 2
√

6︸︷︷︸
i=3

+ 2
√

8︸︷︷︸
i=4

+ 2
√

10︸ ︷︷ ︸
i=5

+ 2
√

12︸ ︷︷ ︸
i=6

+ 2
√

14︸ ︷︷ ︸
i=7

+ 2
√

16︸ ︷︷ ︸
i=8

x

y y =
√

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Base: 2
Height:

√
2

√
2

Base: 2
Height:

√
4

√
4

Base: 2
Height:

√
6

√
6

Base: 2
Height:

√
8

√
8

Base: 2
Height:

√
10

√
10

Base: 2
Height:

√
12

√
12

Base: 2
Height:

√
14

√
14

Base: 2
Height:

√
16

√
16
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Riemann sum with n rectangles∫ b

a
f (x) dx ≈

n∑
i=1

∆x · f (x∗i,n)

where ∆x = b−a
n and x∗i,n is an x-value in the ith rectangle.

n∑
i=1

∆x·f (x∗i,n) = ∆x·f
(
x∗1,n
)
+∆x·f

(
x∗2,n
)
+∆x·f

(
x∗3,n
)
+ · · · +∆x·f

(
x∗n,n
)

x

y

a b

f (x∗1,n)

x∗1,n

1f (x∗2,n)

x∗2,n

2
f (x∗3,n)

x∗3,n

3

27/52 Definition 1.1.11
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Right Riemann sum with n rectangles∫ b

a
f (x)dx ≈

n∑
i=1

∆x · f ( )

where ∆x = b−a
n and x∗i,n =

x
a

∆x

1

x∗1,n

a + 1∆x

∆x

2

x∗2,n

a + 2∆x

∆x

3

x∗3,n

a + 3∆x

∆x

i

x∗i,n

28/52 Definition 1.1.11
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TYPES OF RIEMANN SUMS (RS)

What height would you choose for the ith rectangle?

i

∆x

a + i∆x

Right RS

i

∆x

1

Left RS

i

∆x

1

Midpoint RS

29/52



Introduction 1.1.3 Sum Notation 1.1.4 Definition of the Definite Integral 1.1.5 Using Known Areas 1.1.6 Another Interpretation

Riemann sums with n rectangles. Let ∆x = b−a
n

The right Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f (a + i∆x)

The left Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f (a + (i− 1)∆x)

The midpoint Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f
(

a +

(
i− 1

2

)
∆x
)

30/52 Definition 1.1.11
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Riemann sums with n rectangles: Let ∆x = b−a
n

The right Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f (a + i∆x)

Give a right Riemann Sum for the area under the curve y = x2 − x
from a = 1 to b = 6 using n = 1000 intervals.

31/52
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Riemann sums with n rectangles: Let ∆x = b−a
n

The midpoint Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f
(

a +

(
i− 1

2

)
∆x
)

Give a midpoint Riemann Sum for the area under the curve
y = 5x− x2 from a = 6 to b = 9 using n = 1000 intervals.

32/52
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EVALUATING RIEMANN SUMS SKIP RIEMANN EVALUATIONS

n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Give the right Riemann sum of f (x) = x2 from a = 0 to b = 10,
n = 100:

n∑
i=1

∆x · f (a + i∆x) =

33/52
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f (x) = x2

100∑
i=1

1
10 ·
( 1

10 i
)2

= 338.35

10
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EVALUATING RIEMANN SUMS IN SIGMA NOTATION

n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Give the right Riemann sum of f (x) = x3 from a = 0 to b = 5, n = 100:
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f (x) = x3

100∑
i=1

1
20 ·
( 1

20 i
)3

= 1012

64 ≈ 159.39

5
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Definition
Let a and b be two real numbers and let f (x) be a function that is
defined for all x between a and b. Then we define ∆x = b−a

N and

∫ b

a
f (x) dx = lim

N→∞

N∑
i=1

f (x∗i,N) ·∆x

when the limit exists and when the choice of x∗i,N in the ith interval
doesn’t matter.∑

,
∫

both stand for “sum”
∆x, dx are tiny pieces of the x-axis, the bases of our very skinny
rectangles
It’s understood we’re taking a limit as N goes to infinity, so we don’t
bother specifying N (or each location where we find our height) in
the second notation.

37/52 Definition 1.1.9
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N = 10: approximate areaN = 50: approximate areaN = 100: approximate areaLimit as N →∞ gives exact area
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n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Give the right Riemann sum of y = x2 from a = 0 to b = 5 with n
slices, and simplify:
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We found the right Riemann sum of y = x2 from a = 0 to b = 5 using
n slices:

125
6
· 2n2 + 3n + 1

n2

Use it to find the exact area under the curve.

x

y
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REFRESHER: LIMITS OF RATIONAL FUNCTIONS

lim
n→∞

n2 + 2n + 15
3n2 − 9n + 5

=

When the degree of the top and bottom are the same, the limit as n
goes to infinity is the ratio of the leading coefficients.

lim
n→∞

n2 + 2n + 15
3n3 − 9n + 5

=

When the degree of the top is smaller than the degree of the bottom,
the limit as n goes to infinity is 0.

lim
n→∞

n3 + 2n + 15
3n2 − 9n + 5

=

When the degree of the top is larger than the degree of the bottom,
the limit as n goes to infinity is positive or negative infinity.
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n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Evaluate
∫ 1

0
x2 dx exactly using midpoint Riemann sums.
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Let’s see some special cases where we can use geometry to evaluate
integrals without Riemann sums.

43/52



Introduction 1.1.3 Sum Notation 1.1.4 Definition of the Definite Integral 1.1.5 Using Known Areas 1.1.6 Another Interpretation

∫ 5

0
2x dx

x

y

5

10 y = 2x

44/52
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∫ 5

3
2x dx

x

y

53

10

6

y = 2xy = 2x

45/52
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∫ 2

−2
sin x dx

x

y

−2 2
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∫ 1

−1
|x|dx

x

y

−1 1

1 y = |x|
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∫ 1

0

√
1− x2 dx

x

y

1

1

48/52

Q



Introduction 1.1.3 Sum Notation 1.1.4 Definition of the Definite Integral 1.1.5 Using Known Areas 1.1.6 Another Interpretation

∫ 10

10
log x dx

x

y

10

y = log x

49/52
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A car travelling down a straight highway records the following
measurements:

Time 12:00 12:10 12:20 12:30 12:40 12:50 1:00
Speed (kph) 80 100 100 90 90 75 100

Approximately how far did the car travel from 12:00 to 1:00?
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t

v
100

90
80
70

The computation

distance = rate × time

looks a lot like the computation

area = base × height

for a rectangle. This gives us another interpretation for an integral.
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ANOTHER INTERPRETATION OF THE INTEGRAL

Let x(t) be the position of an object moving along the x-axis at time t,
and let v(t) = x′(t) be its velocity. Then for all b > a,

x(b)− x(a) =

∫ b

a
v(t) dt

That is,
∫ b

a v(t) dt gives the net distance moved by the object from time
a to time b.
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