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Calculus is build on two operations: differentiation and integration.

Differentiation
I Slope of a line
I Rate of change
I Optimization
I Numerical Approximations

Integration
I Area under a curve
I “Reverse” of differentiation
I Solving differential equations
I Calculate net change from rate of change
I Volume of solids
I Work (in the physics sense)
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Approximate the area of the shaded region using rectangles.

x

y
y = ex

1

We’re going to be doing a lot of adding.
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SUMMATION (SIGMA) NOTATION

b∑
i=a

f (i)

I a, b (integers with a ≤ b) “bounds”
I i “index:” integer which runs from a to b
I f (i) “summands:” compute for every i, add

b∑
i=a

f (i) = f (a) + f (a + 1) + f (a + 2) + · · ·+ f (b)

4/643



SIGMA NOTATION

Expand
4∑

i=2

(2i + 5).

4∑
i=2

(2i + 5) = (2 · 2 + 5)︸ ︷︷ ︸
i=2

+ (2 · 3 + 5)︸ ︷︷ ︸
i=3

+ (2 · 4 + 5)︸ ︷︷ ︸
i=4

= 9 + 11 + 13 = 33
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Q

SIGMA NOTATION

Expand
4∑

i=1

(i + (i− 1)2).

= (1 + 02)︸ ︷︷ ︸
i=1

+ (2 + 12)︸ ︷︷ ︸
i=2

+ (3 + 22)︸ ︷︷ ︸
i=3

+ (4 + 32)︸ ︷︷ ︸
i=4

= 1 + 3 + 7 + 13 = 24
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Write the following expressions in sigma notation:

I 3 + 4 + 5 + 6 + 7
7∑

i=3

i and
5∑

i=1

(i + 2) are two options (others are possible)

I 8 + 8 + 8 + 8 + 8
5∑

i=1

8 is one way (others are possible)

I 1 + (−2) + 4 + (−8) + 16
4∑

i=0

(−2)i is one way (others are possible)
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ARITHMETIC OF SUMMATION NOTATION

Let c be a constant.

I Adding constants:
10∑

i=1
c =

10c

I Factoring constants:
10∑

i=1
5(i2) =

5
10∑

i=1
(i2)

I Addition is Commutative:
10∑

i=1
(i + i2) =

(
10∑

i=1
i
)

+

(
10∑

i=1
i2
)

8/643 Theorem 1.1.5: Arithmetic of Summation Notation



ARITHMETIC OF SUMMATION NOTATION

Let c be a constant.

I Adding constants:
10∑

i=1
c = 10c

I Factoring constants:
10∑

i=1
5(i2) = 5

10∑
i=1

(i2)

I Addition is Commutative:
10∑

i=1
(i + i2) =

(
10∑

i=1
i
)

+

(
10∑

i=1
i2
)
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COMMON SUMS

Let n ≥ 1 be an integer, a be a real number, and r 6= 1.

n∑
i=0

ari = a + ar + ar2 + · · ·+ arn = a
1− rn+1

1− r
n∑

i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2
n∑

i=1

i2 = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
n∑

i=1

i3 = 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4

10/643 Theorem 1.1.6

Let n ≥ 1 be an integer, a be a real number, and r 6= 1.

n∑
i=0

ari = a + ar + ar2 + · · ·+ arn = a
1− rn+1

1− r

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2

n∑
i=1

i2 = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

n∑
i=1

i3 = 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4

Simplify:
13∑

i=1

(i2 + i3) =

13∑
i=1

i2 +

13∑
i=1

i3 =
13(14)(27)

6
+

132(142)

4
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Let n ≥ 1 be an integer, a be a real number, and r 6= 1.

n∑
i=0

ari = a + ar + ar2 + · · ·+ arn = a
1− rn+1

1− r

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2

n∑
i=1

i2 = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

n∑
i=1

i3 = 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4

Simplify:
50∑

i=1

(1− i2) =
50∑

i=1

1−
50∑

i=1

i2 = 50− 50(51)(101)

6
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(OPTIONAL) PROOF OF A COMMON SUM

Here is a derivation of
n∑

i=0

ri =
1− rn+1

1− r
:

A = 1 + �r + ��r2 + · · ·+���rn−1 +��rn

rA = �r + ��r2 + · · ·+�
��rn−1 +��rn + rn+1

subtract A− rA = 1 − rn+1

divide across A =
1− rn+1

1− r
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(OPTIONAL) PROOF OF ANOTHER COMMON SUM

10∑
i=1

i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =
10 · 11

2

1 2 3 4 5 6 7 8 9 10

12345678910
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(OPTIONAL) PROOF OF A COMMON SUM

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n · (n + 1)

2

15/643

The purpose of these sums is to describe areas.
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Notation
The symbol ∫ b

a
f (x) dx

is read “the definite integral of the function f (x) from a to b.”

I f (x): integrand
I a and b: limits of integration
I dx: differential
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If f (x) ≥ 0 and a ≤ b, one interpretation of∫ b

a
f (x) dx

is “the area of the region bounded above by y = f (x), below by y = 0,
to the left by x = a, and to the right by x = b.”

x

y

y = f (x)

a b
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If f (x) ≥ 0 and a ≤ b, one interpretation of∫ b

a
f (x) dx

is the signed area of the region between y = f (x) and y = 0, from x = a
to x = b. Area above the axis is positive, and area below it is negative.

x

y

y = f (x)

a b

y = f (x)

a

b

19/643

RIEMANN SUMS

A Riemann sum approximates the area under a curve by cutting it
into equal-width segments, and approximating each segment as a
rectangle.

x

y

y = f (x)

a b

There are different ways to choose the height of each rectangle.
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TYPES OF RIEMANN SUMS (RS)

h

Left RS

h

Right RS

h

Midpoint RS
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Approximate
∫ 4

2 log(x) dx using a right Riemann sum with n = 4
rectangles. For now, do not use sigma notation.

x

y

y = log x

2 4
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Approximate
∫ 4

2
log(x) dx using a right Riemann sum with n = 4

rectangles. For now, do not use sigma notation.

x

y

y = log x

2 45
2

3 7
2

x∗1 x∗2 x∗3 x∗4

I Width of each rectangle: 4−2
4 = 1

2
I Heights taken at right endpoints of rectangles:

x∗1 = 5
2 , x∗2 = 3, x∗3 = 7

2 , x∗4 = 4∫ 4

2
log(x) dx ≈ 1

2
log

(
5
2

)
+

1
2

log (3) +
1
2

log

(
7
2

)
+

1
2

log (4)
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Approximate
∫ 0

−1
ex dx using a left Riemann sum with n = 3

rectangles. For now, do not use sigma notation.

x

y
y = ex

−1 0
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Approximate
∫ 0

−1
ex dx using a left Riemann sum with n = 3

rectangles. For now, do not use sigma notation.

x

y
y = ex

−1 0− 2
3 − 1

3
x∗1 x∗2 x∗3

I Width of each rectangle: 0−(−1)
3 = 1

3
I Heights taken at left endpoints of rectangles:

x∗1 = −1, x∗2 = − 2
3 , x∗3 = − 1

3∫ 0

−1
ex dx ≈ 1

3
e−1 +

1
3

e−2/3 +
1
3

e−1/3
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Approximate
∫ √π

0
sin
(
x2)dx using a midpoint Riemann sum with

n = 5 rectangles. For now, do not use sigma notation.

x

y

y = sin(x2)0 √
π
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Approximate
∫√π

0 sin
(
x2
)

dx using a midpoint Riemann sum with
n = 5 rectangles. For now, do not use sigma notation.

x

y

y = sin(x2)0 √
π

√
π

10 √
π

5

3
√
π

10 2
√
π

5

5
√
π

10 3
√
π

5

7
√
π

10 4
√
π

5

9
√
π

10
x∗1 x∗2 x∗3 x∗4 x∗5

I Width of each rectangle:
√
π−0
5 =

√
π

5
I Heights taken at midpoints of rectangles:

x∗1 =
√
π

10 , x∗2 = 3
√
π

10 , x∗3 = 5
√
π

10 , x∗4 = 7
√
π

10 , x∗5 = 9
√
π

10

√
π

5

[
sin
( π

100

)
+ sin

(
9π
100

)
+ sin

(
25π
100

)
+ sin

(
49π
100

)
+ sin

(
81π
100

)]
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Approximate
∫ 17

1

√
x dx using a midpoint Riemann sum with 8

rectangles. Write the result in sigma notation.

x

y y =
√

x

1 171 3 5 7 9 11 13 15 17

(2,
√

2)

(4,
√

4)
(6,
√

6)
(8,
√

8)
(10,
√

10)
(12,
√

12)
(14,
√

14)
(16,
√

16)

Firsti = 1 Secondi = 2 Thirdi = 3 · · · i

Base: 2 Base: 2 Base: 2 · · ·Base: 2

Height:
√

2 Height:
√

4 Height:
√

6 · · · Height:√
2i

The

ith rectangle has base 2 and height
√

2i, so

area ≈
8∑

i=1

2
√

2i
28/643
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8∑
i=1

2
√

2i = 2
√

2︸︷︷︸
i=1

+ 2
√

4︸︷︷︸
i=2

+ 2
√

6︸︷︷︸
i=3

+ 2
√

8︸︷︷︸
i=4

+ 2
√

10︸ ︷︷ ︸
i=5

+ 2
√

12︸ ︷︷ ︸
i=6

+ 2
√

14︸ ︷︷ ︸
i=7

+ 2
√

16︸ ︷︷ ︸
i=8

x

y y =
√

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Base: 2
Height:

√
2

√
2

Base: 2
Height:

√
4

√
4

Base: 2
Height:

√
6

√
6

Base: 2
Height:

√
8

√
8

Base: 2
Height:

√
10

√
10

Base: 2
Height:

√
12

√
12

Base: 2
Height:

√
14

√
14

Base: 2
Height:

√
16

√
16
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Riemann sum with n rectangles∫ b

a
f (x) dx ≈

n∑
i=1

∆x · f (x∗i,n)

where ∆x = b−a
n and x∗i,n is an x-value in the ith rectangle.

n∑
i=1

∆x·f (x∗i,n) = ∆x·f
(
x∗1,n
)
+∆x·f

(
x∗2,n
)
+∆x·f

(
x∗3,n
)
+ · · · +∆x·f

(
x∗n,n
)

x

y

a b

f (x∗1,n)

x∗1,n

1f (x∗2,n)

x∗2,n

2
f (x∗3,n)

x∗3,n

3
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Right Riemann sum with n rectangles∫ b

a
f (x)dx ≈

n∑
i=1

∆x · f
(
x∗i,na + i∆x

)
where ∆x = b−a

n and x∗i,n =

a + i∆x

x
a

∆x

1

x∗1,n

a + 1∆x

∆x

2

x∗2,n

a + 2∆x

∆x

3

x∗3,n

a + 3∆x

∆x

i

x∗i,n

a + i∆x

31/643 Definition 1.1.11

TYPES OF RIEMANN SUMS (RS)

What height would you choose for the ith rectangle?

i

∆x

a + i∆x

Right RS

i

∆x

a + (i− 1)∆x1

Left RS

i

∆x

a +
(
i− 1

2

)
∆x1

Midpoint RS
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Riemann sums with n rectangles. Let ∆x = b−a
n

The right Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f (a + i∆x)

The left Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f (a + (i− 1)∆x)

The midpoint Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f
(

a +

(
i− 1

2

)
∆x
)

33/643 Definition 1.1.11

Riemann sums with n rectangles: Let ∆x = b−a
n

The right Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f (a + i∆x)

Give a right Riemann Sum for the area under the curve y = x2 − x
from a = 1 to b = 6 using n = 1000 intervals.

1000∑
n=1

5
1000

[(
1 +

5
1000

i
)2

−
(

1 +
5

1000
i
)]
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Riemann sums with n rectangles: Let ∆x = b−a
n

The midpoint Riemann sum approximation of
∫ b

a f (x) dx is:

n∑
i=1

∆x · f
(

a +

(
i− 1

2

)
∆x
)

Give a midpoint Riemann Sum for the area under the curve
y = 5x− x2 from a = 6 to b = 9 using n = 1000 intervals.

1000∑
n=1

3
1000

[
5
(

6 +
3

1000
(i− 1/2)

)
−
(

6 +
3

1000
(i− 1/2)

)2
]
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EVALUATING RIEMANN SUMS SKIP RIEMANN EVALUATIONS

n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Give the right Riemann sum of f (x) = x2 from a = 0 to b = 10,
n = 100:

n∑
i=1

∆x · f (a + i∆x) =

100∑
i=1

10
100
·
(

0 +
10

100
i
)2

=

100∑
i=1

1
10
·
(

1
10

i
)2

=
1

10

100∑
i=1

1
100

i2

=
1

1000

100∑
i=1

i2 =
1

1000
100(101)(201)

6
=

101 · 201
60
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f (x) = x2

100∑
i=1

1
10 ·
( 1

10 i
)2

= 338.35

10
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EVALUATING RIEMANN SUMS IN SIGMA NOTATION

n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Give the right Riemann sum of f (x) = x3 from a = 0 to b = 5, n = 100:

n∑
i=1

∆x · f (a + i∆x) =
100∑
i=1

5
100
·
(

0 +
5

100
i
)3

=

100∑
i=1

1
20
·
(

1
20

i
)3

=
1

20

100∑
i=1

1
203 i3

=
1

204

100∑
i=1

i3 =
1

204

1002(1012)

4
=

1012

64
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f (x) = x3

100∑
i=1

1
20 ·
( 1

20 i
)3

= 1012

64 ≈ 159.39

5
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Definition
Let a and b be two real numbers and let f (x) be a function that is
defined for all x between a and b. Then we define ∆x = b−a

N and

∫ b

a
f (x) dx = lim

N→∞

N∑
i=1

f (x∗i,N) ·∆x

when the limit exists and when the choice of x∗i,N in the ith interval
doesn’t matter.∑

,
∫

both stand for “sum”
∆x, dx are tiny pieces of the x-axis, the bases of our very skinny
rectangles
It’s understood we’re taking a limit as N goes to infinity, so we don’t
bother specifying N (or each location where we find our height) in
the second notation.

40/643 Definition 1.1.9



N = 10: approximate areaN = 50: approximate areaN = 100: approximate areaLimit as N →∞ gives exact area
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n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Give the right Riemann sum of y = x2 from a = 0 to b = 5 with n
slices, and simplify:

n∑
i=1

∆x · f (a + i∆x) =
n∑

i=1

5
n
·
(

5
n

i
)2

=
n∑

i=1

125
n3 i2

=
125
n3

[
n∑

i=1

i2
]

=
125
n3

(
n(n + 1)(2n + 1)

6

)
=

125
n2

(
(n + 1)(2n + 1)

6

)
=

125
6

(
2n2 + 3n + 1

n2

)
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We found the right Riemann sum of y = x2 from a = 0 to b = 5 using
n slices:

125
6
· 2n2 + 3n + 1

n2

Use it to find the exact area under the curve.

x

y

∫ 5

0
x2 dx = lim

n→∞

[
125
6
· 2n2 + 3n + 1

n2

]
=

125
6

lim
n→∞

[
2 +

3
n

+
1
n2

]
=

125
6

(2) =
125
3
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REFRESHER: LIMITS OF RATIONAL FUNCTIONS

lim
n→∞

n2 + 2n + 15
3n2 − 9n + 5

= lim
n→∞

1 + 2/n + 15/n2

3− 9/n + 5/n2 =
1
3

When the degree of the top and bottom are the same, the limit as n
goes to infinity is the ratio of the leading coefficients.

lim
n→∞

n2 + 2n + 15
3n3 − 9n + 5

= lim
n→∞

1/n + 2/n2 + 15/n3

3− 9/n2 + 5/n3 = 0

When the degree of the top is smaller than the degree of the bottom,
the limit as n goes to infinity is 0.

lim
n→∞

n3 + 2n + 15
3n2 − 9n + 5

= lim
n→∞

n + 2/n + 15/n2

3− 9/n + 5/n2 =∞

When the degree of the top is larger than the degree of the bottom,
the limit as n goes to infinity is positive or negative infinity.
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n∑
i=1

i = n(n+1)
2

n∑
i=1

i2 = n(n+1)(2n+1)
6

n∑
i=1

i3 = n2(n+1)2

4

Evaluate
∫ 1

0
x2 dx exactly using midpoint Riemann sums.

n∑
i=1

∆x ·
((

i−
1
2

)
∆x
)2

=
1
n3

n∑
i=1

(
i2 − i +

1
4

)
=

1
n3

[ n∑
i=1

i2 −
n∑

i=1

i +

n∑
i=1

1
4

]

=
1
n3

[
n(n + 1)(2n + 1)

6
−

n(n + 1)

2
+

1
4

n
]

=
2n2 + 3n + 1

6n2
−

n + 1
2n2

+
1

4n2

Exact area under the curve:

lim
n→∞

[
2n2 + 3n + 1

6n2 − n + 1
2n2 +

1
4n2

]
=

2
6
− 0 + 0 =

1
3
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Let’s see some special cases where we can use geometry to evaluate
integrals without Riemann sums.
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∫ 5

0
2x dx =

1
2

(5)(10) = 25

x

y

5

10 y = 2x
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∫ 5

3
2x dx =

1
2

(5)(10)− 1
2

(3)(6) = 25− 9 = 16

x

y

53

10

6

y = 2xy = 2x

48/643
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∫ 2

−2
sin x dx = −A + A = 0

x

y

−2 2
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∫ 1

−1
|x|dx =

1
2

(1)(1) +
1
2

(1)(1) = 1

x

y

−1 1

1 y = |x|
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∫ 1

0

√
1− x2 dx =

1
4

(π · 12) =
π

4

x

y

1

1
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∫ 10

10
log x dx = 0

x

y

10

y = log x
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A car travelling down a straight highway records the following
measurements:

Time 12:00 12:10 12:20 12:30 12:40 12:50 1:00
Speed (kph) 80 100 100 90 90 75 100

Approximately how far did the car travel from 12:00 to 1:00?
We don’t know the speed of the car over the entire hour, so the best
we can do is to use the measured speeds as approximations for the
speeds the car travelled over 10-minute intervals.
We can use left, right, and midpoint Riemann sums. Note that there
are only six 10-minute intervals, but we know seven points. For a
midpoint Riemann sum, since we need to know the speed at the
midpoint of the interval, we can only use three intervals, not six.
Finally, note that 10 minutes is 1

6 of an hour, and 20 minutes is 1
3 of an

hour.
Left RS: 80 · 1

6︸ ︷︷ ︸
12:00−12:10

+ 100 · 1
6︸ ︷︷ ︸

12:10−12:20

+ 100 · 1
6︸ ︷︷ ︸

12:20−12:30

+ 90 · 1
6︸ ︷︷ ︸

12:30−12:40

+ 90 · 1
6︸ ︷︷ ︸

12:40−12:50

+ 75 · 1
6︸ ︷︷ ︸

12:50−1:00

t

v

100

90

80

70

Right RS: 100 · 1
6︸ ︷︷ ︸

12:00−12:10

+ 100 · 1
6︸ ︷︷ ︸

12:10−12:20

+ 90 · 1
6︸ ︷︷ ︸

12:20−12:30

+ 90 · 1
6︸ ︷︷ ︸

12:30−12:40

+ 75 · 1
6︸ ︷︷ ︸

12:40−12:50

+ 100 · 1
6︸ ︷︷ ︸

12:50−1:00

t

v

100

90

80

70

Midpoint RS: 100 · 1
3︸ ︷︷ ︸

12:00−12:20

+ 90 · 1
3︸ ︷︷ ︸

12:20−12:40

+ 75 · 1
3︸ ︷︷ ︸

12:40−1:00

t

v

100

90

80

70

Remark: it’s tempting to try to make a midpoint Riemann sum with 6
intervals work by averaging the speeds at the two ends of each interval. This
is a perfectly sensible approximation, but it’s not a midpoint Riemann sum.

t

v

100

90

80

70
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t

v
100
90
80
70

The computation

distance = rate × time

looks a lot like the computation

area = base × height

for a rectangle. This gives us another interpretation for an integral.
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ANOTHER INTERPRETATION OF THE INTEGRAL

Let x(t) be the position of an object moving along the x-axis at time t,
and let v(t) = x′(t) be its velocity. Then for all b > a,

x(b)− x(a) =

∫ b

a
v(t) dt

That is,
∫ b

a v(t) dt gives the net distance moved by the object from time
a to time b.
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We defined the definite integral as∫ b

a
f (x) dx = lim

N→∞

N∑
i=1

∆x · f
(
x∗i,N
)

where ∆x = b−a
N and x∗i,N is a point in the interval

[a + (i− 1)∆x , a + i∆x].

We have seen in previous classes that limits don’t always exist. We
will verify that this limit does indeed exist, and is equal to the desired
area (at least in the most common cases).

We’ll start with some general ideas that appear in the proof.
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Suppose x and y are both in the interval [a, b]. What is the maximum
possible value of |x− y|?

a b

xy

|x− y|

x y

|x− y|

x y

|x− y|

x y

|x− y|

Proposition 1: distance between two numbers in an interval

If a ≤ x ≤ b and a ≤ y ≤ b, then |x− y| ≤

58/643

Proposition 2: area inequality

Let f (x) be a function, defined over the interval [a, b]. If m ≤ f (x) ≤M
over the entire interval [a, b], then the (signed) area between the curve
y = f (x) and the x-axis, from a to b, is between m(b− a) and M(b− a).

x

y

a b

f (x)

M

m
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Intuition: If f ′(x) is bounded on (a, b) and b− a is small, then
f (b)− f (a) is also small.

x
a b

not very steep

not very far

not very far

The Mean Value Theorem provides a more explicit connection
between these quantities.
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x
a b

Mean Value Theorem
Let a and b be real numbers with a < b. Let f be a function such that
I f (x) is continuous on the closed interval a ≤ x ≤ b, and
I f (x) is differentiable on the open interval a < x < b.

Then there is a c in (a, b) such that

f (b)− f (a) = f ′(c)(b− a).

Equivalently: f ′(c) =
f (b)−f (a)

b−a .

61/643 CLP1 Theorem 2.13.4, the mean value theorem

Triangle Inequality
For any real numbers x1, x2, · · · , xn:∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|xi|

Intuition: If some terms are positive and some are negative, they
“cancel each other out” and make the overall sum smaller.

|1 + 2| |1|+ |2|

|1 + (−2)| |1|+ | − 2|

|(−1) + (−2)| | − 1|+ | − 2|

62/643 ans

Triangle Inequality
For any real numbers x1, x2, · · · , xn:∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|xi|

Proof outline:

Let x and y be any real numbers.
I x ≤ |x| and y ≤ |y|, so x + y ≤ |x|+ |y|
I −x ≤ |x| and −y ≤ |y|, so −(x + y) = (−x) + (−y) ≤ |x|+ |y|

I |x + y| =

{
x + y if x + y ≥ 0
−(x + y) if x + y < 0

≤ |x|+ |y|

I Then |x + y + z| = |(x + y) + z| ≤ |x + y|+ |z| ≤ |x|+ |y|+ |z|, etc.
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REQUIREMENTS

We will consider ∫ b

a
f (x) dx

where:
I a < b
I f (x) is continuous over the interval [a, b]

I f (x) is differentiable over the interval (a, b)

I f ′(x) is bounded over the interval (a, b). That is, there exists a
positive constant number F such that |f ′(x)| ≤ F for all x in the
interval (a, b).
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ERROR IN A SINGLE SLICE

Consider approximating the area of single slice, from x0 to x1.

x
x0 x1

A

f (x)

f (x) I A is the actual area of the
slice

I f (x) and f (x) are the largest
and smallest function values
over the slice

I Our slice has width x1 − x0

Then we can bound our area:

65/643 Proposition 2: area inequality

ERROR IN A SINGLE SLICE

Consider approximating the area of single slice, from x0 to x1.

x

f (x)

f (x)
f (x∗)

x0 x1x∗

I f (x∗) · (x1 − x0) is our
approximation of the area of
the slice, for some x∗ in the
interval [x0, x1].

I f (x) and f (x) are the largest
and smallest function values
over the slice, so

f (x) ≤ f (x∗) ≤ f (x)

Then we can bound our approximation:

66/643 using Proposition 2: area inequality

ERROR IN A SINGLE SLICE

x

f (x)

x0 x1

x

f (x∗)

x0 x1x∗
x

f (x)

x0 x1

f (x) · (x1 − x0) ≤ A ≤ f (x) · (x1 − x0)

f (x) · (x1 − x0) ≤ f (x∗) · (x1 − x0) ≤ f (x) · (x1 − x0)

|A− f (x∗) · (x1 − x0)|︸ ︷︷ ︸
error in slice

≤

[f (x)− f (x)] · (x1 − x0)

67/643 using Proposition 1: difference between two numbers in a given interval

ERROR IN A SINGLE SLICE

I The error in our single slice is at most [f (x)− f (x)] · (x1 − x0)

I We want to show that our total error is not too large.

I Intuitively, if |f ′(x)| is never very large, and x1 − x0 is not very
large, then f (x)− f (x) is not very large.

x
x x
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ERROR IN A SINGLE SLICE

Mean Value Theorem
Let a and b be real numbers with a < b. Let f be a function such that
I f (x) is continuous on the closed interval a ≤ x ≤ b, and
I f (x) is differentiable on the open interval a < x < b.

Then there is a c in (a, b) such that

f (b)− f (a) = f ′(c)(b− a)

There exists some c in (x0, x1) such that

f (x)− f (x) = f ′(c) · (x− x)

Since |f ′(x)| is never larger than the positive constant F in (a, b),

|f (x)− f (x)| ≤ F · |x− x| ≤ F · |x1 − x0|

69/643 CLP1 Theorem 2.13.4, the mean value theorem, and Proposition 1

ERROR IN A SINGLE SLICE

All together,

|A− f (x∗) · (x1 − x0)|︸ ︷︷ ︸
error in slice

≤ [f (x)− f (x)] · (x1 − x0)

≤ F · |x− x| · (x1 − x0)

≤ F · (x1 − x0) · (x1 − x0)

So,

|A− f (x∗) · (x1 − x0)|︸ ︷︷ ︸
error in slice

≤ F · (x1 − x0)2
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We have shown that the error on a single slice can’t be worse than
some amount.

Now let’s consider adding up slices.
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What we did for a single slice, we now do for all slices.
Updated notation for slice j:

x
xj−1 xj

Aj

x∗j

f (x∗j )

Slice error bound:∣∣∣Aj − f (x∗j ) · (xj − xj−1)
∣∣∣ ≤ F · (xj − xj−1)2
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(POSSIBLY IRREGULAR) PARTITIONS

Consider partitioning the interval [a, b] into n subintervals, not
necessarily the same size. Let the points at the edges of the slices be
a = x0, x1, x2, · · · , xn−1, xn = b.

In each part, choose a vertex x∗i to sample the height of the function.

x
a = x0 xn = bx1

x∗1

x2

x∗2

x3

x∗3

x4

x∗4

x5

x∗5

· · ·

The approximation of
∫ b

a f (x) dx depends on how you choose your
subintervals, and where you choose your sample points. Let

P = (n, x1, x2, · · · , xn−1, x∗1 , x
∗
2 , · · · , x∗n)

denote these choices.
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Let I(P) be the approximation that arises from P:

I(P) =
n∑

i=1

f (x∗i )(xi − xi−1)

x
x0 x4x1

x∗1

x2

x∗2

x3

x∗3 x∗4

x5x1

x∗1

x2

x∗2

x3

x∗3

x4

x∗4 x∗5

x5x1

x∗1

x2

x∗2

x3

x∗3

x4

x∗4 x∗5

M(P)

M(P)M(P)

Let M(P) be the maximum width of any subinterval.
If M(P) is small, then every subinterval is small (narrow).
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Define the integral as the limit∫ b

a
f (x) dx = lim

M(P)→0
I(P)

(Compare to our previous Riemann sum definition.)

We will show that the limit exists and is equal to the signed area
under the curve.
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x
x0 x1

A1

x2

A2

x3

A3

x4

A4

x5

A5

Actual area:
∫ b

a
f (x) dx =

n∑
i=1

Ai

x
x0 x1x∗1

f(x∗1 ) · (x1 − x0)

x2x∗2

f(x∗2 ) · (x2 − x1)

x3x∗3

f(x∗3 ) · (x3 − x2)

x4x∗4

f(x∗4 ) · (x4 − x3)

x5x∗5

f(x∗5 ) · (x5 − x4)

Approximation: I(P) =
n∑

i=1

f (x∗i ) · (xi − xi−1)
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∣∣∣∣∣
∫ b

a
f (x) dx− I(P)

∣∣∣∣∣︸ ︷︷ ︸
overall error

=

∣∣∣∣∣
n∑

i=1

Ai −
n∑

i=1

f (x∗i ) · (xi − xi−1)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

[Ai − f (x∗i ) · (xi − xi−1)]

∣∣∣∣∣
(triangle inequality) ≤

n∑
i=1

|Ai − f (x∗i ) · (xi − xi−1)|

(slice error bound) ≤
n∑

i=1

F · (xi − xi−1)2

=
n∑

i=1

F · (xi − xi−1) · (xi − xi−1)

≤
n∑

i=1

F ·M(P) · (xi − xi−1)

= F ·M(P) ·
n∑

i=1

(xi − xi−1)

= F ·M(P) · (b− a)
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0 ≤

∣∣∣∣∣
∫ b

a
f (x) dx− I(P)

∣∣∣∣∣︸ ︷︷ ︸
overall error

≤ F ·M(P) · (b− a)

lim
M(P)→0

0 = 0 lim
M(P)→0

[F ·M(P) · (b− a)] = 0

So, by the squeeze theorem,

lim
M(P)→0

∣∣∣∣∣
∫ b

a
f (x) dx− I(P)

∣∣∣∣∣︸ ︷︷ ︸
overall error

= 0

That is,

lim
M(P)→0

I(P) =

∫ b

a
f (x) dx
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COMPARING DEFINITIONS

Here, we defined ∫ b

a
f (x) dx = lim

M(P)→0
I(P)

for “nice” functions f (x).
Originally, we used a slightly different definition:

Definition 1.1.9 (abridged)
For “nice” functions f (x):∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i,n) · b− a
n

when the limit exists and takes the same value for all choices of the
x∗i,n’s.
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COMPARING DEFINITIONS

We showed that all families of partitions “work,” as long as their
largest subintervals shrink to length 0.

If all families of partitions “work,” then we might as well choose a
simple one. The (arguably) simplest choices are regular partitions,
cutting the interval [a, b] into n subintervals of length b−a

n .
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We defined the definite integral using a limit and a sum.

Definition
Let a and b be two real numbers and let f (x) be a function that is
defined for all x between a and b. Then we define ∆x = b−a

N and

∫ b

a
f (x) dx = lim

N→∞

N∑
i=1

f (x∗i,N) ·∆x

when the limit exists and when the choice of x∗i,N in the ith interval
doesn’t matter.

Many of the operations that work nicely with sums and limits will
also work nicely with integrals.
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ADDING (AND SUBTRACTING) FUNCTIONS

x

y

f (x)

g(x)

f (x) + g(x)

A = f (x) ·∆x

A = g(x) ·∆x

∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx
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ADDING (AND SUBTRACTING) FUNCTIONS

x

y

f (x)

g(x)

f (x) + g(x)

A = f (x) ·∆x

A = g(x) ·∆x

∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

84/643



ADDING (AND SUBTRACTING) FUNCTIONS

x

y

f (x)

g(x)

f (x) + g(x)

A = f (x) ·∆x

A = g(x) ·∆x

∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx
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ADDING (AND SUBTRACTING) FUNCTIONS

x

y

f (x)

g(x)

f (x) + g(x)

A = f (x) ·∆x

A = g(x) ·∆x

∫ b

a

(
f (x)− g(x)

)
dx =

∫ b

a
f (x) dx−

∫ b

a
g(x) dx
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MULTIPLYING A FUNCTION BY A CONSTANT

x

y

f (x)

3 · f (x)

A = f (x) ·∆x

A = 3 · f (x) ·∆x

∫ b

a
c · f (x) dx = c

∫ b

a
f (x) dx
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MULTIPLYING A FUNCTION BY A CONSTANT

x

y

f (x)

3 · f (x)

A = f (x) ·∆x

A = 3 · f (x) ·∆x

∫ b

a
c · f (x) dx = c

∫ b

a
f (x) dx
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ARITHMETIC OF INTEGRATION

When a, b, and c are real numbers, and the functions f (x) and g(x) are
integrable on an interval containing a and b:

(a)
∫ b

a
[f (x) + g(x)] dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

(b)
∫ b

a
[f (x)− g(x)] dx =

∫ b

a
f (x) dx−

∫ b

a
g(x) dx

(c)
∫ b

a
c · f (x) dx = c

∫ b

a
f (x) dx when c is constant

89/643 Therorem 1.2.1: Arithmetic of Integration

ARITHMETIC OF INTEGRATION

Suppose
∫ 1

−1
f (x) dx = −6 and

∫ 1

−1
g(x) dx = 10.

x

y

−1 1

f (x)

−6
x

y

g(x)
10

−1 1

∫ 1

−1
(2 f (x) + g(x)) dx = 2

∫ 1

−1
f (x) dx +

∫ 1

−1
g(x) dx = 2(−6) + 10 = −2

90/643

Q

INTERVAL OF INTEGRATION

x

y

f (x)

a∫ a

a
f (x) dx =

0
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INTERVAL OF INTEGRATION

x

y

f (x)

a bc

What rule do you think is being illustrated?

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx
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WHAT HAPPENS IN
∫ b

a f (x) dx WHEN b < a?

x

y

y = f (x)

b

a

∆x

Choose a number of intervals, n.
The (signed) width of each interval is ∆x = b−a

n , which is negative

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i,n) · b− a
n

This is the definition of a definite integral whether or not a < b.

= lim
n→∞

n∑
i=1

f (x∗i,n)

(
−a− b

n

)
= −

∫ a

b
f (x) dx
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PROPERTY OF DEFINITE INTEGRALS

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

As strictly a measure of area, not usually a super useful fact – but
helps later when we do arithmetic with integrals.

It’s also useful that the definition works without having to worry
about which limit of integration (a or b) is larger.
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ARITHMETIC FOR DOMAIN OF INTEGRATION

When a, b, and c are constants, and f (x) is integrable over a domain
containing all three:

(a)
∫ a

a
f (x) dx = 0

a

(b)
∫ b

a
f (x) dx = −

∫ a

b
f (x) dx ∆x =

b− a
n

= −a− b
n

(c)
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx for constant c

a bc

95/643 Therorem 1.2.3: Arithmetic for the Domain of Integration

Suppose
∫ 0

−1
f (x) dx = 1,

∫ 1

0
f (x) dx = −3, and

∫ 1

−1
g(x) dx = 10.

x

y

−1 1

f (x)

1
−3

x

y

g(x)
10

−1 1

∫ 1

−1
(2f (x) + g(x)) dx = 2

[∫ 0

−1
f (x) dx +

∫ 1

0
f (x) dx

]
+

∫ 1

−1
g(x) dx

= 2 [1− 3] + 10 = 6
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Suppose
∫ 0

−1
f (x) dx = 1 and

∫ 1

0
f (x) dx = −3.

x

y

−1 1

f (x)

1
−3

∫ 3

−1
f (x) dx +

∫ 0

3
f (x) dx =

∫ 0

−1
f (x) dx = 1
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Q

Even and Odd Functions
Let f (x) be a function.
I We say f (x) is even when f (x) = f (−x) for all x, and
I we say f (x) is odd when f (x) = −f (−x) for all x.

x

y

98/643 Definition 1.2.9 in CLP-2; Definition 3.6.6 and 3.6.7 in CLP-1

INTEGRALS OF EVEN FUNCTIONS

x

y

a−a

b−b

Suppose f (x) is even. Then∫ b

a
f (x) dx =

∫ −a

−b
f (x) dx
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INTEGRALS OF EVEN FUNCTIONS

x

y

a−a

b−b

Suppose f (x) is even. Then∫ b

−b
f (x) dx = 2

∫ b

0
f (x) dx
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INTEGRALS OF ODD FUNCTIONS

x

y

+

−

+

−

b

−b

Suppose f (x) is odd. Then ∫ b

−b
f (x) dx = 0
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Theorem 1.2.12 (Even and Odd)
Let a > 0.
(a) If f (x) is an even function, then∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx

(b) If f (x) is an odd function, then∫ a

−a
f (x) dx = 0
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Integral Inequality
Let a ≤ b be real numbers and let the functions f (x) and g(x) be
integrable on the interval a ≤ x ≤ b.
If f (x) ≤ g(x) for all a ≤ x ≤ b, then∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx

x

y
g(x)

f (x)

a b

M

103/643 Theorem 1.2.13

Integral Inequality
Let a ≤ b and m ≤M be real numbers and let the function f (x) be
integrable on the interval a ≤ x ≤ b.
If m ≤ f (x) ≤M for all a ≤ x ≤ b , then

m(b− a) ≤
∫ b

a
f (x)dx ≤M(b− a)

x

y

a b

m

M

104/643 Theorem 1.2.13



Find a lower bound c and an upper bound d such that

c ≤
∫ 5

1
f (x) dx ≤ d

x

y

2
1.5

1 5

f (x)

1.5 ≤ f (x) ≤ 2 =⇒
6︷ ︸︸ ︷

1.5(5− 1) ≤
∫ 5

1
f (x) dx ≤

8︷ ︸︸ ︷
2(5− 1)
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Q

Find a lower bound c and an upper bound d such that d− c ≤ 3 and

c ≤
∫ 6

0
f (x) dx ≤ d

x

y

2
1.5

5 6 8f (x)

A
.5

The area under the curve is no smaller than the area of the highlighted triangle.∫ 6

0
(dashed line) dx =

1
2
·

3
2
· 6 =

9
2
≤
∫ 6

0
f (x) dx

The area under the curve is not greater than the area under the solid yellow trapezoid.
Because the dashed line has slope − 1

4 , the y–coordinate of point A is 1
2 .

We can compute the area of the trapezoid as the difference in the area of the triangle
under the dotted line, and the green cross-hatched triangle.∫ 6

0
f (x) dx ≤

∫ 6

0
(dashed line) dx =

1
2

(8)(2)−
1
2

(2)
1
2

=
15
2

9
2
≤
∫ 6

0
f (x) dx ≤

15
2

Note 15
2 −

9
2 = 3, as required.

(Many bounds of the integral are possible, but looser bounds won’t satisfy d− c = 3. )
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ABSOLUTE VALUES

f (x) ≤ |f (x)| for any f (x)
−f (x) ≤ |f (x)| for any f (x)

x

y f (x)

−f (x)

x

y |f (x)|

∫ b

a
f (x) dx ≤

∫ b

a
|f (x)|dx and

∫ b

a
−f (x) dx ≤

∫ b

a
|f (x)|dx

∣∣∣∣∣
∫ b

a
f (x)dx

∣∣∣∣∣ ≤
∫ b

a
|f (x)|dx

because
∣∣∣∫ b

a f (x) dx
∣∣∣ is either

∫ b
a f (x) dx or −

∫ b
a f (x) dx.

107/643 Theorem 1.2.13, Inequalities for Integrals

TABLE OF CONTENTS

IntegrationIntroduction

1.1
Definition

1.2
Properties

1.3
Fundamental

Theorem

Techniques

1.4
Substitution

1.7
Integration

by Parts

1.8
Trigonometric

Integrals

1.9
Trigonometric
Substitution

1.10
Partial

Fractions

First
Applications

1.5
Area Between

Curves

1.6
Volumes

Further
Tools

1.11
Numerical
Integration

1.12
Improper
Integrals

108/643



REVIEW: AREA UNDER A CURVE

Methods for finding the area under a curve.

I Limit of a Riemann Sum
I Conceptually easy – cut into rectangles

I Computationally rough lim
n→∞

n∑
i=1

f (x∗i )∆x;
n∑

i=1
i = n(n+1)

2

I Use Geometry
I Computationally nice when it’s available!

(Circles, triangles, symmetry, etc.)
I Often not available – most functions

don’t make such nice shapes.

I Up next: Fundamental Theorem of Calculus
I Conceptually less obvious – we’ll spend

about a day explaining why it works
I Computationally generally nicer than Riemann sums
I Doesn’t work for every function
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Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =

∫ x

a
f (t) dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

FTC(I) gives us the derivative of a very specific function (subject to
some fine print).

It shows a close relationship between integrals and derivatives.

110/643 Theorem 1.3.1

AREA FUNCTION: A(x) =
∫ x

a f (t)dt FOR a ≤ x ≤ b

t

y

x x x x x x x

x

y = f (t)

a

Notation: the function A depends on the variable x.

We need to know how the function f behaves on the whole interval
(0, x) to find A(x). That’s why we use f (t), not f (x).
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AREA FUNCTION: A(x) =
∫ x

a f (t)dt FOR a ≤ x ≤ b

t

y

x x x x x x x

x

y = f (t)

a

Notation: the function A depends on the variable x.

We need to know how the function f behaves on the whole interval
(0, x) to find A(x). That’s why we use f (t), not f (x).
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AREA FUNCTION NOTATION

It might look strange at first to see two different variables. Let’s
consider the alternatives:

A(x) =

∫ x

0
f (t) dt

A(1) =

∫ 1

0
f (t) dt

t

y

f (t)

1

1 1

B(x) =

∫ x

0
f (x) dt

B(1) =

∫ 1

0
f (1) dt

t

y

f (t)

f (1)

1

f (1)

1

f (1)

1

C(x) =

∫ x

0
f (x) dx

C(1) =

∫ 1

0
f (1) d1︸︷︷︸

??
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Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =

∫ x

a
f (t) dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

Question: Why is it true?
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DERIVATIVE OF AREA FUNCTION, A(x) =
∫ x

a f (t)dt

t

y

xa

y = f (t)

A(x)

x + h

A(x + h)

A(x + h)− A(x)

f (x)

A′(x) = lim
∆x→0

∆A
∆x = lim

h→0

A(x+h)−A(x)
h = lim

h→0

hf(x)
h = f (x)

When h is very small, the purple area looks like a rectangle with base h and
height f (x), so A(x + h)− A(x) ≈ hf (x) and A(x+h)−A(x)

h ≈ f (x). As h tends to
zero, the error in this approximation approaches 0.
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DERIVATIVE OF AREA FUNCTION, A(x) =
∫ x

a f (t)dt

t

y

xa

y = f (t)

A(x)

x + h

A(x + h)

A(x + h)− A(x)

f (x)

A′(x) = lim
∆x→0

∆A
∆x = lim

h→0

A(x+h)−A(x)
h = lim

h→0

hf(x)
h = f (x)

When h is very small, the purple area looks like a rectangle with base h and
height f (x), so A(x + h)− A(x) ≈ hf (x) and A(x+h)−A(x)

h ≈ f (x). As h tends to
zero, the error in this approximation approaches 0.
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Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =

∫ x

a
f (t) dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

Suppose A(x) =
∫ x

2 sin t dt. What is A′(x)?

A′(x) = sin x

Suppose B(x) =
∫ 2

x sin t dt. What is B′(x)?

B′(x) = d
dx

{
−
∫ x

2 f (t) dt
}

= − sin x
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Q Q

Theorem 1.3.1

Fundamental Theorem of Calculus, Part 1
Let a < b and let f (x) be a function which is defined and continuous
on [a, b]. Let

A(x) =

∫ x

a
f (t) dt

for any x in [a, b]. Then the function A(x) is differentiable and

A′(x) = f (x) .

Suppose C(x) =
∫ ex

2 sin t dt. What is C′(x)?

C′(x) = ex sin(ex): if we set a = 2, then

C(x) = A(ex)

=⇒ C′(x) = A′(ex) · d
dx
{ex} = sin(ex) · ex
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Theorem 1.3.1

It’s possible to have two different functions with the same derivative.

A(x) =
∫ x

0 2t dt = x2

t

y

x
A′(x) = 2x

B(x) =
∫ x

1 2t dt = x2 − 1

t

y

x1

B′(x) = 2x

When two functions have the same derivative, they differ only by a
constant.

In this example: B(x) = A(x)− 1

119/643 Lemma 1.3.8

x

y

f (x) + 1

f (x) + 2

f (x) + 3

f (x) + 4

f (x) + 5

f (x)

If two continuous functions have the same derivative, then one is a
constant plus the other.
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Two clues for finding A(x) =
∫ x

a f (t) dt:

I If A(x) =

∫ x

a
f (t) dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =

∫ x

a
et dt. What functions could A(x) be?

I A′(x) = ex.
I Guess a function with derivative ex: F(x) = ex.
I Then A(x) = ex + C for some constant C.

1(as long as f (t) is continuous on [a, x])
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Q

Two clues for finding A(x) =
∫ x

a f (t) dt:

I If A(x) =

∫ x

a
f (t) dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =

∫ x

a
cos t dt. What functions could A(x) be?

I A′(x) = cos x.
I Guess a function with derivative cos x: F(x) = sin x.
I Then A(x) = sin x + C for some constant C.

1(as long as f (t) is continuous on [a, x])
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Two clues for finding A(x) =
∫ x

a f (t) dt:

I If A(x) =

∫ x

a
f (t) dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =

∫ x

−2
5t4 dt. What functions could A(x) be?

I A′(x) = 5x4.
I Guess a function with derivative 5x4: F(x) = x5.
I Then A(x) = x5 + C for some constant C.

I We ALSO know A(−2) =
∫ −2
−2 5t4 dt = 0, so we can find C:

0 = A(−2) = (−2)5 + C =⇒ C = 32

I So, A(x) = x5 + 32

1(as long as f (t) is continuous on [a, x])
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A(x) =

∫ x

−2
5t4 dt = x5 + 32

t

y

y = 5t4

−2

−1

A(−1) =

∫ −1

−2
5t4 dt = (−1)5 + 32 = 31

0

A(0) =

∫ 0

−2
5t4 dt = (0)5 + 32 = 32

1

A(1) =

∫ 1

−2
5t4 dt = (1)5 + 32 = 33

2

A(2) =

∫ 2

−2
5t4 dt = (2)5 + 32 = 64

3

A(3) =

∫ 3

−2
5t4 dt = (3)5 + 32 = 275
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A(x) =

∫ x

−2
5t4 dt = x5 + 32

t

y

y = 5t4

−2 −1

A(−1) =

∫ −1

−2
5t4 dt = (−1)5 + 32 = 31

0

A(0) =

∫ 0

−2
5t4 dt = (0)5 + 32 = 32

1

A(1) =

∫ 1

−2
5t4 dt = (1)5 + 32 = 33

2

A(2) =

∫ 2

−2
5t4 dt = (2)5 + 32 = 64

3

A(3) =

∫ 3

−2
5t4 dt = (3)5 + 32 = 275
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A(x) =

∫ x

−2
5t4 dt = x5 + 32

t

y

y = 5t4

−2

−1

A(−1) =

∫ −1

−2
5t4 dt = (−1)5 + 32 = 31

0

A(0) =

∫ 0

−2
5t4 dt = (0)5 + 32 = 32

1

A(1) =

∫ 1

−2
5t4 dt = (1)5 + 32 = 33

2

A(2) =

∫ 2

−2
5t4 dt = (2)5 + 32 = 64

3

A(3) =

∫ 3

−2
5t4 dt = (3)5 + 32 = 275
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A(x) =

∫ x

−2
5t4 dt = x5 + 32

t

y

y = 5t4

−2

−1

A(−1) =

∫ −1

−2
5t4 dt = (−1)5 + 32 = 31

0

A(0) =

∫ 0

−2
5t4 dt = (0)5 + 32 = 32

1

A(1) =

∫ 1

−2
5t4 dt = (1)5 + 32 = 33

2

A(2) =

∫ 2

−2
5t4 dt = (2)5 + 32 = 64

3

A(3) =

∫ 3

−2
5t4 dt = (3)5 + 32 = 275
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A(x) =

∫ x

−2
5t4 dt = x5 + 32

t

y

y = 5t4

−2

−1

A(−1) =

∫ −1

−2
5t4 dt = (−1)5 + 32 = 31

0

A(0) =

∫ 0

−2
5t4 dt = (0)5 + 32 = 32

1

A(1) =

∫ 1

−2
5t4 dt = (1)5 + 32 = 33

2

A(2) =

∫ 2

−2
5t4 dt = (2)5 + 32 = 64

3

A(3) =

∫ 3

−2
5t4 dt = (3)5 + 32 = 275
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A(x) =

∫ x

−2
5t4 dt = x5 + 32

t

y

y = 5t4

−2

−1

A(−1) =

∫ −1

−2
5t4 dt = (−1)5 + 32 = 31

0

A(0) =

∫ 0

−2
5t4 dt = (0)5 + 32 = 32

1

A(1) =

∫ 1

−2
5t4 dt = (1)5 + 32 = 33

2

A(2) =

∫ 2

−2
5t4 dt = (2)5 + 32 = 64

3

A(3) =

∫ 3

−2
5t4 dt = (3)5 + 32 = 275
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Two clues for finding A(x) =
∫ x

a f (t) dt:

I If A(x) =

∫ x

a
f (t) dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(x) =

∫ x

a
f (t) dt. What functions could A(x) be?

I A′(x) = f (x).
I Guess a function with derivative f (x): F(x).
I Then A(x) = F(x) + C for some constant C.
I Also A(a) = 0, so 0 = F(a) + C, so C = −F(a)

I So, A(x) = F(x)− F(a)

1(as long as f (t) is continuous on [a, x])
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Two clues for finding A(x) =
∫ x

a f (t) dt:

I If A(x) =

∫ x

a
f (t) dt, then1 A′(x) = f (x)

I If F′(x) = A′(x), then A(x) = F(x) + C for some constant C.

A(b) =

∫ b

a
f (t) dt. What functions could A(b) be?

I A′(x) = f (x).
I Guess a function with derivative f (x): F(x).
I Then A(x) = F(x) + C for some constant C.
I Also A(a) = 0, so 0 = F(a) + C, so C = −F(a)

I So, A(b) = F(b)− F(a)

1(as long as f (t) is continuous on [a, x])
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∫ b

a
f (t) dt = F(b)− F(a) where F′(x) = f (x)

t

y y = f (t)

1−2

∫ 1

−2
f (t) dt = F(1)− F(−2)

2−2

∫ 2

−2
f (t) dt = F(2)− F(−2)

3−3

∫ 3

−3
f (t) dt = F(3)− F(−3)
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∫ b

a
f (t) dt = F(b)− F(a) where F′(x) = f (x)

t

y y = f (t)

1−2

∫ 1

−2
f (t) dt = F(1)− F(−2)

2−2

∫ 2

−2
f (t) dt = F(2)− F(−2)

3−3

∫ 3

−3
f (t) dt = F(3)− F(−3)
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∫ b

a
f (t) dt = F(b)− F(a) where F′(x) = f (x)

t

y y = f (t)

1−2

∫ 1

−2
f (t) dt = F(1)− F(−2)

2−2

∫ 2

−2
f (t) dt = F(2)− F(−2)

3−3

∫ 3

−3
f (t) dt = F(3)− F(−3)
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∫ b

a
f (t) dt = F(b)− F(a) where F′(x) = f (x)

t

y y = f (t)

1−2

∫ 1

−2
f (t) dt = F(1)− F(−2)

2−2

∫ 2

−2
f (t) dt = F(2)− F(−2)

3−3

∫ 3

−3
f (t) dt = F(3)− F(−3)
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Fundamental Theorem of Calculus, Part 2
Let F(x) be differentiable, defined, and continuous on the interval
[a, b] with F′(x) = f (x) for all a < x < b. Then∫ b

a
f (x) dx = F(b)− F(a)

Examples:
d
dx

{
5x7
}

= 35x6, so∫ 3

0
35x6 dx =5x7

∣∣∣
x=3
− 5x7

∣∣∣
x=0

= 5(37)− 5(07) = 5 · 37

d
dx {tan x} = sec2 x, so∫ π/4

0
sec2 x dx =tan x

∣∣∣
x=π

4

− tan x
∣∣∣
x=0

= tan(π/4)− tan 0 = 1
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∫ 3

0
35x6 dx = F(b)− F(a) where F(x) = 5x7

x

y y = 35x6

3

∫ 3

0
35x6 dx = 5(3)7 − 5(0)7
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∫ π/4

0
sec2 x dx = F(b)− F(a) where F(x) = tan x

x

y
y = sec2 x

1

∫ π/4

0
sec2 x dx = tan

(π
4

)
− tan 0 = 1
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RELEVANT VOCABULARY

Definition
If F(x) is a function whose derivative is f (x), we call F(x) an
antiderivative of f (x).

Examples:
The derivative of x2 is 2x, so:
x2 is an antiderivative of 2x.

When x > 0, the derivative of log x is 1
x , so:

1
x is an antiderivative of log x.

For all x, the derivative of log |x| is 1
x , so:

1
x is an antiderivative of log |x|.

An antiderivative of sin x is − cos x, because d
dx {− cos x} = sin x.
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CONVENIENT NOTATION

Definition

f (x)
∣∣∣b
a

= f (b)− f (a)

The function f (x) evaluated from a to b

Examples:

(5x + x2)
∣∣∣2
1

= (10 + 4)− (5 + 1)

x2

x+2

∣∣∣−1

5
= 1

1 −
25
7

FTC Part 2, Abridged∫ b

a
f (x) dx = F(x)

∣∣∣b
a

where F(x) is an antiderivative of f (x)
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Definition
The indefinite integral of a function f (x):∫

f (x) dx

means the most general antiderivative of f (x).

Examples:∫
2x dx = x2 + C, C “arbitrary constant.”

∫
1
x

dx = log |x|+ C

Remember: two functions with the same derivative differ by a
constant, so we include the “+C” for indefinite integrals.
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DEFINITE VS INDEFINITE INTEGRALS

For each pair of properties below, decide which applies to definite
integrals, and which to indefinite integrals.

No limits (or bounds) of integration,
∫

f (x) dx indefinite
Limits (or bounds) of integration,

∫ b
a f (x) dx definite

Area under a curve definite
Antiderivative indefinite
Number definite
Function indefinite
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ANTIDIFFERENTIATION BY INSPECTION

1.
∫

ex dx = ex + C

2.
∫

cos x dx = sin x + C

3.
∫
− sin x dx = cos x + C

4.
∫

1
x

dx = log |x|+ C

5.
∫

1 dx = x + C

6.
∫

2x dx = x2 + C

7.
∫

nxn−1 dx = xn + C (n 6= 0, constant)

8.
∫

xn dx = 1
n+1 xn+1 + C ( n 6= −1, constant)
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Power Rule for Antidifferentiation∫
xn dx =

1
n + 1

xn+1 + C

if n 6= −1 is a constant

Example:∫ (
5x2 − 15x + 3

)
dx =

5
3

x3 − 15
2

x2 + 3x + C
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ANTIDERIVATIVES TO RECOGNIZE

I
∫

xn dx = 1
n+1 xn+1 + C

I
∫

a dx = ax + C
I
∫

ex dx = ex + C
I
∫ 1

x dx = log |x|+ C
I
∫

sin x dx = − cos x + C
I
∫

cos x dx = sin x + C
I
∫

sec2 x dx = tan x + C
I
∫

sec x tan x dx = sec x + C
I
∫

csc x cot x dx = − csc x + C
I
∫

csc2 x dx = − cot x + C
I
∫ 1

1+x2 dx = arctan x + C

I
∫ 1√

1−x2
dx = arcsin x + C
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ANTIDERIVATIVES

Fact:
d

dx
{

sin
(
x2 + x

)}
=

Related Fact: ∫
(2x + 1) cos(x2 + x) dx =

sin
(
x2 + x

)
+ C

Hard to guess the antiderivative without seeing the derivative first!
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ANTIDERIVATIVES

Chain Rule:

d
dx

sin
(

x2 + x︸ ︷︷ ︸
inside function

)  =
(

2x + 1︸ ︷︷ ︸
derivative of
inside function

)
cos
(

x2 + x︸ ︷︷ ︸
inside function

)

Hallmark of the chain rule: an “inside” function, with that function’s
derivative multiplied.
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SOLVE BY INSPECTION

∫
2xex2+1 dx = ex2+1 + C

∫
1
x

cos(log x) dx = sin(log x) + C

∫
3(sin x + 1)2 cos x dx = (sin x + 1)3 + C

(Look for an “inside” function, with its derivative multiplied.)
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UNDOING THE CHAIN RULE

Chain Rule:
d

dx
{f (u(x))} = f ′(u(x)) · u′(x)

(Here, u(x) is our “inside function”)

Antiderivative Fact:∫
f ′(u(x)) · u′(x) dx = f (u(x)) + C
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UNDOING THE CHAIN RULE

Antiderivative Fact:∫
f ′(u(x)) · u′(x) dx = f (u(x)) + C

Shorthand: call u(x) simply u;
since du

dx = u′(x), call u′(x) dx simply du.

∫
f ′(u(x)) · u′(x) dx =

∫
f ′(u) du

∣∣∣
u=u(x)

= f
(
u(x)

)
+ C

This is the substitution rule.
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We saw these integrals before, and solved them by inspection. Now
try using the language of substitution.∫

2xex2+1 dx

Using u as shorthand for x2 + 1, and du as shorthand for 2x dx:∫
2xex2+1 dx =

∫
eu du = eu + C = ex2+1 + C∫

1
x

cos(log x) dx

Using u as shorthand for log x, and du as shorthand for 1
x dx:∫ 1

x cos(log x) dx =
∫

cos(u) du = sin(u) + C = sin(log x) + C∫
3(sin x + 1)2 cos x dx

Using u as shorthand for sin x + 1, and du as shorthand for cos x dx:∫
3(sin x + 1)2cos x dx =

∫
3u2 du = u3 + C = (sin x + 1)3 + C
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∫
(3x2) sin(x3 + 1) dx =

∫
sin(u) du

∣∣∣∣
u=x3+1

= − cos(u) + C|u=x3+1

= cos(x3 + 1) + C

“Inside” function: x3 + 1. Its derivative: 3x2

Shorthand: x3 + 1→ u, 3x2 dx→ du

153/643

∫
(3x2) sin(x3 + 1) dx =

∫
sin(u) du

∣∣∣∣
u=x3+1

= − cos(u) + C|u=x3+1

= cos(x3 + 1) + C

“Inside” function: x3 + 1. Its derivative: 3x2

Shorthand: x3 + 1→ u, 3x2 dx→ du
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∫
(3x2) sin(x3 + 1) dx =

∫
sin(u) du

∣∣∣∣
u=x3+1

= − cos(u) + C|u=x3+1

= cos(x3 + 1) + C

“Inside” function: x3 + 1. Its derivative: 3x2

Shorthand: x3 + 1→ u, 3x2 dx→ du

Warning 1: We don’t just change dx to du. We need to couple dx with
the derivative of our inside function.
After all, we’re undoing the chain rule! We need to have an “inside
derivative.”

Warning 2: The final answer is a function of x.
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We used the substitution rule to conclude∫
(3x2) sin(x3 + 1) dx = − cos(x3 + 1) + C

We can check that our antiderivative is correct by differentiating.

d
dx
{
− cos(x3 + 1) + C

}
= sin(x3 + 1)(3x2)
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We saw: ∫
3x2 sin(x3 + 1) dx = − cos(x3 + 1) + C

So, we can evaluate:∫ 1

0
3x2 sin(x3 + 1) dx = − cos(x3 + 1)

∣∣1
0 = cos(1)− cos(2)

Alternately, we can put in the limits of integration as we substitute.
The bounds are originally given as values of x; we simply change
them to values of u.
If u(x) = x3 + 1, then u(0) = 1 and u(1) = 2.∫ 1

0︸︷︷︸
x-values

3x2 sin(x3 + 1) dx =

∫ 2

1︸︷︷︸
u-values

sin(u) du = − cos(2) + cos(1)
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NOTATION: LIMITS OF INTEGRATION

∫ π/2

π/4

cos x
sin3 x

dx

Let u = sin x, du = cos x dx. Note the limits (or bounds) of
integration π/4 and π/2 are values of x, not u: they follow the
differential, unless otherwise specified.∫ π/2

π/4

cos x
sin3x

dx

x=π
2

x=π
4

∫ π/2

π/4

1
u3 du

u=π
2

u=π
4

different

∫ x=π/2

x=π/4

1
u3 du

x=π
2

x=π
4

not standard, but OK

= =

∫ 1

1/
√

2

1
u3 du

u=sin(π2 )=1

u=sin(π4 )= 1√
2
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TRUE OR FALSE?

1. Using u = x2, ∫
ex2

dx =

∫
eu du

False: missing u′(x).
du = (2x dx) 6= dx

2. Using u = x2 + 1,∫ 1

0
x sin(x2 + 1) dx =

∫ 1

0

1
2

sin u du

False: limits of integration didn’t translate.
When x = 0, u = 02 + 1 = 1, and when x = 1, u = 12 + 1 = 2.
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Evaluate
∫ 1

0
x7 (x4 + 1

)5
dx.

u = x4 + 1, du = 4x3 dx
u(0) = 1, u(1) = 2

x4 = u− 1, x3 dx = 1
4 du∫ 1

0
x7 (x4 + 1

)5
dx =

∫ 1

0
(x4) · (x4 + 1)5 · x3 dx

=

∫ 2

1
(u− 1) · u5 · 1

4 du

= 1
4

∫ 2

1
(u6 − u5) du

= 1
4

[ 1
7 u7 − 1

6 u6]2
1

= 1
4

[
27

7 −
26

6 −
1
7 + 1

6

]
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Time permitting, more examples using the substitution rule
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Evaluate
∫

sin x cos x dx.

Let u = sin x, du = cos x dx:∫
sin x cos x dx =

∫
u du =

1
2

u2 + C =
1
2

sin2x + C

Or, let u = cos x, du = − sin x dx:∫
cos x sin x dx = −

∫
u du = −1

2
u2 + C = −1

2
cos2x + C

Recall sin2 x + cos2 x = 1 for all x, so 1
2 sin2 x = − 1

2 cos2 x + 1
2 . The two

answers look different, but they only differ by a constant, which can
be absorbed in the arbitrary constant C. If we rename the second C to
C′ so that the second answer is − 1

2 cos2x + C′, then C′ = C + 1
2 .
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Q

CHECK OUR WORK

We can check that
∫

sin x cos x dx =

1
2

sin2 x + C

by differentiating.

d
dx

{
1
2

sin2 x + C
}

=
2
2

sin x · cos x = sin x cos x

Our answer works.

We can check that
∫

sin x cos x dx =

− 1
2

cos2 x + C

by differentiating.

d
dx

{
−1

2
cos2 x + C

}
= −2

2
cos x · (− sin x) = sin x cos x

This answer works too.
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Evaluate
∫

log x
3x

dx.

Let u = log x, du = 1
x dx:∫

log x
3
· 1

x
dx =

1
3

∫
u du

=
1
6

u2 + C

=
1
6

log2x + C
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CHECK OUR WORK

We can check that
∫

log x
3x

dx =

1
6

log2 x + C

by differentiating.

d
dx

{
1
6

log2 x + C
}

=
2
6

log x · 1
x

=
log x
3x

Our answer works.

165/643

Evaluate
∫

ex

ex + 15
dx.

Let u = ex + 15, du = ex dx∫
ex

ex + 15
dx =

∫
1
u

du = log |u|+ C = log |ex + 15|+ C

In this case, since ex + 15 > 0, the absolute values on |ex + 15| are
optional.

Evaluate
∫

x4(x5 + 1)8 dx.

Let u = x5 + 1, du = 5x4 dx. Then, x4 dx = 1
5 du.

∫
x4(x5 + 1)8 dx =

∫
1
5

(u)8 du

=
1
5
· 1

9
u9 + C =

1
45

(x5 + 1)9 + C
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QQ

CHECK OUR WORK

We can check that
∫

ex

ex + 15
dx =

log |ex + 15|+ C

by differentiating.

d
dx
{log |ex + 15|+ C} =

1
ex + 15

· ex =
ex

ex + 15

Our answer works.

We can check that
∫

x4(x5 + 1)8 dx =

1
45

(x5 + 1)9 + C

by

differentiating.

d
dx

{
1

45
(x5 + 1)9 + C

}
=

9
45

(x5 + 1)8 · 5x4 = (x5 + 1)8x4

Our answer works.
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Evaluate
∫ 8

4

s
s− 3

ds. Be careful to use correct notation.

Let u = s− 3, du = ds.
Then s = u + 3, u(4) = 1 and u(8) = 5.∫ 8

4

s
s− 3

ds =

∫ 5

1

u + 3
u

du

=

∫ 5

1

(
1 +

3
u

)
du

= [u + 3 log |u|]51
= [5 + 3 log 5]− [1 + 3 log 1]

= 4 + 3 log 5
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Evaluate
∫

x9(x5 + 1)8 dx.

Let u = x5 + 1, du = 5x4 dx.
Then x4 dx = 1

5 du, x5 = u− 1.∫
x9(x5 + 1)8 dx =

∫
(x4) · (x5) · (x5 + 1)8 dx

=

∫ (
1
5

)
· (u− 1) · u8 du =

1
5

∫
(u9 − u8) du

=
1
5

[
1

10
u10 − 1

9
u9
]

+ C

=
1
5

[
(x5 + 1)10

10
− (x5 + 1)9

9

]
+ C
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CHECK OUR WORK

We can check that
∫

x9(x5 + 1)8 dx =

1
5

[
(x5 + 1)10

10
− (x5 + 1)9

9

]
+ C

by differentiating.

d
dx

{
1
5

[
(x5 + 1)10

10
− (x5 + 1)9

9

]
+ C

}
=

1
5
[
(x5 + 1)9 · 5x4 − (x5 + 1)8 · 5x4]

= x4(x5 + 1)9 − x4(x5 + 1)8

= x4(x5 + 1)8[(x5 + 1)− 1
]

= x4(x5 + 1)8[x5]

= x9(x5 + 1)8

Our answer works.
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PARTICULARLY TRICKY SUBSTITUTION

Evaluate
∫

1
ex + e−x dx.

Let u = ex, du = ex dx. Then dx = du
ex = du

u .∫
1

ex + e−x dx =

∫
1

u + 1
u

du
u

=

∫
1

u2 + 1
du

= arctan(u) + C
= arctan(ex) + C
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CHECK OUR WORK

We can check that
∫

1
ex + e−x dx =

arctan(ex) + C

by differentiating.

d
dx
{arctan(ex) + C} =

1
(ex)2 + 1

· ex

=
ex

(ex)2 + 1

=
ex

(ex)2 + 1
· e−x

e−x

=
1

ex + e−x

Our answer works.
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Find the area between f (x) and g(x) from x = −1 to x = 2.

x

y

2−1

f (x) = 1
3 x3 − x + 2

g(x) = x2 − 1
3 x3

∫ 2

−1
f (x) dx−

∫ 2

−1
g(x) dx =

∫ 2

−1

[
f (x)− g(x)

]
dx

=

∫ 2

−1

[
1
3

x3 − x + 2− x2 +
1
3

x3
]

dx

=

∫ 2

−1

[
2
3

x3 − x2 − x + 2
]

dx

=

[
1
6

x4 − 1
3

x3 − 1
2

x2 + 2x
]2

−1

=
16
6
− 8

3
− 4

2
+ 4−

(
1
6

+
1
3
− 1

2
− 2
)

= 2− (−2) = 4
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Find the (unsigned) area between f (x) and g(x) from x = −π2 to x = π
2 .

x

y

π
2−π2

f (x) = esin x cos x

g(x) = sin x · cos x

∫ π
2

−π2

[
f (x)− g(x)

]
dx =

∫ π
2

−π2

(
esin x cos x− sin x cos x

)
dx

Let u = sin x.
Then: du = cos x dx, u

(
π
2

)
= sin

(
π
2

)
= 1, u

(−π
2

)
= sin

(−π
2

)
= −1.

=

∫ 1

−1
(eu − u) du

=

[
eu − 1

2
u2
]1

−1

= e− 1
e
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Find the (unsigned) area of the finite region bounded by f (x) and g(x).

x

y

f (x) = 1
x

g(x) = 7
3 −

2
3 x
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Find the (unsigned) area in the figure below between the curves f (x)
and g(x) from x = 0 to x = 1.

x

y

1

f (x) = xex2

g(x) = xe1−x2

1√
2

Intersections at x = 0 and
x = ± 1√

2
:

xex2
= xe1−x2

ex2
= e1−x2

or x = 0

x2 = 1− x2

x = ± 1√
2

Area =

∫ 1√
2

0

[
g(x)− f (x)

]
dx +

∫ 1

1√
2

[
f (x)− g(x)

]
dx

=

∫ 1√
2

0

[
xe1−x2

− xex2
]
dx +

∫ 1

1√
2

[
xex2
− xe1−x2

]
dx

Aside:
∫

xe1−x2
dx︸ ︷︷ ︸

u=1−x2, du=−2x dx

= −1
2

e1−x2
+ C

∫
xex2

dx︸ ︷︷ ︸
u=x2, du=2x dx

=
1
2

ex2
+ C

Area =

[
−1

2
e1−x2

− 1
2

ex2
] 1√

2

0
+

[
1
2

ex2
−
(
−1

2
e1−x2

)]1

1√
2

= −1
2

[(
e

1
2 + e

1
2

)
−
(

e1 + e0
)]

+
1
2

[(
e1 + e0

)
−
(

e
1
2 + e

1
2

)]
= e− 2

√
e + 1

177/643

Q

Set up, but do not evaluate, integral(s) to find the (unsigned) area of
the finite region bounded by x = 1 + y2 and y = x− 3.

x

y

x = 1 + y2

y = x− 3

2 5
−1

2

1

y =
√

x− 1

y = −
√

x− 1

Option 1:
∫ 2

1

[√
x− 1−

(
−
√

x− 1
)]

dx+

∫ 5

2

[√
x− 1− (x− 3)

]
dx
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Set up, but do not evaluate, integral(s) to find the (unsigned) area of
the finite region bounded by x = 1 + y2 and y = x− 3.

x

y

x = 1 + y2
y = x− 3

1 2 5−1

2

x

y

y = 1 + x2

x = y− 3

−1 2

∫ 2

−1

[
(x + 3)− (1 + x2)

]
dx

179/643 ans
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QUICK REFRESHER: VOLUMES OF CYLINDERS

r

h

R

The volume of a cylinder with
radius r and height h is:

πr2h

R
r

h

The volume of a washer, with
outer radius R, inner radius r,
and height h is:(
πR2h− πr2h

)
= πh

(
R2 − r2)
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QUICK REFRESHER: VOLUMES OF CYLINDERS

More generally, if we have a shape of area A, and we extrude it into a
solid of height h, the resulting solid has volume: Ah

A

h
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Consider the volume, V, enclosed by rotating the curve y =
√

x, from
x = 0 to x = 4, around the x-axis.

x

y y =
√

x

x∗ix

∆x = 4
n

r =
√

x∗i

dx

r =
√

x

4

We cut the solid into slices, and approximate the volume of each slice.
Each thin slice is approximately a cylinder.

If we use n slices, the width of each is: 4
n .

The radius of the slice at x = x∗i is:
√

x∗i .
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Consider the volume, V, enclosed by rotating the curve y =
√

x, from
x = 0 to x = 4, around the x-axis.

x

y y =
√

x

x∗ix

∆x = 4
n

r =
√

x∗i

dx

r =
√

x

4

V ≈
n∑

i=1

(volume of each slice) =
n∑

i=1

π
(√

x∗i
)2 4

n
=

n∑
i=1

πx∗i︸︷︷︸
f (x∗i )

4
n︸︷︷︸
∆x

This is a Riemann sum for
∫ 4

0
πx dx.
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Consider the volume, V, enclosed by rotating the curve y =
√

x, from
x = 0 to x = 4, around the x-axis.

x

y y =
√

x

x∗i

x

∆x = 4
n

r =
√

x∗i

dx

r =
√

x

4

Informally, we think of one slice, at position x, as having thickness dx.
So, we can write the volume of this slice as:

πx dx.

Summing up the volumes of slices from x = 0 to x = 4, our total
volume is:

∫ 4

0
πx dx =

[π
2

x2
]4

0
= 8π
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x

y

y = h
r x

x = r
h y

r

h

Let h and r be positive constants.
1. What familiar solid results

from rotating the line
segment from (0, 0) to (r, h)
around the y-axis?

2. In the informal manner of
the last example, describe
the volume of a horizontal
slice of the cone taken at
height y.

3. What is the volume of the
entire cone?

Slice volume: π
( r

h y
)2 dy

Cone volume:
∫ h

0
π
( r

h
y
)2

dy =

[
πr2

3h2 y3
]y=h

y=0
=
πr2

3h2 (h3 − 0) =
π

3
r2h

186/643

Observation
When we rotated around the horizontal axis, the width of our
cylindrical slices was dx, and our integrand was written in terms of x.

When we rotated around the vertical axis, the width of our
cylindrical slices was dy, and we integrated in terms of y.

dx

dy

Vertical slices are
approximately cylinders

Horizontal slices are
approximately cylinders
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In this question, we will find the volume enclosed by rotating the
curve y = 1− x2, from x = −1 to x = 2, about the line y = 4.

x

y

4

−1 2

1. Sketch the surface traced out
by the rotating curve.

2. Sketch a cylindrical slice.
(Consider: will it be
horizontal or vertical?)

3. Give the volume of your
slice. Use dx or dy for the
width, as appropriate.

4. Integrate (with the
appropriate limits of
integration) to find the
volume of the solid.
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In this question, we will find the volume enclosed by rotating the
curve y = 1− x2, from x = −1 to x = 2, about the line y = 4.

x

y

4

−1 2
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To find the volume of the entire object, we “add up” the slices from
x = −1 to x = 2 by integrating.∫ 2

−1
π(3 + x2)2dx = π

∫ 2

−1

(
9 + 6x2 + x4)dx

= π

[
9x + 2x3 +

1
5

x5
]2

−1

= π

[(
18 + 16 +

32
5

)
−
(
−9− 2− 1

5

)]
= π

[(
40 +

2
5

)
+

(
11 +

1
5

)]
= 51.6π
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Let A be the area between the curve y = log x and the x-axis, from
(1, 0) to (e, 1). In this question, we will consider the volume of the
solid formed by rotating A about the y-axis.

x

y

1 e

1
1. Sketch A.

2. Sketch a washer-shaped slice
of the solid. (Should it be
horizontal or vertical?)

3. Give the volume of your
slice. Use dx or dy for the
width, as appropriate.

4. Integrate to find the volume
of the entire solid.

The outer radius is e, while the inner radius at height y is x = ey.
Slice volume at height y: π

(
e2 − (ey)

2
)

dy = π
(
e2 − e2y

)
dy
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Let A be the area between the curve y = log x and the x-axis, from
(1, 0) to (e, 1). In this question, we will consider the volume of the
solid formed by rotating A about the y-axis.

x

y

1 e

1

The outer radius is e, while the inner radius at height y is x = ey.
Slice volume at height y: π

(
e2 − (ey)

2
)

dy = π
(
e2 − e2y

)
dy
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To find the volume of the entire object, we “add up” the slices from
y = 0 to y = 1 by integrating.
Below we use the substitution rule with u = 2y and du = 2dy. With
practice, you’ll probably be able to do this substitution in your head,
but we have written it out for clarity

x

y

1 e

1
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So far, we’ve found the volume of solids formed by rotating a curve.
When a point rotates about a fixed centre, the result is a circle, so we
could slice those solids up into pieces that are approximately
cylinders.

dx

dy

We can find the volumes of other shapes, as long as we can find the
areas of their cross-sections.
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The corner of a room is sealed off as follows:
On both walls, a parabola of the form z = (x− 1)2 is drawn, where z
is the vertical axis and x is the horizontal. They start one metre above
the corner, and end one metre to the side of the corner.
Taught ropes are strung horizontally from one parabola to the other, so
the horizontal cross-sections are right triangles. How much volume is
enclosed?

z

1

1

At height z, the cross-section is a
right triangle. Its side length is
the x-value on the parabola.
Solving z = (x− 1)2 for x, we find
x =
√

z + 1.
So, the area of a cross-section at
height z is 1

2

(√
z + 1

)2. We call its
width dz.
All together, the enclosed volume
is
∫ 1

0
1
2

(
z + 2

√
z + 1

)
dz = 17

12
cubic metres.
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Q

A pyramid with height h metres has a square base with side-length b
metres. At an elevation of y metres above the base, 0 ≤ y ≤ h, the
cross-section of the pyramid is a square with side-length b

h (h− y).
What is the volume of the pyramid?

h

b

y

b
h (h− y)

The area of the square cross-section
at height y is[ b

h (h− y)
]2

= b2

h2

(
h2 − 2hy + y2).

If we give a horizontal slice width
dy, then the slice volume is
b2

h2

(
h2 − 2hy + y2)dy. So, the total

volume of the pyramid is

∫ h

0

b2

h2

(
h2 − 2hy + y2

)
dy

=
b2

h2

[
h2y− hy2 +

1
3

y3
]y=h

y=0

=
b2

h2

[
h3 − h3 +

1
3

h3
]

=
1
3

b2h
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OPTIONAL: CHALLENGE QUESTION

A paddle fixed to the x-axis has two flat blades. One blade is in the
shape of f (x) = 8

3 (x− 1)(x− 5), from x = 1 to x = 5. The other blade
is in the shape of g(x) = x(6− x), 0 ≤ x ≤ 6. The paddle turns
through a gelatinous fluid, scraping out a hollow cavity as it turns.
What is the volume of this cavity?
You may leave your answer as an integral, or sum of integrals.

x

g(x) = x(6− x)

f (x) = 8
3 (x− 1)(x− 5)

1 5 6
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The size of the cavity at a point x along the paddle is determined by
the larger of |f (x)| and |g(x)|.

x

g(x) = x(6− x)

f (x) = 8
3 (x− 1)(x− 5)

|g(x)| = x(6− x)

|f (x)| = − 8
3 (x− 1)(x− 5)

1 5 6

2 4

The radius of a cylindrical slice is |g(x)| = x(6− x) when 0 < x < 2
and 4 < x < 6, and the radius is |f (x)| = − 8

3 (x− 1)(x− 5) when
2 < x < 4.
|f (x)|2 = [f (x)]2, so we can drop our absolute values in this step.

Volume =

∫ 2

0
π
(
6x− x2)2

dx +

∫ 4

2
π

(
8
3
(
x2 − 6x + 5

))2

dx

+

∫ 6

4
π
(
6x− x2)2

dx

We could make our calculation slightly shorter by noting that the
shape is symmetric to the left and right of x = 3.

= 2

[∫ 2

0
π
(
6x− x2)2

dx +

∫ 3

2
π

(
8
3
(
x2 − 6x + 5

))2

dx

]
︸ ︷︷ ︸

Volume of half the object, 0≤x≤3
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The size of the cavity at a point x along the paddle is determined by
the larger of |f (x)| and |g(x)|.

x

g(x) = x(6− x)

f (x) = 8
3 (x− 1)(x− 5)

|g(x)| = x(6− x)

|f (x)| = − 8
3 (x− 1)(x− 5)

1 5 62 4

Let’s find where |f (x)| = |g(x)|:

x(6− x) = −8
3

(x− 1)(x− 5)

6x− x2 = −8
3
(
x2 − 6x + 5

)
= −8

3
x2 + 16x− 40

3
5
3

x2 − 10x +
40
3

= 0

x2 − 6x + 8 = 0
(x− 2)(x− 4) = 0

x = 2, x = 4

The radius of a cylindrical slice is |g(x)| = x(6− x) when 0 < x < 2
and 4 < x < 6, and the radius is |f (x)| = − 8

3 (x− 1)(x− 5) when
2 < x < 4.
|f (x)|2 = [f (x)]2, so we can drop our absolute values in this step.

Volume =

∫ 2

0
π
(
6x− x2)2

dx +

∫ 4

2
π

(
8
3
(
x2 − 6x + 5

))2

dx

+

∫ 6

4
π
(
6x− x2)2

dx

We could make our calculation slightly shorter by noting that the
shape is symmetric to the left and right of x = 3.

= 2

[∫ 2

0
π
(
6x− x2)2

dx +

∫ 3

2
π

(
8
3
(
x2 − 6x + 5

))2

dx

]
︸ ︷︷ ︸

Volume of half the object, 0≤x≤3
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REVERSE THE PRODUCT RULE

Product Rule:

d
dx
{

u(x) · v(x)
}

= u′(x) · v(x) + u(x) · v′(x)

Related fact:∫ [
u′(x) · v(x) + u(x) · v′(x)

]
dx = u(x) · v(x) + C

Rearrange:

=⇒
∫ [

u′(x)v(x)
]
dx +

∫ [
u(x)v′(x)

]
dx = u(x)v(x) + C

=⇒
∫ [

u(x)v′(x)
]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx + C
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INTEGRATION BY PARTS∫ [
u(x)v′(x)

]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx

Example:
∫

xexdx

Let u(x) = x and v′(x) = ex. (We’ll talk later about choosing these)
Then u′(x) = 1 and v(x) = ex.∫ [

u(x)v′(x)
]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx∫ [

xex
]
dx = x(ex)−

∫ [
(ex)1

]
dx + C∫

xex = xex −
∫

(ex)dx + C

= xex − ex + C
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Q

CHECK OUR WORK

In the previous slide, we evaluated∫
xexdx = xex − ex + C

for some constant C. We can check that this is correct by
differentiating.

d
dx

{
xex − ex + C

}
= (xex + ex)− ex = xex

We used the product rule to differentiate. Remember integration by
parts helps us to reverse the product rule.
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INTEGRATION BY PARTS (IBP): A CLOSER LOOK

∫ [
u(x)v′(x)

]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx + C∫

xexdx︸ ︷︷ ︸
How to integrate??

= x(ex)− 1
∫

exdx︸ ︷︷ ︸
Easy to integrate!

+C

We start and end with an integral. IBP is only useful if the new
integral is somehow an improvement.

We differentiate the function we choose as u(x), and antidifferentiate
the function we choose as v′(x)
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CHOOSING u(x) AND v(x)

∫ [
u(x)v′(x)

]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx + C∫ [

x sin x
]
dx =

Option A: Option B:
u(x) = x u′(x) = 1 u(x) = sin x u′(x) = cos x
v′(x) = sin x v(x) = − cos x v′(x) = x v(x) = 1

2 x2

→
∫
− cos x · 1 dx →

∫ 1
2 x2 · cos x dx

Option A:∫
x sin x dx = x(− cos x)−

∫
− cos x dx = −x cos x + sin x + C

Fine Print: We can choose any antiderivative of v′(x) to be v(x). So, we omit “+C.”
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CHECK OUR WORK

To check our work, we can calculate d
dx

{
− x cos x + sin x + C

}
. It

should work out to be x sin x.

d
dx

{
− x cos x + sin x + C

}
= (−x)(− sin x) + (cos x)(−1) + cos x = x sin x

Our answer works!
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CHOOSING u(x) AND v(x)

∫ [
u(x)v′(x)

]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx + C∫ [

x2 log x
]
dx =

Option A: Option B:
u(x) = x2 u′(x) = 2x u(x) = log x u′(x) = 1

x
v′(x) = log x v(x) =?? v′(x) = x2 v(x) = 1

3 x3

→
∫

?? · 2x dx →
∫ 1

3 x3 · 1
x dx

Option B:∫
x2log x dx = log x · 1

3
x3 −

∫
1
3

x3 · 1
x

dx

=
1
3

x3 log x− 1
3

∫
x2 dx =

1
3

x3 log x− 1
9

x3 + C
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CHECK OUR WORK

To check our work, we can calculate d
dx

{
1
3 x3 log x− 1

9 x3 + C
}

. It

should work out to be x2 log x.

d
dx

{
1
3

x3 log x− 1
9

x3 + C
}

= x2 log x +
1
3

x3 · 1
x
− 3

9
x2

= x2 log x

Our answer works.
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∫ [
u(x)v′(x)

]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx + C∫ [

1
2 xe6x

]
dx =

Option A: Option B:
u(x) = 1

2 x u′(x) = 1
2 u(x) = e6x u′(x) = 6e6x

v′(x) = e6x v(x) = 1
6 e6x v′(x) = 1

2 x v(x) = 1
4 x2

→
∫ 1

6 e6x · 1
2 dx →

∫ 1
4 x2 · 6e6x dx

Option A:∫
1
2 x · e6x dx =

1
2

x · 1
6

e6x −
∫

1
6

e6x · 1
2

dx

=
1

12
xe6x − 1

12

∫
e6xdx =

1
12

xe6x − 1
72

e6x + C
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CHECK OUR WORK

We check that
∫ [

1
2

xe6x
]

dx =
1
12

xe6x − 1
72

e6x + C by differentiating.

d
dx

{
1

12
xe6x − 1

72
e6x + C

}
=

1
12

x · 6e6x + e6x · 1
12
− 6

72
e6x

=
1
2

xe6x +
1

12
e6x − 1

12
e6x

=
1
2

xe6x

Our answer works.
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MNEMONIC

∫ [
u(x)v′(x)

]
dx = u(x)v(x)−

∫ [
v(x)u′(x)

]
dx + C∫

u dv = uv−
∫

v du + C

We abbreviate:
I u(x)→ u
I u′(x) dx→ du
I v(x)→ v
I v′(x) dx→ dv
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CHOOSING u, dv IN YOUR HEAD

Choose u and dv to evaluate the integral below:∫
(3t + 5) cos(t/4)dt

Thoughts:
∫

u dv = uv−
∫

v du

u gets differentiated, and dv gets antidifferentiated.
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Evaluate, using IBP or Substitution∫
udv = uv−

∫
vdu + C

I
∫

xex2
dx

I
∫

x2exdx

I
∫

ex+ex
dx

(sub)
∫

xex2
dx =

∫
1
2

eu du =
1
2

eu + C =
1
2

ex2
+ C

(IBP)
∫

x2︸︷︷︸
u

exdx︸︷︷︸
dv

= x2 · ex −
∫

ex · 2x dx

= x2ex − 2
∫

x︸︷︷︸
u

ex dx︸︷︷︸
dv

= x2ex − 2
[

xex −
∫

ex dx
]

= x2ex − 2xex + 2ex + C

(sub)
∫

ex+ex
dx =

∫
eex
· ex dx =

∫
eu du = eu + C = eex

+ C213/643

Q Q Q

DEFINITE INTEGRATION BY PARTS

Method 1: Antidifferentiate first, then plug in limits of integration.

Method 2: Plug as you go.
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Evaluate
∫ e

1
log2 x dx

Method 1:
Let u = log2 x, dv = 1dx; du = 2 log x · 1

x dx, v = x∫
log2 x dx = x log2 x−

∫
2 log x dx

Now let u = log x, dv = 2dx; du = 1
x dx, v = 2x

= x log2 x−
[

2x log x−
∫

2dx
]

= x log2 x− 2x log x + 2x + C∫ e

1
log2 x dx =

[
x log2 x− 2x log x + 2x + C

]e

1

= (e− 2e + 2e + C)− (0− 0 + 2 + C) = e− 2

Method 2:
Let u = log2 x, dv = 1dx; du = 2 log x · 1

x dx, v = x∫ e

1
log2 x dx =

[
x log2 x

]e

1
−
∫ e

1
2 log x dx = (e− 0)−

∫ e

1
2 log x dx

Now let u = log x, dv = 2 dx; du = 1
x dx, v = 2x

= e−
[[

2x log x
]e

1
−
∫ e

1
2 dx

]
= e− (2e− 0) +

[
2x
]e

1

= e− 2e + 2e− 2 = e− 2
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SPECIAL TECHNIQUE: v′(x) = 1

∫
u dv = uv−

∫
v du + C

Evaluate
∫

log x dx using integration by parts.

Hint: log x = (log x)(1).

∫
log x dx =

∫
log x︸︷︷︸

u

· 1 dx︸︷︷︸
dv

= log x · x−
∫

x · 1
x

dx

= x log x−
∫

1 dx = x log x− x + C
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Q



CHECK OUR WORK

Let’s check that
∫

log x dx = x log x− x + C.

d
dx

{
x log x− x + C

}
= x · 1

x
+ log x− 1 = 1 + log x− 1 = log x

So we have indeed found the antiderivative of log x.
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∫
u dv = uv−

∫
v du + C

Evaluate
∫

arctan x dx using integration by parts.

Hint: arctan x = (arctan x)(1), and d
dx

{
arctan x

}
=

1
1 + x2

∫
arctan x︸ ︷︷ ︸

u

· 1 dx︸︷︷︸
dv

= arctan x · x−
∫

x · 1
1 + x2 dx

Set s = 1 + x2, ds = 2x dx.

= x arctan x− 1
2

∫
1
s

ds

= x arctan x− 1
2

log |1 + x2|+ C
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CHECK OUR WORK

Let’s check that
∫

arctan x dx = x arctan x− 1
2

log |1 + x2|+ C.

d
dx

{
x arctan x− 1

2
log |1 + x2|+ C

}
= x · 1

1 + x2 + arctan x− 1
2
· 2x

1 + x2

=
x

1 + x2 + arctan x− x
1 + x2

= arctan x

So we have indeed found the antiderivative of arctan x.
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Setting dv = 1 dx is a very specific technique. You’ll probably only
see it in situations integrating logarithms and inverse trigonometric
functions.

∫
log x dx,

∫
arcsin x dx,

∫
arccos x dx,

∫
arctan x dx, etc.
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Evaluate
∫

ex cos x dx using integration by parts.

Let u = ex and dv = cos x dx. Then du = ex dx and v = sin x:∫
ex cos x dx = ex sin x−

∫
ex sin x dx

Let u = ex and dv = sin x dx. Then du = ex dx and v = − cos x:

= ex sin x−
[
−ex cos x−

∫
−ex cos x dx

]
= ex sin x + ex cos x−

∫
ex cos x dx∫

ex cos x dx = ex sin x + ex cos x−
∫

ex cos x dx

2
∫

ex cos x dx = ex sin x + ex cos x + C∫
ex cos x dx =

1
2

(ex sin x + ex cos x) + C
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Q

INTEGRATING AROUND IN A CIRCLE

We can use this technique to antidifferentiate products of two
functions that almost, but don’t quite, stay the same under
(anti)differentiation.

Use integration by parts a number of times, ending up with an
expression involving (a scalar multiple of) the original integral.

To do this, be consistent with your choice of u and dv.
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Evaluate
∫

cos(log x) dx.

Let u = cos(log x), dv = dx; then du = − sin(log x)
x dx, v = x

∫
cos(log x)dx = x cos(log x)−

∫ (
− sin(log x)

x

)
x dx

= x cos(log x) +

∫
sin(log x) dx

Let u = sin(log x), dv = dx; then du = cos(log x)
x , v = x

= x cos(log x) + x sin(log x)−
∫

cos(log x) dx

So, 2
∫

cos(log x) dx = x cos(log x) + x sin(log x)∫
cos(log x) dx =

x
2

[cos(log x) + sin(log x)] + C
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CHECK OUR WORK

We check that
∫

cos(log x)dx =
x
2
[

cos(log x) + sin(log x)
]

+ C by

differentiating.

d
dx

{x
2
[

cos(log x) + sin(log x)
]

+ C
}

=
x
2

[
− sin(log x)

x
+

cos(log x)

x

]
+

1
2
[

cos(log x) + sin(log x)
]

= −1
2

sin(log x) +
1
2

cos(log x) +
1
2

cos(log x) +
1
2

sin(log x)

= cos(log x)

Our answer works.
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Evaluate
∫

e2x sin x dx using integration by parts.

Let u = e2x and dv = sin x dx. Then du = 2e2x dx and v = − cos x.

∫
e2x sin x dx = e2x(− cos x)−

∫
(− cos x)2e2x dx

= −e2x cos x + 2
∫

e2x cos x dx

Let u = e2x and dv = cos x dx. Then du = 2e2x dx and v = sin x∫
e2xsin x dx = −e2xcos x + 2

[
e2x sin x−

∫
2e2x sin x dx

]
= −e2xcos x + 2e2x sin x− 4

∫
e2x sin x dx

5
∫

e2x sin x dx = −e2x(cos x− 2 sin x)∫
e2x sin x dx =

e2x

5
(2 sin x− cos x) + C
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CHECK OUR WORK

We can check our work by differentiating 1
5 e2x[2 sin x− cos x] + C.

We should end up with e2x sin x.

d
dx

{
1
5

e2x(2 sin x− cos x) + C
}

=
1
5

e2x(2 cos x + sin x) +
2
5

e2x(2 sin x− cos x)

=
2
5

e2x cos x +
1
5

e2x sin x +
4
5

e2x sin x− 2
5

e2x cos x

= e2x sin x

Our answer, strange though it looks, is the correct antiderivative.
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1.8 TRIGONOMETRIC INTEGRALS

Recall:
I sin2 x + cos2 x = 1
I tan2 x + 1 = sec2 x
I sin2 x = 1

2 (1− cos 2x)

I cos2 x = 1
2 (1 + cos 2x)

I sin(2x) = 2 sin x cos x

228/643 Equations 1.8.1, 1.8.2, 1.8.3, 1.8.4, 1.8.5



INTEGRATING PRODUCTS OF SINE AND COSINE

Let u = sin x, du = cos x dx∫
sin x cos x dx =

∫
u du =

1
2

u2 + C =
1
2

sin2 x + C

Let u = sin x, du = cos x dx∫
sin10x cos x dx =

∫
u10 du =

1
11

u11 + C =
1

11
sin11 x + C
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Q Q

INTEGRATING PRODUCTS OF SINE AND COSINE

Let u = sin x, du = cos x dx∫
sin x cos x dx =

∫
u du =

1
2

u2 + C =
1
2

sin2 x + C

Let u = sin x, du = cos x dx∫
sin10x cos x dx =

∫
u10 du =

1
11

u11 + C =
1

11
sin11 x + C
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CHECK OUR WORK

If we are correct that
∫

sin x cos x dx =

sin2 x
2

+ C

, then it should be

true that d
dx

{

sin2 x
2 + C

}
= sin x cos x.

We differentiate, using the chain rule:

d
dx

{
sin2 x

2
+ C

}
=

2
2

sin x cos x = sin x cos x

Our answer works.
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CHECK OUR WORK

If we are correct that
∫

sin10 x cos x dx =

sin11 x
11

+ C

, then it should be

true that d
dx

{

sin11 x
2 + C

}
= sin10 x cos x.

We differentiate, using the chain rule:

d
dx

{
sin11 x

11
+ C

}
=

11
11

sin10 x cos x = sin10 x cos x

Our answer works.
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INTEGRATING PRODUCTS OF SINE AND COSINE

Let u = sin x, du = cos x dx

∫ π
2

0
sinπ+1 x cos x dx =

∫ sin(π/2)

sin(0)

uπ+1du =
1

π + 2
uπ+2

∣∣∣∣1
0

=
1

π + 2
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CHECK OUR WORK

If we are correct that
∫

sinπ+1 x cos x dx =

sinπ+2 x
π + 2

+ C

, then it

should be true that d
dx

{

sinπ+2 x
π+2 + C

}
= sinπ+1 x cos x.

We differentiate, using the chain rule:

d
dx

{
sinπ+2 x
π + 2

+ C
}

=
π + 2
π + 2

sinπ+1 x cos x = sinπ+1 x cos x

Our answer works.
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INTEGRATING PRODUCTS OF SINE AND COSINE

Let u = sin x, du = cos x dx.

Use sin2 x + cos2 x = 1.

∫
sin10 x cos3 x dx =

∫
sin10 x cos2 x cos x dx

=

∫
sin10 x (1− sin2 x) cos x dx

=

∫
u10(1− u2) du =

∫
(u10 − u12) du

=
1
11

u11 − 1
13

u13 + C =
sin11 x

11
− sin13 x

13
+ C
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CHECK OUR WORK

If we are correct that
∫

sin10 x cos3 x dx =

sin11 x
11

− sin13 x
13

+ C

, then it

should be true that
d
dx

{

sin11 x
11

− sin13 x
13

+ C

}
= sin10 x cos3 x.

We differentiate, using the chain rule:

d
dx

{
sin11 x

11
− sin13 x

13
+ C

}
=

11
11

sin10 x cos x− 13
13

sin12 x cos x

= sin10 x
(
1− sin2 x

)
cos x = sin10 x cos2 x cos x

= sin10 x cos3 x

Our answer works.
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INTEGRATING PRODUCTS OF SINE AND COSINE

u = cos x, du = − sin x dx sin2 x + cos2 x = 1.

∫
sin5 x cos4 x dx =

∫
(sin2 x)2 cos4 x sin x dx

=

∫
(1− cos2 x)2 cos4 x sin x dx

= −
∫

(1− u2)2u4 du = −
∫

(1− 2u2 + u4)u4du

= −
∫

(u4 − 2u6 + u8)du = −u5

5
+

2u7

7
− u9

9
+ C

= − 1
5 cos5x + 2

7 cos7x− 1
9 cos9x + C
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CHECK OUR WORK

If we are correct that∫
sin5 x cos4 x dx =

− 1
5 cos5 x + 2

7 cos7 x− 1
9 cos9 x + C

, then it should

be true that
d
dx
{

− 1
5 cos5 x + 2

7 cos7 x− 1
9 cos9 x + C

}
= sin5 x cos4 x.

We differentiate, using the chain rule:

d
dx
{
− 1

5 cos5 x + 2
7 cos7 x− 1

9 cos9 x + C
}

=
5
5

cos4 x sin x− 2 · 7
7

cos6 x sin x +
9
9

cos8 x sin x

= cos4 x sin x
(
1− 2 cos2 x + cos4 x

)
= cos4 x sin x

(
1− cos2 x

)2
= cos4 x sin x

(
sin2 x

)2

= sin5 x cos4 x

Our answer works.
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GENERALIZE:
∫

sinm x cosn bx dx

To use the substitution u = sin x, du = cos x dx:
I We need to reserve one cos x for the differential.
I We need to convert the remaining cosn−1 x to sin x terms.
I We convert using cos2 x = 1− sin2 x. To avoid square roots, that

means n− 1 should be even when we convert.
I So, we can use this substitution when the original power of

cosine, n, is ODD: one cosine goes to the differential, the rest are
converted to sines.
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GENERALIZE:
∫

sinm x cosn x dx

To use the substitution u = cos x, du = − sin x dx:
I We need to reserve one sin x for the differential.
I We need to convert the remaining sinm−1 x to cos x terms.
I We convert using sin2 x = 1− cos2 x. To avoid square roots, that

means m− 1 should be even when we convert.
I So, we can use this substitution when the original power of sine,

m, is ODD: one sine goes to the differential, the rest are
converted to cosines.
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MNEMONIC: “ODD ONE OUT”

Integrating
∫

sinm x cosn x dx

If you want to use u = sin x, there should be an odd power of cosine.

If you want to use u = cos x, there should be an odd power of sine.
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Carry out a suitable substitution (but do not evaluate the resulting
integral):

I
∫

sin4 x cos7 x dx

I
∫

sin7 x cos4 x dx

I
∫

sin7 x cos7 x dx∫
sin4 x cos7 x dx

The power of cosine is odd, so it becomes our differential. That is, we
use u = sin x, du = cos x dx.∫

sin4x cos7 x dx

=

∫
sin4x (cos2 x)3cos x dx

=

∫
sin4x (1− sin2x)3cos x dx

=

∫
u4(1− u2)3 du∫

sin7 x cos4 x dx

The power of sine is odd, so it becomes our differential. That is, we
use u = cos x, du = − sin x dx.∫

sin7 x cos4x dx

=

∫
(sin2 x)

3
cos4x sin x dx

=

∫
(1− cos2x)

3
cos4x sin x dx

=−
∫

(1− u2)
3
u4 du∫

sin7 x cos7 x dx

The powers of sine and cosine are both odd, so we can use either as
our differential.

Solution 1:
u = sin x, du = cos x∫

sin7x cos7 x dx

=

∫
sin7x(cos2 x)3cos x dx

=

∫
sin7x(1− sin2x)3 cos x dx

=

∫
u7(1− u2)3 du

∣∣∣∣
u=sin x

Solution 2:
u = cos x, du = − sin x dx∫

sin7 xcos7x dx

=

∫
(sin2 x)3cos7x sin x dx

=

∫
(1− cos2x)3cos7x sin x dx

= −
∫

(1− u2)3u7 du
∣∣∣∣
u=cos x
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Q Q Q

To evaluate
∫

sinm x cosn x dx, we use:
I u = sin x if n is odd, and/or
I u = cos x if m is odd

What if n and m are both even?

cos2 x =
1 + cos 2x

2
sin2 x =

1− cos 2x
2
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cos2 x =
1 + cos 2x

2
sin2 x =

1− cos 2x
2

∫
sin2 x dx =

∫
1− cos 2x

2
dx

=
1
2

∫
(1− cos 2x) dx

=
1
2

(
x− 1

2
sin 2x

)
+ C
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Q



CHECK OUR WORK

We check that
∫

sin2 x dx =

1
2

(
x− 1

2
sin 2x

)
+ C

by differentiating:

d
dx

{
1
2

(
x− 1

2
sin 2x

)
+ C

}
=

1
2

(
1− 1

2
(cos 2x)(2)

)
=

1− cos 2x
2

= sin2 x

So, our answer works.
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cos2 x =
1 + cos 2x

2
sin2 x =

1− cos 2x
2

Evaluate
∫

sin4 x dx.

∫
sin4 x dx =

∫
(sin2 x)2 dx =

∫ (
1− cos 2x

2

)2

dx

=
1
4

∫
(1− 2 cos 2x + cos2 2x) dx

=
1
4

∫
(1− 2 cos 2x) dx +

1
4

∫
cos2(2x) dx

=
1
4

(x− sin 2x) +
1
4

∫ (
1 + cos(4x)

2

)
dx

=
1
4

(x− sin 2x) +
1
8

(
x +

1
4

sin(4x)

)
+ C

=
3
8

x− 1
4

sin(2x) +
1
32

sin(4x) + C
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Q

CHECK OUR WORK

We want to check that
∫

sin4 x dx =

3
8

x− 1
4

sin(2x) +
1
32

sin(4x) + C.

Note sin2 x = 1−cos(2x)
2 , so cos(2x) = 1− 2 sin2 x. Also remember

1
2 sin(2x) = sin x cos x.

d
dx

{
3
8

x− 1
4

sin(2x) +
1
32

sin(4x) + C
}

=
3
8
− 2

4
cos(2x) +

4
32

cos(4x)

=
3
8
− 1

2
(
1− 2 sin2 x

)
+

1
8
(
1− 2 sin2(2x)

)
=

3
8
− 1

2
+ sin2 x +

1
8
− 1

4
sin2(2x)

= sin2 x−
(

1
2

sin 2x
)2

= sin2 x− sin2 x cos2 x

= sin2 x(1− cos2 x) = sin2 x(sin2 x) = sin4 x

So, our answer works.
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Recall:
I d

dx{tan x} = sec2 x
I d

dx{sec x} = sec x tan x
I tan2 x + 1 = sec2 x
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∫
tan x dx =

∫
sin x
cos x

dx u = cos x du = − sin x dx

= −
∫

1
u

du = − log |u|+ C

= log |u−1|+ C = log

∣∣∣∣ 1
cos x

∣∣∣∣+ C

= log | sec x|+ C
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CHECK OUR WORK

Let’s check that
∫

tan xdx =

log | sec x|+ C

by differentiating.

d
dx
{log | sec x|+ C} =

sec x tan x
sec x

= tan x

So, our answer works.
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Optional: A nifty trick – you won’t be expected to come up with it.
There is some motivation for the trick in Example 1.8.19 in the CLP-2
text.∫

sec x dx =

∫
sec x

(
sec x + tan x
sec x + tan x

)
dx

=

∫ (
sec2 x + sec x tan x

sec x + tan x

)
dx

set u = sec x + tan x, du = (sec x tan x + sec2 x) dx

=

∫
1
u

du = log |u|+ C

= log |sec x + tan x|+ C
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Useful integrals:

I
∫

tan x dx = log |sec x|+ C

I
∫

sec x dx = log |sec x + tan x|+ C
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1.
∫

sec x tan x dx = sec x + C

2.
∫

sec2 x dx = tan x + C

3.
∫

tan x dx = log | sec x|+ C

4.
∫

sec x dx = log | sec x + tan x|+ C
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Evaluate using the substitution rule:

u = tan x, du = sec2 x dx∫
tan5 x sec2 x dx =

∫
u5du =

1
6

u6 + C =
1
6

tan6x + C

u = sec x, du = sec x tan x dx∫
sec4 x (sec x tan x) dx =

∫
u4du =

1
5

u5 + C =
1
5

sec5x + C
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Q

CHECK OUR WORK

Let’s check that
∫

tan5 x sec2 x dx =

1
6

tan6 x + C

by differentiating.

d
dx

{
1
6

tan6 x + C
}

=
6
6

tan5 x sec2 x = tan5 x sec2 x

So, our answer works.
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Evaluate using the identity sec2 x = 1 + tan2 x∫
tan4 x sec6 x dx =

∫
tan3 x sec5 x dx =
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Q Q



CHECK OUR WORK

Let’s check that
∫

tan4 x sec6 x dx =

1
5

tan5 x +
2
7

tan7 x +
1
9

tan9 x + C.

d
dx

{
1
5

tan5 x +
2
7

tan7 x +
1
9

tan9 x + C
}

= tan4 x sec2 x + 2 tan6 x sec2 x + tan8 x sec2 x

= tan4 x sec2 x(1 + 2 tan2 x + tan4 x) = tan4 x sec2 x(1 + tan2 x)2

= tan4 x sec2 x(sec2 x)2 = tan4 x sec6 x

So, our answer works.
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CHOOSING A SUBSTITUTION:
∫

tanm x secn x dx

Using u = sec x, du = sec x tan x dx:
I Reserve sec x tan x for the differential.

(m, n should each be at least 1)
I From the remaining tanm−1 x secn−1 x, convert all tangents to

secants using tan2 x + 1 = sec2 x.
(m− 1 should be even, to avoid square roots)

To use the substitution u = sec x, du = sec x tan x dx to evaluate∫
tanm x secn x dx, n should be at least one , and m should be odd .
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CHOOSING A SUBSTITUTION:
∫

tanm x secn x dx

Using u = tan x, du = sec2 x dx:

I Reserve sec2 x for the differential.
(n ≥ 2)

I From the remaining terms, convert all secants to tangents

using tan2 x + 1 = sec2 x.
(n− 2 should be even, to avoid square roots)

To use the substitution u = tan x, du = sec2 x dx to evaluate∫
tanm x secn dx, n should be even (and at least 2) .
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Evaluating
∫

tanm x secn dx
To evaluate

∫
tanm x secn dx, we can use:

I u = sec x if m is odd and n ≥ 1
I u = tan x if n is even and n ≥ 2

Choose a substitution for the integrals below.

I
∫

sec2 x tan3 x dx

I
∫

sec2 x tan2 x dx

I
∫

sec3 x tan3 x dx
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Q Q Q



∫
sec2 x tan2 x dx

Let u = tan x and du = sec2 x dx.∫
sec2 x tan2x dx =

∫
u2 du

(the rest you can do)
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Q Q

∫
sec3 x tan3 x dx

Let u = sec x and du = sec x tan x dx.∫
sec3 x tan3 x dx =

∫
sec2x tan2 x (sec x tan x) dx

=

∫
sec2x(sec2x− 1)(sec x tan x) dx

=

∫
u2(u2 − 1) du

(the rest you can do)
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Q

Evaluate
∫

tan3 x dx =

∫
sin3 x
cos3 x

dx

Let u = cos x, du = − sin x dx.

=

∫
sin2 x
cos3 x

sin x dx =

∫
1− cos2x

cos3x
sin x dx

= −
∫

1− u2

u3 du

=

∫ (
1
u
− u−3

)
du

= log |u|+ 1
2

u−2 + C

= log |cos x|+ 1
2

sec2x + C
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CHECK OUR WORK

Let’s check that
∫

tan3 x dx =

log | cos x|+ 1
2

sec2 x + C.

by

differentiating.

d
dx

{
log | cos x|+ 1

2
sec2 x + C

}
=
− sin x
cos x

+
1
2

(2 sec x) sec x tan x

= − tan x + sec2 x tan x

= − tan x + (tan2 x + 1) tan x

= − tan x + tan3 x + tan x

= tan3 x

So, indeed,
∫

tan3 x dx = log | cos x|+ 1
2

sec2 x + C.
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Generalizing the last example:∫
tanm x secn x dx =

∫ (
sin x
cos x

)m( 1
cos x

)n

dx

=

∫
sinm x

cosm+n x
dx

=

∫ (
sinm−1 x
cosm+nx

)
sin x dx

To use u = cos x, du = sin x dx: we will convert sinm−1(x) into cosines,
so m− 1 must be even, so m must be odd.
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Evaluating
∫

tanm x secn dx
To evaluate

∫
tanm x secn dx, we can use:

I u = sec x if m is odd and n ≥ 1
I u = tan x if n is even and n ≥ 2
I u = cos x if m is odd
I u = tan x if m is even and n = 0

(after using tan2 x = sec2 x− 1, maybe several times)

Evaluate
∫

tan2 x dx

∫
tan2 x dx =

∫
(sec2 x− 1)dx = tan x + x + C
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Evaluating
∫

tanm x secn dx
To evaluate

∫
tanm x secn dx, we can use:

I u = sec x if m is odd and n ≥ 1
I u = tan x if n is even and n ≥ 2
I u = cos x if m is odd
I u = tan x if m is even and n = 0

(after using tan2 x = sec2 x− 1, maybe several times)

Remaining case: n odd and m is even.

The general remaining case is known, but complicated. Instead of
treating it exhaustively, we’ll show examples of two methods.
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∫
sec x dx

We saw a way of integrating secant with the following trick:∫
sec x dx =

∫
sec x

(
sec x + tan x
sec x + tan x

)
dx =

∫
sec2 x + sec x tan x

sec x + tan x
dx

=

∫
1
u

du with u = sec x + tan x

Another trick: this time let u = sin x, du = cos x dx:∫
sec x dx =

∫
1

cos x
dx =

∫
cos x
cos2 x

dx

=

∫
1

1− sin2 x
cos x dx =

∫
1

1− u2 du

The integrand 1
1−u2 is a rational function of u (i.e. a ratio of two

polynomials). There is a procedure, called Partial Fractions, that can
be used to evaluate all integrals of rational functions. We will learn it
in Section 1.10.
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∫
sec3 x dx

We can integrate around in a circle (with integration by parts) to
evaluate

∫
sec3 x dx. Let u = sec x, dv = sec2 x dx. Then

du = sec x tan x dx and v = tan x.∫
sec3 x dx = sec x tan x−

∫
sec x tan2 x dx

= sec x tan x−
∫

sec x
(
sec2 x− 1

)
dx

= sec x tan x−
∫

sec3 x dx +

∫
sec x dx

= sec x tan x−
∫

sec3 x dx + log | sec x + tan x|+ C′

2
∫

sec3 x dx = sec x tan x + log | sec x + tan x|+ C′∫
sec3 x dx =

1
2

(sec x tan x + log | sec x + tan x|) + C

with C = C′/2.
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WARMUP

Evaluate
∫ 7

3

1√
x2 + 2x + 1

dx.

∫ 7

3

1√
x2 + 2x + 1

dx =

∫ 7

3

1√
(x + 1)2

dx

=

∫ 7

3

1
|x + 1|

dx

When 3 ≤ x ≤ 7, we have |x + 1| = x + 1.

=

∫ 7

3

1
x + 1

dx

= [log |x + 1|]73
= log 8− log 4 = log 2

Idea:
√

(something)2 = |something|. We cancelled off the square root.
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Evaluate
∫

1√
x2 + 1

dx.

We still want to cancel off the square root, but x2 + 1 is not obviously
of the form (something)2.
Let x = tan θ, dx = sec2 θ dθ.∫

1√
x2 + 1

dx =

∫
1√

tan2θ + 1
sec2 θdθ =

∫
sec2 θ√
sec2 θ

dθ

=

∫
sec2 θ

sec θ
dθ =

∫
sec θ dθ = log | sec θ + tan θ|+ C

We need to get these back in terms of x. From our substitution, we
know tan θ = x. From simplifying our denominator, we also know
sec θ =

√
x2 + 1.

= log
∣∣∣√x2 + 1 + x

∣∣∣+ C

Same idea:
√

(something)2 = |something|; cancel off the square root.
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CHECK OUR WORK

Let’s verify that
∫

1√
x2 + 1

=

log
∣∣∣√x2 + 1 + x

∣∣∣+ C

.

Seems improbable, right?

d
dx

[
log
∣∣∣√x2 + 1 + x

∣∣∣+ C
]

=
1√

x2 + 1 + x
·
(

2x
2
√

x2 + 1
+ 1
)

=
x +
√

x2 + 1
(
√

x2 + 1 + x)
√

x2 + 1
=

1√
x2 + 1

So, our answer works!
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METHOD (ONE STANDARD CASE)

I An integrand has the form:
√

quadratic, and we’d like to cancel
off the square root.

I So, we need to write our quadratic expression as a perfect
square. Choose a helpful substitution:

I x = sin θ, 1− sin2 θ = cos2 θ changes
√

1− x2 into

√
cos2 θ = | cos θ|

I x = tan θ, 1 + tan2 θ = sec2 θ changes
√

1 + x2 into

√
sec2 θ = | sec θ|

I x = sec θ, sec2 θ− 1 = tan2 θ changes
√

x2 − 1 into

√
tan2 θ = | tan θ|

I After integrating, convert back to the original variable
(possibly using a triangle–more details later)
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FOCUS ON THE ALGEBRA

1− sin2 θ = cos2 θ 1 + tan2 θ = sec2 θ sec2 θ − 1 = tan2 θ

Choose a trigonometric substitution that will allow the square root to
cancel out of the following expressions:
I
√

x2 − 1
Let x = sec θ, so

√
x2 − 1 becomes

√
sec2θ − 1 =

√
tan2 θ = | tan θ|

I
√

x2 + 1
Let x = tan θ, so

√
x2 + 1 becomes

√
tan2θ + 1 =

√
sec2 θ = | sec θ|

I
√

1− x2

Let x = sin θ so
√

1− x2 becomes
√

1− sin2θ =
√

cos2 θ = | cos θ|
(Alternately, x = cos θ works as well)
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FOCUS ON THE ALGEBRA

1− sin2 θ = cos2 θ 1 + tan2 θ = sec2 θ sec2 θ − 1 = tan2 θ

Choose a trigonometric substitution that will allow the square root to
cancel out of the following expressions:
I
√

x2 + 7
Adjust a given identity by multiplying both sides by 7:
7 tan2 θ + 7 = 7 sec2 θ. Now we see we want x2 = 7 tan2 θ. That is,
x =
√

7 tan θ:√
x2 + 7 =

√
7 tan2 θ + 7 =

√
7(sec2 θ) =

√
7 | sec θ|

I
√

3− 2x2

Adjust a given identity by multiplying both sides by 3:
3− 3 sin2 θ = 3 cos2 θ. Now we see we want 2x2 = 3 sin2 θ, so
x =

√
3
2 sin θ:

√
3− 2x2 =

√
3− 2

( 3
2 sin2 θ

)
=
√

3− 3 sin2 θ =
√

3 cos2 θ =
√

3 | cos θ|
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CLOSER LOOK AT ABSOLUTE VALUES SKIP CLOSER LOOK

Consider the substitution x = sin θ, dx = cos θ dθ for the integral:∫ 1

0

√
1− x2 dx

When x = 0 (lower limit of integration), what is θ?
When x = 1 (upper limit of integration), what is θ?
If x = 0, then sin θ = 0, but there are infinitely many values of θ that could
make this true. To use the substitution x = sin θ, we need the function
x = sin θ to be invertible. That way, we can unambiguously convert between
x and θ. With that in mind, we’ll actually set θ = arcsin x. Now θ is restricted
to the interval −π2 ≤ θ ≤

π
2 .

∫ 1

0

√
1− x2 dx =

∫ arcsin 1

arcsin 0

√
1− sin2θ cos θ dθ =

∫ π
2

0

√
cos2 θ · cos θ dθ

=

∫ π
2

0
| cos θ| · cos θ dθ

For 0 ≤ θ ≤ π
2 , we have cos θ ≥ 0, so | cos θ| = cos θ.
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CLOSER LOOK AT ABSOLUTE VALUES SKIP CLOSER LOOK

More generally, suppose a is a positive constant and we use the
substitution x = a sin θ for the term

√
a2 − x2.

I θ = arcsin
( x

a

)
, so −π2 ≤ θ ≤

π
2

I
√

a2 − x2 =
√

a2 − a2 sin2 θ =
√

a2 cos2 θ = a| cos θ|
I On the interval −π2 ≤ θ ≤

π
2 , cos θ ≥ 0, so | cos θ| = cos θ

θ

y

π
2−π2

I So, in general, when we use the substitution x = sin θ with
trigonometric substitution, we can expect | cos θ| = cos θ.
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CLOSER LOOK AT ABSOLUTE VALUES SKIP CLOSER LOOK

Now, consider the substitution x = a tan θ for
√

a2 + x2, where a is a
positive constant.

I θ = arctan
( x

a

)
, so −π2 ≤ θ ≤

π
2

I
√

a2 + x2 =
√

a2 + a2 tan2 θ =
√

a2 sec2 θ = a
| cos θ|

I On the interval −π2 ≤ θ ≤
π
2 , cos θ ≥ 0, so | cos θ| = cos θ and

| sec θ| = sec θ.

θ

y

π
2−π2

I So, in general, when we use the substitution x = tan θ with
trigonometric substitution, we can expect | sec θ| = sec θ.
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CLOSER LOOK AT ABSOLUTE VALUES SKIP CLOSER LOOK

Finally, consider the substitution x = a sec θ for
√

x2 − a2, where a is a
positive constant.

I sec θ = x
a , so cos θ = a

x , so θ = arccos
( a

x

)
. Then 0 ≤ θ ≤ π

I
√

x2 − a2 =
√

a2 sec2 θ − a2 =
√

a2 tan2 θ = a| tan θ|
I Now this case gets slightly more complicated than the others:

I For
√

x2 − a2 to be defined, we need x2 ≥ a2. I.e. x ≥ a or x ≤ −a.
I When x ≥ a, we have 0 ≤ θ < π

2 , tan θ ≥ 0, so | tan θ| = tan θ.
I When x ≤ −a, we have π

2 < θ ≤ π, tan θ < 0, so | tan θ| = − tan θ.

θ

y

y = tan θ

π
2

π
θ

y

y =
√

tan2 θ = | tan θ|

π
2

π
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ABSOLUTE VALUES

From now on, we will assume:
I With the substitution x = a sin θ for

√
a2 − x2, | cos θ| = cos θ

I With the substitution x = a tan θ for
√

a2 + x2, | sec θ| = sec θ
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Identities

1− sin2 θ = cos2 θ sin(2θ) = 2 sin θ cos θ

1 + tan2 θ = sec2 θ sin2 θ =
1− cos(2θ)

2

sec2 θ − 1 = tan2 θ cos2 θ =
1 + cos(2θ)

2

Evaluate
∫ 1

0
(1 + x2)−3/2 dx

Let x = tan θ, dx = sec2 θ dθ. When x = 0, then θ = arctan 0 = 0;
when x = 1, then θ = arctan 1 = π

4 .∫ 1

0
(1 + x2)−3/2 dx =

∫ θ=π/4

θ=0

1
√

1 + tan2θ
3 sec2 θ dθ

=

∫ π/4

0

sec2 θ
√

sec2 θ
3 dθ =

∫ π/4

0

sec2 θ

| sec θ|3
dθ

=

∫ π/4

0

1
| sec θ|

dθ =

∫ π/4

0
| cos θ| dθ

Given our previous investigation,

=

∫ π/4

0
cos θ dθ =

[
sin θ

]π/4
0

= sin
π

4
− sin 0 =

1√
2
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Identities

1− sin2 θ = cos2 θ sin(2θ) = cos θ

1 + tan2 θ = sec2 θ sin2 θ =
1− cos(2θ)

2

sec2 θ − 1 = tan2 θ cos2 θ =
1 + cos(2θ)

2

Evaluate
∫ √

1− 4x2 dx

Under the square root, we have “one minus a term with a variable,”
which matches the identity 1− sin2 θ. So, we want 4x2 to become
sin2 θ. That is, x = 1

2 sin θ. Then dx = 1
2 cos θ dθ.∫ √

1− 4x2 dx =

∫ √
1− 4

(
1
2

sin θ

)2

· 1
2

cos θ dθ

=
1
2

∫ √
1− sin2 θ · cos θdθ =

1
2

∫ √
cos2 θ · cos θdθ

=
1
2

∫
| cos θ| · cos θ dθ =

1
2

∫
cos2 θ dθ

=
1
2

∫ (
1 + cos(2θ)

2

)
dθ =

1
4

∫ (
1 + cos(2θ)

)
dθ

=
1
4

[
θ +

1
2

sin(2θ)
]

+ C =
1
4

[θ + sin θ cos θ] + C

It remains to convert θ back into x. The substitution x = 1
2 sin θ tells us

sin θ = 2x. This in turn gives us θ = arcsin(2x). We should still convert cos θ
back into terms of x. You might notice in the calculation we did that

√
1− 4x2

turned into cos θ, so cos θ =
√

1− 4x2.
Alternately, to find cos θ in terms of x, we can use a triangle. From sin θ = 2x,
and the understanding that sin θ is the ratio opposite

hypotenuse for a right triangle with
angle θ, we can set up a triangle whose opposite side has length 2x, and
hypotenuse has length 1.

θ

√
1− 4x2

2x
1 The Pythagorean theorem tells us the

side adjacent to θ has length√
1− 4x2. So

cos θ =
adjacent

hypotenuse =
√

1− 4x2.

∫ √
1− 4x2 dx = 1

4

(
arcsin(2x)︸ ︷︷ ︸

θ

+ 2x
√

1− 4x2︸ ︷︷ ︸
sin θ cos θ

)
+ C
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CHECK OUR WORK

In the last example, we computed∫ √
1− 4x2 dx =

1
4
(

arcsin(2x) + 2x
√

1− 4x2
)

+ C.

To check, we differentiate.

d
dx

{
1
4
(

arcsin(2x) + 2x
√

1− 4x2
)

+ C
}

=
1
4

(
2√

1− (2x)2
+ 2x

−8x
2
√

1− 4x2
+ 2
√

1− 4x2

)

=
1
4

(
2√

1− 4x2
− 8x2
√

1− 4x2
+

2(1− 4x2)√
1− 4x2

)
=

1
4

(
2− 8x2 + 2− 8x2
√

1− 4x2

)
=

1− 4x2
√

1− 4x2
=
√

1− 4x2 X

285/643

Identities

1− sin2 θ = cos2 θ sin(2θ) = cos θ

1 + tan2 θ = sec2 θ sin2 θ =
1− cos(2θ)

2

sec2 θ − 1 = tan2 θ cos2 θ =
1 + cos(2θ)

2

Evaluate
∫

1√
x2 − 1

dx

We use the substitution x = sec θ, dx = sec θ tan θ dθ.
To make the substitution work, we’re actually taking θ = arccos

( 1
x

)
,

and so 0 ≤ θ ≤ π.
Note that the integrand exists on the intervals x < −1 and x > 1.
I When x > 1, then 0 < 1

x < 1, so 0 < arccos
( 1

x

)
< π

2 .
That is, 0 < θ < π

2 , so | tan θ| = tan θ.
I When x < −1, then −1 < 1

x < 0, so π
2 < arccos

( 1
x

)
< π.

That is, π2 < θ < π, so | tan θ| = − tan θ.∫
1√

x2 − 1
dx =

∫
1√

sec2θ − 1
· sec θ tan θ dθ =

∫
sec θ tan θ√

tan2 θ
dθ

=

∫
sec θ

(
tan θ

| tan θ|

)
dθ =

{∫
sec θ dθ 0 < θ < π

2

−
∫

sec θ dθ π
2 < θ < π

=

{
log | sec θ + tan θ|+ C 0 < θ < π

2

− log | sec θ + tan θ|+ C π
2 < θ < π

Our substitution tells us sec θ = x. We saw from the denominator of
our integrand that

√
x2 − 1 = | tan θ|.

I When 0 < θ < π
2 , tan θ = | tan θ| =

√
x2 − 1

I When π
2 < θ < π, tan θ = −| tan θ| = −

√
x2 − 1∫

1√
x2 − 1

dx =

{
log |x +

√
x2 − 1|+ C x > 1

− log |x−
√

x2 − 1|+ C x < −1

Although the two branches look different, they are actually
equivalent. Remember − log(A) = log

(
A−1

)
= log

( 1
A

)
:

− log |x−
√

x2 − 1| = log

∣∣∣∣ 1
x−
√

x2 − 1

∣∣∣∣ = log

∣∣∣∣∣ 1
x−
√

x2 − 1
· x +

√
x2 − 1

x +
√

x2 − 1

∣∣∣∣∣
= log

∣∣∣∣∣x +
√

x2 − 1
x2 − x2 + 1

∣∣∣∣∣ = log
∣∣∣x +

√
x2 − 1

∣∣∣
So, ∫

1√
x2 − 1

dx = log
∣∣∣x +

√
x2 − 1

∣∣∣+ C
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CHECK OUR WORK

Let’s check our result,
∫

1√
x2 − 1

dx =

log
∣∣∣x +

√
x2 − 1

∣∣∣+ C.

d
dx

{
log
∣∣∣x +

√
x2 − 1

∣∣∣+ C
}

=
1 + 2x

2
√

x2−1

x +
√

x2 − 1
=

1 + x√
x2−1

x +
√

x2 − 1

=
1 + x√

x2−1

x +
√

x2 − 1

(√
x2 − 1√
x2 − 1

)
=

(
√

x2 − 1 + x)(
x +
√

x2 − 1
)√

x2 − 1

=
1√

x2 − 1

So, our answer works.
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COMPLETING THE SQUARE

Choose a trigonometric substitution to simplify
√

3− x2 + 2x.

Identities have two “parts” that turn into one part:
I 1− sin2 θ = cos2 θ 4− 4 sin2 θ = 4 cos2 θ

I 1 + tan2 θ = sec2 θ

I sec2 θ − 1 = tan2 θ

But our quadratic expression has three parts.
Fact: 3− x2 + 2x = 4− (x− 1)2

√
3− x2 + 2x =

√
4− (x− 1)2

We want (x− 1)2 = 4 sin2 θ, so let (x− 1) = 2 sin θ

=
√

4− 4 sin2 θ =
√

4 cos2 θ = 2 cos θ
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COMPLETING THE SQUARE

(x + b)2 = x2 + 2bx + b2

c− (x + b)2 = (c− b2)− x2 − 2bx

Write 3− x2 + 2x in the form c− (x + b)2 for constants b, c.

1. Find b:

−2bx = 2x, so b = −1

2. Solve for c:

3 = c− b2 = c− 1, so c = 4

3. All together:

3− x2 + 2x = 4− (x− 1)2
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Evaluate
∫

x2 − 6x + 9√
6x− x2

dx.

Identities have two “parts” that turn into one part:
I 1− sin2 θ = cos2 θ

I 1 + tan2 θ = sec2 θ

I sec2 θ − 1 = tan2 θ

One of those parts is a constant, and one is squared.
Write 6x− x2 as c− (x + b)2.

c− (x + b)2 = (c− b2)− x2 − 2bx
6x = −2bx =⇒ b = −3

0 = c− b2 = c− 9 =⇒ c = 9

6x− x2 = 9− (x− 3)2
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Evaluate
∫

x2 − 6x + 9√
6x− x2

dx =

∫
(x− 3)2√

9− (x− 3)2
dx.

We use the identity 9− 9 sin2 θ = 9 cos2 θ.
We want (x− 3)2 = 9 sin2 θ, so take (x− 3) = 3 sin θ, dx = 3 cos θ dθ.∫

(x− 3)2√
9− (x− 3)2

dx =

∫
9 sin2 θ√

9− 9 sin2 θ
3 cos θ dθ

=

∫
9 sin2 θ√
9 cos2 θ

3 cos θ dθ =

∫
9 sin2 θ dθ

=
9
2

∫
(1− cos 2θ) dθ =

9
2

(
θ − 1

2
sin 2θ

)
+ C

=
9
2

(θ − sin θ cos θ) + Cθ
√

6x− x2

x− 3
3

=
9
2

(
arcsin

(
x− 3

3

)
− x− 3

3
·
√

6x− x2

3

)
+ C
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CHECK OUR WORK

Let’s verify that∫
x2 − 6x + 9√

6x− x2
=

9
2

(
arcsin

(
x− 3

3

)
− x− 3

3
·
√

6x− x2

3

)
+ C :

d
dx

{
9
2

(
arcsin

(
x− 3

3

)
− x− 3

3
·
√

6x− x2

3

)
+ C

}

=
9
2

 1/3√
1−

( x−3
3

)2
− x− 3

3
· 3− x

3
√

6x− x2
− 1

9

√
6x− x2


=

9
2

(
9

9
√

6x− x2
− 6x− x2 − 9

9
√

6x− x2
− 6x− x2

9
√

6x− x2

)
=

9− 6x + x2
√

6x− x2

So, our answer works.
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MOTIVATION

How to integrate
∫

x− 2
(x + 1)(2x− 1)

dx?

Useful fact:
x− 2

(x + 1)(2x− 1)
=

1
x + 1

− 1
2x− 1

So: ∫
x− 2

(x + 1)(2x− 1)
dx =

∫
1

x + 1
dx−

∫
1

2x− 1
dx

= log |x + 1| − 1
2

log |2x− 1|+ C

Method of Partial Fractions: Algebraic method to turn any rational
function (i.e. ratio of two polynomials) into the sum of
easier-to-integrate rational functions.
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DISTINCT LINEAR FACTORS

The rational function

numerator
K(x− a1)(x− a2) · · · (x− aj)

can be written as

A1

x− a1
+

A2

x− a2
+ · · ·+

Aj

x− aj

for some constants A1,A2, . . . ,Aj, provided

(1) the linear roots a1, · · · aj are distinct, and

(2) the degree of the numerator is strictly less than the degree of the
denominator.

295/643 Equation 1.10.7

DISTINCT LINEAR FACTORS

7x + 13
(2x + 5)(x− 2)

=

A
2x + 5

+
B

x− 2

To find A and B, simplify the right-hand side by finding a common
denominator.

7x + 13
2x2 + x− 10

=
A

2x + 5
+

B
x− 2

=
A(x− 2)

(2x + 5)(x− 2)
+

B(2x + 5)

(2x + 5)(x− 2)

=
A(x− 2) + B(2x + 5)

2x2 + x− 10

Cancel denominators

7x + 13 = A(x− 2) + B(2x + 5)
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DISTINCT LINEAR FACTORS

We found 7x + 13 = A(x− 2) + B(2x + 5) for some constants A and B.
What are A and B?

Method 1: set x to convenient values.

When x = 2 (chosen to eliminate A from the right hand side), we
have 14 + 13 = B · 9, so B = 3.
If x = − 5

2 (chosen to eliminate B from the right hand side), then
− 35

2 + 13 = A
(
− 5

2 − 2
)
, so A = 1.

Method 2: match coefficients of powers of x.

7x + 13 = (A + 2B)x + (−2A + 5B), so 7 = A + 2B and 13 = −2A + 5B.
Then A = 7− 2B, so 13 = −2(7− 2B) + 5B.
Then B = 3 and A = 1.
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DISTINCT LINEAR FACTORS

All together:

7x + 13
2x2 + x− 10

=
A

2x + 5
+

B
x− 2

A = 1, B = 3
7x + 13

2x2 + x− 10
=

1
2x + 5

+
3

x− 2∫
7x + 13

2x2 + x− 10
dx =

∫ (
1

2x + 5
+

3
x− 2

)
dx

=
1
2

log |2x + 5|+ 3 log |x− 2|+ C
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CHECK OUR WORK

We check that
∫

7x + 13
2x2 + x− 10

=

1
2

log |2x + 5|+ 3 log |x− 2|+ C

by

differentiating.

d
dx

[
1
2

log |2x + 5|+ 3 log |x− 2|+ C
]

=
1
2
· 1

2x + 5
· 2 + 3 · 1

x− 2

=
1

2x + 5

(
x− 2
x− 2

)
+

3
x− 2

(
2x + 5
2x + 5

)
=

(x− 2) + (6x + 15)

(x− 2)(2x + 5)
=

7x + 13
2x2 + x− 10

So, our work checks out.
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DISTINCT LINEAR FACTORS

x2 + 5
2x(3x + 1)(x + 5)

is hard to antidifferentiate, but it can be written as

A
2x

+
B

3x + 1
+

C
x + 5

for some constants A, B, and C.

Once we find A, B, and C, integration is easy:∫
x2 − 24x + 5

2x(3x + 1)(x + 5)
dx

=

∫ (
A
2x

+
B

3x + 1
+

C
x + 5

)
dx

=
A
2

log |x|+ B
3

log |3x + 1|+ C log |x + 5|+ D
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DISTINCT LINEAR FACTORS

x2 + 5
2x(3x + 1)(x + 5)

=
A
2x

+
B

3x + 1
+

C
x + 5

Find constants A, B, and C.
Start: make a common denominator

=
A(3x + 1)(x + 5)

2x(3x + 1)(x + 5)
+

B(2x)(x + 5)

2x(3x + 1)(x + 5)
+

C(2x)(3x + 1)

2x(3x + 1)(x + 5)

=
A(3x + 1)(x + 5) + B(2x)(x + 5) + C(2x)(3x + 1)

2x(3x + 1)(x + 5)

Cancel off denominator

x2 + 5 = A(3x + 1)(x + 5) + B(2x)(x + 5) + C(2x)(3x + 1)
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CHECK OUR WORK

Let’s check that

x2 + 5
2x(3x + 1)(x + 5)

=

1
2x
− 23/14

3x + 1
+

3/14
x + 5

.

1
2x
− 23/14

3x + 1
+

3/14
x + 5

=
1(3x + 1)(x + 5)

2x(3x + 1)(x + 5)
− 23/14(2x)(x + 5)

(2x)(3x + 1)(x + 5)
+

3/14(2x)(3x + 1)

(2x)(3x + 1)(x + 5)

=
(3x2 + 16x + 5)− ( 23

7 x2 + 115
7 x) + ( 9

7 x2 + 3
7 x)

2x(3x + 1)(x + 3)

=
x2 + 5

2x(3x + 1)(x + 3)

So, our algebra is good.
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DISTINCT LINEAR FACTORS

All together:

x2 + 5
2x(3x + 1)(x + 5)

=
1
2x
− 23/14

3x + 1
+

3/14
x + 5∫

x2 − 24x + 5
2x(3x + 1)(x + 5)

dx =

∫ (
1

2x
− 23/14

3x + 1
+

3/14
x + 5

)
dx

=
1
2

log |x| − 23
42

log |3x + 1|+ 3
14

log |x + 5|+ C
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Repeated Linear Factors

A rational function
P(x)

(x− 1)4 , where P(x) is a polynomial of degree

strictly less than 4, can be written as

A
x− 1

+
B

(x− 1)2 +
C

(x− 1)3 +
D

(x− 1)4

for some constants A, B, C, and D.

5x− 11
(x− 1)2 =

A
x− 1

+
B

(x− 1)2
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Q

Equation 1.10.8



Set up the form of the partial fractions decomposition. (You do not
have to solve for the parameters.)

3x + 16
(x + 5)3 =

A
x + 5

+
B

(x + 5)2 +
C

(x + 5)3

−2x− 10
(x + 1)2(x− 1)

=
A

x + 1
+

B
(x + 1)2 +

C
x− 1
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Q Q

IRREDUCIBLE QUADRATIC FACTORS

Sometimes it’s not possible to factor our denominator into linear
factors with real terms.

x

y
c(x− a)(x− b)

a b

If a quadratic function has real
roots a and b (possibly a = b,
possibly a 6= b), then we can write
it as c(x− a)(x− b) for some
constant c.

x

y

If a quadratic function has no real
roots, then it can’t be factored
into (real) linear factors. It is
irreducible.
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IRREDUCIBLE QUADRATIC FACTORS

When the denominator has an irreducible quadratic factor x2 + bx + c,

we add a term
Ax + B

x2 + bx + c
to our composition. (The degree of the

numerator must still be smaller than the degree of the denominator.)
Write out the form of the partial fraction decomposition (but do not
solve for the parameters):

I
1

(x + 1)(x2 + 1)
=

A
x + 1

+
Bx + C
x2 + 1

I
3x2 − x + 5

(x2 + 1)(x2 + 2)
=

Ax + B
x2 + 1

+
Cx + D
x2 + 2
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Q Q

Equation 1.10.9

The purpose of the partial fraction decomposition is to end up with
functions that we can integrate.

I Recall:
∫

1
x2 + 1

dx = arctan x + C.

I Evaluate:
∫

1
(x + 1)2 + 1

dx

u = x + 1, du = dx:∫
1

u2 + 1
du = arctan u + C = arctan(x + 1) + C
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Evaluate
∫

4
(3x + 8)2 + 9

dx

=

∫
4

9
(

(3x+8)2

9 + 1
)dx

=
4
9

∫
1( 3x+8

3

)2
+ 1

dx

=
4
9

∫
1(

x + 8
3

)2
+ 1

dx

u = x +
8
3

, du = dx =
4
9

∫
1

u2 + 1
du

=
4
9

arctan u + C

=
4
9

arctan

(
x +

8
3

)
+ C
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Q

CHECK OUR WORK

We found
∫

4
(3x + 8)2 + 9

dx =

4
9

arctan

(
x +

8
3

)
+ C.

d
dx

{
4
9

arctan

(
x +

8
3

)
+ C

}
=

4
9
· 1(

x + 8
3

)2
+ 1

=
4

9
((

x + 8
3

)2
+ 1
)

=
4

32
(
x + 8

3

)2
+ 9

=
4

(3x + 8)
2

+ 9

So, our answer works.
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Evaluate
∫

x + 1
x2 + 2x + 2

dx.

(Hint: start by completing the square.)

=

∫
x + 1

(x + 1)2 + 1
dx

Let y = x + 1, dy = dx: =

∫
y

y2 + 1
dy

Let u = y2 + 1, du = 2y dy: =
1
2

∫
1
u

du

=
1
2

log |u|+ C

=
1
2

log
∣∣y2 + 1

∣∣+ C

=
1
2

log
∣∣(x + 1)2 + 1

∣∣+ C
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Q

CHECK OUR WORK

We found
∫

x + 1
x2 + 2x + 2

dx =

1
2

log
∣∣(x + 1)2 + 1

∣∣+ C.

d
dx

{
1
2

log
∣∣(x + 1)2 + 1

∣∣+ C
}

=
1
2
· 2(x + 1)

(x + 1)2 + 1

=
x + 1

(x + 1)2 + 1

=
x + 1

x2 + 2x + 2

So, our answer works.
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These rules work only when the degree of the numerator is less than
the degree of the denominator.

∫
x3

(x− 2)2(x− 3)(x− 4)2 dx

X

∫
x5

(x− 2)2(x− 3)(x− 4)2 dx

X

If the degree of the numerator is too large, we use polynomial long
division.
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Evaluate
∫

8x2 + 22x + 23
2x + 3

dx.

4x + 5
2x + 3

)
8x2 + 22x + 23
− 8x2 − 12x

10x + 23
− 10x− 15

8

So,

8x2 + 22x + 23
2x + 3

= 4x + 5 +
8

2x + 3∫
8x2 + 22x + 23

2x + 3
dx = 2x2 + 5x + 4 log |2x + 3|+ C
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Q

CHECK OUR WORK

We computed∫
8x2 + 22x + 23

2x + 3
dx =

2x2 + 5x + 4 log |2x + 3|+ C.

d
dx
{

2x2 + 5x + 4 log |2x + 3|+ C
}

= 4x + 5 +
8

2x + 3

=
4x(2x + 3) + 5(2x + 3) + 8

2x + 3

=
8x2 + 12x + 10x + 15 + 8

2x + 3

=
8x2 + 22x + 23

2x + 3

So, our solution works.
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Evaluate
∫

3x3 + x + 3
x− 2

dx.

3x2 + 6x + 13
x− 2

)
3x3 + x + 3

− 3x3 + 6x2

6x2 + x
− 6x2 + 12x

13x + 3
− 13x + 26

29

So, ∫
3x3 + x + 3

x− 2
dx =

∫ (
3x2 + 6x + 13 +

29
x− 2

)
dx

= x3 + 3x2 + 13x + 29 log |x− 2|+ C
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CHECK OUR WORK

We found∫
3x3 + x + 3

x− 2
dx =

x3 + 3x2 + 13x + 29 log |x− 2|+ C.

d
dx
{

x3 + 3x2 + 13x + 29 log |x− 2|+ C
}

= 3x2 + 6x + 13 +
29

x− 2

=
3x2(x− 2) + 6x(x− 2) + 13(x− 2) + 29

x− 2

=
3x3 − 6x2 + 6x2 − 12x + 13x− 26 + 29

x− 2

=
3x3 + x + 3

x− 2
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Evaluate
∫

3x2 + 1
x2 + 5x

dx.

3
x2 + 5x

)
3x2 + 1

− 3x2 − 15x
− 15x + 1

So,
3x2 + 1
x2 + 5x

= 3 +
−15x + 1
x2 + 5x

Now, we can use partial fraction decomposition.

−15x + 1
x(x + 5)

=
A
x

+
B

x + 5
=

(A + B)x + 5A
x(x + 5)

A =
1
5
, B = −15− 1

5
= −76

5∫
3x2 + 1
x2 + 5x

dx =

∫ (
3 +

1/5
x
− 76/5

x + 5

)
dx

= 3x +
1
5

log |x| − 76
5

log |x + 5|+ C
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CHECK OUR WORK

We found
∫

3x2 + 1
x2 + 5x

dx =

3x +
1
5

log |x| − 76
5

log |x + 5|+ C.

d
dx

{
3x +

1
5

log |x| − 76
5

log |x + 5|+ C
}

= 3 +
1

5x
− 76

5(x + 5)

= 3
(

5x(x + 5)

5x(x + 5)

)
+

1
5x

(
x + 5
x + 5

)
− 76

5(x + 5)

(x
x

)
=

(15x2 + 75x) + (x + 5)− (76x)

5x(x + 5)

=
15x2 + 5
5x(x + 5)

=
3x2 + 1
x2 + 5x

So, our solution works.
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FACTORING

P(x) = x3 + 2x2 − 5x− 6

I To start, let’s guess a root.
I Since P(x) has integer coefficients, any integer root must divide 6

exactly.
I So the only possible integer roots are ±1, ±2, ±3, and ±6. We’ll try

each until one works.
I P(1) = −8 6= 0 =⇒ 1 is not a root
I P(−1) = 0 =⇒ -1 is a root. Therefore, (x + 1) is a factor.

I Long division gives the rest:
x2 + x − 6

x + 1
)

x3 + 2x2 − 5x − 6
− x3 − x2

x2 − 5x
− x2 − x

− 6x − 6
6x + 6

0

P(x) = (x + 1)(x2 + x− 6) =
(x + 1)(x− 2)(x + 3)
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FACTORING

P(x) = 2x3 − 3x2 + 4x− 6

Notice that the first two terms and the last two terms have the same
ratios: 2x3

−3x2 = 2x
−3 = 4x

−6 . So, we can factor 2x− 3 out of both pairs.

P(x) = 2x3 − 3x2 +4x− 6

= (2x− 3)(x2) +(2x− 3)(2)

= (2x− 3)(x2 + 2)
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Sometimes, integrals can’t be evaluated using the fundamental
theorem of calculus:∫ 1

0
ex2

dx = ?

∫ 1

0
sin(x2)dx = ?

Sometimes, integrals can be evaluated, but only in terms of
complicated constant numbers:∫ 3

0

1
1 + x2 dx = arctan(3) = . . . ?

A numerical approximation will give us an approximate number for
a definite integral.
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x

y

a b

x0 x1 x2 x3 xn

y = f (x)

We can approximate the area
∫ b

a
f (x) dx by cutting it into slices and

approximating the area of those slices with a simple geometric figure,
such as a rectangle, a trapezoid, or a parabola.
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The midpoint rule approximates
∫ b

a
f (x) dx as its midpoint Riemann

sum with n intervals.

x

y

a = x0 b = xnx1 x2 x3

y = f (x)
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Approximate the area under the
curve y = f (x) from x = xj−1 to
x = xj with a rectangle.

To make our writing cleaner, let
xj =

xj−1+xj

2

xj−1 xj

∆x

f
(
xj
)

xj

Midpoint Rule
The midpoint rule approximation is∫ b

a
f (x) dx ≈ [f (x1) + f (x2) + · · ·+ f (xn)] ∆x

where ∆x = b−a
n and xj = a + j∆x
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Approximate
∫ 1

0

4
1 + x2 dx using the midpoint rule and n = 4 slices.

Leave your answer in calculator-ready form.

x

y

4

11
8

3
8

5
8

7
8

∫ 1

0

4
1 + x2 dx ≈

[
4

1 +
( 1

8

)2 +
4

1 +
( 3

8

)2 +
4

1 +
( 5

8

)2 +
4

1 +
( 7

8

)2

]
· 1

4∫ 1

0

4
1 + x2 dx = 4 arctan(1) = 4 · π

4
= π
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ERROR

π =

∫ 1

0

4
1 + x2 dx ≈

[
4

1 +
( 1

8

)2 +
4

1 +
( 3

8

)2 +
4

1 +
( 5

8

)2 +
4

1 +
( 7

8

)2

]
· 1

4

≈ 3.14680

Error:
|exact− approximate|

≈ |3.14159− 3.14680| = 0.00521

Relative error:∣∣∣ exact−approximate
exact

∣∣∣

≈ 0.00521
3.14159 ≈ 0.001658

Percent error:
100

∣∣∣ exact−approximate
exact

∣∣∣

≈ 100(0.001658) = 0.1658%
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ERROR

A numerical approximation will give us an approximate value for a
definite integral.
This is most useful if we know something about its accuracy.

A: approximation E: exact number

Error: |A− E|

Relative Error:
∣∣∣∣A− E

E

∣∣∣∣
Percent Error: 100

∣∣∣∣A− E
E

∣∣∣∣
We will discuss error more after we’ve learned the three
approximation rules. For now, we’re using error to illustrate that our
methods have the potential to produce reasonable approximations
without too much work.
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The trapezoidal rule approximates each slice of
∫ b

a
f (x) dx with a

trapezoid.

x

y

a = x0 b = xnx1 x2 x3

y = f (x)
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Recall the area of a right trapezoid with base b and heights h1 and h2:

h1

h2

b

h1

h2

b

Rectangle area: b(h1 + h2)
Trapezoid area: b

2 (h1 + h2)
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x

y

y = ex2

1

1

1
4

1
2

3
4

Trapezoid area: base
2 (h1 + h2)

Approximate
∫ 1

0
ex2

dx using n = 4 trapezoids.

Leave your answer in calculator-ready form.

∫ 1

0
ex2

dx ≈ 1/4
2

(
e0 + e

1
16 + e

1
16 + e

1
4 + e

1
4 + e

9
16 + e

9
16 + e

)
=

1/4
2

(
e0 + 2e1/16 + 2e1/4 + 2e9/16 + e

)
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Trapezoidal Rule
The trapezoidal rule approximation is∫ b

a
f (x)dx ≈ ∆x

[
1
2

f (x0) + f (x1) + f (x2) + · · ·+ f (xn−1) +
1
2

f (xn)

]
where ∆x = b−a

n and xi = a + i∆x

Using n = 3 trapezoids, approximate
∫ 10

1

1
x

dx.

∆x =
10− 1

3
= 3 x0 = 1 x1 = 4 x2 = 7 x3 = 10∫ 10

1

1
x

dx ≈ 3
[

1
2

(1) +
1
4

+
1
7

+
1
2

(
1

10

)]
=

99
35
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Simpson’s rule approximates each pair of slices of
∫ b

a
f (x) dx with a

parabola.

x

y

a = x0 b = xnx1 x2 x3 x4 x5

y = f (x)
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SIMPSON’S RULE

Add up parabolas.

x

y

335/643

SIMPSON’S RULE DERIVATION SKIP DERIVATION OF SIMPSON’S RULE

x
−h h

x

y

What is the area under the parabola passing through three specified
points?

Parabola: Ax2 + Bx + C
Area:

∫ h
−h(Ax2 + Bx + C)dx = h

3

(
2Ah2 + 6C

)
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Find
h
3
(
2Ah2 + 6C

)
for A, B, and C such that

Ah2 − Bh + C = f (−h) (E1)
C = f (0) (E2)

Ah2 + Bh + C = f (h) (E3)

Try (E1) + 4(E2) + (E3):

2Ah2 + 6C = f (−h) + 4f (0) + f (h)

Area =
h
3
(
2Ah2 + 6C

)
=

h
3

(f (−h) + 4f (0) + f (h))
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x

∆x ∆x

x1 x2 x3

f (x1)

f (x2)

f (x3)

Area under parabola:

∆x
3

(
f (x1) + 4f (x2) + f (x3)

)
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x

y

x0 x1 x2 x3 x4 x5 x6 x7 x8

∆x
3 [f (x0) + 4f (x1) + f (x2)]

∆x
3 [f (x2) + 4f (x3) + f (x4)]

∆x
3 [f (x4) + 4f (x5) + f (x6)]

∆x
3 [f (x6) + 4f (x7) + f (x8)]

∆x
3

[
f (x0)+4 f (x1)+2 f (x2)+4 f (x3)+2 f (x4)+4 f (x5)+2 f (x6)+4 f (x7)+f (x8)

]
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Simpson’s Rule

The Simpson’s rule approximation is
∫ b

a
f (x)dx ≈

∆x
3

[
f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + · · ·+ 4f (xn−1) + f (xn)

]
where n is even, ∆x = b−a

n , and xi = a + i∆x

Using Simpson’s rule and n = 8 (i.e. 4 parabolas),

approximate
∫ 17

1

1
x

dx. Leave your answer in calculator-ready form.

≈ 2
3

[ 1
1 + 4 · 1

3 + 2 · 1
5 + 4 · 1

7 + 2 · 1
9 + 4 · 1

11 + 2 · 1
13 + 4 · 1

15 + 1
17

]

(We’ll call n the number of slices; some people call n/2 the number of
slices, because that’s the number of approximating parabolas.)
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The instantaneous electricity use rate (kW/hr) of a factory is
measured throughout the day.

time 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00
rate 100 200 150 400 300 300 200 100 150

Use Simpson’s Rule to approximate the total amount of electricity
you used from noon to 8:00.

We use n = 8, with ∆x = 1 hour. Let’s re-label the times as x = 0 as
noon, x = 1 as 1 o’clock, etc.

1
3

[f (0) + 4f (1) + 2f (2) + 4f (3) + 2f (4) + 4f (5) + 2f (6) + 4f (7) + f (8)]

=
1
3

[100 + 800 + 300 + 1600 + 600 + 1200 + 400 + 400 + 150]

= 1850 kW
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Numerical integration errors

Assume that |f ′′(x)| ≤M for all a ≤ x ≤ b and |f (4)(x)| ≤ L for all
a ≤ x ≤ b. Then
I the total error introduced by the midpoint rule is bounded by

M
24

(b− a)3

n2 ,

I the total error introduced by the trapezoidal rule is bounded by
M
12

(b− a)3

n2 , and

I the total error introduced by Simpson’s rule is bounded by
L

180
(b− a)5

n4

when approximating
∫ b

a
f (x) dx.
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Numerical integration errors
Assume that |f ′′(x)| ≤M for all a ≤ x ≤ b. Then the total error

introduced by the midpoint rule is bounded by
M
24

(b− a)3

n2 when

approximating
∫ b

a
f (x) dx.

Suppose we approximate
∫ 3

0
sin(x) dx using the midpoint rule and

n = 6 intervals. Give an upper bound of the resulting error.

If f (x) = sin x, then f ′′(x) = − sin x. For 0 ≤ x ≤ 3 (indeed, for any x),
|f ′′(x)| = | − sin x| ≤ 1, so we take M = 1.

|error| ≤ 1
24

(3− 0)3

62 =
1

32
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Q

Numerical integration errors

Assume that |f (4)(x)| ≤ L for all a ≤ x ≤ b. Then the total error

introduced by Simpson’s rule is bounded by
L

180
(b− a)5

n4 when

approximating
∫ b

a
f (x) dx.

Suppose we approximate
∫ 3

2

1
x

dx using Simpson’s rule with n = 10

slices (5 parabolas). Give an upper bound of the resulting error.

If f (x) = 1
x , then f (4)(x) = 24

x5 . This is a positive, decreasing function
for positive values of x, so its maximum value on the interval [2, 3] is
f (4)(2) = 24

25 = 3
4 . So, we take L = 3

4 . Then the error is bounded by

3/4
180

15

104 =
1

240× 104 =
1

2 400 000
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Numerical integration errors

Assume that |f (4)(x)| ≤ L for all a ≤ x ≤ b. Then the total error

introduced by Simpson’s rule is bounded by
L

180
(b− a)5

n4 when

approximating
∫ b

a
f (x) dx.

We will approximate
∫ 1/2

0
ex2

dx using Simpson’s rule, and we need

our error to be no more than 1
10 000 . How many intervals will suffice?

You may use, without proof:

d4

dx4

{
ex2
}

= 4ex2 (
4x4 + 12x2 + 3

) 25 4
√

e
180 · 25 <

1
34

345/643

Q

Numerical integration errors

Assume that |f (4)(x)| ≤ L for all a ≤ x ≤ b. Then the total error

introduced by Simpson’s rule is bounded by
L

180
(b− a)5

n4 when

approximating
∫ b

a
f (x) dx.

It can be shown that the fourth derivative of 1
x2+1 has absolute value

at most 24 for all real numbers x. Using this information, find a
rational number approximating arctan(2) with an error of no more
than 26

3·55 ≈ 0.007.
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Q

First, we’ll set up our integral:∫ 2

0

1
1 + x2 dx = arctan(2)− arctan(0) = arctan 2

From the given information, we’ll use L = 24.

|error| ≤ L
180

(2− 0)5

n4

=
24 · 25

180n4 =
26

15n4

26

15n4 ≤
26

15 · 54

1
n4 ≤

1
54

n ≥ 5

Since n must be even, we’ll use n = 6. Now, we can give the
approximation.

arctan(2) =

∫ 2

0

1
1 + x2 dx, n = 6, ∆x =

2− 0
6

=
1
3

≈ 1/3
3

[
f (0) + 4f

(
1
3

)
+ 2f

(
2
3

)
+ 4f (1) + 2f

(
4
3

)
+ 4f

(
5
3

)
+ f (2)

]
=

1
9

[
1

1 + 0
+

4
1 + 1/9

+
2

1 + 4/9
+

4
1 + 1

+
2

1 + 16/9
+

4
1 + 25/9

+
1

1 + 4

]
Remark: Calculators and computers are pretty good at adding,
subtracting, multiplying, and dividing integers. If we can use these
operations to approximate an integral, then we can program a
computer to evaluate the result. So, an approximation like the one we
just did is a reasonable start to approximating arctan(2) as a decimal.
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Numerical integration errors

Assume that |f ′′(x)| ≤M for all a ≤ x ≤ b and |f (4)(x)| ≤ L for all
a ≤ x ≤ b. Then
I the total error introduced by the midpoint rule is bounded by

M
24

(b− a)3

n2 ,

I the total error introduced by the trapezoidal rule is bounded by
M
12

(b− a)3

n2 , and

I the total error introduced by Simpson’s rule is bounded by
L

180
(b− a)5

n4

when approximating
∫ b

a
f (x) dx.
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WHY THE second DERIVATIVE?

The midpoint rule gives the exact area under the curve for

f (x) = ax + b

when a and b are any constants.

x

y

a b

The first derivative can be large without causing a large error.
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Numerical integration errors

Assume that |f ′′(x)| ≤M for all a ≤ x ≤ b and |f (4)(x)| ≤ L for all
a ≤ x ≤ b. Then
I the total error introduced by the midpoint rule is bounded by

M
24

(b− a)3

n2 ,

I the total error introduced by the trapezoidal rule is bounded by
M
12

(b− a)3

n2 , and

I the total error introduced by Simpson’s rule is bounded by
L

180
(b− a)5

n4

when approximating
∫ b

a
f (x) dx.
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We’ll start small: let’s consider one-half of a single interval being
approximated using the midpoint rule.
To avoid messiness, let’s also consider a simplified location:

x

f (x)

xi−1 xixi

−q q0

We want to relate the actual area of this half-slice to its approximate
area: ∫ q

0
f (x) dx ≈ q · f (0)
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∫ q

0
f (x) dx ≈ q · f (0)

If you squint just right, the right-hand side looks a bit like the “u · v”
term from integration by parts, where u = f (x) and dv = dx.
I Set u = f (x) and dv = dx, so du = f ′(x) dx.

We choose v(x) = x− q, so that f (v(q)) = f (0).∫ q

0
f (x) dx =

[
(x− q)f (x)

]q
0 −

∫ q

0
(x− q) f ′(x) dx

= q · f (0)−
∫ q

0
(x− q) f ′(x) dx

I We know something about the second derivative, not the first, so
repeat: set u = f ′(x), dv = (x− q) dx; du = f ′′(x) dx, v =

(x−q)2

2∫ q

0
f (x) dx = q · f (0) +

q2

2
· f ′(0) +

∫ q

0

(x− q)2

2
f ′′(x) dx
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x

f (x)

q0

∫ q

0
f (x) dx = q · f (0) +

q2

2
· f ′(0) +

∫ q

0

(x− q)2

2
f ′′(x) dx

exact approximate ± error
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Repeat for the other half of the slice:∫ 0

−q
f (x)︸︷︷︸

u

dx︸︷︷︸
dv

=
[

f (x)︸︷︷︸
u

· (x + q)︸ ︷︷ ︸
v

]0
−q −

∫ 0

−q
(x + q)︸ ︷︷ ︸

v

· f ′(x) dx︸ ︷︷ ︸
du

= q · f (0)−
∫ 0

−q
f ′(x)︸︷︷︸

û

· (x + q) dx︸ ︷︷ ︸
dv̂

= q · f (0)−

f ′(x)︸︷︷︸
û

(x + q)2

2︸ ︷︷ ︸
v̂


0

−q

+

∫ 0

−q

(x + q)2

2︸ ︷︷ ︸
v̂

f ′′(x) dx︸ ︷︷ ︸
dû

= q · f (0)− q2

2
f ′(0) +

∫ 0

−q

(x + q)2

2
f ′′(x) dx
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x

f (x)

−q 0

∫ 0

−q
f (x) dx = q · f (0) − q2

2
· f ′(0) +

∫ 0

−q

(x + q)2

2
f ′′(x) dx

exact approximate ± error
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x
−q q0

f (x)

∫ 0

−q
f (x) dx = q · f (0)− q2

2
f ′(0) +

∫ 0

−q

(x + q)2

2
f ′′(x) dx∫ q

0
f (x) dx = q · f (0) +

q2

2
· f ′(0) +

∫ q

0

(x− q)2

2
f ′′(x) dx∫ q

−q
f (x) dx = 2q · f (0) +

∫ 0

−q

(x + q)2

2
f ′′(x) dx +

∫ q

0

(x− q)2

2
f ′′(x) dx
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x

f (x)

q0−q

∫ q

−q
f (x) dx = 2q · f (0) +

∫ 0

−q

(x + q)2

2
f ′′(x) dx +

∫ q

0

(x− q)2

2
f ′′(x) dx

exact approximate ± error
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We re-arrange to write the error as the difference between the actual
area of one slice and its rectangular approximation.∫ q

−q
f (x) dx− 2q · f (0) =

∫ 0

−q

(x + q)2

2
f ′′(x) dx +

∫ q

0

(x− q)2

2
f ′′(x) dx

error =

∣∣∣∣∣
∫ 0

−q

(x + q)2

2
f ′′(x) dx +

∫ q

0

(x− q)2

2
f ′′(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 0

−q

(x + q)2

2
f ′′(x) dx

∣∣∣∣∣+

∣∣∣∣∫ q

0

(x− q)2

2
f ′′(x) dx

∣∣∣∣
≤
∫ 0

−q

(x + q)2

2
M dx +

∫ q

0

(x− q)2

2
M dx

= M
[

(x + q)3

6

]0

−q
+ M

[
(x− q)3

6

]q

0

=
M · q3

3
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Now we can bound the error of a single slice:

x

f (x)

−q q0

q q = b−a
2n

xi−1 xixi

b−a
n

∣∣∣∣∣
∫ q

−q
f (x) dx− 2q · f (0)

∣∣∣∣∣ ≤ M
3
· q3

∣∣∣∣∣
∫ xi

xi−1

f (x) dx− b− a
n
· f
(
xi
)∣∣∣∣∣ ≤ M

3

(
b− a

2n

)3

=
M
24

(b− a)3

n3
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x

y

a = x0 b = xn

y = f (x)

I The error in each slice is at most
M
24

(b− a)3

n3

I There are n slices

I The overall error is at most n · M
24

(b− a)3

n3 =
M
24

(b− a)3

n2
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An integral is improper if one or both of the following happen:
I The region of integration is unbounded, e.g.

∫∞
1

sin x
x dx

...

∆x = b−a
n = ∞

n ???

I The integrand is unbounded over the interval, e.g.
∫ 1
−1

1
x2 dx

f (0)∆x = ???

363/643 Definition 1.12.1

Strategy
In both cases, we eliminate the offending parts of the integral using
limits.

∫ ∞
1

sin x
x

dx = lim
b→∞

[∫ b

1

sin x
x

dx

]

∫ 3

0

1
x

dx = lim
a→0+

[∫ 3

a

1
x

dx

]

If the limit doesn’t exist, we say the integral diverges. Otherwise it
converges.
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∫ ∞
1

1
x

dx =

lim
a→∞

[∫ a

1

1
x

dx
]

= lim
a→∞

[log a] =∞

We say this integral diverges because the limit is not a number.

x

y

1 2

A ≈ 0.7

4

A ≈ 1.4

10

A ≈ 2.3

100

A ≈ 4.6

1000

A ≈ 6.9A ≈ 1000A ≈ 1000000A ≈ 1000000000000 etc
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∫ ∞
1

1
x2 dx =

lim
a→∞

[∫ a

1

1
x2 dx

]
= lim

a→∞

[
−1

a
+ 1
]

= 1

We say this integral converges because the limit is a number.

x
1 2

A = 0.5

4

A = 0.75

10

A = 0.9

100

A = 0.99

1000

A = 0.999A = 0.999999A = 0.999999999 etc
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Evaluate
∫ ∞
−∞

1
1 + x2 dx

When an integral has multiple sources of impropriety, we break it up
into integrals that have only one source each. If all of them converge,
the original integral converges. If any of them diverges, the original
integral diverges as well.

=

∫ 0

−∞

1
1 + x2 dx +

∫ ∞
0

1
1 + x2 dx

= lim
a→−∞

[∫ 0

a

1
1 + x2 dx

]
+ lim

b→∞

[∫ b

0

1
1 + x2 dx

]
= lim

a→−∞
[arctan 0− arctan a] + lim

b→∞
[arctan b− arctan 0]

=
π

2
+
π

2
= π

x
1

A ≈ π
2 − 0.8

2

A ≈ π
2 − 0.5

3

A ≈ π
2 − 0.3

4

A ≈ π
2 − 0.25

100

A ≈ π
2 − 0.01A1 = π

2A2 = π
2
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Evaluate
∫ 1

0

1
2
√

x
dx

Same idea: we solve our
problems by ignoring them
(temporarily).
Eliminate the problematic part of
the integral using a limit.

x
1

a

A ≈ 0.5

a

A ≈ 0.6

a

A ≈ 0.8

a

A ≈ 0.999

∫ 1

0

1
2
√

x
dx = lim

a→0+

[∫ 1

a

1
2
√

x
dx

]
= lim

a→0+

[
1−
√

a
]

= 1
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Evaluate
∫ 1

−2

1
x2 dx ∫

x−2 dx = −x−1 + C = −1
x

+ C

lim
a→0+

∫ 1

a

1
x2 dx = lim

a→0+

[
−1

x

]1

a

= lim
a→0+

[
−1 +

1
a

]
=∞

Once we see that one part of the improper integral diverges, we stop:
the entire integral diverges, regardless of what happens to the left of
the y-axis.

x
1−2

a

∫ 1
a

1
x2 dx ≈ 0.7

a

∫ 1
a

1
x2 dx ≈ 1.5

a

∫ 1
a

1
x2 dx ≈ 2.3

a

∫ 1
a

1
x2 dx ≈ 4.0

a

∫ 1
a

1
x2 dx ≈ 9.0

a

∫ 1
a

1
x2 dx ≈ 1 000 000 etc
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Evaluate
∫ ∞

0

cos x
1 + sin2 x

dx, or show that it diverges.

u = sin x, du = cos x dx
u(0) = 0

lim
b→∞

[∫ b

0

cos x
1 + sin2 x

dx

]
= lim

b→∞

[∫ sin b

0

1
1 + u2 du

]
= lim

b→∞
[arctan(sin b)− arctan(0)]

= lim
b→∞

[arctan(sin b)]

As b goes to infinity, sin b oscillates between −1 and 1, so arctan(sin b)
oscillates between −π4 and π

4 . Since its limit does not exist, the
integral diverges.
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WARNING: SNEAKY DIVERGENCE

If you don’t realize that an integral diverges, you can generate
answers that look plausible but are secretly nonsense.

For example, attempting to use the Fundamental Theorem of

Calculus in the example
∫ 1

−2

1
x2 dx gives

[
−1

x

]1

−2
= −3

2
: a poor

approximation for positive infinity!

371/643

Evaluate
∫ 1

0

1
xp dx and

∫ ∞
1

1
xp dx when p is constant.

∫
1
xp dx =

∫
x−p dx =

{
log |x|+ C if p = 1
x1−p

1−p + C if p 6= 1∫ b

a

1
xp dx =

{
log |b| − log |a| if p = 1
b1−p−a1−p

1−p if p 6= 1
if x = 0 is not in [a, b]

∫ ∞
1

1
xp dx =

 lim
b→∞

log |b| if p = 1

lim
b→∞

[
b1−p−1

1−p

]
if p 6= 1

:


divergent if p = 1
divergent if p < 1

1
p−1 if p > 1

∫ 1

0

1
xp dx =

 lim
a→0+

− log |a| if p = 1

lim
a→0+

[
1−a1−p

1−p

]
if p 6= 1

:


divergent if p = 1

1
1−p if p < 1

divergent if p > 1
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p-test
Let p be a constant.

If p < 1, then
∫ 1

0

1
xp dx converges

If p ≥ 1, then
∫ 1

0

1
xp dx diverges

If p > 1, then
∫ ∞

1

1
xp dx converges

If p ≤ 1, then
∫ ∞

1

1
xp dx diverges

373/643 Examples 1.12.8 and 1.12.9

x

y

y = 1
x

1

1

∫∞
1

1
x dx diverges

∫ 1
0

1
x dx diverges

y = 1
x2

∫ 1
0

1
x2 dx diverges

∫ 1
0

1
x2 dx converges

y = 1
x1/2

∫ 1
0

1
x1/2 dx converges

∫ 1
0

1
x1/2 dx diverges

y = 1
x3

∫ 1
0

1
x3 dx diverges

∫ 1
0

1
x3 dx converges

y = 1
x1/3

∫ 1
0

1
x1/3 dx converges

∫ 1
0

1
x1/3 dx diverges

y = 1
x4

∫ 1
0

1
x4 dx diverges

∫ 1
0

1
x4 dx converges

y = 1
x1/4

∫ 1
0

1
x1/4 dx converges

∫ 1
0

1
x1/4 dx diverges
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Decide whether each integral converges or diverges.

I
∫ 1

0

1
x1/3 dx converges

I
∫ 1

0

1√
x

dx converges

I
∫ 1

0

1
x

dx diverges

I
∫ 1

0

1
x1.5 dx diverges

I
∫ ∞

1

1
x1/3 dx diverges

I
∫ ∞

1

1√
x

dx diverges

I
∫ ∞

1

1
x

dx diverges

I
∫ ∞

1

1
x1.5 dx converges
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Theorem 1.12.20
Let a and c be real numbers with a < c and let the function f (x) be
continuous for all x ≥ a. Then the improper integral

∫∞
a f (x) dx

converges if and only if the improper integral
∫∞

c f (x) dx converges.

x

y

y = f (x)

a c
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Decide whether each integral converges or diverges.

I
∫ 9

0

1
x0.3 dx converges

I
∫ 81

0

1
x2 dx diverges

I
∫ 1

2

0

1
x3 dx diverges

I
∫ ∞

15

1
x0.3 dx diverges

I
∫ ∞

0.4

1
x2 dx converges

I
∫ ∞

1
2

1
x3 dx converges
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It is very common to encounter integrals that are too complicated to
evaluate explicitly. Numerical approximation schemes, evaluated by
computer, are often used instead. You want to be sure that at least the
integral converges before feeding it into a computer.

Fortunately it is usually possible to determine whether or not an
improper integral converges even when you cannot evaluate it
explicitly.
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Comparison
Let a be a real number. Let f and g be functions that are defined and
continuous for all x ≥ a and assume that g(x) ≥ 0 for all x ≥ a.
(a) If |f (x)| ≤ g(x) for all x ≥ a and if

∫∞
a g(x) dx converges, then∫∞

a f (x) dx converges.

(b) If f (x) ≥ g(x) for all x ≥ a and if
∫∞

a g(x) dx diverges, then∫∞
a f (x) dx diverges.

x

y

a

g(x)f (x) x

y

a

g(x)
f (x)

379/643 Theorem 1.12.17

Does the integral
∫ ∞

1
e−x2

converge or diverge?

We know from previous examples that we can’t evaluate
∫

e−x2
dx

directly. For x ≥ 1:

x2 > x =⇒ −x2 < −x =⇒ e−x2
< e−x∫ ∞

1
e−x dx = lim

b→∞

∫ b

1
e−x dx

= lim
b→∞

[
−e−x]b

1

= lim
b→∞

[
e−b − e−1

]
= e−1 =

1
e

Since 0 ≤ e−x2 ≤ e−x for x ≥ 1, and since
∫∞

1 e−x dx converges, by the
comparison test we conclude that

∫
e−x2

dx converges, as well.
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Let functions f (x) and g(x) be positive and continuous for all x ≥ a.

∫ ∞
a

g(x) dx converges
∫ ∞

a
g(x) dx diverges

f (x) ≤ g(x)
for all x ≥ a

g(x)

f (x)∫∞
a f (x) converges

g(x)

f (x)

inconclusive

f (x) ≥ g(x)
for all x ≥ a g(x)

f (x)

inconclusive

g(x)

f (x)

∫∞
a f (x) diverges
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For each example below, decide whether the statement is a valid use
of the comparison theorem.

I
∫ ∞

1

1
x2 dx converges and 0 ≤ 1

x2 ≤ 2+sin x
x2 for x ≥ 1. So by the

comparison test,
∫ ∞

1

2 + sin x
x2 dx converges as well.

I
∫ ∞

1

1
x2 dx converges and 0 ≤ e−x

x2 ≤ 1
x2 for x ≥ 1. So by the

comparison test,
∫ ∞

1

e−x

x2 dx converges as well.

I
∫ ∞

1

1
x2 dx converges and − 1

x ≤
1
x2 for x ≥ 1. So by the

comparison test,
∫ ∞

1

−1
x

dx converges as well.
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Q Q Q

Limiting comparison
Let −∞ < a <∞. Let f and g be functions that are defined and
continuous for all x ≥ a and assume that g(x) ≥ 0 for all x ≥ a.
If the limit

lim
x→∞

f (x)

g(x)

exists and is nonzero, then either
∫∞

a f (x) dx and
∫∞

a g(x) dx both
converge, or they both diverge.

Use limiting comparison to determine whether
∫ ∞

1

1
x + 10

dx

converges or diverges.
An integrand that looks similar and simpler is 1

x . Since 1
x+10 <

1
x and∫∞

1
1
x dx diverges, we can’t directly compare the two series. So, let’s

use limiting comparison. Set f (x) = 1
x and g(x) = 1

x+10 . Then:

lim
x→∞

f (x)

g(x)
= lim

x→∞

1/x
1/(x + 10)

= lim
x→∞

x + 10
x

= 1

Since 1 is nonzero and finite, the integrals either both converge or
both diverge. Since

∫∞
1

1
x dx diverges, we conclude

∫∞
1

1
x+10 dx

diverges as well.
383/643 Theorem 1.12.22
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HELPFUL UNITS

I Force is measured in units of newtons, with 1 N = 1 kg m
s2 .

I From its units, we see force looks like (mass)×(acceleration)

I Work is measured in units of joules, with 1 J = 1 kg·m2

s2

I From its units, we see work looks like (force)×(distance)
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Intuition
Work, in physics, is a way of quantifying the amount of energy that is
required to act against a force.

For example:
I An object on the ground is subject to gravity. The force acting on

the object is
m · g

where m is the mass of the object (here, we’re using kilograms),
and g is the standard acceleration due to gravity (about 9.8 kg m

s2

on Earth).
I When you lift an object in the air, you are acting against that

force. How much work you have to do depends on how strong
the force is (how much mass the object has, and how strong
gravity is) and also how far you lift it.
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Work
The work done by a force F(x) in moving an object from x = a to
x = b is

W =

∫ b

a
F(x) dx

In particular, if the force is a constant F, the work is F · (b− a).

(For motivation of this definition, see Section 2.1 in the CLP–2 text.)

We saw the force of gravity on an object of mass m kg is m · g N. So
to lift such an object a distance of y metres requires work of

m · g · y J

387/643 Definition 2.1.1

A cable dangles in a hole. The cable is 10 metres long, and has a mass
of 5 kg. Its density is constant. How much work is done to pull the
cable out of the hole?

y
dy

The cable has density 5 kg
10 m = 1

2
kg
m . A

slice of length dy has mass 1
2 dy kg, so it

is subject to a downward gravitational
force of g

2 dy N, where g is the accelera-
tion due to gravity.
A slice y metres below the top of the
hole travels y metres to get out of the
hole, taking work g

2 y dy. So the work
required to life the entire cable out of
the hole is:∫ 10

0

g
2

y dy =
[g

4
y2
]10

0
= 25g J

I A piece of the cable near the top of the hole isn’t lifted very far.
I A piece of the cable near the bottom of the hole is lifted farther.
I Consider a small piece of cable starting y metres from the top.
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dy

y

r

h

The volume of a cylindrical
slice at height y is πr2 dy. If
the density of the liquid is
ρ, then the mass of liquid
in the slice is ρ · πr2 dy. Let
g be the acceleration due to
gravity. The force of gravity
on the slice is gρ · πr2 dy.

A cylinder is filled with a liquid that we will pump out the top.
I To pump out a molecule from the top of the container, we don’t

have to work against gravity for very far.
I To pump out a molecule from the bottom of the container, we

have to work against gravity for a longer distance.
Liquid in the slice needs to travel to the top of the container, a
distance of h− y. So the work required to pump out a single slice at
height y is (h− y)gρ · πr2 dy. All together, the work to empty the
container is ∫ h

0
(h− y)gρ · πr2 dy.

∫ h

0
(h− y)gρ · πr2 dy = gρ · πr2

∫ h

0
(h− y) dy

= gρ · πr2 [hy− 1
2 y2]h

0

= gρ · πr2 · h2

2
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dy

y

r

h

The volume of a cylindrical
slice at height y is πr2 dy. If
the density of the liquid is
ρ, then the mass of liquid
in the slice is ρ · πr2 dy. Let
g be the acceleration due to
gravity. The force of gravity
on the slice is gρ · πr2 dy.

I Every molecule at the same height has the same distance to
travel to reach the top of the container. So, we’ll chop up the tank
into thin horizontal slices.

Liquid in the slice needs to travel to the top of the container, a
distance of h− y. So the work required to pump out a single slice at
height y is (h− y)gρ · πr2 dy. All together, the work to empty the
container is ∫ h

0
(h− y)gρ · πr2 dy.

∫ h

0
(h− y)gρ · πr2 dy = gρ · πr2

∫ h

0
(h− y) dy

= gρ · πr2 [hy− 1
2 y2]h

0

= gρ · πr2 · h2

2
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Hooke’s Law
When a (linear) spring is stretched (or compressed) by x units beyond
its natural length, it exerts a force of magnitude kx, where the
constant k is the spring constant of that spring.

x

xxxx

Suppose we want to stretch a string from a units beyond its natural
length to b units beyond its natural length. The force of the spring at
position x is kx, for some constant k. So, the work required is:∫ b

a
kx dx =

k
2
(
b2 − a2)

391/643 Example 2.1.2

A spring has a natural length of 0.1 m. If a 12 N force is needed to
keep it stretched to a length of 0.12 m, how much work is required to
stretch it from 0.12 m to 0.15 m?

0.1 0.12 0.15

When the spring is stretched to 0.12 m, the force exerted is

k(0.12− 0.1) = 0.02k = 12N

So, k = 12 N
0.02 m = 600 N

m = 600 kg
s2 . The spring starts at 0.02 metres

beyond its natural length, and ends 0.05 metres beyond its natural
length. The work required is:∫ 0.05

0.02
kx dx =

∫ 0.05

0.02
600x dx =

[
300x2]0.05

0.02

= 300
[
0.052 − 0.022] = 0.63

kg m2

s2 = 0.63 J
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x

y

x1 x2 x3 x4 x5x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x1 xn

Average ≈ f (x1) + · · ·+ f (xn)

n

Average = lim
n→∞

[
1
n

n∑
i=1

f (xi)

]
= lim

n→∞

[
(b− a)

(b− a)n

n∑
i=1

f (xi)

]

= lim
n→∞

[
1

b− a

n∑
i=1

f (xi)∆x

]
=

1
b− a

∫ b

a
f (x)dx
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Average
Let f (x) be an integrable function defined on the interval a ≤ x ≤ b.
The average value of f on that interval is

fave =
1

b− a

∫ b

a
f (x) dx

The temperature in a certain city at time t (measured in hours past
midnight) is given by

T(t) = t− t2

30
What was the average temperature of one day (from t = 0 to t = 24)?

Average =
1

24

∫ 24

0

[
t− t2

30

]
dt

=
1

24

[
t2

2
− t3

90

]24

0

=
1

24

[
242

2
− 243

90

]
=

28
5

= 5.6
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Q

Definition 2.2.2

Let’s check that our answer makes some intuitive sense.

t

y
8

6

4

2

3 6 9 12 15 18 21 24

Since the temperature is always between 0 and 8, we expect the
average to be between 0 and 8
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Let’s also recall the motivation for our definition

t

y
8

6

4

2

3 6 9 12 15 18 21 24

5.855.6945.602
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Find the average value of the function f (x) =
ex

e2x + 1
over the interval[

0, log 3
2

]
.

x

y

log 3
2

Let u(x) = ex. Then u(0) = 1 and
u
(

log 3
2

)
= e

log 3
2 = 31/2 =

√
3.

1
log 3

2 − 0
·
∫ log 3

2

0

ex

e2x + 1
dx

=
2

log 3

∫ √3

1

1
u2 + 1

du

=
2

log 3

[
arctan(

√
3)− arctan(1)

]
=

2
log 3

[π
3
− π

4

]
=

π

6 log 3
≈ 0.477
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Q

AVERAGE VELOCITY

Let x(t) be the position at time t of a car moving along the x-axis. The
velocity of the car at time t is the derivative v(t) = x′(t). The average
velocity of the car over the time interval a ≤ t ≤ b is:

vave =
1

b− a

∫ b

a
v(t) dt =

1
b− a

∫ b

a
x′(t) dt =

x(b)− x(a)

b− a

That is:
change in distance

change in time

Notice that this is exactly the formula we used way back at the start
of your differential calculus class to help introduce the idea of the
derivative. Of course this is a very circuitous way to get to this
formula — but it is reassuring that we get the same answer.

399/643 Example 2.2.5
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Centre of Mass
If you support a body at its centre of mass (in a uniform gravitational
field) it balances perfectly. That’s the definition of the centre of mass
of the body.

1 kg 1 kg

1 kg10 kg
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If you support a body at its centre of mass (in a uniform gravitational
field) it balances perfectly. That’s the definition of the centre of mass
of the body.

x1

m1

x2

m2

x3

m3

x4

m4

x

If the body consists of a finite number of masses m1, · · · , mn attached
to an infinitely strong, weightless (idealized) rod with mass number i
attached at position xi, then the center of mass is at the (weighted)
average value of x:

x̄ =

∑n
i=1 mixi∑n

i=1 mi

The denominator m =
∑n

i=1 mi is the total mass of the body.
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An idealized (weightless, unbending) rod has small masses attached
to it at the following locations:
I 1 kg at x = 1 metre from the left end
I 4 kg at x = 3 metres from the left end
I 2 kg at x = 6 metres from the left end
I 1 kg at x = 7 metres from the left end

1

1 kg

3

4 kg

6

2 kg

7

1 kg

What is the location of its centre of mass?

x̄ =

∑n
i=1 mixi∑n

i=1 mi
=

1(1) + 4(3) + 2(6) + 1(7)

1 + 4 + 2 + 1
= 4

So the centre of mass is 4 metres from the left end of the rod.
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We can also group the masses, and treat them as single points of mass
at their centres of gravity, without affecting the centre of gravity of
the entire object.

1

1 kg

3

4 kg

6

2 kg

7

1 kg

Centre of mass:
1(1)+4(3)

1+4 = 13
5

Centre of mass:
2(6)+1(7)

2+1 = 19
3

Centre of mass of second rod: x̄ =
5( 13

5 )+3( 19
3 )

5+3 = 4
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Sometimes we can simplify a physical calculation by treating an
object as a point particle located at its centre of mass.
When we were learning about work, we found the following:

A cable dangles in a hole. The
cable is 10 metres long, and has a
mass of 5 kg. Its density is
constant. We found that the work
required to pull the cable out of
the hole was

25g J

where g is the acceleration due to
gravity.

Since the cable has constant density, it should “balance” at its centre
(if it were rigid), so its centre of mass starts 5 metres below the
ground. It ends up on the ground. If we treat the cable as a point
particle of mass 5 kg, moving against gravity for a distance of 5
metres, we find the work done to be

Work = Force · distance =
(

5 kg · g m
s2

)
· 5 m = 25g J

This is much easier than our original calculation.
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Consider a metre-long rod that is denser on one end than the other,
with density

ρ(x) = (2x + 1)
kg
m

at a position x metres from its left end.

0 1dx

What is its centre of mass?

We can use our usual slicing-up procedure. Consider slicing the rod
into tiny cross-sections, each with width dx. Then a cross-section at
position x is approximately a point mass with position x and mass
ρ(x) dx = (2x + 1) dx. So, using integrals to add up the contributions
from the different slices, the centre of mass is:

x̄ =

∫ 1
0 x(2x + 1) dx∫ 1
0 (2x + 1) dx

=

[ 2
3 x3 + 1

2 x2
]1

0

[x2 + x]
1
0

=
7/6

2
=

7
12
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If a body consists of mass distributed continuously along a straight
line, say with mass density ρ(x)kg/m and with x running from a to b,
rather than consisting of a finite number of point masses, the formula
for the center of mass becomes

x̄ =

∫ b
a x ρ(x) dx∫ b

a ρ(x) dx

x x + dxa b

Think of ρ(x) dx as the mass of the “almost point particle” between x
and x + dx.

407/643 Equation 2.3.2

Centre of Mass
If you support a body at its centre of mass (in a uniform gravitational
field) it balances perfectly. That’s the definition of the center of mass
of the body.

Centre of mass isn’t just for linear solids: it applies to 2- and
3-dimensional objects as well.
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Consider a flat metal plate of uniform density, whose shape is the area
below curve y = T(x) and above curve y = B(x), from x = a to x = b.

x

y B(x)

T(x)

a b

dx

If ρ is the density of the
plate, so that a slice of
width dx and height
h = T(x)− B(x) has mass
ρ h dx = ρ

(
T(x)− B(x)

)
dx,

then:

x̄ =

∫ b
a ρ(T(x)− B(x)) · x dx∫ b

a ρ(T(x)− B(x)) dx

=

∫ b
a (T(x)− B(x)) · x dx∫ b

a (T(x)− B(x)) dx

The centre of mass will be a point in the xy-plane, (x̄, ȳ).
To find x̄ and ȳ, we will treat vertical slices as point particles.
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Consider a flat metal plate of uniform density, whose shape is the area
below curve y = T(x) and above curve y = B(x), from x = a to x = b.

x

y B(x)

T(x)

a b

dx

If ρ is the density of the
plate, so that a slice of
width dx and height
h = T(x)− B(x) has mass
ρ h dx = ρ

(
T(x)− B(x)

)
dx,

then:

x̄ =

∫ b
a ρ(T(x)− B(x)) · x dx∫ b

a ρ(T(x)− B(x)) dx

=

∫ b
a (T(x)− B(x)) · x dx∫ b

a (T(x)− B(x)) dx

The centre of mass will be a point in the xy-plane, (x̄, ȳ).
To find x̄ and ȳ, we will treat vertical slices as point particles.
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To find ȳ, note that the y-coordinate of the centre of mass of a slice
that is almost a rectangle, and has uniform density, will be halfway
up the slice, at T(x)+B(x)

2 .

x

y B(x)

T(x)

a b
dx

T(x)+B(x)
2

ȳ =

∫ b
a

(
T(x)+B(x)

2

)
· ρ(T(x)− B(x)) dx∫ b

a ρ(T(x)− B(x)) dx

=
1
2

∫ b
a (T2(x)− B2(x)) dx∫ b
a (T(x)− B(x)) dx
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To find ȳ, note that the y-coordinate of the centre of mass of a slice
that is almost a rectangle, and has uniform density, will be halfway
up the slice, at T(x)+B(x)

2 .

x

y B(x)

T(x)

a b
dx

T(x)+B(x)
2

ȳ =

∫ b
a

(
T(x)+B(x)

2

)
· ρ(T(x)− B(x)) dx∫ b

a ρ(T(x)− B(x)) dx

=
1
2

∫ b
a (T2(x)− B2(x)) dx∫ b
a (T(x)− B(x)) dx
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Find the centre of mass (centroid) of the quarter circular unit disk
x ≥ 0, y ≥ 0, x2 + y2 ≤ 1.

x

y

4
3π

4
3π

By symmetry, x̄ = ȳ. Using the
equations we developed above
with top y = T(x) =

√
1− x2 and

bottom y = B(x) = 0:

x̄ =

∫ 1
0 (
√

1− x2 − 0) · x dx∫ 1
0 (
√

1− x2 − 0) dx

For the integral in the numerator,
let u = 1− x2, du = −2x dx. The
denominator is the area of the
quarter unit circle.

=

∫ 0
1 −

1
2 u1/2 du
π
4

=
2
π

∫ 1

0
u1/2 du

=
2
π

[
2
3

u3/2
]1

0
=

4
3π

(x̄, ȳ) =

(
4

3π
,

4
3π

)
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Find the centre of mass (centroid) of a plate of uniform density in the
shape of the finite area enclosed by the functions y = T(x) = 2− x
and y = B(x) = x2.

x

y

−2 1− 1
2

8
5

First, we find where the curves
intersect.

x2 = 2− x

x2 + x− 2 = 0
(x− 1)(x + 2) = 0

x = −2, x = 1

The denominator is the same in
our x̄ and ȳ calculations, so let’s
find that next.∫ 1

−2
(T(x)− B(x)) dx =

∫ 1

−2

(
2− x− x2)dx

=

[
2x− 1

2
x2 − 1

3
x3
]1

−2

=

(
2− 1

2
− 1

3

)
−
(
−4− 2 +

8
3

)
=

9
2

x̄ =

∫ 1
−2

(
2− x− x2

)
x dx∫ 1

−2 (2− x− x2) dx

=

∫ 1
−2

(
2x− x2 − x3

)
dx

9
2

=
2
9

[
x2 − 1

3
x3 − 1

4
x4
]1

−2

=
2
9

[(
1− 1

3
− 1

4

)
−
(

4 +
8
3
− 4
)]

= −1
2

ȳ =
1
2

∫ 1
−2

(
(2− x)2 − (x2)2

)
x dx∫ 1

−2 (2− x− x2) dx

=
1
2

∫ 1
−2

(
4− 4x + x2 − x4

)
dx

9
2

=
1
9

[
4x− 2x2 +

1
3

x3 − 1
5

x5
]1

−2

=
1
9

[(
4− 2 +

1
3
− 1

5

)
−
(
−8− 8− 8

3
+

32
5

)]
=

8
5
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Differential Equation
A differential equation is an equation for an unknown function that
involves the derivative of the unknown function.

Differential equations play a central role in modelling a huge number
of different phenomena. Here is a table giving a bunch of named
differential equations and what they are used for. It is far from
complete.

Newton’s Law of Motion describes motion of particles

Maxwell’s equations describes electromagnetic radiation

Navier–Stokes equations describes fluid motion

Heat equation describes heat flow

Wave equation describes wave motion

Schrödinger equation describes atoms, molecules and crystals

Stress-strain equations describes elastic materials

Black–Scholes models used for pricing financial options

Predator–prey equations describes ecosystem populations

Einstein’s equations connects gravity and geometry

Ludwig–Jones–Holling’s equation models spruce budworm/Balsam fir ecosystem

Zeeman’s model models heart beats and nerve impulses

Sherman–Rinzel–Keizer model for electrical activity in Pancreatic β–cells

Hodgkin–Huxley equations models nerve action potentials
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Disclaimer:
We are dipping our toes into a vast topic. Most universities offer half

a dozen different undergraduate courses on various aspects of
differential equations. We will just look at one special, but important,

type of equation.

I We will first learn to verify solutions without finding them. (If
you learned about differential equations last semester, this will
be review.)

I Then, we will learn to solve one particular type of differential
equation.

417/643

DIFFERENTIAL EQUATIONS

Definition
A differential equation is an equation involving the derivative of an
unknown function.

Examples: dy
dx = 2x; x dy

dx = 7xy + y

Definition
If a function makes a differential equation true, we say it satisfies the
differential equation, or is a solution to the differential equation.

Example: y = x2 and y = x2 + 1 both satisfy the first differential
equation
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VERIFYING SOLUTIONS

Consider the equation
x + 2 = x3 − x2

How would you verify whether x = 1 satisfies the equation?
How would you verify whether x = 2 satisfies the equation?
Plug x into the equation, check whether the left-hand side and the
right-hand side are the same number.

419/643 ans

VERIFYING SOLUTIONS

Consider the differential equation

dy
dx

= 2y + 4x

How would you verify whether y = e2x − 2x satisfies the equation?
How would you verify whether y = e2x − 2x− 1 satisfies the
equation?
Replace y and dy

dx in the equation, check whether the left-hand side
and the right-hand side are the same function.
I If y = e2x − 2x, then dy

dx = 2e2x − 2. Plug these into both sides of
the differential equation, replacing anything depending on y:

dy
dx

= 2y + 4x

2e2x − 2 ?
= 2(e2x − 2x) + 4x

2e2x − 2 ?
= 2e2x

Since the functions on the left and right are not the same
function, y = e2x− 2x is not a solution to the differential equation.

I If y = e2x − 2x− 1, then dy
dx = 2e2x − 2. Plug these into both sides

of the differential equation, replacing anything depending on y:

dy
dx

= 2y + 4x

2e2x − 2 ?
= 2(e2x − 2x− 1) + 4x

2e2x − 2 ?
= 2e2x − 4x− 2 + 4x

Since the functions on the left and right are the same function,
y = e2x − 2x− 1 is a solution to the differential equation.
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Differential equation:

x
dy
dx

= 7xy + y

Interpretation:

There is a function y(x) that
makes the left-hand side and the
right-hand side into the same
function.

To check whether a given
function satisfies the differential
equation, plug it in for
everything with a “y”: y itself
and dy

dx .

Is y = xe7x+9 a solution to the differential equation?
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Which of the following solve the differential equation dy
dx = x

y ?

A. y = −x B. y = x + 5 C. y =
√

x2 + 5

I If y = −x, then dy
dx = −1. Plugging into the differential equation

yields: −1 ?
= x
−x . Since the left and right are the same function

(except for the single point when x = 0), we say y = −x solves
the differential equation.

I If y = x + 5, then dy
dx = 1. Plugging into the differential equation

yields: 1 ?
= x

x+5 . Since the left and right are not the same function,
y = x + 5 does not solve the differential equation.

I If y =
√

x2 + 5, then dy
dx = 2x

2
√

x2+5
= x√

x2+5
. Plugging into the

differential equation yields: x√
x2+5

?
= x√

x2+5
. Since the left and

right are the same function, we say y =
√

x2 + 5 solves the
differential equation.
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FIRST EXAMPLE OF A SEPARABLE DE

Definition
A separable differential equation is an equation for a function y(x)
that can be written in the form

g(y) · dy
dx

= f (x)

(It may take some rearranging to get the equation into this form.)

For example:

y2 · dy
dx

= 4x∫ (
y2 · dy

dx

)
dx =

∫
4x dx∫

y2 dy = 2x2 + C

1
3

y3 = 2x2 + C

y3 = 6x2 + 3C

y(x) =
3
√

6x2 + 3C

y(x) =
3
√

6x2 + D

Here C and D are arbitrary constants.
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GENERAL METHOD FOR SOLVING SEPARABLE DES

g(y) · dy
dx

= f (x)

g(y(x)) · dy
dx

= f (x)∫ (
g(y(x)) · dy

dx

)
dx =

∫
f (x) dx

y-substitution: ∫
g(y) dy =

∫
f (x) dx
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GENERAL METHOD FOR SOLVING SEPARABLE DES

g(y) · dy
dx

= f (x)

g(y(x)) · dy
dx

= f (x)∫ (
g(y(x)) · dy

dx

)
dx =

∫
f (x) dx

y-substitution: ∫
g(y) dy =

∫
f (x) dx

Shorthand:

g(y) · dy
dx

= f (x)

g(y) dy = f (x) dx∫
g(y) dy =

∫
f (x) dx
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dy
dx

= y2x

1. “Separate” y’s from x’s.
2. Integrate.
3. Solve explicitly for y.
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Q

dy
dx

= (xy)4, y(0) =
1
2

dy
dx

= x4y4

y−4 dy = x4dx∫
y−4dy =

∫
x4dx

1
−3

y−3 =
1
5

x5 + C

1
y3

= −3
(

1
5

x5 + C
)

y =
1

− 3

√
3
(

1
5 x5 + C

)

y(0) = − 3

√
1

3
( 1

5 x5 + C
) ∣∣∣∣∣

x=0

1
2

= − 3

√
1

3C
2 = − 3√3C

3C = −8

y(x) = − 3

√
1

3
5 x5 − 8

= 3

√
1

8− 3
5 x5
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dy
dx

= y(4x3 − 1) y(0) = −2

1
y

dy =
(
4x3 − 1

)
dx∫

1
y

dy =

∫ (
4x3 − 1

)
dx

log |y| = x4 − x + C

When x = 0, log | − 2| = 04 − 0 + C
C = log 2

|y(x)| = ex4−x+log 2

y(x) = ex4−x+log 2 or y(x) = −ex4−x+log 2

y(x) = −ex4−x+log 2 = −2ex4−x to make y(0) = −2
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Let a and b be any two constants. We’ll now solve the family of
differential equations

dy
dx

= a(y− b)

using our mnemonic device.

dy
y− b

= a dx∫
dy

y− b
=

∫
a dx

log |y− b| = ax + c

|y− b| = eax+c = eceax

y− b = ±eceax = Ceax

where the constant C can be any real number. (Even C = 0 works, i.e.
y(x) = b solves dy

dx = a(y− b).) Note that when y(x) = Ceax + b we
have y(0) = C + b. So C = y(0)− b and the general solution is

y(x) = {y(0)− b} eax + b

429/643 Example 2.4.3

Linear First-Order Differential Equations
Let a and b be constants. The differentiable function y(x) obeys the
differential equation

dy
dx

= a(y− b)

if and only if
y(x) = {y(0)− b} eax + b

Find a function y(x) with y′ = 3y + 7 and y(2) = 5.

To avoid re-inventing the wheel,
we’ll use our equation. But first,
we should re-write our
differential equation so the
formatting matches.

dy
dx

= 3
(

y +
7
3

)
a = 3, b = −7

3

y(x) = Ce3x − 7
3

Since we aren’t given y(0), we
can’t use the theorem as a
shortcut to find C. We’ll do it the
old-fashioned way.

5 = y(2) = Ce3(2) − 7
3

22
3

= Ce6

C =
22
3e6

y(x) =
22
3e6 e3x − 7

3
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Theorem 2.4.4

The rate at which a medicine is metabolized (broken down) in the
body depends on how much of it is in the bloodstream. Suppose a
certain medicine is metabolized at a rate of 1

10 A µg/hr, where A is the
amount of medicine in the patient. The medicine is being
administered to the patient at a constant rate of 2 µg/hr.
If the patient starts with no medicine in their blood at t = 0, give the
formula for the amount of medicine in the patient at time t. What
happens to the amount over time?

The rate of change of the amount of medicine in the patient is given
by how quickly the medicine is being administered, minus how
quickly it is metabolized:

dA
dt

= 2− 1
10

A
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Linear First-Order Differential Equations
Let a and b be constants. The differentiable function y(x) obeys the
differential equation

dy
dx

= a(y− b)

if and only if
y(x) = {y(0)− b} eax + b

dA
dt

= 2− 1
10

A = − 1
10

(A− 20) A(0) = 0

a = − 1
10
, b = 20

A(t) = (A(0)− 20)e−t/10 + 20

A(t) = −20e−t/10 + 20

This is an increasing function,
with lim

t→∞
A(t) = 20. So the

amount of medicine initially
increases, but eventually almost
holds steady at 20 µg.
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RADIOACTIVE DECAY

One model for radioactive decay says that the rate at which an
isotope decays is proportional to the amount present. So if Q(t) is the
amount of a radioactive substance, then

dQ
dt

= −kQ(t)

for some constant1 k.

This is a first-order linear differential equation. Its explicit solutions
have the form:

Q(t) = Ce−kt

where C = Q(0).

1By including the negative sign, we ensure k will be positive, but of course we could
also write “ dQ

dt = KQ(t) for some [negative] constant K”.
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HALF-LIFE

The half-life of an isotope is the time required for half of that isotope
to decay. If we know the half-life of a substance is t1/2, and its
quantity at time t is given by Q(0)e−kt we can find the constant k:

1
2

Q(0) = Q(t1/2) = Q(0)e−kt1/2

1
2

= e−kt1/2

2 = ekt1/2

log 2 = kt1/2

log 2
t1/2

= k

Plugging this back in gives us a
more intuitive equation for the

quantity of a radioactive
substance over time:

Q(t) = Q(0)e
− log 2

t1/2
t

= Q(0) ·
(

1
2

) t
t1/2

So if t = t1/2, the initial amount is
cut in half; if t = 2t1/2, the initial
amount is cut in half twice (i.e.
quartered), etc.
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Radioactive Decay

The function Q(t) satisfies the equation dQ
dt = −kQ(t) if and only if

Q(t) = Q(0) e−kt

The half–life is defined to be the time t1/2 which obeys
Q
(
t1/2
)

= 1
2 Q(0). The half–life is related to the constant k by

t1/2 = log 2
k . Then

Q(t) = Q(0) e
− log 2

t1/2
t

= Q(0) ·
(

1
2

) t
t1/2

If the half-life of 14C is t1/2 = 5730 years, then the quantity of
carbon-14 present in a sample after t years is:

Q(t) = Q(0)e−
log 2
5730 t = Q(0)

(
1
2

) t
5730

438/643 Corollary 2.4.9

A particular piece of flax parchment contains about 64% as much 14C
as flax plants do today. We will estimate the age of the parchment,
using 5730 years as the half-life of 14C.
First, a rough estimate: is the parchment older or younger than 5730
years?
Younger: it has more that half its 14C left, so it has been decaying for
less than one half-life.
Let Q(t) denote the amount of 14C in the parchment t years after it
was first created.

Q(t) = Q(0)

(
1
2

) t
5730

0.64 =

(
1
2

) t
5730

log(0.64) =
t

5730
log

1
2

= − log 2
5730

t

t = −5730 log(0.64)

log 2
≈ 3689

Q(t) = Q(0)e−
log 2
5370 t

0.64 = e−
log 2
5370 t

log(0.64) = − log 2
5730

t

t = −5730 log(0.64)

log 2
≈ 3689

So the parchment was made of plants that died about 3700 years ago.
439/643 Example 2.4.10

Newton’s law of cooling
The rate of change of temperature of an object is proportional to the
difference in temperature between the object and its surroundings.

The temperature of the surroundings is sometimes called the ambient
temperature.

dT
dt

=

440/643 Equation 2.4.4



Linear First-Order Differential Equations
Let a and b be constants. The differentiable function y(x) obeys the
differential equation

dy
dx

= a(y− b)

if and only if
y(x) = {y(0)− b} eax + b

Find an explicit formula for functions T(t) solving the differential

equation
dT
dt

= K(T(t)− A) for some constants K and A.

T(t) = (T(0)− A) eKt + A
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The temperature of a glass of iced tea is initially 5◦. After 5 minutes,
the tea has heated to 10◦ in a room where the air temperature is 30◦.
Assume the temperature of the tea as it cools follows Newton’s law
of cooling,

T(t) = (T(0)− A) eKt + A

(a) Determine the temperature as a function of time.
(b) When the tea will reach a temperature of 14◦ ?

The ambient temperature is A = 30 and T(0) = 5, so we only have to
determine K. (Or, more neatly, eK.)

T(t) = (5− 30) eKt + 30

= 30− 25eKt

10 = T(5) = 30− 25e5K

25e5K = 20

e5K =
4
5

eK =

(
4
5

)1/5

T(t) = 30− 25
(

4
5

) t
5

14 = T(t) = 30− 25
(

4
5

) t
5

25
(

4
5

) t
5

= 16(
4
5

) t
5

=
16
25

=

(
4
5

)2

t
5

= 2

t = 10

After 10 minutes
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Example 2.4.12

A glass of room-temperature water is carried out onto a balcony from
an apartment where the temperature is 22◦C. After one minute the
water has temperature 26◦C and after two minutes it has temperature
28◦C. Assuming the water warms according to Newton’s law of
cooling, what is the outdoor temperature?
Assume that the temperature of the water obeys Newton’s law of
cooling.

T(t) = A +
(
T(0)− A

)
eKt

= A +
(
22− A

)
eKt

Given: 26 = A +
(
22− A

)
eK

=⇒ eK =
26− A
22− A

Given: 28 = A +
(
22− A

)
e2K

=⇒ e2K =
28− A
22− A

28− A
22− A

=
(
eK)2

=

(
26− A
22− A

)2

(28− A)(22− A) = (26− A)2

28 · 22− 50A + A2 = 262 − 52A + A2

2A = 262 − 28 · 22
A = (26)(13)− (22)(14)

= (26)(13)− (22)(13)− 22
= 4 · 13− 22 = 30

443/643

Q

Example 2.4.14

Let P the the size of a population, and let K be the carrying capacity
of its environment (i.e. the population size that can be sustainably
supported).

When P is much less than K, our
population has...
A. not enough resources
B. just enough resources
C. extra resources

So when the P is much less than
K, we expect the population to...

A. shrink

B. stay the same

C. grow

Malthusian growth
The Malthusian growth model relates population growth to
population size:

dP
dt

= bP(t)

where b is a constant representing net birthrate per member of the
population.
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Let P the the size of a population, and let K be the carrying capacity
of its environment (i.e. the population size that can be sustainably
supported).

When P is greater than K, our
population has...
A. not enough resources
B. just enough resources
C. extra resources

So when the P is greater than K,
we expect the population to...

A. shrink

B. stay the same

C. grow
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Logistic growth models population growth as:

dP
dt

= b0

(
1− P(t)

K

)
P(t)

I If P << K, then dP
dt ≈

b0P(t)

I If P ≈ K, then dP
dt ≈

0

I If P > K, then dP
dt

< 0
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Before we solve explicitly, let’s sketch some solutions to

dP
dt

= b0

(
1− P(t)

K

)
P(t)

I If P(a) = 0:

dP
dt = 0

I If 0 < P(a) < K:

dP
dt (a) > 0

I If P(a) = K:

dP
dt (a) = 0

I If K < P(0):

dP
dt (a) < 0

t

P

K
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Find the explicit solutions to

dP
dt

= b
(

1− P(t)
K

)
P(t)

when b and K are constants.

∫
b dt =

∫
1

P(1− 1
K P)

dP

Using partial fractions, we can find 1
P(1− 1

K P)
= 1

P + 1/K
1− 1

K P

bt + D =

∫ (
1
P −

1/K

1− 1
K P

)
dP

= log |P| − log
∣∣1− 1

K P
∣∣ = log

∣∣∣∣ P
1− 1

K P

∣∣∣∣
let C = ± eD:

Cebt = P
1− 1

K P
=⇒ P(t) =

Cebt

1 + C
K ebt

448/643



At time t = 0, where t is measured in minutes, a large tank contains 3
litres of water in which 1 kg of salt is dissolved. Fresh water enters
the tank at a rate of 2 litres per minute and the fully mixed solution
leaks out of the tank at the varying rate of 2t litres per minute.
(a) Determine the volume of solution V(t) in the tank at time t.
(b) Determine the amount of salt Q(t) in solution when the amount

of water in the tank is at maximum.
2 L

min

2t L
min

We’re given information about the rate of change of V: dV
dt = 2− 2t.

Then V(t) = 2t− t2 + C. From the initial value V(0) = 3, we see

V(t) = 2t− t2 + 3

The maximum value of a downwards-facing parabola occurs at its
critical point, so the water in the tank is at its highest level when
t = 1. The amount of salt is decreasing as it leaks out. The
concentration of salt in the tank water at time t is Q(t)

V(t)
kg
L . If the

saltwater is leaking out at a rate of 2t L
min , then:

dQ
dt

= −Q(t)
V(t)

· 2t
kg

min
=

−2t
2t− t2 + 3

Q∫
1
Q

dQ =

∫
2t

(t + 1)(t− 3)
dt =

∫ (
1/2

t + 1
+

3/2
t− 3

)
dt

log |Q| = 1
2

log |t + 1|+ 3
2

log |t− 3|+ C

So, we have the following relationship between Q and t:

log |Q| = 1
2

log |t + 1|+ 3
2

log |t− 3|+ C

To find C, we use the initial condition Q(0) = 1.

log |Q(0)| = 1
2

log 1 +
3
2

log 3 + C

=⇒ 0 = C +
3
2

log 3

=⇒ C = −3
2

log 3

Finally, we use our relationship between Q and t to find Q(1).

log |Q(t)| = 1
2

log |t + 1|+ 3
2

log |t− 3| − 3
2

log 3

=⇒ log |Q(1)| = 1
2

log 2 +
3
2

log 2− 3
2

log 3 = 2 log 2− 3
2

log 3

= log 4− log
(

33/2
)

= log
4

33/2

=⇒ Q(1) =
4

33/2

449/643 Example 2.4.17

SETTLING TANK

A settling tank is filled with 100,000 litres of pure water. Every hour,
1,000 litres of water, containing 3 grams of pollutants, enters the tank.

90% of the pollutants in the settling tank sink to the bottom, with the
remaining 10% well-mixed into the water. The tank drains 1,000 litres
of this mixed water into the sewer every hour.

In order to drain the water into the local sewer, the concentration of
pollutants cannot be more than 1 gram per 1,000 litres. How long can
the settling tank take dirty water until the process must be stopped?
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3 g/hr
pollutants

1, 000 L/hr
water

1, 000 L/hr
mixed water

100, 000 L water
P grams pollutants total
(dissolved + settled)
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Let P(t) be the total amount (in grams) of pollutants in the tank.
Pollutants are entering at a rate of 3 grams per hour. How fast are
they leaving?

Every hour, the tank drains 1,000 of its 100,000 litres. That is, every
hour, it drains 1

100 of its total volume. So, every hour, it disgorges 1
100

of its dissolved pollutants. The amount of dissolved pollutants in the
tank is 1

10 P(t). So, the rate the tank leaks pollutants is

1
100
· 1

10
P =

1
1, 000

P

So, the quantity of pollutants in the tank satisfies the differential
equation:

dP
dt

= (rate in)-(rate out) = 3− 1
1000

P
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You deposit $P in a bank account at time t = 0, and the account pays
r% interest per year, compounded n times per year. Your balance at
time t is B(t).
If one interest payment comes at time t, then the next interest
payment will be made at time t + 1

n and will be:

1
n
× r

100
× B(t) =

r
100n

B(t)

So, calling 1
n = h,

B(t + h) = B(t) +
r

100
B(t)h or

B(t + h)− B(t)
h

=
r

100
B(t)

If the interest is compounded continuously,

dB
dt

(t) = lim
h→0

B(t + h)− B(t)
h

=
r

100
B(t)

=⇒ B(t) = B(0) · ert/100 = P · ert/100

453/643 Example 2.4.19

Continuously compounding interest
If an account with balance B(t) pays a continuously compounding
rate of r% per year, then:

dB
dt

=
r

100
B

B(t) = B(0) · ert/100
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You invest $200 000 into an account with continuously compounded
interest of 5% annually. You want to withdraw from the account
continuously at a rate of $W per year, for the next 20 years. How big
can W be?

Let A(t) be the balance in the account t years after the initial deposit.

dA
dt

=
5

100
A−W =

1
20

(A− 20W)

A(t) = (200 000− 20W)et/20 + 20W
0 = A(20) = (200 000− 20W)e + 20W

= 200 000e + 20W(1− e)

W =
200 000e
20(e− 1)

= 10 000
e

e− 1
≈ 15 819.77

That is, you can withdraw 10 000 e
e−1 ≈ 15 819.77 each year.

455/643 Example 2.4.21
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We can imagine the list of numbers below carrying on forever:

a1 = 0.1

+

a2 = 0.01

+

a3 = 0.001

+

a4 = 0.0001

+

a5 = 0.00001
...

0.11111 · · ·

A sequence is a list of infinitely many numbers with a specified order.
It is denoted {a1, a2, · · · , an, · · · } or {an}∞n=1, etc.
Imagine adding up this sequence of numbers.
A series is a sum a1 + a2 + · · ·+ an + · · · of infinitely many terms.
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To handle sequences and series, we should define them more
carefully. A good definition should allow us to answer some basic
questions, such as:
I What does it mean to add up infinitely many things?
I Should infinitely many things add up to an infinitely large

number?
I Does the order in which the numbers are added matter?
I Can we add up infinitely many functions, instead of just

infinitely many numbers?
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Sequence
A sequence is a list of infinitely many numbers with a specified order.

Some examples of sequences:
I {1, 2, 3, 4, 5, 6, 7, 8, · · · } (natural numbers)

I {3, 1, 4, 1, 5, 9, 2, 6, · · · } (digits of π)

I {1,−1, 1,−1, 1, · · · } (powers of −1 : (−1)0, (−1)1, (−1)2, etc.)
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Sequence
A sequence is a list of infinitely many numbers with a specified order.
It is denoted {a1, a2, a3, · · · , an · · · } or {an} or {an}∞n=1, etc.

{an}∞n=1 =

{
1
n

}∞
n=1

I n = 1: this is the index of the first term of our sequence.
Sometimes it’s 0, sometimes something else, for example a year.

I ∞: there is no end to our sequence.
I 1

n : this tells us the value of an.
I Often we omit the limits and even the brackets, writing an = 1

n .
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SEQUENCE NOTATION

For convenience, we write a1 for the first term of a sequence, a2 for
the second term, etc.

In the sequence 1, 1
2 ,

1
3 ,

1
4 , · · · ,

a3 is another name for 1
3 .

Sometimes we can find a rule for a sequence.
In the above sequence, an = 1

n (whenever n is a whole number).

We can write {an}∞n=1 =
{ 1

n

}∞
n=1.
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Our primary concern with sequences will be the behaviour of an as n
tends to infinity and, in particular, whether or not an “settles down”
to some value as n tends to infinity.

Convergence

A sequence
{

an
}∞

n=1 is said to converge to the limit A if an approaches
A as n tends to infinity. If so, we write

lim
n→∞

an = A or an → A as n→∞

A sequence is said to converge if it converges to some limit.
Otherwise it is said to diverge.

462/643 Definition 3.1.3

Convergence

A sequence
{

an
}∞

n=1 is said to converge to the limit A if an approaches
A as n tends to infinity. If so, we write

lim
n→∞

an = A or an → A as n→∞

A sequence is said to converge if it converges to some limit.
Otherwise it is said to diverge.

I {1, 2, 3, 4, 5, 6, 7, 8, · · · } (natural numbers)
This sequence diverges, growing without bound, not
approaching a real number.

I {3, 1, 4, 1, 5, 9, 2, 6, · · · } (digits of π)
This sequence diverges, since it bounces around, not
approaching a real number.

I {1,−1, 1,−1, 1, · · · } (powers of −1 : (−1)0, (−1)1, (−1)2, etc.)
This sequence diverges, since it bounces around, not
approaching a real number.
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Does the sequence an =
n

2n + 1
converge or diverge?

To study the behaviour of
n

2n + 1
as n→∞, it is a good idea to write

it as:
n

2n + 1
=

1
2 + 1

n

As n→∞, the 1
n in the denominator tends to zero, so that the

denominator 2 + 1
n tends to 2 and 1

2+ 1
n

tends to 1
2 . So

lim
n→∞

n
2n + 1

= lim
n→∞

1
2 + 1

n

=
1

2 + 0
=

1
2
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Consider the sequence an =
1

3n + 1
. lim

n→∞
an = 0

n

f (x) = 1
3x+1

1

a1

2

a2

3

a3

4

a4

5

a5

1
4

1
10
1
28

Theorem 3.1.6
If lim

x→∞
f (x) = L

and if an = f (n) for all positive integers n, then

lim
n→∞

an = L
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CAUTIONARY TALE

Consider the sequence bn = sin(πn) = {0, 0, 0, 0, 0, . . .}

lim
n→∞

bn = 0 lim
x→∞

f (x) DNE

n

f (x) = sin(πx)

1

b1

2

b2

3

b3

4

b4

5

b5
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Theorem
If lim

x→∞
f (x) = L and if an = f (n) for all natural n, then lim

n→∞
an = L.

n
1

a1

2

a2

3

a3

4

a4

5

a5 n
1

b1

2

b2

3

b3

4

b4

5

b5
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Arithmetic of Limits
Let A, B and C be real numbers and let the two sequences

{
an
}∞

n=1
and

{
bn
}∞

n=1 converge to A and B respectively. That is, assume that

lim
n→∞

an = A lim
n→∞

bn = B

Then the following limits hold.
(a) lim

n→∞

[
an + bn

]
= A + B

(b) lim
n→∞

[
an − bn

]
= A− B

(c) lim
n→∞

Can = CA.

(d) lim
n→∞

an bn = A B

(e) If B 6= 0, then lim
n→∞

an

bn
=

A
B

468/643 Theorem 3.1.8



Evaluate the following limits:

I lim
n→∞

e−n = 0

I lim
n→∞

1+n
n = 1

I lim
n→∞

1
n2 = 0

I lim
n→∞

2n2 =∞

I lim
n→∞

( 1
n2

) (
2n2
)

= 2

(As you might guess, the expression “ lim
n→∞

an =∞” means that an

grows without bound as n→∞.)
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Continuous functions of limits
If lim

n→∞
an = L and if the function g(x) is continuous at L, then

lim
n→∞

g(an) = g(L)

Evaluate lim
n→∞

[
sin
(

πn
2n+1

)]

lim
n→∞

[
πn

2n + 1

]
= lim

n→∞

[
π

2 + 1
n

]
=
π

2

lim
n→∞

[
sin

(
πn

2n + 1

)]
= sin

(π
2

)
= 1

470/643 Theorem 3.1.12

Squeeze Theorem
If an ≤ cn ≤ bn for all sufficiently large natural numbers n, and if

lim
n→∞

an = lim
n→∞

bn = L

then
lim

n→∞
cn = L

n
1 2 3 4 5 6 7 8 9

471/643 Theorem 3.1.10

Evaluate

lim
n→∞

(
2n + cos n

n + 1

)
Use squeeze theorem:

−1 ≤ cos n ≤ 1
2n− 1 ≤ 2n + cos n ≤ 2n + 1
2n− 1
n + 1

≤ 2n + cos n
n + 1

≤ 2n + 1
n + 1

lim
n→∞

2n− 1
n + 1

= lim
n→∞

2n + 1
n + 1

= 2

2 = lim
n→∞

2n + cos n
n + 1
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Let an = (−n)−n. Evaluate lim
n→∞

an.

First, we note an = (−1)−n · (n−n) = (−1)n

nn because
(−1)−n =

(
(−1)−1

)n
= (−1)n.

This sequence alternates between positive and negative terms. We
can show that the positive terms tend to zero and the negative terms
tend to zero. So, we can apply the squeeze theorem.

Set bn =
−1
nn and cn =

1
nn

Then, bn < an < cn for all natural n
lim

n→∞
bn = lim

n→∞
cn = 0

So, lim
n→∞

an = 0
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SEQUENCES AND SERIES

A sequence is a list of numbers
A series is the sum of such a list.
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SEQUENCES AND SERIES

Size of Tiles:
1
2
,

1
22 ,

1
23 ,

1
24 ,

1
25 ,

1
26 ,

1
27 ,

1
28 ,

1
29 , · · ·

Sequence

List of numbers,

approaching

Series

Sum of numbers,

approaching

Square of Area 1

Covered Area:
1
2

+
1
22 +

1
23 +

1
24 +

1
25 +

1
26 +

1
27 +

1
28 +

1
29

+ · · ·
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QUICK REVIEW: SIGMA NOTATION

Recall:
5∑

n=1

1
n2 =

1
12 +

1
22 +

1
32 +

1
42 +

1
52

We informally interpret:

∞∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 +

1
42 +

1
52 +

1
62 +

1
72 +

1
82 +

1
92 +

1
102 + · · ·

(a more rigorous definition will be discussed soon)

477/643 Finite sums: CLP–1 Notation 3.4.8

Let an and bn be sequences, and let C be a constant.

∞∑
n=1

(C · an) =

A.
∞∑

n=1

C ·
∞∑

n=1

an

B.
∞∑

n=1

C +

∞∑
n=1

an

C. C
∞∑

n=1

an

D. an

∞∑
n=1

C

E. none of the above
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Q Q Q

Let an and bn be sequences, and let C be a constant.

∞∑
n=1

(an + bn) =

A.
∞∑

n=1

an ·
∞∑

n=1

bn

B.
∞∑

n=1

an +

∞∑
n=1

bn

C. an +

∞∑
n=1

bn

D. an

∞∑
n=1

bn

E. none of the above
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Let an and bn be sequences, and let C be a constant.

∞∑
n=1

(an)C =

A.
∞∑

n=1

C ·
∞∑

n=1

an

B.

( ∞∑
n=1

an

)C

C. Cn
∞∑

n=1

an

D.
∞∑

n=1

C(an)C−1

E. none of the above
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SERIES PHILOSOPHY

What does it really mean to add up infinitely many things?
· · ·1 − 1 +

0 0

1 − 1 +

0 0

1 − 1 +

0 0

1 − 1 +

0 0

1 − 1 +

0 0

1 − 1 +

0 01
1 1 1

We need an unambiguous definition.
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HOW CAN WE ADD UP INFINITELY MANY THINGS?
SEQUENCE OF PARTIAL SUMS

1
51

1
52

1
53

1
54

1
55

0.2000

S1 = 0.2000

0.2400

S2 = 0.2400

0.2480

S3 = 0.2480

0.2496

S4 = 0.2496

0.2499

S5 = 0.2499
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Partial sums let us think about series (sums) using the tools we’ve
developed for sequences (lists).

a1 =
1
5

= 0.2 S1 = 0.2

a2 =
1
52 = 0.04 S2 = 0.24

a3 =
1
53 = 0.008 S3 = 0.248

a4 =
1
54 = 0.0016 S4 = 0.2496

a5 =
1
55 = 0.00032 S5 = 0.24992
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We define
∞∑

n=1

an = lim
N→∞

N∑
n=1

an = lim
N→∞

SN.

a1 =
1
5

= 0.2 S1 = 0.2

a2 =
1
52

= 0.04 S2 = 0.24

a3 =
1
53

= 0.008 S3 = 0.248

a4 =
1
54

= 0.0016 S4 = 0.2496

a5 =
1
55

= 0.00032 S5 = 0.24992

a6 =
1
56

= 0.000064 S6 = 0.249984

a7 =
1
57

= 0.0000128 S7 = 0.2499968

a8 =
1
58

= 0.00000256 S8 = 0.24999936

From the sequence of partial sums, we guess

∞∑
n=1

1
5n = lim

N→∞
SN =

1
4
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NOTATION: SN =
∑N

n=1 an

a1 a2 a3 a4 a5 a6

a1

S1 = a1

a1 + a2

S2 = a1 + a2

a1 + a2 + a3

S3 = a1 + a2 + a3

a1 + · · ·+ a4

S4 = a1 + · · ·+ a4

a1 + · · ·+ a5

S5 = a1 + · · ·+ a5

a1 + · · ·+ a6

S6 = a1 + · · ·+ a6
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NOTATION PRACTICE

Suppose
∞∑

n=1

an has partial sums SN =

N∑
n=1

an =
N

N + 1
.

I Evaluate
100∑
n=1

an.
100∑
n=1

an = S100 =
100
101

I Evaluate
∞∑

n=1

an.
∞∑

n=1

an = lim
N→∞

SN = lim
N→∞

N
N + 1

= 1
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NOTATION PRACTICE

Andrew brings a plate of
cookies to the professor’s
desk. When he puts them
down, there are 10 cook-
ies on the desk.

Then, Joel brings a plate
of cookies. When he puts
them down, there are 19
cookies on the desk.

How many cookies did
each person bring?

a1

a2

S1 = a1

S2 = a1 + a2

Andrew brought 10, and Joel brought 19− 10 = 9.
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NOTATION PRACTICE

Andrew brings a plate of
cookies to the professor’s
desk. When he puts them
down, there are 10 cook-
ies on the desk.

Then, Joel brings a plate
of cookies. When he puts
them down, there are 19
cookies on the desk.

How many cookies did
each person bring?

a1

a2

S1 = a1

S2 = a1 + a2

Andrew brought 10, and Joel brought 19− 10 = 9.
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NOTATION PRACTICE

Suppose
∞∑

n=1

an has partial sums SN =

N∑
n=1

an =
N

N + 1
.

I Find a1. a1 =

1∑
n=1

an = S1 =
1
2

I Give an explicit expression for an, when n > 1.

an =

(
n∑

k=1

ak

)
−

(
n−1∑
k=1

ak

)
= Sn − Sn−1

=
n

n + 1
− n− 1

n
=

1
n(n + 1)
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SN =
N∑

n=1
an = N

N+1

a1 a2 a3 a4 a5 a6 a7 a8

1/(1+1)

S1 = 1/(1+1)

2/(2+1)

S2 = 2/(2+1)

3/(3+1)

S3 = 3/(3+1)

4/(4+1)

S4 = 4/(4+1)

5/(5+1)

S5 = 5/(5+1)

6/(6+1)

S6 = 6/(6+1)

7/(7+1)

S7 = 7/(7+1)

8/(8+1)

S8 = 8/(8+1)
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Definition
The Nth partial sum of the series

∑∞
n=1 an is the sum of its first N terms

SN =

N∑
n=1

an.

The partial sums form a sequence
{

SN
}∞

N=1. If this sequence of partial
sums converges SN → S as N →∞ then we say that the series∑∞

n=1 an converges to S and we write

∞∑
n=1

an = S

If the sequence of partial sums diverges, we say that the series
diverges.

491/643 Definition 3.2.3

Geometric Series
Let a and r be two fixed real numbers with a 6= 0. The series

a + ar + ar2 + ar3 + · · ·

is called the geometric series with first term a and ratio r.

We call r the ratio because it is the quotient of consecutive terms:

arn+1

arn = r

Another useful way of identifying geometric series is to determine
whether all pairs of consecutive terms have the same ratio.

I Geometric: 1 +
1
5

+
1
52 +

1
53 +

1
54 + · · ·

I Geometric:
∞∑

n=0

1
2n

I Not geometric: 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+ · · ·
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Consider the partial sum SN of a geometric series:

SN = a + ar + ar2 + ar3 + · · ·+ arN

rSN =

ar + ar2 + ar3 + · · ·+ arN + arN+1

rSN − SN =

− a + arN+1

SN(r− 1) = arN+1 − a

If r 6= 1, then

SN =
arN+1 − a

r− 1
= a

rN+1 − 1
r− 1
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Geometric Series and Partial Sums
Let a and r be constants with a 6= 0, and let N be a natural number.

I If r 6= 1, then a + ar + ar2 + ar3 + · · ·+ arN = a
rN+1 − 1

r− 1
.

I If r = 1, then a + ar + ar2 + ar3 + · · ·+ arN = (N + 1)a.

I If |r| < 1, then
∞∑

n=0

arn = lim
N→∞

a
rN+1 − 1

r− 1
= a

1
1− r

I If r = 1, then
∞∑

n=0

arn diverges

I If r = −1, then
∞∑

n=0

arn diverges

I If |r| > 1, then
∞∑

n=0

arn diverges

494/643 Example 3.2.4

∞∑
n=0

arn, r = 1, a 6= 0

a a a a a a

a

S0 = a

2a

S1 = 2a

3a

S2 = 3a

4a

S3 = 4a

5a

S4 = 5a

6a

S5 = 6a

N

SN

0

a

1

2a

2

3a

3

4a

4

5a

5

6a
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∞∑
n=0

arn, r = −1, a 6= 0

a −a a −a a −a

a

S0 = a

0

S1 = 0

a

S2 = a

0

S3 = 0

a

S4 = a

0

S5 = 0

N

SN

a

0 1 2 3 4 5
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∞∑
n=0

arn, r > 1, a 6= 0

a ar ar2 ar3 ar4

a

S0 = a

a r2−1
r−1

S1 = a r2−1
r−1

a r3−1
r−1

S2 = a r3−1
r−1

a r4−1
r−1

S3 = a r4−1
r−1

a r5−1
r−1

S4 = a r5−1
r−1

N

SN

0 1 2 3 4
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∞∑
n=0

arn, r < −1, a 6= 0

a ar ar2 ar3 ar4 ar5

a

S0 = a

a r2−1
r−1

S1 = a r2−1
r−1

a r3−1
r−1

S2 = a r3−1
r−1

a r4−1
r−1

S3 = a r4−1
r−1

a r5−1
r−1

S4 = a r5−1
r−1

a r6−1
r−1

S5 = a r6−1
r−1

N

SN

0 1 2 3 4 5
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GEOMETRIC SERIES

New bitcoins are produced when a particular type of computational
problem is solved. Every time 210,000 solutions are found, the
number of bitcoins each solution can produce is cut in half.
I Each of the first 210,000 solutions can produce 50 bitcoins.
I Each of the next 210,000 solutions can produce 50

2 bitcoins.
I Each of the next 210,000 solutions can produce 50

22 bitcoins.
I Each of the next 210,000 solutions can produce 50

23 bitcoins.
Assume that this continues forever, and that bitcoins are infinitely
divisible.2How many bitcoins can possibly be produced?
We start by writing the total number of bitcoin produced as a series.
Since we want to know an upper bound, we’ll assume that infinite
solutions can be found and used to make bitcoin.

210 000(50)+210 000
(

50
2

)
+210 000

(
50
22

)
+ · · · =

∞∑
n=0

(210 000)

(
50
2n

)
∞∑

n=0

(210 000)

(
50
2n

)
=
∞∑

n=0

(210 000 · 50)

(
1
2

)n

= (210 000 · 50)
1

1− 1
2

= (210 000 · 50)(2)

= 21 000 000

So there will never be more than 21,000,000 bitcoins produced this
way.

2Actually the smallest allowed division of a bitcoin is 10−8.
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∞∑
n=0

210 000
(

50
2n

)
= 21 000 000

10 500 000 5 250 000 2 625 000 1 312 500 656 250

10 500 000

S0 = 10 500 000

15 750 000

S1 = 15 750 000

18 375 000

S2 = 18 375 000

19 687 500

S3 = 19 687 500

20 343 750

S4 = 20 343 750
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Arithmetic of Series
Let S, T, and C be real numbers. Let the two series

∑∞
n=1 an and∑∞

n=1 bn converge to S and T respectively. Then

∞∑
n=1

[an + bn] = S + T

∞∑
n=1

[an − bn] = S− T

∞∑
n=1

[Can] = CS

501/643 Theorem 3.2.8

Geometric Series and Partial Sums
Let a and r be fixed numbers, and let N be a positive integer. Then

N∑
n=0

arn =

{
a · 1−rN+1

1−r if r 6= 1
a(N + 1) if r = 1

so
∞∑

n=0

arn =
a

1− r
provided |r| < 1

Evaluate
∞∑

n=0

(
2
3n +

4
5n

)
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Q Q Q

Geometric Series and Partial Sums
Let a and r be fixed numbers, and let N be a positive integer. Then

N∑
n=0

arn =

{
a · 1−rN+1

1−r if r 6= 1
a(N + 1) if r = 1

so
∞∑

n=0

arn =
a

1− r
provided |r| < 1

Evaluate
∞∑

n=6

(
3n−1

52n

)
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Geometric Series and Partial Sums
Let a and r be fixed numbers, and let N be a positive integer. Then

N∑
n=0

arn =

{
a · 1−rN+1

1−r if r 6= 1
a(N + 1) if r = 1

so
∞∑

n=0

arn =
a

1− r
provided |r| < 1

Evaluate
∞∑

n=0

(
22n

3n

)
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TELESCOPING SUMS

Evaluate
800∑
n=1

(
1
n
− 1

n + 1

)
. Evaluate

∞∑
n=1

(
1
n
− 1

n + 1

)
.

a1 : 1
1 − 1

2

a2 : 1
2 − 1

3

a3 : 1
3 − 1

4

a4 : 1
4 − 1

5
...

aN−1 : 1
N−1 − 1

N

aN : 1
N − 1

N+1

S1 = 1
1 − 1

2

S2 = 1
1 − 1

3

S3 = 1
1 − 1

4

S4 = 1
1 − 1

5
...

SN = 1
1 − 1

N+1 = N
N+1

800∑
n=1

(
1
n
− 1

n + 1

)
= S800 =

800
801

∞∑
n=1

(
1
n
− 1

n + 1

)
= lim

N→∞
SN = 1
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Evaluate
1000∑
n=1

log

(
n + 1

n

)
. Evaluate

∞∑
n=1

log

(
n + 1

n

)
.

a1 : log(2)−���log(1) S1 = log(2)
a2 : log(3)− log(2) S2 = log(3)
a3 : log(4)− log(3) S3 = log(4)
...
an−1 : log(n)− log(n− 1)
an : log(n + 1)− log(n) Sn = log(n + 1)

So,
1000∑
n=1

log

(
n + 1

n

)
= S1000 = log(1001) and

∞∑
n=1

log

(
n + 1

n

)
= lim

n→∞
log(n + 1) =∞
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For a convergent geometric or telescoping series, we can easily
determine what the series converges to.

For other types of series, finding out what the series converges to can
be very difficult. It is often necessary to resort to approximating the
full sum by, for example, using a computer to find the sum of the first
N terms, for some large N. But before we even try to do that, we
should at least know whether or not the series converges.
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Suppose a series
∞∑

n=1

an converges to a limit L. Let SN =

N∑
n=1

an.

lim
N→∞

SN = L

lim
N→∞

SN−1 = L

lim
N→∞

[
SN − SN−1

]
= L− L = 0

lim
N→∞

aN = 0

a1 a2 a3 aN−1 aN

SN

SN−1

Every convergent series has its Nth term, aN, tending to 0 as N →∞.
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Suppose a series
∞∑

n=1

an converges to a limit L. Let SN =

N∑
n=1

an.

lim
N→∞

SN = L

lim
N→∞

SN−1 = L

lim
N→∞

[
SN − SN−1

]
= L− L = 0

lim
N→∞

aN = 0

a1 a2 a3 aN−1 aN

SN

SN−1

Every convergent series has its Nth term, aN, tending to 0 as N →∞.
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Divergence Test
If the sequence {an}∞n=c fails to converge to zero as n→∞, then the

series
∞∑

n=c
an diverges.

Do the following series diverge?

I
∞∑

n=0

(−1)n yes, it diverges

I
∞∑

n=10

(
1
10

+
1
2n

)
yes, it diverges

I
∞∑

n=15

en

2en − 1
yes, it diverges

I
∞∑

n=15

1
n

at this point, unclear: maybe, maybe not

511/643 Theorem 3.3.1

USING THE DIVERGENCE TEST FOR
∑

an

lim
n→∞

an = ?

∑
an diverges

6= 0

∑
an may converge or diverge;

use another test

= 0

512/643 Warning 3.3.3



HARMONIC SERIES:
∞∑

n=1

1
n

x

1

1
2

1
3

1 2 3 4 5 6 7 8

y = 1
x

N∑
n=1

1
n
≥
∫ N+1

1

1
x

dx

SN ≥ log(N + 1)

lim
N→∞

SN =∞
∞∑

n=1

1
n

diverges

513/643 Example 3.3.4

∑∞
n=1

1
n DIVERGES

1 1
2

1
3

1
4

1
5

1.0000

S1 = 1.0000

1.5000

S2 = 1.5000

1.8333

S3 = 1.8333

2.0833

S4 = 2.0833

2.2833

S5 = 2.2833
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∞∑
n=1

1
n2+1

x
1 2 3 4 5 6 7 8

1

1
2

1
5
1

10 y = 1
x2+1

0 ≤
N∑

n=1

1
n2 + 1

≤
∫ N

0

1
x2 + 1

dx

0 ≤ SN ≤ arctan(N)

0 ≤ lim
N→∞

SN ≤ π
2

0 ≤
∞∑

n=1

1
n2 + 1

≤ π
2

∞∑
n=1

1
n2 + 1

converges
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∞∑
n=1

1
n2 + 1

CONVERGES

1
2

1
5

1
10

1
17

1
26

0.5000

S1 = 0.5000

0.7000

S2 = 0.7000

0.8000

S3 = 0.8000

0.8588

S4 = 0.8588

0.8973

S5 = 0.8973
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Integral Test
Let N0 be any natural number. If f (x) is a function which is defined
and continuous for all x ≥ N0 and which obeys

(i) f (x) ≥ 0 for all x ≥ N0 and
(ii) f (x) decreases as x increases and

(iii) f (n) = an for all n ≥ N0.
Then

x

y

1 2 3

a1
a2 a3

y = f (x)

∞∑
n=1

an converges ⇐⇒
∫ ∞

N0

f (x) dx converges

Furthermore, when the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx for all N ≥ N0

517/643 Theorem 3.3.5

Does the series
∞∑

n=10

1
n log n

converge or diverge?

Divergence Test

If lim
n→∞

an 6= 0, then
∞∑

n=a
an diverges.

No use here: we need another test.

Set f (x) = 1
x log x .

(i) f (x) ≥ 0 for all x ≥ 10 and
(ii) f (x) decreases as x increases and

(iii) f (n) = an for all n ≥ 10.

So, the integral test applies.
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Does the series
∞∑

n=10

1
n log n

converge or diverge?

x

1
10 log(10)

1
11 log(11)

1
12 log(12)

10 11 12 13 14 15 16 17

y = 1
x log x

∫ ∞
10

1
x log x

dx =∞
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Integral Test, abridged
... When the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx

x

y

N

y = f (x)

N∑
n=1

an

∞∑
n=N+1

an (truncation error)
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Integral Test, abridged
When the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx

We already decided that the series
∞∑

n=1

1
n2 + 1

converges.

Suppose we had a computer add up the terms n = 1 through n = 100.

Use the integral test to bound the error,
∞∑

n=1

1
n2 + 1

−
100∑
n=1

1
n2 + 1

.

∞∑
n=1

1
n2 + 1

−
100∑
n=1

1
n2 + 1

≤
∫ ∞

100

1
x2 + 1

dx

= lim
b→∞

[arctan(b)− arctan(100)] =
π

2
− arctan(100) ≈ 0.01
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By computer,
100∑
n=1

1
n2 + 1

≈ 1.0667. Using the truncation error of about

0.01, give a (small) range of possible values for
∞∑

n=1

1
n2 + 1

.

0 ≤
∞∑

n=1

1
n2 + 1

−
100∑
n=1

1
n2 + 1

≤
∫ ∞

100

1
x2 + 1

dx

0 ≤
∞∑

n=1

1
n2 + 1

− 1.0667 ≤ 0.01

1.0667 ≤
∞∑

n=1

1
n2 + 1

≤ 1.0767
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p-TEST

Let p be a positive constant. When we talked about improper
integrals, we showed:∫ ∞

1

1
xp dx

{
converges if p > 1
diverges if p ≤ 1

Set f (x) =
1
xp .

(i) f (x) ≥ 0 for all x ≥ 1, and
(ii) f (x) decreases as x increases

∞∑
n=1

1
np dx

{
converges if p > 1
diverges if p ≤ 1

523/643 Example 3.3.6

Consider the series
∞∑

n=1

1
n3 .

By the p-test, we know this series

converges.

How many terms should we add up to approximate the series to
within an error of no more than 0.02?

∞∑
n=1

1
n3 −

N∑
n=1

1
n3 ≤

∫ ∞
N

1
x3 dx = lim

b→∞

[
− 1

2x2

]b

N
=

1
2N2

1
2N2 ≤

2
100

=⇒ N ≥ 5

5 terms will suffice.
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∞∑
n=1

1
n3 converges to within 0.02 of

5∑
n=1

1
n3 .

0 ≤
∞∑

n=1

1
n3 −

5∑
n=1

1
n3 ≤ 0.02

0 ≤
∞∑

n=1

1
n3 − 1.1856 ≤ 0.02

1.1856 ≤
∞∑

n=1

1
n3 ≤ 1.2056

1 1
23

1
33

1
43

1
53

1.0000

S1 = 1.0000

1.1250

S2 = 1.1250

1.1620

S3 = 1.1620

1.1776

S4 = 1.1776

1.1856

S5 = 1.1856
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Observation
In a series with positive terms, the series either converges, or
diverges to infinity.

If terms are “too big,” series will diverge.

a1

a2

a3 ∑
an

526/643

∑ 1
n2 converges

∑ 1
n2 + n

converges, too

1

1
4

1
9

1
2

1
6

1
12

Terms are “small enough” for
sum to converge

Terms are also “small enough”
for sum to converge
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The Comparison Test
Let N0 be a natural number and let K > 0.

(a) If |an| ≤ Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an

converges.

(b) If an ≥ Kdn ≥ 0 for all n ≥ N0 and
∞∑

n=0
dn diverges, then

∞∑
n=0

an

diverges.

Consider
∞∑

n=1

1
n−0.1 .

I We know 0 < 1
n <

1
n−0.1

I We know
∞∑

n=1

1
n diverges (harmonic series)

I So, by the comparison test,
∞∑

n=1

1
n−0.1 diverges as well.

528/643 Therorem 3.3.8



Does the series
∞∑

n=1

n + cos n
n3 − 1/3

converge or diverge?

Step 1: Intuition.
When n is very large, we expect:
I n + cos n ≈ n

I n3 + 1
3 ≈ n3

I So, we expect
n + cos n
n3 − 1/3

≈ n
n3 =

1
n2 .

Since
∞∑

n=1

1
n2 ... converges (by the p-test),

we expect
∞∑

n=1

n + cos n
n3 − 1/3

to also .... converge.

529/643 Example 3.3.10

Does the series
∞∑

n=1

n + cos n
n3 − 1/3

converge or diverge?

Step 2: Choose comparison series.

The Comparison Test, abridged
Let N0 be a natural number and let K > 0.

If |an| ≤ Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an converges.

To show that original series converges, we should find a comparison
series that also converges and whose terms (times some positive
constant) are larger than the original terms. There are many
possibilities. For n ≥ 1,
I n + cos n < n + n = 2n
I n3 − 1

3 >n3 − n3

2 = 1
2 n3

I So
n + cos n
n3 − 1/3

<
2n
1
2 n3

= 4 · 1
n2

530/643 Example 3.3.10

Does the series
∞∑

n=1

n + cos n
n3 − 1/3

converge or diverge?

Step 3: Verify.

The Comparison Test, abridged
Let N0 be a natural number and let K > 0.

If |an| ≤ Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an converges.

Set cn = 1
n2 and K = 4. Note

∞∑
n=1

cn converges.

Note also
∣∣∣ n+cos n

n3−1/3

∣∣∣ < n+n
n3− n3

2

= 4 · 1
n2 for all n ≥ 1.

By the comparison test,
∞∑

n=1

n + cos n
n3 − 1/3

converges.

531/643 Example 3.3.10

For the comparison test as we have seen it so far, to conclude that a
given series diverges, we have to find a divergent comparison series
whose terms are smaller than (a positive multiple of) those of our
original series .

you must be at
least this tall to
diverge

∑ 1
n

∑ 1
n−
√

n ∑ 1
n+
√

n
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For the comparison test as we’ve seen it so far, to conclude that a
given series converges, we have to find a convergent comparison
series whose terms are larger than (a positive multiple of) those of
our original series .

convergent
series only

∑ 1
n3/2

∑ 1
n3/2 − n
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Limit Comparison Theorem
Let

∑∞
n=1 an and

∑∞
n=1 bn be two series with bn > 0 for all n. Assume

that
lim

n→∞

an

bn
= L

exists.
(a) If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges too.

(b) If L 6= 0 and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges too.
In particular, if L 6= 0, then

∑∞
n=1 an converges if and only if

∑∞
n=1 bn

converges.

I For large n, an ≈ L · bn;

I so we expect
∑

an to behave roughly like
∑

(L · bn);

I and since L 6= 0, we expect
∑

(L · bn) to converge if and only if∑
bn converges.

534/643 Theorem 3.3.11, with a very rough justification

By the p-test,
∞∑

n=1

1
n3/2 converges.

Can we conclude that
∞∑

n=1

1
n3/2 − n + 1

also converges?

an =
1

n3/2 bn =
1

n3/2 − n + 1
an

bn
=

n3/2 − n + 1
n3/2 = 1− 1√

n
+

1
n3/2

L = lim
n→∞

an

bn
= 1− 0 + 0 = 1

Since L is a nonzero real number, the two series either both converge
or both diverge. By the p-test,

∑ 1
n3/2 converges. So, by the limit

comparison test,
∑ 1

n3/2−n+1 also converges.
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Does the series
∞∑

n=1

√
n + 1

n2 − 2n + 3
converge or diverge?

Step 1: Intuition
For large n, √

n + 1
n2 − 2n + 3

≈
√

n
n2 =

1
n3/2

So, we’ll use
∞∑

n=1

1
n3/2 as our comparison series. Since this

converges, we expect our original series to converge as well.
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Does the series
∞∑

n=1

√
n + 1

n2 − 2n + 3
converge or diverge?

Step 2: Verify Intuition
Let an =

√
n+1

n2−2n+3 and bn = 1
n3/2 .

lim
n→∞

an

bn
= lim

n→∞

√
n+1

n2−2n+3
1

n3/2

= lim
n→∞

√
n+1

n2−2n+3√
n

n2

= lim
n→∞

√
n + 1 · 1√

n

(n2 − 2n + 3) · 1
n2

= lim
n→∞

√
1 + 1

n

1− 2
n + 3

n2

=

√
1 + 0

1 + 0 + 0
= 1

Since
∑∞

n=1
1

n3/2 converges (by the p-test), the original series
converges as well, by the Limit Comparison Theorem.
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COMPARISON STRATEGIES

I Before you can use either comparison test, you need to guess a
series to compare.

I The series you guess should be easy to deal with.

I p-series
I geometric series

I Common guess (especially if monotone): consider “largest”
piece of numerator and denominator
(constant) < (logarithm) < (polynomial) < (exponential)

I After you guess a comparison series, show it works by finding
the correct inequality (comparison test), or computing the limit
of the ratio (limit comparison test).
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CHOOSE A SERIES TO COMPARE

∞∑
n=1

3n
n2 + 1

One option:
∞∑

n=1

3n
n2 =

∞∑
n=1

3
n

∞∑
n=1

n2 + n + 1
n5 − n

One option:
∞∑

n=1

n2

n5 =

∞∑
n=1

1
n3

∞∑
k=1

k(2 + sin k)

k
√

2
One option:

∞∑
k=1

2k
k
√

2
=
∞∑

k=1

2
k
√

2−1

∞∑
m=1

3m + sin
√

m
m2 One option:

∞∑
m=1

3m
m2 =

∞∑
m=1

3
m
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REVIEW

Let SN =

N∑
n=1

an.

Simplify: SN − SN−1. (This will come in handy soon.)

SN = a1 + a2 + a3 + · · ·+ aN−1 + aN

SN−1 = a1 + a2 + a3 + · · ·+ aN−1

SN − SN−1 = aN
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ALTERNATING SERIES

Alternating Series
The series

A1 − A2 + A3 − A4 + · · · =
∞∑

n=1

(−1)n−1An

is alternating if every An ≥ 0.

Alternating series:

I 1−2+3−4+5−6+7−8+· · ·

I 1− 1
2

+
1
3
− 1

4
+

1
5
− · · ·

Not alternating:

I cos(1) + cos(2) + cos(3) + · · ·

I 1−
(
−1

2

)
+

1
3
−
(
−1

4

)
+ · · ·
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6 −5 4 −3 2 −1

6.0000

S1 = 6.0000

1.0000

S2 = 1.0000

5.0000

S3 = 5.0000

2.0000

S4 = 2.0000

4.0000

S5 = 4.0000

3.0000

S6 = 3.0000
Note: these terms alternate signs, and their magnitudes are
decreasing: |6| > | − 5| > |4| > | − 3| > |2| > | − 1|

n

S1
6

S2

1

a2

S3
5

a3

S4

2

a4

S5
4 a5

S6

3 a6

6 −5 4 −3 2 −1
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Note: these terms alternate signs, and their magnitudes are
decreasing: |6| > | − 5| > |4| > | − 3| > |2| > | − 1|

n

S1
6

S2

1

a2

S3
5

a3

S4

2

a4

S5
4 a5

S6

3 a6

6 −5 4 −3 2 −1
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Consider an alternating series a1 − a2 + a3 − a4 + · · · , where {an} is a
sequence with positive, decreasing terms and with lim

n→∞
an = 0.

n

S1

S3
S5 S7 S9 S11 S13 S15 S17 S19

S2

S4
S6

S8 S10 S12 S14 S16 S18 S20

a2
a3

a4

Since a2 > a3, we have a1 − (a2 − a3) < a1, so S3 < S1.

Odd-indexed partial sums are decreasing.

Since a3 > a4, we have a1 − a2 + (a3 − a4) > a1 − a2, so S4 > S2.
Even-indexed partial sums are increasing.
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n

S1

S3
S5 S7 S9 S11 S13 S15 S17 S19

S2

S4
S6

S8 S10 S12 S14 S16 S18 S20

lim
n→∞

Sn

I For all n ≥ 2, Sn lies between S1 and S2.
I For all n ≥ 3, Sn lies between S2 and S3.
I For all n ≥ 4, Sn lies between S3 and S4.
I For all n ≥ 5, Sn lies between S4 and S5.

The difference between consecutive sums Sn and Sn−1 is:

|an|, which approaches 0.
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Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys
(i) an ≥ 0 for all n ≥ 1;

(ii) an+1 ≤ an for all n ≥ 1 (i.e. the sequence is monotone decreasing);
(iii) and lim

n→∞
an = 0.

Then

a1 − a2 + a3 − a4 + · · · =
∞∑

n=1

(−1)n−1an = S

converges and, for each natural number N, S− SN is between 0 and
(the first dropped term) (−1)NaN+1. Here SN is, as previously, the Nth

partial sum
N∑

n=1
(−1)n−1an.

547/643 Theorem 3.3.14

Alternating Series Test (abridged)

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys
(i) an ≥ 0 for all n ≥ 1;

(ii) an+1 ≤ an for all n ≥ 1 (i.e. the sequence is monotone decreasing);
(iii) and lim

n→∞
an = 0.

Then

a1 − a2 + a3 − a4 + · · · =
∞∑

n=1

(−1)n−1an

converges.

I True or false: the harmonic series
∞∑

n=1

1
n

converges.

I True or false: the alternating harmonic series
∞∑

n=1

(−1)n

n
converges.
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DIVERGENCE TEST + ALTERNATING SERIES TEST

lim
n→∞

an = ?

∑
an diverges

(divergence test)

6= 0

Alternating and
|an+1| ≤ |an|?

= 0

∑
an may converge or

diverge; use another test

no

∑
an converges

(alternating series test)

yes

549/643 Warning 3.3.3

Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys an ≥ 0 for all

n ≥ 1; an+1 ≤ an for all n ≥ 1; and lim
n→∞

an = 0. Then
∞∑

n=1
(−1)n−1an = S

converges and S− SN is between 0 and (−1)NaN+1.

Using a computer, you find
99∑

n=1

(−1)n−1

n
≈ 0.698.

How close is that to the value
∞∑

n=1

(−1)n−1

n
?

−1
100

=
(−1)100−1

100
≤
∞∑

n=1

(−1)n

n
−

99∑
n=1

(−1)n

n
≤ 0.

That is, the actual series has a sum in the interval [0.688, 0.698].
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Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys an ≥ 0 for all

n ≥ 1; an+1 ≤ an for all n ≥ 1; and lim
n→∞

an = 0. Then
∞∑

n=1
(−1)n−1an = S

converges and S− SN is between 0 and (−1)NaN+1.

Using a computer, you find
19∑

n=1

(−1)n−1 n2

n2 + 1
≈ 0.6347.

How close is that to the value
∞∑

n=1

(−1)n−1 n2

n2 + 1
?

Not close at all: the series is divergent (which we can see by the
divergence test).
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Recall for a geometric series, the ratios of consecutive terms is
constant.

1
2

1
4

1
8

1
16

1
32

+

× 1
2

1/4
1/2 =

+

× 1
2

1/8
1/4 =

+

× 1
2

1/16
1/8 =

+

× 1
2

1/32
1/16 =

· · ·

1
2

If that ratio has magnitude less then one, then the series converges.
If the ratio has magnitude greater than one, the series diverges.
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For series convergence, we are concerned with what happens to
terms an when n is sufficiently large.
Suppose for a sequence an, lim

n→∞
an+1

an
= L for some constant L.

an an+1 an+2 an+3 an+4+

an+1

an
≈

+

an+2

an+1
≈

+

an+3

an+2
≈

+

an+4

an+3
≈

+

an+5

an+4
≈

· · ·

L

Like in a geometric series:

If L has magnitude less then one, then the series converges.
If L has magnitude greater than one, the series diverges.
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Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L < 1, then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L > 1, or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.

554/643 Theorem 3.3.18

Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L < 1, then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L > 1, or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.

Use the ratio test to determine whether the series
∞∑

n=1

n
3n

converges or diverges.∣∣∣∣an+1

an

∣∣∣∣ =
n+1
3n+1

n
3n

=
n + 1

n
· 3n

3n+1 =

(
1 +

1
n

)
· 1

3

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
1
3

Since 1
3 < 1, by the ratio test,

∞∑
n=1

n
3n coverges.
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Q

REMARK

The series we just considered,
∞∑

n=1

n
3n , looks similar to a geometric

series, but it is not exactly a geometric series. That’s a good indicator
that the ratio test will be helpful!

We could have used other tests, but ratio was probably the easiest.

I Integral test:
∫

x
3x dx can be evaluated using integration by

parts.
I Comparison test:

I
∑ 1

3n is not a valid comparison series, nor is
∑

n.
I Because n < 2n for all n ≥ 1, the series

∑( 2
3

)n will work.
I The divergence test is inconclusive, and the alternating series test

does not apply. Our series is not geometric, and not obviously
telescoping.
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Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L < 1, then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ = L > 1, or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.

Let a and x be nonzero constants. Use the ratio test to determine
whether

∞∑
n=1

anxn−1

converges or diverges. (This may depend on the values of a and x.)

557/643

Q

Let x be a constant. Use the ratio test to determine whether
∞∑

n=1

(−3)n
√

n + 1
2n + 3

xn

converges or diverges. (This may depend on the value of x.)

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(−3)n+1√n+2

2(n+1)+3 xn+1

(−3)n
√

n+1
2n+3 xn

∣∣∣∣∣∣ =

∣∣∣∣ (−3)n+1

(−3)n ·
√

n + 2√
n + 1

· 2n + 3
2n + 5

· xn+1

xn

∣∣∣∣
= 3 ·

√
n + 2
n + 1

·
(

2n + 3
2n + 5

)
· |x| = 3

√
1 + 2/n
1 + 1/n

·
(

2 + 3/n
2 + 5/n

)
· |x|

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 3

√
1
1

(
2
2

)
|x| = 3|x|

So the series converges when 3|x| < 1 and diverges when 3|x| > 1.
So for |x| < 1

3 , the series converges, and for |x| > 1
3 , it diverges.
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Example 3.3.23

Q

FILL IN IN THE BLANKS

Divergence Test

If the sequence {an}∞n=c

then the series
∞∑

n=c
an diverges.

Ratio Test
Let N be any positive integer and assume that an 6= 0 for all n ≥ N.

(a) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ , then
∞∑

n=1
an converges.

(b) If lim
n→∞

∣∣∣ an+1
an

∣∣∣ , or lim
n→∞

∣∣∣ an+1
an

∣∣∣ =∞, then
∞∑

n=1
an diverges.
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Integral Test
Let N0 be any natural number. If f (x) is a function which is defined
and continuous for all x ≥ N0 and which obeys

(i) and

(ii) and
(iii) f (n) = an for all n ≥ N0.
Then

x

y

1 2 3

a1
a2 a3

y = f (x)

∞∑
n=1

an converges ⇐⇒
∫ ∞

N0

f (x) dx converges

Furthermore, when the series converges, the truncation error satisfies

0 ≤
∞∑

n=1

an −
N∑

n=1

an ≤
∫ ∞

N
f (x) dx for all N ≥ N0
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FILL IN IN THE BLANKS

The Comparison Test
Let N0 be a natural number and let K > 0.

(a) If |an| Kcn for all n ≥ N0 and
∞∑

n=0
cn converges, then

∞∑
n=0

an

converges.

(b) If an Kdn ≥ 0 for all n ≥ N0 and
∞∑

n=0
dn diverges, then

∞∑
n=0

an

diverges.
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FILL IN IN THE BLANKS

Limit Comparison Theorem
Let

∑∞
n=1 an and

∑∞
n=1 bn be two series with bn > 0 for all n. Assume

that
lim

n→∞

an

bn
= L

exists.
(a) If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges too.

(b) If L 6= 0 and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges too.

In particular, if , then
∑∞

n=1 an converges if and only if∑∞
n=1 bn converges.
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Alternating Series Test

Let
{

an
}∞

n=1 be a sequence of real numbers that obeys

(i)
(ii) an+1 ≤ an for all n ≥ 1 (i.e. the sequence is monotone decreasing);

(iii) and
Then

a1 − a2 + a3 − a4 + · · · =
∞∑

n=1

(−1)n−1an = S

converges and, for each natural number N, S− SN is between 0 and
(the first dropped term) (−1)NaN+1. Here SN is, as previously, the Nth

partial sum
N∑

n=1
(−1)n−1an.
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LIST OF CONVERGENCE TESTS

Divergence Test
When the nth term in the series fails to converge to zero as n
tends to infinity.
This is a good first thing to check: if it works, it’s quick, but it
doesn’t always work.

Alternating Series Test
I successive terms in the series alternate in sign
I don’t forget to check that successive terms decrease in

magnitude and tend to zero as n tends to infinity

Integral Test
I works well when, if you substitute x for n in the nth term

you get a function, f (x), that you can easily integrate
I don’t forget to check that f (x) ≥ 0 and that f (x) decreases

as x increases

564/643



LIST OF CONVERGENCE TESTS

Ratio Test
I works well when an+1

an
simplifies enough that you can

easily compute lim
n→∞

∣∣ an+1
an

∣∣ = L
I this often happens when an contains powers, like 7n, or

factorials, like n!
I don’t forget that L = 1 tells you nothing about the

convergence/divergence of the series

Comparison Test and Limit Comparison Test
I Comparison test lets you ignore pieces of a function that

feel extraneous (like replacing n2 + 1 with n2) but there is a
test to make sure the comparison is still valid. Either the
limit of a ratio is the right thing, or an inequality goes the
right way.

I Limit comparison works well when, for very large n, the
nth term an is approximately the same as a simpler,
nonnegative term bn
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I The integral test gave us the p-test. When you’re looking for

comparison series, p-series
∑ 1

np are often good choices,
because their convergence or divergence is so easy to ascertain.

I Geometric series have the form
∑

a · rn for some nonzero
constants a and r. The magnitude of r is all you need to know to
deicide whether they converge or diverge, so these are also
common comparison series.

I Telescoping series have partial sums that are easy to find because
successive terms cancel out. These are less obvious, and are less
common choices for comparison series.
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Test List
I divergence
I integral
I alternating series

I ratio
I comparison
I limit comparison

Determine whether the series
∞∑

n=1

cos n
2n converges or diverges.

The divergence test is inconclusive, because lim
n→∞

cos n
2n = 0 (which

you can show with the squeeze theorem).
The integral test doesn’t apply, because f (x) = cos x

2x is not always
positive (and not decreasing).
The alternating series test doesn’t apply because the signs of the
series do not strictly alternate every term.
The ratio test does not apply, because lim

n→∞
an+1

an
does not exist.

Comparison test: Let an = cos n
2n . Note |an| ≤ 1

2n , and
∑∞

n=1
1
2n

converges (it is a geometric sum with ratio of consecutive terms 1
2 ).

So by the comparison test,
∞∑

n=1

cos n
2n converges.

Limit comparison: Set an = cos n
2n and bn =

( 2
3

)n
. Then

an

bn
=

cos n
2n

2n

3n

=

(
3
4

)n

cos n

−
( 3

4

)n ≤
( 3

4

)n
cos n ≤

( 3
4

)n
, and lim

n→∞
−
( 3

4

)n
= lim

n→∞

( 3
4

)n
= 0

So, by the Squeeze Theorem,

lim
n→∞

an

bn
= 0

Since
∑∞

n=1 bn converges, by the limit comparison theorem,
∞∑

n=1

cos n
2n

converges as well.
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Test List
I divergence
I integral
I alternating series

I ratio
I comparison
I limit comparison

Determine whether the series
∞∑

n=1

2n · n2

(n + 5)5 converges or diverges.

The alternating series test doesn’t apply because the signs of the
series do not alternate.
The integral test doesn’t apply f (x) = 2x·x2

(x+5)5 is not a decreasing
function.
Divergence test: lim

n→∞
2n·n2

(n+5)5 =∞ (which you can see because the

numerator is larger than a power function; the denominator is a
polynomial; and power functions grow faster than polynomials), so
the series diverges by the divergence test.

This is the fastest option, but not the only one.
Ratio test:

an

bn
=

2n+1·(n+1)2

(n+1+5)5

2n·n2

(n+5)5

=
2n+1

2n ·
(n + 1)2

n2 · (n + 5)5

(n + 6)5

= 2
(

1 +
1
n

)2(
1− 1

n + 6

)5

lim
n→∞

an

bn
= 2(1)2(1)5 = 2

So, the limit of the ratio of consecutive terms is greater than 1.

Therefore
∞∑

n=1

2n·n2

(n+5)5 diverges by the ratio test.

Comparison test: Since power functions grow faster than
polynomials, for large values of n, 2n > (n + 5)5, so 2n

(n+5)5 > 1. Then,
for large enough n,

2n · n2

(n + 5)5 > n2 .

By the divergence test,
∑∞

n=1 n2 diverges. So by the comparison test,
∞∑

n=1

2n·n2

(n+5)5 diverges as well.

Limit comparison: Set an = 2n·n2

(n+5)5 and bn = 2n

n3 .
Then

an

bn
=

2n·n2

(n+5)5

2n

n3

=
n5

(n + 5)5 =

(
1− 5

n + 5

)5

So, lim
n→∞

an

bn
= 15 = 1

Note that
∑∞

n=1
2n

n3 diverges. (You can show this using the tests we’ve
already used on the original series, so this method isn’t really an
improvement.) Since lim

n→∞
an
bn

exists and is nonzero, by the limit

comparison theorem,
∞∑

n=1

2n·n2

(n+5)5 diverges.
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Test List
I divergence
I integral
I alternating series

I ratio
I comparison
I limit comparison

Determine whether the series
∞∑

n=1

1
n

sin

(
1
n

)
converges or diverges.

Hint: If θ ≥ 0 then sin θ ≤ θ.

The divergence test is inconclusive because lim
n→∞

sin( 1
n )

n = 0.

The alternating series test does not apply because we are not
considering an alternating series.
The integral test won’t work for us because

∫∞
1

1
x sin

( 1
x

)
dx cannot

be evaluated with techniques we’ve learned in class so far.

The ratio test is inconclusive because lim
n→∞

1
n+1 sin( 1

n+1 )
1
n sin( 1

n )
= 1:

Set x = 1
n+1 . Then 1

n = x
1−x :

lim
n→∞

sin
(

1
n+1

)
1
n

= lim
x→0+

sin x
x

1−x
= lim

x→0+
(1− x)

sin x
x

= 1 · 1 = 1

Set y = 1
n . Then 1

n+1 = y
1+y :

lim
n→∞

sin
( 1

n

)
1

n+1

= lim
y→0+

sin y
y

1+y

= lim
y→0+

(1 + y)
sin y

y
= 1 · 1 = 1

Therefore,

lim
n→∞

1
n+1 sin

(
1

n+1

)
1
n sin

( 1
n

) = 1

Comparison test: For n ≥ 1, 1
n > 0. Then setting θ = 1

n in the hint,
sin
( 1

n

)
≤ 1

n . Furthermore, 0 < 1
n < π, so sin

( 1
n

)
> 0.

0 <
1
n

sin

(
1
n

)
≤ 1

n

(
1
n

)
=

1
n2

The p-series
∑∞

n=1
1

n2 converges, so by the comparison test,
∑∞

n=1
1
n sin

( 1
n

)
converges as well.
Limit comparison: Set an = 1

n sin
( 1

n

)
and bn = 1

n2 .

lim
n→∞

an

bn
= lim

n→∞

1
n sin

( 1
n

)
1

n2

= lim
n→∞

sin
( 1

n

)
1
n

Setting x = 1
n ,

= lim
x→0+

sin x
x

= 1

The p-series
∑∞

n=1
1

n2 converges, so by the limit comparison test,∑∞
n=1

1
n sin

( 1
n

)
converges as well.
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FOUR SERIES

Let an =
(
− 2

3

)n
. Do the following series converge or diverge?

∞∑
n=0

an

∞∑
n=0

|an|

converge converge

Let bn = (−1)n

n . Do the following series converge or diverge?

∞∑
n=1

bn

∞∑
n=1

|bn|

converge diverge
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The series
∞∑

n=0

(
−2

3

)n

is called absolutely convergent, because the series converges and if
we replace the terms being added by their absolute values, that series
still converges.

The series
∞∑

n=0

(−1)n

n

is called conditionally convergent, because the series converges, but if
we replace the terms being added by their absolute values, that series
diverges.
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Absolute and conditional convergence

(a) A series
∞∑

n=1
an is said to converge absolutely if the series

∞∑
n=1
|an| converges.

(b) If
∞∑

n=1
an converges but

∞∑
n=1
|an| diverges we say that

∞∑
n=1

an is conditionally convergent.

Theorem

If the series
∞∑

n=1
|an| converges then the series

∞∑
n=1

an also converges.

That is, absolute convergence implies convergence.

573/643 Definition 3.4.1 and Theorem 3.4.2

If
∑

an ... and
∑
|an| ... then we say

∑
an is ...

converges converges

absolutely convergent

converges diverges

conditionally convergent

diverges diverges

divergent

diverges converges

not possible!
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Does the series
∞∑

n=1

(−1)n

n2

converge or diverge?

Alternating series test:
Let an = 1

n2 . Note an has positive, decreasing terms,

approaching 0 as n grows. Then
∞∑

n=1

(−1)n

n2 converges by the

alternating series test.
Absolute convergence implies convergence:

The series
∞∑

n=1

∣∣∣ (−1)n

n2

∣∣∣ is the same as the p-series
∞∑

n=1

1
n2 , which

converges by the p-test. Then
∞∑

n=1

(−1)n

n2 converges absolutely,

therefore it converges.
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Example 3.4.4

Does the series
∞∑

n=1

sin(n)

n2

converge or diverge?

The terms of this series are sometimes positive and sometimes
negative, but they do not strictly alternate, so the alternating series
test does not apply.

Note that
∞∑

n=1

1
n2 is a convergent series, and | sin n|

n2 ≤ 1
n2 for all n. Then

by the comparison test,
∞∑

n=1

| sin n|
n2 converges.

Then
∞∑

n=1

sin(n)
n2 converges absolutely, hence it converges.
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Finite addition is commutative

1 + 2 + 3 + 4 = 4 + 1 + 3 + 2

What happens if we re-arrange the terms in a series?

We’ll illustrate some possibilities, but first we need to establish some
preliminary results.
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PRELIMINARY RESULTS

Split up the alternating harmonic series into two series: one with the
positive terms, and one with the negative terms.

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
· · ·

− 1
2
− 1

4
− 1

6
− 1

8
− · · ·

=− 1
2

(
1 +

1
2

+
1
3

+
1
4

+ · · ·
)

= −1
2

∞∑
n=1

1
n

So, we can make an arbitrarily
large negative number by adding
up these terms.

1 +
1
3

+
1
5

+
1
7

+ · · ·

≥1
2

+
1
4

+
1
6

+
1
8

+ · · ·

So, we can make an arbitrarily
large positive number by adding
up these terms.
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PRELIMINARY RESULTS

We’ve shown that the alternating harmonic series converges. We
don’t have the tools to do it just yet, but later we’ll be able to compute
what it converges to:

∞∑
n=1

(−1)n−1

n
= log 2

Surprising fact: if we reorder the terms of the series carefully, we can
make a new series adding up to any number we want.
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Rearrange the alternating harmonic series to sum to 0.

skip steps

0

1
11

1
13

1
15

1
17

1
19

1
21

1
23

1
25

1
27

1
29

1
1

1
1

1

-1
2

-1
2

0.5

-1
4

-1
4

0.25

-1
6

-1
6

0.08334

-1
8

-1
8

−0.04166

1
3

1
3

0.29167

-1
10

-1
10

0.19167

-1
12

-1
12

0.10834

-1
14

-1
14

0.03691

-1
16

-1
16

−0.02559

1
5

1
5

0.17441

-1
18

-1
18

0.11885

-1
20

-1
20

0.06885

-1
22

-1
22

0.02339

-1
24

-1
24

−0.01826

1
7

1
7

0.12459

-1
26

-1
26

0.08612

-1
28

-1
28

0.05042

-1
30

-1
30

0.01709−0.01416

1
9

1
9

0.09695

I Add positive terms until the partial sum is greater than 0.
I Add negative terms until the partial sum is less than 0.
I Repeat.
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Rearrange the alternating harmonic series to sum to 0.

skip steps

0

1
11

1
13

1
15

1
17

1
19

1
21

1
23

1
25

1
27

1
29

1
1

1
1

1

-1
2

-1
2

0.5

-1
4

-1
4

0.25

-1
6

-1
6

0.08334

-1
8

-1
8

−0.04166

1
3

1
3

0.29167

-1
10

-1
10

0.19167

-1
12

-1
12

0.10834

-1
14

-1
14

0.03691

-1
16

-1
16

−0.02559

1
5

1
5

0.17441

-1
18

-1
18

0.11885

-1
20

-1
20

0.06885

-1
22

-1
22

0.02339

-1
24

-1
24

−0.01826

1
7

1
7

0.12459

-1
26

-1
26

0.08612

-1
28

-1
28

0.05042

-1
30

-1
30

0.01709−0.01416

1
9

1
9

0.09695

I Add positive terms until the partial sum is greater than 0.
I Add negative terms until the partial sum is less than 0.
I Repeat.
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Rearrange the alternating harmonic series to sum to 2.

skip steps

2

-1
6

-1
8

-1
10

-1
12

-1
14

-1
16

-1
18

-1
20

1
1

1
1

1

1
3

1
3

1.33333

1
5

1
5

1.53333

1
7

1
7

1.67618

1
9

1
9

1.7873

1
11

1
11

1.87819

1
13

1
13

1.95511

1
15

1
15

2.02177

-1
2

-1
2

1.52177

1
17

1
17

1.5806

1
19

1
19

1.63322

1
21

1
21

1.68083

1
23

1
23

1.7243

1
25

1
25

1.7643

1
27

1
27

1.80133

1
29

1
29

1.83582

1
31

1
31

1.86807

1
33

1
33

1.89838

1
35

1
35

1.926941.953961.97962.00398

-1
4

-1
4

1.753981.777241.799451.820721.841131.860731.87961.897771.915311.932251.948641.96451

I Add positive terms until the partial sum is greater than 2.
I Add negative terms until the partial sum is less than 2.
I Repeat.
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Rearrange the alternating harmonic series to sum to 2.

skip steps

2

-1
6

-1
8

-1
10

-1
12

-1
14

-1
16

-1
18

-1
20

1
1

1
1

1

1
3

1
3

1.33333

1
5

1
5

1.53333

1
7

1
7

1.67618

1
9

1
9

1.7873

1
11

1
11

1.87819

1
13

1
13

1.95511

1
15

1
15

2.02177

-1
2

-1
2

1.52177

1
17

1
17

1.5806

1
19

1
19

1.63322

1
21

1
21

1.68083

1
23

1
23

1.7243

1
25

1
25

1.7643

1
27

1
27

1.80133

1
29

1
29

1.83582

1
31

1
31

1.86807

1
33

1
33

1.89838

1
35

1
35

1.926941.953961.97962.00398

-1
4

-1
4

1.753981.777241.799451.820721.841131.860731.87961.897771.915311.932251.948641.96451

I Add positive terms until the partial sum is greater than 2.
I Add negative terms until the partial sum is less than 2.
I Repeat.
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In fact: you can reorder any conditionally convergent series to
I add up to any number, or
I diverge to infinity, or
I diverge to negative infinity.

Changing the order of terms in an absolutely convergent series does
not change its value.
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This doesn’t work with absolutely convergent series.

skip steps

Let’s try to rearrange the terms of
∞∑

n=1

(−1)n−1

n2 to add up to 0:

0

∣∣∣∑∞m=1
−1

(2m)2

∣∣∣ < 1
4 +

∫∞
1

1
(2x)2 dx = 1

2

1
32

1
52

1
72

1
92

1
112

1
132

1
152

1
172

1
192

1
212

1
12

1
12

1

-1
22

-1
22

0.75

-1
42

-1
42

0.6875

-1
62

-1
62

0.65973

-1
82

-1
82

0.6441

-1
102

-1
102

0.63411

-1
122

-1
122

0.62717

-1
142

-1
142

0.62207

-1
162

-1
162

0.61816

-1
182

-1
182

0.61508

-1
202

-1
202

0.6126

-1
222

-1
222

0.61053

-1
242

-1
242

0.60881

-1
262

-1
262

0.60735

-1
282

-1
282

0.606080.604980.6040.603150.602390.60170.601090.600520.600020.599560.59914

I Add positive terms until the partial sum is greater than 0.
I Add negative terms (those with n = 2m, m = 1, 2, 3, · · · ) until the

partial sum is less than 0.
I Repeat.
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This doesn’t work with absolutely convergent series.

skip steps

Let’s try to rearrange the terms of
∞∑

n=1

(−1)n−1

n2 to add up to 0:

0

∣∣∣∑∞m=1
−1

(2m)2

∣∣∣ < 1
4 +

∫∞
1

1
(2x)2 dx = 1

2

1
32

1
52

1
72

1
92

1
112

1
132

1
152

1
172

1
192

1
212

1
12

1
12

1

-1
22

-1
22

0.75

-1
42

-1
42

0.6875

-1
62

-1
62

0.65973

-1
82

-1
82

0.6441

-1
102

-1
102

0.63411

-1
122

-1
122

0.62717

-1
142

-1
142

0.62207

-1
162

-1
162

0.61816

-1
182

-1
182

0.61508

-1
202

-1
202

0.6126

-1
222

-1
222

0.61053

-1
242

-1
242

0.60881

-1
262

-1
262

0.60735

-1
282

-1
282

0.606080.604980.6040.603150.602390.60170.601090.600520.600020.599560.59914

I Add positive terms until the partial sum is greater than 0.
I Add negative terms (those with n = 2m, m = 1, 2, 3, · · · ) until the

partial sum is less than 0.
I Repeat.
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In fact: you can reorder any conditionally convergent series to
I add up to any number, or
I diverge to infinity, or
I diverge to negative infinity.

Changing the order of terms in an absolutely convergent series does
not change its value.
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Recall the geometric series: for a constant r, with |r| < 1:

∞∑
n=0

rn =
1

1− r

We can think of this as a function. If we set

f (x) =

∞∑
n=0

xn

and restrict our domain to −1 < x < 1, then

f (x) =

∞∑
n=0

xn =
1

1− x

590/643

x

y

−1 1

y = f (x) =
∞∑

n=0
xn

1
2

2 f
( 1

2

)
=
∞∑

n=0

( 1
2

)n

1
5

5
4

f
( 1

5

)
=
∞∑

n=0

( 1
5

)n

− 3
4

4
7

f
(
− 3

4

)
=
∞∑

n=0

(
− 3

4

)n
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Why would we ever prefer to write
∞∑

n=0
xn instead of 1

1−x ?

The function
∞∑

n=0

xn = 1 + x + x2 + x3 + x4 + · · ·

isn’t a polynomial, but in certain ways it behaves like one. For |x| < 1:

d
dx

{
1

1− x

}
=

d
dx

∞∑
n=0

xn =
∞∑

n=0

(
d
dx
{xn}

)
=
∞∑

n=0

nxn−1

∫
1

1− x
dx =

∫ ( ∞∑
n=0

xn

)
dx =

∞∑
n=0

(∫
xn dx

)
=

∞∑
n=0

xn+1

n + 1
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Definition
A series of the form

∞∑
n=0

An(x− c)n = A0 + A1(x− c) + A2(x− c)2 + A3(x− c)3 + · · ·

is called a power series in (x− c) or a power series centered on c. The
numbers An are called the coefficients of the power series.

One often considers power series centered on c = 0 and then the
series reduces to

A0 + A1x + A2x2 + A3x3 + · · · =
∞∑

n=0

Anxn

593/643 Definition 3.5.1

∞∑
n=0

An(x− c)n = A0 + A1(x− c) + A2(x− c)2 + A3(x− c)3 + · · ·

In a power series, we think of the coefficients An as fixed constants,
and we think of x as the variable of a function.

Evaluate the power series
∞∑

n=0
An(x− c)n when x = c :

∞∑
n=0

An(x− c)n = A0 + A1(x− c) + A2(x− c)2 + A3(x− c)3 + · · ·

∞∑
n=0

An(c− c)n = A0 + A1 (c− c)︸ ︷︷ ︸
0

+A2 (c− c)2︸ ︷︷ ︸
0

+A3 (c− c)3︸ ︷︷ ︸
0

+ · · ·

= A0 (In particular, the series converges when x = c.)
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A fundamental question we want to ask when we see a series is
whether it converges or diverges. So, let’s find all values of x for
which the power series

∞∑
n=1

xn

n
= x +

x2

2
+

x3

3
+

x4

4
+ · · ·

converges.
This looks somewhat like a geometric series, but not exactly, so the
ratio test is a good option.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

n+1
xn

n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ ( n
n + 1

)
= lim

n→∞
|x|
(

n
n + 1

)
= |x|

So the series converges when |x| < 1 and diverges when |x| > 1.
When x = 1, we have the harmonic series, which diverges. When
x = −1, we have the alternating harmonic series, which converges.

So, all together, the series converges when −1 ≤ x < 1, and diverges
everywhere else.

1−1 0
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Q

A fundamental question we want to ask when we see a series is
whether it converges or diverges. So, let’s find all values of x for
which the power series

∞∑
n=1

xn

n
= x +

x2

2
+

x3

3
+

x4

4
+ · · ·

converges.
This looks somewhat like a geometric series, but not exactly, so the
ratio test is a good option.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

n+1
xn

n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ ( n
n + 1

)
= lim

n→∞
|x|
(

n
n + 1

)
= |x|

So the series converges when |x| < 1 and diverges when |x| > 1.
When x = 1, we have the harmonic series, which diverges. When
x = −1, we have the alternating harmonic series, which converges.

So, all together, the series converges when −1 ≤ x < 1, and diverges
everywhere else.

1−1 0

Definition
Consider the power series

∞∑
n=0

An(x− c)n.

The set of real x-values for which it converges is called the interval of
convergence of the series.
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Definition 3.5.10



Find the interval of convergence of the power series
∞∑

n=0

2n(x− 1)n = 1 + 2(x− 1) + 22(x− 1)2 + 23(x− 1)3 + · · · .

This still looks somewhat like a geometric series, so the ratio test is a
still good option to start.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1(x− 1)n+1

2n(x− 1)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 1)n+1

(x− 1)n

∣∣∣∣ (2n+1

2n

)
= 2 |x− 1|

So we see that the series converges when |x− 1| < 1
2 and diverges

when |x− 1| > 1
2 .

When x− 1 = − 1
2 , i.e. x = 1

2 , our series is
∞∑

n=0

2n
(

1
2
− 1
)n

=
∞∑

n=0

2n
(
−1

2

)n

=
∞∑

n=0

(−1)n

When x− 1 = 1
2 , i.e. x = 3

2 , our series is
∞∑

n=0

2n
(

3
2
− 1
)n

=
∞∑

n=0

2n
(

1
2

)n

=
∞∑

n=0

1

In both cases, the series diverge by the divergence test. All together, the
interval of convergence is 1

2 < x < 3
2 .

3/21/2 1
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What happens if we apply the ratio test to a generic power series,
∞∑

n=0
An(x− c)n?

lim
n→∞

∣∣∣∣An+1(x− c)n+1

An(x− c)n

∣∣∣∣ = lim
n→∞

∣∣∣∣An+1

An
(x− c)

∣∣∣∣ = |x− c| lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣
I If

∣∣∣An+1
An

∣∣∣ does not approach a limit as n→∞, the ratio test tells us
nothing. (We should try other tests.)

I If lim
n→∞

∣∣∣An+1
An

∣∣∣ = 0, then

the series converges for all x.

I If lim
n→∞

∣∣∣An+1
An

∣∣∣ =∞, then

the series converges when x = c, and

diverges otherwise.

I If lim
n→∞

∣∣∣An+1
An

∣∣∣ = A for some real number A, then

the series

converges when |x− c| < 1
A , and diverges for |x− c| > 1

A .
The cases |x− c| = 1

A need further inspection.

598/643

Definition: Radius of Convergence

(a) Let 0 < R <∞. If
∞∑

n=0
An(x− c)n converges for |x− c| < R, and

diverges for |x− c| > R, then we say that the series has radius of
convergence R.

c + Rc− R c

(b) If
∑∞

n=0 An(x− c)n converges for every number x, we say that the
series has an infinite radius of convergence.

c

(c) If
∑∞

n=0 An(x− c)n diverges for every x 6= c, we say that the series
has radius of convergence zero.

c

599/643 Definition 3.5.3

I We saw that
∞∑

n=0
xn converges when |x| < 1 and diverges when

|x| > 1, so this series has radius of convergence R =

1.

1−1 0

I We saw that
∞∑

n=1

xn

n
converges when |x| < 1 and diverges when

|x| > 1, so this series also has radius of convergence R =

1.

1−1 0

I We saw that
∞∑

n=1
2n(x− 1)n converges when |x− 1| < 1

2 and

diverges when |x− 1| > 1
2 , so this series has radius of

convergence R =

1
2 .

3
2

1
2

1
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What is the radius of convergence for the series
∞∑

n=0

xn

n! ?

Recall: n! = (n)(n− 1)(n− 2) · · · (2)(1).

lim
n→∞

∣∣∣∣∣∣
xn+1

(n+1)!

xn

n!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ n!

(n + 1)!

= lim
n→∞

|x| (n)(n− 1)(n− 2) · · · (2)(1)

(n + 1)(n)(n− 1)(n− 2) · · · (2)(1)

= lim
n→∞

|x|
n + 1

= 0

For every real x, the limit is less than one, so the series converges.
That is, its radius of convergence is∞.

0

601/643

Q

Example 3.5.5

What is the radius of convergence for the series
∞∑

n=0
n! · (x− 3)n ?

lim
n→∞

∣∣∣∣ (n + 1)!(x− 3)n+1

(n!)(x− 3)n

∣∣∣∣ = lim
n→∞

(n + 1)!

n!

∣∣∣∣ (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞

(n + 1)(n)(n− 1)(n− 2) · · · (2)(1)

(n)(n− 1)(n− 2) · · · (2)(1)
|x− 3|

= lim
n→∞

(n + 1)|x− 3|

For every real x except x = 3, the limit is greater than one, so the
series diverges. The series only converges at x = 3. That is, its radius
of convergence is 0.

3
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Example 3.5.7, mostly

Theorem
Given a power series (say with centre c), one of the following holds.
(a) The power series converges for every number x. In this case we

say that the radius of convergence is∞.

c

(b) There is a number 0 < R <∞ such that the series converges for
|x− c| < R and diverges for |x− c| > R. Then R is called the
radius of convergence.

c + Rc− R c

(c) The series converges for x = c and diverges for all x 6= c. In this
case, we say that the radius of convergence is 0.

c

603/643 Theorem 3.5.9

We are told that a certain power series with centre c = 3 converges at
x = 4 and diverges at x = 1. What else can we say about the
convergence or divergence of the series for other values of x?

604/643 Example 3.5.12



Operations on Power Series
Assume that the functions f (x) and g(x) are given by the power series

f (x) =
∞∑

n=0
An(x− c)n g(x) =

∞∑
n=0

Bn(x− c)n

for all x obeying |x− c| < R. Let K be a constant. Then:

f (x) + g(x) =
∞∑

n=0

[An + Bn] (x− c)n

Kf (x) =
∞∑

n=0

K An (x− c)n

for all x obeying |x− c| < R.

605/643 Theorem 3.5.13, abridged

Operations on Power Series
Assume that the functions f (x) and g(x) are given by the power series

f (x) =
∞∑

n=0
An(x− c)n g(x) =

∞∑
n=0

Bn(x− c)n

for all x obeying |x− c| < R. Let K be a constant. Then:

(x− c)Nf (x) =
∞∑

n=0

An (x− c)n+N for any integer N ≥ 1

=
∞∑

k=N

Ak−N (x− c)k where k = n + N

for all x obeying |x− c| < R.

606/643 Theorem 3.5.13, abridged

Operations on Power Series
Assume that the functions f (x) and g(x) are given by the power series

f (x) =
∞∑

n=0
An(x− c)n g(x) =

∞∑
n=0

Bn(x− c)n

for all x obeying |x− c| < R. Let K be a constant. Then:

f ′(x) =

∞∑
n=0

An n (x− c)n−1 =

∞∑
n=1

An n (x− c)n−1

∫ x

c
f (t) dt =

∞∑
n=0

An
(x− c)n+1

n + 1∫
f (x) dx =

[ ∞∑
n=0

An
(x− c)n+1

n + 1

]
+ C with C an arbitrary constant

for all x obeying |x− c| < R.

607/643 Theorem 3.5.13, abridged

Operations on Power Series
Assume that the functions f (x) and g(x) are given by the power series

f (x) =
∞∑

n=0
An(x− c)n g(x) =

∞∑
n=0

Bn(x− c)n

for all x obeying |x− c| < R. Let K be a constant. Then:

for all x obeying |x− c| < R.
Differentiating, antidifferentiating, multiplying by a nonzero
constant, and multiplying by a positive power of (x− c) do not
change the radius of convergence of f (x) (although they may change
the interval of convergence).

608/643 Theorem 3.5.13, abridged



Given that
d
dx

{
1

1− x

}
=

1
(1− x)2 , find a power series

representation for
1

(1− x)2 when |x| < 1. For |x| < 1:

1
(1− x)2 =

d
dx

{
1

1− x

}
=

d
dx

{ ∞∑
n=0

xn

}

=
∞∑

n=0

(
d

dx
{xn}

)

=

∞∑
n=0

nxn−1

=

∞∑
n=1

nxn−1

609/643 Example 3.5.19
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Find a power series representation for log(1 + x) when |x| < 1.
First, note d

dx{log(1 + x)} = 1
1+x . Our plan is to antidifferentiate a

power series representation of 1
1+x . For |x| < 1:

1
1 + x

=
1

1− (−x)
=
∞∑

n=0

(−x)n =
∞∑

n=0

(−1)nxn

∫
1

1 + x
dx =

∫ ( ∞∑
n=0

(−1)nxn

)
dx

=
∞∑

n=0

(∫
(−1)nxn dx

)
So, for some constant C,

log(1 + x) = C +
∞∑

n=0

(−1)n xn+1

n + 1
= C +

∞∑
n=1

(−1)n+1 xn

n

To find C, let’s plug in a value for x where both sides of the equation
are easy to evaluate: x = 0.

log(1 + 0) = C +
∞∑

n=1

(−1)n+1 0n

n

0 = C

So, log(1 + x) =
∞∑

n=1

(−1)n+1 xn

n

when |x| < 1.

610/643 Example 3.5.20
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Find a power series representation for arctan(x) when |x| < 1.
First, note d

dx {arctan x} = 1
1+x2 . To obtain a power series

representation of 1
1+x2 , we’ll substitute into the geometric series.

Let y = −x2 with |y| < 1. Then:

1
1− y

=
∞∑

n=0

yn

=⇒ 1
1 + x2 =

∞∑
n=0

(−x2)
n

=
∞∑

n=0

(−1)nx2n

=⇒
∫

1
1 + x2 dx =

∫ ( ∞∑
n=0

(−1)nx2n

)
dx =

∞∑
n=0

(∫
(−1)nx2n dx

)

=⇒ arctan x = C +

∞∑
n=0

(−1)n x2n+1

2n + 1

for some constant C. To find C, we’ll plug in x = 0, which makes both
sides of the last equation easy to evaluate.

arctan 0 = C +
∞∑

n=0

(−1)n x2n+1

2n + 1

0 = C

So, arctan x =

∞∑
n=0

(−1)n x2n+1

2n + 1

when | − x2| < 1, i.e. when |x| < 1.

611/643 Example 3.5.21
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Substituting in a Power Series
Assume that the function f (x) is given by the power series

f (x) =
∞∑

n=0

Anxn

for all x in the interval I. Also let K and k be real constants. Then

f
(
Kxk) =

∞∑
n=0

AnKn xkn

whenever Kxk is in I. In particular, if
∑∞

n=0 Anxn has radius of
convergence R, K is nonzero and k is a natural number, then∑∞

n=0 AnKn xkn has radius of convergence k
√

R/|K|.

612/643 Theorem 3.5.18



Find a power series representation for
1

5− x
with centre 3.

We know that 1
1−(x−3) =

∑∞
n=0(x− 3)n when |x− 3| < 1. To take

advantage of our ability to substitute into power functions, we’d like
to write 1

5−x in the form 1
1−K(x−3)k for some constant K and some

whole number k.
1

5− x
=

1
2− (x− 3)

=
1
2
· 1

1−
( x−3

2

)
Set y = x−3

2 . When |y| < 1:

1
2
· 1

1− y
=

1
2

∞∑
n=0

yn

=⇒ 1
2
· 1

1−
( x−3

2

) =
1
2

∞∑
n=0

(
x− 3

2

)n

=⇒ 1
5− x

=

∞∑
n=0

(x− 3)n

2n+1 .

The series converges when:

|y| < 1∣∣∣∣x− 3
2

∣∣∣∣ < 1

|x− 3| < 2

So the radius of convergence of our series is 2.

613/643 Example 3.5.17
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Taylor polynomial

Let a be a constant and let n be a non-negative integer. The nth order
Taylor polynomial for f (x) about x = a is

Tn(x) =
n∑

k=0

1
k!

f (k)(a) · (x− a)k.

Taylor series
The Taylor series for the function f (x) expanded around a is the
power series

∞∑
n=0

1
n!

f (n)(a) (x− a)n.

When a = 0 it is also called the Maclaurin series of f (x).

615/643 CLP–1 Definition 3.4.11 and CLP–2 Definition 3.6.2, first part

Let’s compute some Taylor series, using the definition.

The method is nearly identical to finding Taylor polynomials, which is
covered in CLP–1.

616/643



Find the Maclaurin series for f (x) = sin x.

Taylor series
The Taylor series for the function f (x) expanded around a is the
power series

∞∑
n=0

1
n!

f (n)(a) (x− a)n.

When a = 0 it is also called the Maclaurin series of f (x).

f (x) = sin x f (0) = 0
f ′(x) = cos x f ′(0) = 1
f ′′(x) = − sin x f ′′(0) = 0
f ′′′(x) = − cos x f ′′′(0) = −1

The derivatives then repeat. Notice we only have non-zero
derivatives for odd orders, and these alternate in sign.
We can write the Maclaurin series as follows:

sin x ≈ x1

1!
− x3

3!
+

x5

5!
− x7

7!
+ · · ·

=

∞∑
n=0

(−1)n x2n+1

(2n + 1)!

617/643
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Find the Maclaurin series for f (x) = cos x.

f (x) = cos x f (0) = 1
f ′(x) = − sin x f ′(0) = 0
f ′′(x) = − cos x f ′′(0) = −1
f ′′′(x) = sin x f ′′′(0) = 0

The derivatives then repeat. Notice we only have non-zero
derivatives for even orders, and these alternate in sign.
We can write the Maclaurin series as follows:

cos x ≈ 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

=
∞∑

n=0

(−1)n x2n

(2n)!

618/643
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The Maclaurin series for f (x) = ex is:
∞∑

n=0

xn

n!
.

Every derivative of ex is ex, so all coefficients f (n)(0) are e0, i.e. 1.

ex ≈ 1 + x +
x2

2
+

x3

3!
+ · · ·

=

∞∑
n=0

xn

n!

619/643

Q

Let Tn(x) be the n-th order Taylor polynomial of the function f (x),
centred at a.

When we introduced Taylor polynomials in CLP–1, we framed Tn(x)
as an approximation of f (x).

Let’s see how those approximations look in two cases:

620/643



TAYLOR POLYNOMIALS FOR ex

−6 −4 −2 2 4

−50

50

100

150 ex

It seems like high-order Taylor polynomials do a pretty good job of
approximating the function ex, at least when x is near enough to 0.

621/643

TAYLOR POLYNOMIALS FOR A DIFFERENT FUNCTION

But that is not the case for all functions. Define

f (x) =

{
e−

1
x x > 0

0 x ≤ 0

Using the definition of the derivative and l’Hôpital’s rule, one can
show that f (n)(0) = 0 for all natural numbers n.

622/643

TAYLOR POLYNOMIALS FOR A DIFFERENT FUNCTION

x

y

f (x) =

{
e−

1
x x > 0

0 x ≤ 0

Tn(x) = 0

Taylor polynomial approximations don’t always get better as their
orders increase – it depends on the function being approximated.
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INVESTIGATION

I We found the Maclaurin series for f (x) = ex is
∞∑

n=0

xn

n!
.

I But, it’s not immediately clear whether ex ?
=

∞∑
n=0

xn

n!
.

I We’re going to demonstrate that ex is in fact equal to
∞∑

n=0

xn

n!
. The

proof involves a particular limit: lim
n→∞

|x|n
n! . We’ll talk about that

limit first, so that it doesn’t distract us later.
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Intermediate result: lim
n→∞

|x|n
n! , when x is some fixed number.

For large n, we can think of |x|
n

n! as a long multiplication, with
decreasing terms. At some point, those terms are all decreasing and
less than 1.

|x|n

n!
=
|x| · |x| · |x| · |x| · |x| · |x| · . . . · |x|

1 · 2 · 3 · 4 · 5 · 6 · . . . · n
=

625/643 Convenient notation: dxe is the number you get when you round x up to the nearest whole number.

Intermediate result: lim
n→∞

|x|n
n! , when x is some fixed number.

We’re multiplying terms that are closer and closer to 0, so it seems
quite reasonable that this sequence should converge to 0.

For a more formal proof, we can use the squeeze theorem to compare
this sequence to a geometric sequence.

626/643 Convenient notation: dxe is the number you get when you round x up to the nearest whole number.

INVESTIGATION

I We found the Maclaurin series for f (x) = ex is
∞∑

n=0

xn

n!
.

I But, it’s not immediately clear whether ex ?
=
∞∑

n=0

xn

n!
.

How could we determine this?
I

ex =
∞∑

n=0

xn

n!

⇐⇒ 0 = ex −
∞∑

n=0

xn

n
= ex − lim

n→∞

n∑
k=0

xk

k!︸ ︷︷ ︸
Tn(x)

= lim
n→∞

[ex − Tn(x)]︸ ︷︷ ︸
En(x)

⇐⇒ 0 = lim
n→∞

En(x) (for all x)

627/643

TAYLOR POLYNOMIAL ERROR FOR f (x) = ex

If lim
n→∞

En(x) = 0 for all x, then ex =
∑∞

n=0
xn

n! for all x.

It looks plausible, especially when x is close to 0. Let’s try to prove it.

−6 −4 −2 2 4

−50

50

100

150 ex

E1(−5)
E1(2)

E1(4)

E2(−5)
E2(2)

E2(4)

E3(−5)
E3(2)

E3(4)

E4(−5)
E4(2)

E4(4)

E5(−5)
E5(2)

E5(4)

E6(−5)
E6(2)

E6(4)

E7(−5)
E7(2)

E7(4)
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Equation 3.6.1-b
Let Tn(x) be the n-th order Taylor approximation of a function f (x),
centred at a. Then En(x) = f (x)− Tn(x) is the error in the n-th order
Taylor approximation.
For some c strictly between x and a,

En(x) =
1

(n + 1)!
f (n+1)(c) · (x− a)n+1

When f (x) = ex,

En(x) = ec xn+1

(n + 1)!

for some c between 0 and x.

629/643 CLP–1 Equation 3.4.33, CLP–2 Equation 3.6.1-b

En(x) = ex − Tn(x)

= ec xn+1

(n + 1)!
for some c between 0 and x

0 ≤ |En(x)| <
∣∣∣∣ec xn+1

(n + 1)!

∣∣∣∣
≤ e|x|

|x|n+1

(n + 1)!

0 = lim
n→∞

|x|n+1

(n + 1)!
by our previous result

=⇒ 0 = lim
n→∞

|En(x)| by the squeeze theorem

630/643

We found 0 ≤ |En(x)| < e|x| |x|
n+1

(n+1)! for large n, hence lim
n→∞

|En(x)| = 0.

−6 −4 −2 2 4

−50

50

100

150 ex

|E1(-5)| < e5
(

52

2!

)
|E1(4)| < e4

(
42

2!

)

|E2(-5)| < e5
(

53

3!

)
|E2(4)| < e4

(
43

3!

)

|E3(-5)| < e5
(

54

4!

)
|E3(4)| < e4

(
44

4!

)

|E4(-5)| < e5
(

55

5!

)
|E4(4)| < e4

(
45

5!

)

|E5(-5)| < e5
(

56

6!

)
|E5(4)| < e4

(
46

6!

)

|E6(-5)| < e5
(

57

7!

)
|E6(4)| < e4

(
47

7!

)

|E7(-5)| < e5
(

58

8!

)
|E7(4)| < e4

(
48

8!

)

For a particular value of x:

We saw 0 = lim
n→∞

|x|n+1

(n + 1)!

so 0 = lim
n→∞

En(x)

That is, 0 = lim
n→∞

[ex − Tn(x)]

So, ex = lim
n→∞

Tn(x)

=

∞∑
n=0

xn

n!
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TAYLOR POLYNOMIAL ERROR FOR SINE AND COSINE

Equation 3.6.1-b
Let Tn(x) be the n-th order Taylor approximation of a function f (x),
centred at a. Then En(x) = f (x)− Tn(x) is the error in the n-th order
Taylor approximation.
For some c strictly between x and a,

En(x) =
1

(n + 1)!
f (n+1)(c) · (x− a)n+1

Suppose f (x) is either sin x or cos x. Is f (x) equal to its Maclaurin
series? In either case, |f (n+1)(c)| is either | sin c| or | cos c|, so it’s
between 0 and 1.

|En(x)| = 1
(n + 1)!

∣∣∣f (n+1)(c)
∣∣∣ |x|n+1 ≤ |x|n+1

(n + 1)!

=⇒ 0 ≤ |En(x)| ≤ |x|n+1

(n + 1)!

We saw before that lim
n→∞

|x|n+1

(n+1)! = 0. So, by the squeeze theorem,

lim
n→∞

|En(x)| = 0

So sine and cosine are equal to their Taylor series everywhere.

632/643 CLP–1 Equation 3.4.33, CLP–2 Equation 3.6.1-b



TAYLOR POLYNOMIALS FOR sin(x)

−10 −5 5 10

−4

−2

2

4

sin(x)
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TAYLOR POLYNOMIALS FOR cos(x)

−10 −5 5 10

−4

−2

2

4

cos(x)
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Selected Taylor series that equal their functions

ex =
∞∑

n=0

xn

n!
for all −∞ < x <∞

sin(x) =
∞∑

n=0
(−1)n 1

(2n + 1)!
x2n+1 for all −∞ < x <∞

cos(x) =
∞∑

n=0
(−1)n 1

(2n)!
x2n for all −∞ < x <∞

1
1− x

=
∞∑

n=0
xn for all −1 < x < 1

log(1 + x) =
∞∑

n=0
(−1)n xn+1

n + 1
for all −1 < x ≤ 1

arctan x =
∞∑

n=0
(−1)n x2n+1

2n + 1
for all −1 ≤ x ≤ 1

635/643 3.6.5

COMPUTING π

Use the fact that arctan 1 = π
4 to find a series converging to π whose

terms are rational numbers.
For all −1 ≤ x ≤ 1:

arctan x =
∞∑

n=0

(−1)n x2n+1

2n + 1

4 arctan x = 4
∞∑

n=0

(−1)n x2n+1

2n + 1

π = 4 arctan 1 = 4
∞∑

n=0

(−1)n 12n+1

2n + 1

=

∞∑
n=0

(−1)n 4
2n + 1

= 4− 4
3

+
4
5
− 4

7
+

4
9
− · · ·

636/643
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Example 3.6.13



ERROR FUNCTION

The error function

erf(x) =
2√
π

∫ x

0
e−t2

dt

is used in computing “bell curve” probabilities.

637/643 Example 3.6.14

x

y
y = ex2

00.10.20.30.40.50.60.70.80.911.1

x

y

0

∫ 0

0
ex2

dx = 0

0.1

∫ 0.1

0
ex2

dx ≈ 0.10

0.10

0.2

∫ 0.2

0
ex2

dx ≈ 0.20

0.20

0.3

∫ 0.3

0
ex2

dx ≈ 0.31

0.31

0.4

∫ 0.4

0
ex2

dx ≈ 0.42

0.42

0.5

∫ 0.5

0
ex2

dx ≈ 0.54

0.54

0.6

∫ 0.6

0
ex2

dx ≈ 0.68

0.68

0.7

∫ 0.7

0
ex2

dx ≈ 0.83

0.83

0.8

∫ 0.8

0
ex2

dx ≈ 1.01

1.01

0.9

∫ 0.9

0
ex2

dx ≈ 1.22

1.22

1

∫ 1

0
ex2

dx ≈ 1.46

1.46

1.1

∫ 1.1

0
ex2

dx ≈ 1.76

1.76

∫ x

0
et2

dt
2√
π

∫ x

0
et2

dt
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ERROR FUNCTION

The error function

erf(x) =
2√
π

∫ x

0
e−t2

dt

is used in computing “bell curve” probabilities.

The indefinite integral of the integrand e−t2
cannot be expressed in

terms of standard functions. But we can still evaluate the integral to
within any desired degree of accuracy by using the Taylor expansion
of the exponential.
For example, evaluate erf

(
1√
2

)
.

erf
(

1√
2

)
=

2√
π

∫ 1√
2

0
e−t2

dt =
2√
π

∫ 1√
2

0

( ∞∑
n=0

xn

n!

)∣∣∣∣∣
x=−t2

dt

=
2√
π

∫ 1√
2

0

( ∞∑
n=0

(−1)nt2n

n!

)
dt =

2√
π

[ ∞∑
n=0

(−1)nt2n+1

(2n + 1)n!

] 1√
2

0

=
2√
π

[ ∞∑
n=0

(−1)n

(2n + 1)n!(
√

2)
2n+1 −

∞∑
n=0

(−1)n · 02n+1

n! · (2n + 1)

]

=
2√
π

∞∑
n=0

(−1)n
√

2 · 2n(2n + 1)n!
=

√
2
π

∞∑
n=0

(−1)n

2n(2n + 1)n!

=

√
2
π

(
1− 1

6
+

1
40
− 1

336
+ · · ·

)
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Example 3.6.14

EVALUATING A CONVERGENT SERIES

Evaluate
∞∑

n=1

1
n · 3n

ex
=
∞∑

n=0

xn

n!
for all−∞ < x <∞

sin(x) =
∞∑

n=0
(−1)n 1

(2n + 1)!
x2n+1 for all−∞ < x <∞

cos(x) =
∞∑

n=0
(−1)n 1

(2n)!
x2n for all−∞ < x <∞

1
1− x

=
∞∑

n=0
xn for all−1 < x < 1

log(1 + x) =
∞∑

n=0
(−1)n xn+1

n + 1
for all−1 < x ≤ 1

arctan x =
∞∑

n=0
(−1)n x2n+1

2n + 1
for all−1 ≤ x ≤ 1

The series most

closely resembles the Taylor series log(1 + x) =
∞∑

m=0
(−1)m xm+1

m + 1
. To make that relation clearer, set

m = n− 1:
∞∑

n=1

1
n · 3n

=

∞∑
m=0

1
(m + 1) · 3m+1

=

∞∑
m=0

(−1)
m+1 (−1)m+1

(m + 1) · 3m+1

= −
∞∑

m=0

(−1)
m
(
− 1

3

)m+1

(m + 1)

= − log

(
1−

1
3

)
= − log

(
2
3

)
= log

(
3
2

)
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Example 3.6.15



FINDING A HIGH-ORDER DERIVATIVE

Let f (x) = sin(2x3). Find f (15)(0), the fifteenth derivative of f at x = 0.

Differentiating directly gets messy quickly. Instead, let’s find the
Taylor series. Let y = 2x3:

sin(y) =
∞∑

n=0

(−1)n 1
(2n + 1)!

y2n+1

=⇒ f (x) = sin(2x3) =

∞∑
n=0

(−1)n 1
(2n + 1)!

(2x3)
2n+1

=⇒ f (x) =

∞∑
m=0

f (m)(0)

m!
xm =

∞∑
n=0

(−1)n 22n+1

(2n + 1)!
x6n+3

The coefficients of x15 on the left and right series must match for the
series to be equal.

When m = 15 on the left-hand side, we get the term f (15)(0)
15! x15. The

right-hand side term corresponding to x15 occurs when 6n + 3 = 15,
i.e. when n = 2.

f (15)(0)

15!︸ ︷︷ ︸
m=15

= (−1)2 25

5!︸ ︷︷ ︸
n=2

f (15)(0) =
15!

5!
· 25
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Example 3.6.16.

Given that sin x = x− x3

3! + x5

5! − · · · , we have a new way of evaluating
the familiar limit

lim
x→0

sin x
x

:

lim
x→0

sin x
x

= lim
x→0

x− x3

3! + x5

5! − · · ·
x

= lim
x→0

[
1− x2

3!
+

x4

5!
− · · ·

]
= 0

This technique is sometimes faster than l’Hôpital’s rule.
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Example 3.6.20

Evaluate lim
x→0

arctan x− x
sin x− x

.

arctan x− x =

(
x− x3

3
+

x5

5
− · · ·

)
− x

= −x3

3
+

x5

5
− · · ·

sin x− x =

(
x− x3

3!
+

x5

5!
− · · ·

)
− x

= −x3

3!
+

x5

5!
− · · ·

lim
x→0

arctan x− x
sin x− x

= lim
x→0

− x3

3 + x5

5 − · · ·
− x3

3! + x5

5! − · · ·

(
1
x3

1
x3

)

= lim
x→0

− 1
3 + x2

5 − · · ·
− 1

3! + x2

5! − · · ·
=
− 1

3

− 1
6

= 2

643/643

Q

Example 3.6.21

Included Work

Vector illustration of role play game map icon for an arch is in the Public Domain
(accessed Jan 8, 2021), 537

balancing by Olena Panasovska is licensed under CC BY 3.0 (accessed 10 January
2023), 409

‘Balloon’ by Simon Farkas is licensed under CC-BY (accessed November 2022,
edited), 497, 501, 545

Elephant eating by Paulami Roychoudhury is licensed under CC BY 3.0 (accessed
10 January 2023), 437

Firewood by Aline Escobar is licensed under CC BY 3.0 (accessed 10 January 2023),
437

HAND GRAB by Oleksandr Panasovskyi is licensed under CC BY 3.0 (accessed 10
January 2023), 393

Hippopotamus vector image is in the Public Domain (accessed January 2021), 529,
537

kettle bell by Made is licensed under CC BY 3.0 (accessed 10 January 2023), 405
Roasting Marshmallows by Caitlin George is licensed under CC BY 3.0 (accessed 28

August 2022; colour modified), 441
pull by Pavel N is licensed under CC BY 3.0 (accessed 10 January 2023, modified),

389, 409
sardine by Jaime Serrais licensed under CC BY 3.0 (accessed 28 August 2022) ,

449

https://publicdomainvectors.org/en/free-clipart/Vector-illustration-of-role-play-game-map-icon-for-an-arch/22184.html
https://thenounproject.com/icon/balancing-1825102/
https://thenounproject.com/zzyzz/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/term/balloon/2219929/
https://thenounproject.com/simon1276/
https://opendefinition.org/licenses/cc-by/
https://thenounproject.com/icon/elephant-eating-407763/
https://thenounproject.com/paulami/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/firewood-1301727/
https://thenounproject.com/alineescobar/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/hand-grab-2228970/
https://thenounproject.com/a.panasovsky/
https://creativecommons.org/licenses/by/3.0/
https://publicdomainvectors.org/en/free-clipart/Hippopotamus-vector-image/62068.html
https://thenounproject.com/icon/kettle-bell-3811181/
https://thenounproject.com/elki/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/roasting-marshmallows-2602776/
https://thenounproject.com/cgeorge1028/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/pull-23535/
https://thenounproject.com/pavel.nikandrov/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/sardine-1630520/
https://thenounproject.com/jbserra/
https://creativecommons.org/licenses/by/3.0/


‘Waage/Libra’ by B. Lachner is in the public domain (accessed April 2021,
edited), 485, 489, 493, 497, 501, 517, 529, 545

Tree by Felipe Alvarado is licensed under CC BY 3.0 (accessed 10 January 2023), 437
‘Weight’ by Kris Brauer is licensed under CC-BY(accessed May 2021), 485, 489, 493,

497, 501, 517, 529, 545

‘boy’ by Xinh Studio is licensed under CC BY 3.0 (accessed 6 June 2023), 489
‘cookies’ by Azam Ishaq is licensed under CC BY 3.0 (accessed 6 June 2023), 489
‘cookies’ by Vectors Point is licensed under CC BY 3.0 (accessed 6 June 2023), 489

‘office desk’ by Abdul Baasith is licensed under CC BY 3.0 (accessed 6 June 2023),
489

‘Man’ by Xinh Studio is licensed under CC BY 3.0 (accessed 6 June 2023), 489
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https://openclipart.org/detail/191471/waagelibra
https://openclipart.org/artist/B.Lachner
https://thenounproject.com/icon/tree-1029983/
https://thenounproject.com/visuadio/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/term/weight/192822/
https://thenounproject.com/Krisb/
https://opendefinition.org/licenses/cc-by/
https://thenounproject.com/icon/boy-4121047/
https://thenounproject.com/xinhstudio/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/cookies-5762988/
https://thenounproject.com/shmai.com/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/cookies-3151013/
https://thenounproject.com/vectorspoint/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/office-desk-5184572/
https://thenounproject.com/abdul157/
https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/icon/man-4121059/
https://thenounproject.com/xinhstudio/
https://creativecommons.org/licenses/by/3.0/
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