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Preface

This text is a merger of the CLP Multivariable Calculus textbook and prob-
lembook. It is, at the time that we write this, still a work in progress; some
bits and pieces around the edges still need polish. Consequently we recommend
to the student that they still consult text webpage for links to the errata —
especially if they think there might be a typo or error. We also request that
you send us an email at clp@ugrad.math.ubc.ca

Additionally, if you are not a student at UBC and using these texts please
send us an email (again using the feedback button) — we’d love to hear from
you.

Joel Feldman, Andrew Rechnitzer and Elyse Yeager

v
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Feedback about the text

The CLP-3 Multivariable Calculus text is still undergoing testing and changes.
Because of this we request that if you find a problem or error in the text then:

1. Please check the errata list that can be found at the text webpage.

2. Is the problem in the online version or the PDF version or both?

3. Note the URL of the online version and the page number in the PDF

4. Send an email to clp@ugrad.math.ubc.ca. Please be sure to include

• a description of the error
• the URL of the page, if found in the online edition
• and if the problem also exists in the PDF, then the page number in

the PDF and the compile date on the front page of PDF.

vi

mailto:clp@ugrad.math.ubc.ca?subject=clp-pretext


Contents

Preface v

Feedback about the text vi

1 Vectors and Geometry in Two and Three Dimensions 1

1.1 Points . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vectors . . . . . . . . . . . . . . . . . . . . . 6
1.3 Equations of Lines in 2d . . . . . . . . . . . . . . . 40
1.4 Equations of Planes in 3d . . . . . . . . . . . . . . . 43
1.5 Equations of Lines in 3d . . . . . . . . . . . . . . . 51
1.6 Curves and their Tangent Vectors . . . . . . . . . . . . 60
1.7 Sketching Surfaces in 3d . . . . . . . . . . . . . . . 75
1.8 Cylinders . . . . . . . . . . . . . . . . . . . . . 90
1.9 Quadric Surfaces . . . . . . . . . . . . . . . . . . 91

2 Partial Derivatives 93

2.1 Limits . . . . . . . . . . . . . . . . . . . . . . 93
2.2 Partial Derivatives . . . . . . . . . . . . . . . . .103
2.3 Higher Order Derivatives . . . . . . . . . . . . . . .116
2.4 The Chain Rule . . . . . . . . . . . . . . . . . .122
2.5 Tangent Planes and Normal Lines . . . . . . . . . . . .136
2.6 Linear Approximations and Error . . . . . . . . . . . .155
2.7 Directional Derivatives and the Gradient . . . . . . . . .171
2.8 A First Look at Partial Differential Equations . . . . . . .187
2.9 Maximum and Minimum Values . . . . . . . . . . . .197
2.10 Lagrange Multipliers. . . . . . . . . . . . . . . . .232

3 Multiple Integrals 247

3.1 Double Integrals . . . . . . . . . . . . . . . . . .247
3.2 Double Integrals in Polar Coordinates . . . . . . . . . .289
3.3 Applications of Double Integrals . . . . . . . . . . . .315
3.4 Surface Area . . . . . . . . . . . . . . . . . . .328
3.5 Triple Integrals. . . . . . . . . . . . . . . . . . .335
3.6 Triple Integrals in Cylindrical Coordinates . . . . . . . . .346
3.7 Triple Integrals in Spherical Coordinates . . . . . . . . .357

vii



CONTENTS viii

3.8 Optional— Integrals in General Coordinates . . . . . . . .374

A Appendices 383

A.1 Trigonometry . . . . . . . . . . . . . . . . . . .383
A.2 Powers and Logarithms. . . . . . . . . . . . . . . .386
A.3 Table of Derivatives . . . . . . . . . . . . . . . . .388
A.4 Table of Integrals . . . . . . . . . . . . . . . . . .389
A.5 Table of Taylor Expansions . . . . . . . . . . . . . .390
A.6 3d Coordinate Systems . . . . . . . . . . . . . . . .391
A.7 ISO Coordinate System Notation . . . . . . . . . . . .394
A.8 Conic Sections and Quadric Surfaces . . . . . . . . . . .399

B Hints for Exercises 402

C Answers to Exercises 415

D Solutions to Exercises 471



Chapter 1

Vectors and Geometry in Two
and Three Dimensions

Before we get started doing calculus in two and three dimensions we need to
brush up on some basic geometry, that we will use a lot. We are already
familiar with the Cartesian plane1, but we’ll start from the beginning.

1.1 Points
Each point in two dimensions may be labeled by two coordinates1(x, y) which
specify the position of the point in some units with respect to some axes as in
the figure below.

x

y

x

y

(x, y)

The set of all points in two dimensions is denoted2 R2. Observe that

• the distance from the point (x, y) to the x-axis is |y|

• if y > 0, then (x, y) is above the x-axis and if y < 0, then (x, y) is below
the x-axis

• the distance from the point (x, y) to the y-axis is |x|

• if x > 0, then (x, y) is to the right of the y-axis and if x < 0, then (x, y)
is to the left of the y-axis

1René Descartes (1596–1650) was a French scientist and philosopher, who lived in the
Dutch Republic for roughly twenty years after serving in the (mercenary) Dutch States Army.
He is viewed as the father of analytic geometry, which uses numbers to study geometry.

1This is why the xy-plane is called “two dimensional” — the name of each point consists
of two real numbers.

2Not surprisingly, the 2 in R2 signifies that each point is labelled by two numbers and the
R in R2 signifies that the numbers in question are real numbers. There are more advanced
applications (for example in signal analysis and in quantum mechanics) where complex num-
bers are used. The space of all pairs (z1, z2), with z1 and z2 complex numbers is denoted
C2.

1
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• the distance from the point (x, y) to the origin (0, 0) is
√
x2 + y2

Similarly, each point in three dimensions may be labeled by three coordinates
(x, y, z), as in the two figures below.

(x, y, z)

x

y

z

x

y

z

(x, y, z)

x

y

z

x

y

z

The set of all points in three dimensions is denoted R3. The plane that
contains, for example, the x- and y-axes is called the xy-plane.

• The xy-plane is the set of all points (x, y, z) that satisfy z = 0.

• The xz-plane is the set of all points (x, y, z) that satisfy y = 0.

• The yz-plane is the set of all points (x, y, z) that satisfy x = 0.

More generally,

• The set of all points (x, y, z) that obey z = c is a plane that is parallel
to the xy-plane and is a distance |c| from it. If c > 0, the plane z = c is
above the xy-plane. If c < 0, the plane z = c is below the xy-plane. We
say that the plane z = c is a signed distance c from the xy-plane.

• The set of all points (x, y, z) that obey y = b is a plane that is parallel
to the xz-plane and is a signed distance b from it.

• The set of all points (x, y, z) that obey x = a is a plane that is parallel
to the yz-plane and is a signed distance a from it.

z “ c

x

y

z

y “ b

x

y

z

x “ ax

y

z

Observe that our 2d distances extend quite easily to 3d.

• the distance from the point (x, y, z) to the xy-plane is |z|

• the distance from the point (x, y, z) to the xz-plane is |y|

• the distance from the point (x, y, z) to the yz-plane is |x|

• the distance from the point (x, y, z) to the origin (0, 0, 0) is
√
x2 + y2 + z2
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To see that the distance from the point (x, y, z) to the origin (0, 0, 0) is indeed√
x2 + y2 + z2,

• apply Pythagoras to the right-angled triangle with vertices (0, 0, 0), (x, 0, 0)
and (x, y, 0) to see that the distance from (0, 0, 0) to (x, y, 0) is

√
x2 + y2

and then

• apply Pythagoras to the right-angled triangle with vertices (0, 0, 0), (x, y, 0)

and (x, y, z) to see that the distance from (0, 0, 0) to (x, y, z) is
√(√

x2 + y2
)2

+ z2 =√
x2 + y2 + z2.

px, 0, 0q px, y, 0q

px, y, zq

x

y

z

x

y

z

More generally, the distance from the point (x, y, z) to the point (x′, y′, z′)
is √

(x− x′)2 + (y − y′)2 + (z − z′)2

Notice that this gives us the equation for a sphere quite directly. All the points
on a sphere are equidistant from the centre of the sphere. So, for example, the
equation of the sphere centered on (1, 2, 3) with radius 4, that is, the set of all
points (x, y, z) whose distance from (1, 2, 3) is 4, is

(x− 1)2 + (y − 2)2 + (z − 3)2 = 16

Here is an example in which we sketch a region in the xy-plane that is
specified using inequalities.

Example 1.1.1 In this example, we sketch the region{
(x, y)

∣∣ − 12 ≤ x2 − 6x+ y2 − 4y ≤ −9, y ≥ 1
}

in the xy-plane.
We do so in two steps. In the first step, we sketch the curves x2−6x+y2−

4y = −12, x2 − 6x+ y2 − 4y = −9, and y = 1.

• By completing squares, we see that the equation x2−6x+y2−4y = −12
is equivalent to (x − 3)2 + (y − 2)2 = 1, which is the circle of radius 1
centred on (3, 2). It is sketched in the figure below.

• By completing squares, we see that the equation x2 − 6x+ y2 − 4y = −9
is equivalent to (x − 3)2 + (y − 2)2 = 4, which is the circle of radius 2
centred on (3, 2). It is sketched in the figure below.

• The point (x, y) obeys y = 1 if and only if it is a distance 1 vertically
above the x-axis. So y = 1 is the line that is parallel to the x-axis and is
one unit above it. This line is also sketched in the figure below.
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px ´ 3q2 ` py ´ 2q2 “ 1

px ´ 3q2 ` py ´ 2q2 “ 4

y “ 1

x

y

In the second step we determine the impact that the inequalities have.

• The inequality x2−6x+y2−4y ≥ −12 is equivalent to (x−3)2+(y−2)2 ≥
1 and hence is equivalent to

√
(x− 3)2 + (y − 2)2 ≥ 1. So the point (x, y)

satisfies x2 − 6x + y2 − 4y ≥ −12 if and only if the distance from (x, y)
to (3, 2) is at least 1, i.e. if and only if (x, y) is outside (or on) the circle
(x− 3)2 + (y − 2)2 = 1.

• The inequality x2−6x+y2−4y ≤ −9 is equivalent to (x−3)2+(y−2)2 ≤ 4
and hence is equivalent to

√
(x− 3)2 + (y − 2)2 ≤ 2. So the point (x, y)

satisfies the inequality x2− 6x+ y2− 4y ≤ −9 if and only if the distance
from (x, y) to (3, 2) is at most 2, i.e. if and only if (x, y) is inside (or on)
the circle (x− 3)2 + (y − 2)2 = 4.

• The point (x, y) obeys y ≥ 1 if and only if (x, y) is a vertical distance at
least 1 above the x-axis, i.e. is above (or on) the line y = 1.

• So the region{
(x, y)

∣∣ − 12 ≤ x2 − 6x+ y2 − 4y ≤ −9, y ≥ 1
}

consists of all points (x, y) that

◦ are inside or on the circle (x− 3)2 + (y − 2)2 = 4 and
◦ are also outside or on the circle (x− 3)2 + (y − 2)2 = 1 and
◦ are also above or on the line y = 1.

It is the shaded region in the figure below.

px ´ 3q2 ` py ´ 2q2 “ 1

px ´ 3q2 ` py ´ 2q2 “ 4

y “ 1

x

y

�
Here are a couple of examples that involve spheres.

Example 1.1.2 In this example, we are going to find the curve formed by the
intersection of the xy-plane and the sphere of radius 5 centred on (0, 0, 4).

The point (x, y, z) lies on the xy-plane if and only if z = 0, and lies on the
sphere of radius 5 centred on (0, 0, 4) if and only if x2 + y2 + (z− 4)2 = 25. So
the point (x, y, z) lies on the curve of intersection if and only if both z = 0 and
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x2 + y2 + (z − 4)2 = 25, or equivalently

z = 0, x2 + y2 + (0− 4)2 = 25 ⇐⇒ z = 0, x2 + y2 = 9

This is the circle in the xy-plane that is centred on the origin and has radius 3.
Here is a sketch that show the parts of the sphere and the circle of intersection
that are in the first octant. That is, that have x ≥ 0, y ≥ 0 and z ≥ 0.

z

y

x
�

Example 1.1.3 In this example, we are going to find all points (x, y, z) for
which the distance from (x, y, z) to (9,−12, 15) is twice the distance from
(x, y, z) to the origin (0, 0, 0).

The distance from (x, y, z) to (9,−12, 15) is
√

(x− 9)2 + (y + 12)2 + (z − 15)2.
The distance from (x, y, z) to (0, 0, 0) is

√
x2 + y2 + z2. So we want to find all

points (x, y, z) for which√
(x− 9)2 + (y + 12)2 + (z − 15)2 = 2

√
x2 + y2 + z2

Squaring both sides of this equation gives

x2 − 18x+ 81 + y2 + 24y + 144 + z2 − 30z + 225 = 4
(
x2 + y2 + z2)

Collecting up terms gives

3x2 + 18x+ 3y2 − 24y + 3z2 + 30z = 450 and, dividing by 3,
x2 + 6x+ y2 − 8y + z2 + 10z = 150 and, completing squares,

x2 + 6x+ 9 + y2 − 8y + 16 + z2 + 10z + 25 = 200 or
(x+ 3)2 + (y − 4)2 + (z + 5)2 = 200

This is the sphere of radius 10
√

2 centred on (−3, 4,−5). �

1.1.1 Exercises

Exercises — Stage 1
1. Describe the set of all points (x, y, z) in R3 that satisfy

a x2 + y2 + z2 = 2x− 4y + 4

b x2 + y2 + z2 < 2x− 4y + 4
2. Describe and sketch the set of all points (x, y) in R2 that satisfy

a x = y

b x+ y = 1
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c x2 + y2 = 4

d x2 + y2 = 2y

e x2 + y2 < 2y
3. Describe the set of all points (x, y, z) in R3 that satisfy the following

conditions. Sketch the part of the set that is in the first octant.
a z = x

b x+ y + z = 1

c x2 + y2 + z2 = 4

d x2 + y2 + z2 = 4, z = 1

e x2 + y2 = 4

f z = x2 + y2

4. Let A be the point (2, 1, 3).
a Find the distance from A to the xy-plane.

b Find the distance from A to the xz-plane.

c Find the distance from A to the point (x, 0, 0) on the x-axis.

d Find the point on the x-axis that is closest to A.

e What is the distance from A to the x-axis?

Exercises — Stage 2
5. Consider any triangle. Pick a coordinate system so that one vertex is

at the origin and a second vertex is on the positive x-axis. Call the
coordinates of the second vertex (a, 0) and those of the third vertex
(b, c). Find the circumscribing circle (the circle that goes through all
three vertices).

6. ∗. A certain surface consists of all points P = (x, y, z) such that the
distance from P to the point (0, 0, 1) is equal to the distance from P
to the plane z + 1 = 0. Find an equation for the surface, sketch and
describe it verbally.

7. Show that the set of all points P that are twice as far from (3,−2, 3)
as from (3/2, 1, 0) is a sphere. Find its centre and radius.

Exercises — Stage 3
8. The pressure p(x, y) at the point (x, y) is at least zero and is deter-

mined by the equation x2−2px+y2 = 3p2. Sketch several isobars. An
isobar is a curve with equation p(x, y) = c for some constant c ≥ 0.

1.2 Vectors
In many of our applications in 2d and 3d, we will encounter quantities that
have both a magnitude (like a distance) and also a direction. Such quantities
are called vectors. That is, a vector is a quantity which has both a direction
and a magnitude, like a velocity. If you are moving, the magnitude (length)
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of your velocity vector is your speed (distance travelled per unit time) and the
direction of your velocity vector is your direction of motion. To specify a vector
in three dimensions you have to give three components, just as for a point. To
draw the vector with components a, b, c you can draw an arrow from the point
(0, 0, 0) to the point (a, b, c).

x

y

a

b

(a, b)

pa, b, cq

a

b

c

x

y

z

Similarly, to specify a vector in two dimensions you have to give two com-
ponents and to draw the vector with components a, b you can draw an arrow
from the point (0, 0) to the point (a, b).

There are many situations in which it is preferable to draw a vector with
its tail at some point other than the origin. For example, it is natural to draw
the velocity vector of a moving particle with the tail of the velocity vector at
the position of the particle, whether or not the particle is at the origin. The
sketch below shows a moving particle and its velocity vector at two different
times.

v

v

x

y

As a second example, suppose that you are analyzing the motion of a pen-
dulum. There are three forces acting on the pendulum bob: gravity g, which
is pulling the bob straight down, tension t in the rod, which is pulling the bob
in the direction of the rod, and air resistance r, which is pulling the bob in a
direction opposite to its direction of motion. All three forces are acting on the
bob. So it is natural to draw all three arrows representing the forces with their
tails at the bob.

g

t
r

In this text, we will used bold faced letters, like v, t, g, to designate vectors.
In handwriting, it is clearer to use a small overhead arrow1, as in ~v, ~t, ~g, instead.
Also, when we want to emphasise that some quantity is a number, rather than
a vector, we will call the number a scalar.

1Some people use an underline, as in v, rather than an arrow.
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Both points and vectors in 2d are specified by two numbers. Until you get
used to this, it might confuse you sometimes — does a given pair of numbers
represent a point or a vector? To distinguish2 between the components of a
vector and the coordinates of the point at its head, when its tail is at some
point other than the origin, we shall use angle brackets rather than round
brackets around the components of a vector. For example, the figure below
shows the two-dimensional vector 〈2, 1〉 drawn in three different positions. In
each case, when the tail is at the point (u, v) the head is at (2 + u, 1 + v). We
warn you that, out in the real world3, no one uses notation that distinguishes
between components of a vector and the coordinates of its head — usually
round brackets are used for both. It is up to you to keep straight which is
being referred to.

x

y

(0, 0)

(2, 1)

(8, 0)

(10, 1)(4, 2)

(6, 3)〈2, 1〉

〈2, 1〉

By way of summary,

Definition 1.2.1 we use
• bold faced letters, like v, t, g, to designate vectors, and

• angle brackets, like 〈2, 1〉, around the components of a vector, but use

• round brackets, like (2, 1), around the coordinates of a point, and use

• “scalar” to emphasise that some quantity is a number, rather than a
vector.

♦

1.2.1 Addition of Vectors and Multiplication of a Vector
by a Scalar

Just as we have done many times in the CLP texts, when we define a new type
of object, we want to understand how it interacts with the basic operations of
addition and multiplication. Vectors are no different, and we shall shortly see
a natural way to define addition of vectors. Multiplication will be more subtle,
and we shall start with multiplication of a vector by a number (rather than
with multiplication of a vector by another vector).

By way of motivation for the definitions of addition and multiplication by
a number, imagine that we are out for a walk on the xy-plane.

• Suppose that we take a step and, in doing so, we move a1 units parallel to
the x-axis and a2 units parallel to the y-axis. Then we say that 〈a1, a2〉
is the displacement vector for the step. Suppose now that we take a
second step which moves us an additional b1 units parallel to the x-axis
and an additional b2 units parallel to the y-axis, as in the figure on the
left below. So the displacement vector for the second step is 〈b1, b2〉. All
together, we have moved a1 + b1 units parallel to the x-axis and a2 + b2

2Or, in the Wikipedia jargon, disambiguate.
3OK. OK. Out in that (admittedly very small) part of the real world that actually knows

what a vector is.
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units parallel to the y-axis. The displacement vector for the two steps
combined is 〈a1 + b1, a2 + b2〉. We shall define the sum of 〈a1, a2〉 and
〈b1, b2〉, denoted by 〈a1, a2〉+ 〈b1, b2〉, to be 〈a1 + b1, a2 + b2〉.

• Suppose now that, instead, we decide to step in the same direction as the
first step above, but to move twice as far, as in the figure on the right
below. That is, our step will move us 2a1 units in the direction of the
x-axis and 2a2 units in the direction of the y-axis and the corresponding
displacement vector will be 〈2a1, 2a2〉. We shall define the product of the
number 2 and the vector 〈a1, a2〉, denoted by 2 〈a1, a2〉, to be 〈2a1, 2a2〉.

a2

a2 ` b2

b2

〈a1, a2〉

〈b1, b2〉

〈a1 ` b1, a2 ` b2〉

a2

2a2

〈a1, a2〉

〈2a1, 2a2〉

Here are the formal definitions.
Definition 1.2.2 Adding Vectors and Multiplying a Vector by a Num-
ber. These two operations have the obvious definitions

a = 〈a1, a2〉 , b = 〈b1, b2〉 =⇒ a + b = 〈a1 + b1, a2 + b2〉
a = 〈a1, a2〉 , s a number =⇒ sa = 〈sa1, sa2〉

and similarly in three dimensions. ♦
Pictorially, you add the vector b to the vector a by drawing b with its tail

at the head of a and then drawing a vector from the tail of a to the head of
b, as in the figure on the left below. For a number s, we can draw the vector
sa, by just

• changing the vector a’s length by the factor |s|, and,

• if s < 0, reversing the arrow’s direction,

as in the other two figures below.

a2

a2 ` b2

b2

a

b

a ` b

a2

2a2

a

2a a

´2a

The special case of multiplication by s = −1 appears so frequently that
(−1)a is given the shorter notation −a. That is,

−〈a1, a2〉 = 〈−a1,−a2〉

Of course a + (−a) is 0, the vector all of whose components are zero.
To subtract b from a pictorially, you may add −b (which is drawn by

reversing the direction of b) to a. Alternatively, if you draw a and b with
their tails at a common point, then a − b is the vector from the head of b to
the head of a. That is, a − b is the vector you must add to b in order to get
a.
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a− b
a

b

−b

a− b

The operations of addition and multiplication by a scalar that we have just
defined are quite natural and rarely cause any problems, because they inherit
from the real numbers the properties of addition and multiplication that you
are used to.
Theorem 1.2.3 Properties of Addition and Scalar Multiplication. Let
a, b and c be vectors and s and t be scalars. Then

(1) a + b = b + a (2) a + (b + c) = (a + b) + c
(3) a + 0 = a (4) a + (−a) = 0
(5) s(a + b) = sa + sb (6) (s+ t)a = sa + ta
(7) (st)a = s(ta) (8) 1a = a

We have just been introduced to many definitions. Let’s see some of them
in action.
Example 1.2.4 For example, if

a = 〈1, 2, 3〉 b = 〈3, 2, 1〉 c = 〈1, 0, 1〉

then

2a = 2 〈1, 2, 3〉 = 〈2, 4, 6〉
−b = −〈3, 2, 1〉 = 〈−3,−2,−1〉
3c = 3 〈1, 0, 1〉 = 〈3, 0, 3〉

and

2a − b + 3c = 〈2, 4, 6〉+ 〈−3,−2,−1〉+ 〈3, 0, 3〉
= 〈2− 3 + 3 , 4− 2 + 0 , 6− 1 + 3〉
= 〈2, 2, 8〉

�

Definition 1.2.5 Two vectors a and b
• are said to be parallel if a = sb for some nonzero real number s and

• are said to have the same direction if a = sb for some number s > 0.

♦
There are some vectors that occur sufficiently commonly that they are

given special names. One is the vector 0. Some others are the “standard basis
vectors”.
Definition 1.2.6 The standard basis vectors in two dimensions are

ı̂ıı = 〈1, 0〉 ̂ = 〈0, 1〉
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x

y

ı̂ıı

̂

The standard basis vectors in three dimensions are

ı̂ıı = 〈1, 0, 0〉 ̂ = 〈0, 1, 0〉 k̂ = 〈0, 0, 1〉

x

y

z

ı̂ıı

̂

k̂

♦
We’ll explain the little hats in the notation ı̂ıı, ̂, k̂ shortly. Some people

rename ı̂ıı, ̂ and k̂ to e1, e2 and e3 respectively. Using the above properties we
have, for all vectors,

〈a1, a2〉 = a1 ı̂ıı+ a2 ̂ 〈a1, a2, a3〉 = a1 ı̂ıı+ a2 ̂+ a3 k̂

A sum of numbers times vectors, like a1ı̂ıı + a2̂ is called a linear combination
of the vectors. Thus all vectors can be expressed as linear combinations of the
standard basis vectors. This makes basis vectors very helpful in computations.
The standard basis vectors are unit vectors, meaning that they are of length
one, where the length of a vector a is denoted4 |a| and is defined by

Definition 1.2.7 Length of a Vector.

a = 〈a1, a2〉 =⇒ |a| =
√
a2

1 + a2
2

a = 〈a1, a2, a3〉 =⇒ |a| =
√
a2

1 + a2
2 + a2

3

A unit vector is a vector of length one. We’ll sometimes use the accent ˆ to
emphasise that the vector â is a unit vector. That is, |â| = 1. ♦

Example 1.2.8 Recall that multiplying a vector a by a positive number s,
changes the length of the vector by a factor s without changing the direction
of the vector. So (assuming that |a| 6= 0) a

|a| is a unit vector that has the same
direction as a. For example, 〈1,1,1〉√

3 is a unit vector that points in the same
direction as 〈1, 1, 1〉. �

Example 1.2.9 We go for a walk on a flat Earth. We use a coordinate system
with the positive x-axis pointing due east and the positive y-axis pointing due
north. We

• start at the origin and

• walk due east for 4 units and then

• walk northeast for 5
√

2 units and then

• head towards the point (0, 11), but we only go

• one third of the way.
4The notation ‖a‖ is also used for the length of a.
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p4, 0q

p9, 5q

p6, 7q

p0, 11q

x

y

E

N

W

S

〈4, 0〉
〈5, 5〉

〈´9, 6〉

〈´3, 2〉
45˝

1

1
〈1, 1〉

We will now use vectors to figure out our final location.

• On the first leg of our walk, we go 4 units in the positive x-direction. So
our displacement vector — the vector whose tail is at our starting point
and whose head is at the end point of the first leg — is 〈4, 0〉. As we
started at (0, 0) we finish the first leg of the walk at (4, 0).

• On the second leg of our walk, our direction of motion is northeast, i.e.
is 45◦ above the direction of the positive x-axis. Looking at the figure on
the right above, we see that our displacement vector, for the second leg
of the walk, has to be in the same direction as the vector 〈1, 1〉. So our
displacement vector is the vector of length 5

√
2 with the same direction

as 〈1, 1〉. The vector 〈1, 1〉 has length
√

12 + 12 =
√

2 and so 〈1,1〉√2 has
length one and our displacement vector is

5
√

2 〈1, 1〉√
2

= 5 〈1, 1〉 = 〈5, 5〉

If we draw this displacement vector, 〈5, 5〉 with its tail at (4, 0), the
starting point of the second leg of the walk, then its head will be at
(4 + 5, 0 + 5) = (9, 5) and that is the end point of the second leg of the
walk.

• On the final leg of our walk, we start at (9, 5) and walk towards (0, 11).
The vector from (9, 5) to (0, 11) is 〈0− 9 , 11− 5〉 = 〈−9, 6〉. As we go
only one third of the way, our final displacement vector is

1
3 〈−9, 6〉 = 〈−3, 2〉

If we draw this displacement vector with its tail at (9, 5), the starting
point of the final leg, then its head will be at (9 − 3, 5 + 2) = (6, 7) and
that is the end point of the final leg of the walk, and our final location.

�

1.2.2 The Dot Product
Let’s get back to the arithmetic operations of addition and multiplication. We
will be using both scalars and vectors. So, for each operation there are three
possibilities that we need to explore:

• “scalar plus scalar”, “scalar plus vector” and “vector plus vector”

• “scalar times scalar”, “scalar times vector” and “vector times vector”
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We have been using “scalar plus scalar” and “scalar times scalar” since child-
hood. “vector plus vector” and “scalar times vector” were just defined above.
There is no sensible way to define “scalar plus vector”, so we won’t. This leaves
“vector times vector”. There are actually two widely used such products. The
first is the dot product, which is the topic of this section, and which is used
to easily determine the angle θ (or more precisely, cos θ) between two vectors.
We’ll get to the second, the cross product, later.

Here is preview of what we will do in this dot product subsection §1.2.2.
We are going to give two formulae for the dot product, a · b, of the pair of
vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉.

• The first formula is a · b = a1b1 + a2b2 + a3b3. We will take it as our
official definition of a · b. This formula provides us with an easy way to
compute dot products.

• The second formula is a · b = |a| |b| cos θ, where θ is the angle between
a and b.

a

b
θ

We will show, in Theorem 1.2.11 below, that this second formula always
gives the same answer as the first formula. The second formula provides
us with an easy way to determine the angle between two vectors. In
particular, it provides us with an easy way to test whether or not two
vectors are perpendicular to each other. For example, the vectors 〈1, 2, 3〉
and 〈−1,−1, 1〉 have dot product

〈1, 2, 3〉 · 〈−1,−1, 1〉 = 1× (−1) + 2× (−1) + 3× 1 = 0

This tell us as the angle θ between the two vectors obeys cos θ = 0, so
that θ = π

2 . That is, the two vectors are perpendicular to each other.

After we give our official definition of the dot product in Definition 1.2.10,
and give the important properties of the dot product, including the formula
a · b = |a| |b| cos θ, in Theorem 1.2.11, we’ll give some examples. Finally, to
see the dot product in action, we’ll define what it means to project one vector
on another vector and give an example.

Definition 1.2.10 Dot Product. The dot product of the vectors a and b
is denoted a · b and is defined by

a = 〈a1, a2〉 , b = 〈b1, b2〉 =⇒ a · b = a1b1 + a2b2

a = 〈a1, a2, a3〉 , b = 〈b1, b2, b3〉 =⇒ a · b = a1b1 + a2b2 + a3b3

in two and three dimensions respectively. ♦
The properties of the dot product are as follows:

Theorem 1.2.11 Properties of the Dot Product. Let a, b and c be
vectors and let s be a scalar. Then

(0) a,b are vectors and a · b is a scalar
(1) a · a = |a|2

(2) a · b = b · a
(3) a · (b + c) = a · b + a · c, (a + b) · c = a · c + b · c
(4) (sa) · b = s(a · b)
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(5) 0 · a = 0
(6) a · b = |a| |b| cos θ where θ is the angle between a and b
(7) a · b = 0 ⇐⇒ a = 0 or b = 0 or a ⊥ b

Proof. Properties 0 through 5 are almost immediate consequences of the def-
inition. For example, for property 3 (which is called the distributive law) in
dimension 2,

a · (b + c) = 〈a1, a2〉 · 〈b1 + c1, b2 + c2〉
= a1(b1 + c1) + a2(b2 + c2) = a1b1 + a1c1 + a2b2 + a2c2

a · b + a · c = 〈a1, a2〉 · 〈b1, b2〉+ 〈a1, a2〉 · 〈c1, c2〉
= a1b1 + a2b2 + a1c1 + a2c2

Property 6 is sufficiently important that it is often used as the definition of
dot product. It is not at all an obvious consequence of the definition. To verify
it, we just write |a − b|2 in two different ways. The first expresses |a − b|2 in
terms of a · b. It is

|a − b|2 1= (a − b ) · (a − b )
3= a · a − a · b− b · a + b · b
1,2= |a|2 + |b|2 − 2a · b

Here, 1=, for example, means that the equality is a consequence of property 1.
The second way we write |a − b|2 involves cos θ and follows from the cosine
law for triangles. Just in case you don’t remember the cosine law, we’ll derive
it right now! Start by applying Pythagoras to the shaded triangle in the right
hand figure of

b
θ

a a ´ b

|b|
|a| cos θ

|a| sin θ
θ

|a| |a ´ b|

That triangle is a right triangle whose hypotenuse has length |a − b| and
whose other two sides have lengths

(
|b|−|a| cos θ

)
and |a| sin θ. So Pythagoras

gives

|a − b|2 =
(
|b| − |a| cos θ

)2 +
(
|a| sin θ

)2
= |b|2 − 2|a| |b| cos θ + |a|2 cos2 θ + |a|2 sin2 θ

= |b|2 − 2|a| |b| cos θ + |a|2

This is precisely the cosine lawa. Observe that, when θ = π
2 , this reduces to,

(surprise!) Pythagoras’ theorem.
Setting our two expressions for |a − b|2 equal to each other,

|a − b|2 = |a|2 + |b|2 − 2a · b = |b|2 − 2|a| |b| cos θ + |a|2

cancelling the |a|2 and |b|2 common to both sides

−2a · b = −2|a| |b| cos θ

and dividing by −2 gives

a · b = |a| |b| cos θ
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which is exactly property 6.
Property 7 follows directly from property 6. First note that the dot product

a · b = |a| |b| cos θ is zero if and only if at least one of the three factors
|a|, |b|, cos θ is zero. The first factor is zero if and only if a = 0. The second
factor is zero if and only if b = 0. The third factor is zero if and only if
θ = ±π2 + 2kπ, for some integer k, which in turn is true if and only if a and b
are mutually perpendicular. �

aYou may be used to seeing it written as c2 = a2 + b2 − 2ab cosC, where a, b and c are
the lengths of the three sides of the triangle and C is the angle opposite the side of length c

Because of Property 7 of Theorem 1.2.11, the dot product can be used
to test whether or not two vectors are perpendicular to each other. That is,
whether or not the angle between the two vectors is 90◦. Another name5 for
“perpendicular” is “orthogonal”. Testing for orthogonality is one of the main
uses of the dot product.

Example 1.2.12 Consider the three vectors

a = 〈1, 1, 0〉 b = 〈1, 0, 1〉 c = 〈−1, 1, 1〉

Their dot products

a · b = 〈1, 1, 0〉 · 〈1, 0, 1〉 = 1× 1 + 1× 0 + 0× 1 = 1
a · c = 〈1, 1, 0〉 · 〈−1, 1, 1〉 = 1× (−1) + 1× 1 + 0× 1 = 0
b · c = 〈1, 0, 1〉 · 〈−1, 1, 1〉 = 1× (−1) + 0× 1 + 1× 1 = 0

tell us that c is perpendicular to both a and b. Since both |a| = |b| =√
12 + 12 + 02 =

√
2 the first dot product tells us that the angle, θ, between a

and b obeys

cos θ = a · b
|a| |b| = 1

2 =⇒ θ = π

3

z

y

x 〈1, 1, 0〉

〈1, 0, 1〉
〈´1, 1, 1〉

�
Dot products are also used to compute projections. First, here’s the defi-

nition.
Definition 1.2.13 Projection. Draw two vectors, a and b, with their tails
at a common point and drop a perpendicular from the head of a to the line
that passes through both the head and tail of b. By definition, the projection
of the vector a on the vector b is the vector from the tail of b to the point on
the line where the perpendicular hits.

5The concepts of the dot product and perpendicularity have been generalized a lot in
mathematics (for example, from 2d and 3d vectors to functions). The generalization of the
dot product is called the “inner product” and the generalization of perpendicularity is called
“orthogonality”.
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a

b

projb aθ

a

b

projb a

θ

♦
Think of the projection of a on b as the part of a that is in the direction

of b.
Now let’s develop a formula for the projection of a on b. Denote by θ the

angle between a and b. If |θ| is no more than 90◦, as in the figure on the left
above, the length of the projection of a on b is |a| cos θ. By Property 6 of
Theorem 1.2.11, |a| cos θ = a ·b/|b|, so the projection is a vector whose length
is a · b/|b| and whose direction is given by the unit vector b/|b|. Hence

projection of a on b = projb a = a · b
|b|

b
|b| = a · b

|b|2 b

If |θ| is larger than 90◦, as in the figure on the right above, the projection has
length |a| cos(π − θ) = −|a| cos θ = −a · b/|b| and direction −b/|b|. In this
case

projb a = −a · b
|b|

−b
|b| = a · b

|b|2 b

too. So the formula
Equation 1.2.14

projb a = a · b
|b|2 b

is applicable whenever b 6= 0. We may rewrite projb a = a·b
|b|

b
|b| . The

coefficient, a·b
|b| , of the unit vector b

|b| , is called the component of a in the
direction b. As a special case, if b happens to be a unit vector, which, for
emphasis, we’ll now write has b̂, the projection formula simplifies to

Equation 1.2.15
projb̂ a = (a · b̂) b̂

Example 1.2.16 In this example, we will find the projection of the vector
〈0, 3〉 on the vector 〈1, 1〉, as in the figure

x

y

〈0, 3〉

〈1, 1〉
proj〈1,1〉〈0, 3〉

By Equation 1.2.14 with a = 〈0, 3〉 and b = 〈1, 1〉, that projection is

proj〈1,1〉 〈0, 3〉 = 〈0, 3〉 · 〈1, 1〉
| 〈1, 1〉 |2 〈1, 1〉

= 0× 1 + 3× 1
12 + 12 〈1, 1〉 =

〈
3
2 ,

3
2

〉
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�
One use of projections is to “resolve forces”. There is an example in the

next (optional) section.

1.2.3 (Optional) Using Dot Products to Resolve Forces —
The Pendulum

Model a pendulum by a mass m that is connected to a hinge by an idealized
rod that is massless and of fixed length `. Denote by θ the angle between the
rod and vertical. The forces acting on the mass are

• gravity, which has magnitude mg and direction 〈0,−1〉,

• tension in the rod, whose magnitude τ(t) automatically adjusts itself so
that the distance between the mass and the hinge is fixed at ` (so that the
rod does not stretch or contract) and whose direction is always parallel
to the rod,

• and possibly some frictional forces, like friction in the hinge and air resis-
tance. Assume that the total frictional force has magnitude proportional6
to the speed of the mass and has direction opposite to the direction of
motion of the mass. We’ll call the constant of proportionality β.

θ ℓ

mg (gravity)

(tension) τ ´βℓdθ
dt

(friction)

If we use a coordinate system centered on the hinge, the (x, y) coordinates
of the mass at time t are

x(t) = ` sin θ(t)
y(t) = −` cos θ(t)

where θ(t) is the angle between the rod and vertical at time t. We are now
going to use Newton’s law of motion

mass× acceleration = total applied force

to determine now θ evolves in time. By definition, the velocity and acceleration
vectors7 for the position vector 〈x(t), y(t)〉 are

d
dt 〈x(t), y(t)〉 =

〈
dx
dt (t), dy

dt (t)
〉

d2

dt2 〈x(t), y(t)〉 =
〈

d2x

dt2 (t), d2y

dt2 (t)
〉

So, the velocity and acceleration vectors of our mass are

v(t) = d
dt 〈x(t), y(t)〉

6The behaviour of air resistance (sometimes called drag) is pretty complicated. We’re
using a reasonable low speed approximation. At high speeds drag is typically proportional
to the square of the speed.

7For a more comprehensive treatment of derivatives of vector valued functions r(t), and
in particular of velocity and acceleration, see Section 1.6 in this text and Section 1.1 in the
CLP-4 text.
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=
〈
`

d
dt sin θ(t),−` d

dt cos θ(t)
〉

=
〈
` cos θ(t) dθ

dt (t) , ` sin θ(t) dθ
dt (t)

〉
= `

dθ
dt (t) 〈cos θ(t), sin θ(t)〉

a(t) = d2

dt2 〈x(t), y(t)〉

= d
dt

{
`

dθ
dt (t) 〈cos θ(t), sin θ(t)〉

}
= `

d2θ

dt2 (t) 〈cos θ(t), sin θ(t)〉+ `
dθ
dt (t)

〈
d
dt cos θ(t), d

dt sin θ(t)
〉

= `
d2θ

dt2 (t) 〈cos θ(t), sin θ(t)〉+ `
(dθ

dt (t)
)2
〈− sin θ(t), cos θ(t)〉

The negative of the velocity vector is −` dθ
dt 〈cos θ, sin θ〉, so the total fric-

tional force is
−β` dθ

dt 〈cos θ, sin θ〉

with β our constant of proportionality.
The vector

τ(t) 〈− sin θ(t), cos θ(t)〉

has magnitude τ(t) and direction parallel to the rod pointing from the mass
towards the hinge and so is the force due to tension in the rod.

Hence, for this physical system, Newton’s law of motion is

mass×acceleration︷ ︸︸ ︷
m`

d2θ

dt2 〈cos θ, sin θ〉+m`
(dθ

dt

)2
〈− sin θ, cos θ〉

=
gravity︷ ︸︸ ︷

mg 〈0,−1〉+
tension︷ ︸︸ ︷

τ 〈− sin θ, cos θ〉−

friction︷ ︸︸ ︷
β`

dθ
dt 〈cos θ, sin θ〉 (∗)

This is a rather complicated looking equation. Writing out its x- and y-
components doesn’t help. They also look complicated. Instead, the equation
can be considerably simplified (and consequently better understood) by “tak-
ing its components parallel to and perpendicular to the direction of motion”.
From the velocity vector v(t), we see that 〈cos θ(t), sin θ(t)〉 is a unit vector
parallel to the direction of motion at time t. Recall, from 1.2.15, that the pro-
jection of any vector b on any unit vector d̂ (with the “hat” on d̂ reminding
ourselves that the vector is a unit vector) is(

b · d̂
)
d̂

The coefficient b ·d̂ is, by definition, the component of b in the direction d̂. So,
by dotting both sides of the equation of motion (∗) with d̂ = 〈cos θ(t), sin θ(t)〉,
we extract the component parallel to the direction of motion. Since

〈cos θ, sin θ〉 · 〈cos θ, sin θ〉 = 1
〈cos θ, sin θ〉 · 〈− sin θ, cos θ〉 = 0

〈cos θ, sin θ〉 · 〈0,−1〉 = − sin θ
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this gives

m`
d2θ

dt2 = −mg sin θ − β`dθ
dt

which is much cleaner than (∗)! When θ is small, we can approximate sin θ ≈ θ
and get the equation

d2θ

dt2 + β

m

dθ
dt + g

`
θ = 0

which is easily solved. There are systematic procedures for finding the solution,
but we’ll just guess.

When there is no friction (so that β = 0), we would expect the pendulum
to just oscillate. So it is natural to guess

θ(t) = A sin(ωt− δ)

which is an oscillation with (unknown) amplitude A, frequency ω (radians per
unit time) and phase δ. Substituting this guess into the left hand side, θ′′+ g

` θ,
yields

−Aω2 sin(ωt− δ) +A g
` sin(ωt− δ)

which is zero if ω =
√
g/`. So θ(t) = A sin(ωt − δ) is a solution for any

amplitude A and phase δ, provided the frequency ω =
√
g/`.

When there is some, but not too much, friction, so that β > 0 is relatively
small, we would expect “oscillation with decaying amplitude”. So we guess

θ(t) = Ae−γt sin(ωt− δ)

for some constant decay rate γ, to be determined. With this guess,

θ(t) = Ae−γtsin(ωt− δ)
θ′(t) = − γAe−γtsin(ωt− δ) + ωAe−γtcos(ωt− δ)
θ′′(t) = (γ2 − ω2)Ae−γtsin(ωt− δ)− 2γωAe−γtcos(ωt− δ)

and the left hand side

d2θ

dt2 + β

m

dθ
dt + g

`
θ =

[
γ2 − ω2 − β

m
γ + g

`

]
Ae−γt sin(ωt− δ)

+
[
−2γω + β

m
ω

]
Ae−γt cos(ωt− δ)

vanishes if γ2 − ω2 − β
mγ + g

` = 0 and −2γω + β
mω = 0. The second equation

tells us the decay rate γ = β
2m and then the first tells us the frequency

ω =
√
γ2 − β

mγ + g
` =

√
g
` −

β2

4m2

When there is a lot of friction (namely when β2

4m2 >
g
` , so that the frequency

ω is not a real number), we would expect damping without oscillation and
so would guess θ(t) = Ae−γt. You can determine the allowed values of γ by
substituting this guess in.

To extract the components perpendicular to the direction of motion, we
dot with 〈− sin θ, cos θ〉 rather than 〈cos θ, sin θ〉. Note that, because

〈− sin θ, cos θ〉 · 〈cos θ, sin θ〉 = 0,
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the vector 〈− sin θ, cos θ〉 really is perpendicular to the direction of motion.
Since

〈− sin θ, cos θ〉 · 〈cos θ, sin θ〉 = 0
〈− sin θ, cos θ〉 · 〈− sin θ, cosθ〉 = 1

〈− sin θ, cos θ〉 · 〈0,−1〉 = − cos θ

dotting both sides of the equation of motion (∗) with 〈− sin θ, cos θ〉 gives

m`
(dθ

dt

)2
= −mg cos θ + τ

This equation just determines the tension

τ = m`
(dθ

dt
)2 +mg cos θ

in the rod, once you know θ(t).

1.2.4 (Optional) Areas of Parallelograms
A parallelogram is naturally determined by the two vectors that define its sides.
We’ll now develop a formula for the area of a parallelogram in terms of these
two vectors.

Construct a parallelogram as follows. Pick two vectors 〈a, b〉 and 〈c, d〉.
Draw them with their tails at a common point. Then draw 〈a, b〉 a second time
with its tail at the head of 〈c, d〉 and draw 〈c, d〉 a second time with its tail at
the head of 〈a, b〉. If the common point is the origin, you get a picture like the
figure below.

pa ` c, b ` dq

pa, bq

pc, dq

a c

d

b

c a

b

d

Any parallelogram can be constructed like this if you pick the common point
and two vectors appropriately. Let’s compute the area of the parallelogram.
The area of the large rectangle with vertices (0, 0), (0, b + d), (a + c, 0) and
(a+c, b+d) is (a+c)(b+d). The parallelogram we want can be extracted from
the large rectangle by deleting the two small rectangles (each of area bc), and
the two lightly shaded triangles (each of area 1

2cd), and the two darkly shaded
triangles (each of area 1

2ab). So the desired

area = (a+ c)(b+ d)− (2× bc)−
(
2× 1

2cd
)
−
(
2× 1

2ab
)

= ad− bc

In the above figure, we have implicitly assumed that a, b, c, d ≥ 0 and
d/c ≥ b/a. In words, we have assumed that both vectors 〈a, b〉 , 〈c, d〉 lie in
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the first quadrant and that 〈c, d〉 lies above 〈a, b〉. By simply interchanging
a ↔ c and b ↔ d in the picture and throughout the argument, we see that
when a, b, c, d ≥ 0 and b/a ≥ d/c, so that the vector 〈c, d〉 lies below 〈a, b〉,
the area of the parallelogram is bc − ad. In fact, all cases are covered by the
formula
Equation 1.2.17

area of parallelogram with sides 〈a, b〉 and 〈c, d〉 = |ad− bc|
Given two vectors 〈a, b〉 and 〈c, d〉, the expression ad−bc is generally written

det
[
a b

c d

]
= ad− bc

and is called the determinant of the matrix8[
a b

c d

]
with rows 〈a, b〉 and 〈c, d〉. The determinant of a 2 × 2 matrix is the product
of the diagonal entries minus the product of the off-diagonal entries.

There is a similar formula in three dimensions. Any three vectors a =
〈a1, a2, a3〉 , b = 〈b1, b2, b3〉 and c = 〈c1, c2, c3〉 in three dimensions

a

b

c

determine a parallelepiped (three dimensional parallelogram). Its volume
is given by the formula

Equation 1.2.18

volume of parallelepiped with edges a, b, c =

∣∣∣∣∣∣det

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
The determinant of a 3 × 3 matrix can be defined in terms of some 2 × 2

determinants by

det



a1 a2 a3
b1 b2 b3
c1 c2 c3


= a1 det



a1 a2 a3
b1 b2 b3
c1 c2 c3


− a2 det



a1 a2 a3
b1 b2 b3
c1 c2 c3


+ a3 det



a1 a2 a3
b1 b2 b3
c1 c2 c3




= a1 (b2c3 − b3c2) − a2 (b1c3 − b3c1) + a3 (b1c2 − b2c1)

This formula is called “expansion along the top row”. There is one term
in the formula for each entry in the top row of the 3× 3 matrix. The term is
a sign times the entry itself times the determinant of the 2× 2 matrix gotten
by deleting the row and column that contains the entry. The sign alternates,
starting with a “+”.

We shall not prove this formula completely here9. It gets a little tedious.
But, there is one case in which we can easily verify that the volume of the

8The topics of matrices and determinants appear prominently in linear algebra courses.
We are only going to use them as notation, and we will explicitly explain that notation. A
linear algebra course is not a prerequisite for this text.

9For a full derivation, see Example 1.2.25
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parallelepiped is really given by the absolute value of the claimed determinant.
If the vectors b and c happen to lie in the xy plane, so that b3 = c3 = 0, then

det

a1 a2 a3
b1 b2 0
c1 c2 0

 = a1(b20− 0c2)− a2(b10− 0c1) + a3(b1c2 − b2c1)

= a3(b1c2 − b2c1)

The first factor, a3, is the z-coordinate of the one vector not contained in the
xy-plane. It is (up to a sign) the height of the parallelepiped. The second
factor is, up to a sign, the area of the parallelogram determined by b and
c. This parallelogram forms the base of the parallelepiped. The product is
indeed, up to a sign, the volume of the parallelepiped. That the formula is
true in general is a consequence of the fact (that we will not prove) that the
value of a determinant does not change when one rotates the coordinate system
and that one can always rotate our coordinate axes around so that b and c
both lie in the xy-plane.

1.2.5 The Cross Product
We have already seen two different products involving vectors — the multi-
plication of a vector by a scalar and the dot product of two vectors. The dot
product of two vectors yields a scalar. We now introduce another product of
two vectors, called the cross product. The cross product of two vectors will
give a vector. There are applications which have two vectors as inputs and
produce one vector as an output, and which are related to the cross product.
Here is a very brief mention of two such applications. We will look at them in
much more detail later.

• Consider a parallelogram in three dimensions. A parallelogram is natu-
rally determined by the two vectors that define its sides. One measure
of the size of a parallelogram is its area. One way to specify the orien-
tation of the parallelogram is to give a vector that is perpendicular to
it. A very compact way to encode both the area and the orientation of
the parallelogram is to give a vector whose direction is perpendicular to
the plane in which it lies and whose magnitude is its area. We shall see
that such a vector can be easily constructed by taking the cross product
(definition coming shortly) of the two vectors that give the sides of the
parallelogram.

• Imagine a rigid body which is rotating at a rate Ω radians per second
about an axis whose direction is given by the unit vector â. Let P be
any point on the body. We shall see, in the (optional) §1.2.7, that the
velocity, v, of the point P is the cross product (again, definition coming
shortly) of the vector Ωâ with the vector r from any point on the axis of
rotation to P .
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P

r

vâ
Ω

Finally, here is the definition of the cross product. Note that it applies only
to vectors in three dimensions.
Definition 1.2.19 Cross Product. The cross product of the vectors a =
〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 is denoted a × b and is defined by

a × b = 〈a2b3 − a3b2 , a3b1 − a1b3 , a1b2 − a2b1〉

♦
Note that each component has the form aibj−ajbi. The index i of the first a

in component number k of a×b is just after k in the list 1, 2, 3, 1, 2, 3, 1, 2, 3, · · ·.
The index j of the first b is just before k in the list.

(a × b)k = ajust after k bjust before k − ajust before k bjust after k

For example, for component number k = 3,

”just after 3” is 1
”just before 3” is 2

}
=⇒ (a × b)3 = a1b2 − a2b1

There is a much better way to remember this definition. Recall that a 2×2
matrix is an array of numbers having two rows and two columns and that the
determinant of a 2× 2 matrix is defined by

det
[
a b

c d

]
= ad− bc

It is the product of the entries on the diagonal minus the product of the entries
not on the diagonal.

A 3×3 matrix is an array of numbers having three rows and three columns. i j k

a1 a2 a3
b1 b2 b3


You will shortly see why the entries in the top row have been given the rather
peculiar names i, j and k. The determinant of a 3 × 3 matrix can be defined
in terms of some 2× 2 determinants by

det



i j k

a1 a2 a3
b1 b2 b3


 = i det



i j k

a1 a2 a3
b1 b2 b3


− j det



i j k

a1 a2 a3
b1 b2 b3


 + k det



i j k

a1 a2 a3
b1 b2 b3




= i (a2b3 − a3b2) − j (a1b3 − a3b1) + k (a1b2 − a2b1)

This formula is called “expansion of the determinant along the top row”.
There is one term in the formula for each entry in the top row. The term is
a sign times the entry itself times the determinant of the 2× 2 matrix gotten
by deleting the row and column that contains the entry. The sign alternates,
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starting with a +. If we now replace i by ı̂ıı, j by ̂ and k by k̂, we get exactly
the formula for a × b of Definition 1.2.19. That is the reason for the peculiar
choice of names for the matrix entries. So

a × b = det

 ı̂ıı ̂ k̂
a1 a2 a3
b1 b2 b3


= ı̂ıı
(
a2b3 − a3b2)− ̂(a1b3 − a3b1) + k̂(a1b2 − a2b1)

is a mnemonic device for remembering the definition of a × b. It is also good
from the point of view of evaluating a×b. Here are several examples in which
we use the determinant mnemonic device to evaluate cross products.

Example 1.2.20 In this example, we’ll use the mnemonic device to compute
two very simple cross products. First

ı̂ıı ˆ ̂ “ det

»
–
ı̂ıı ̂ k̂
1 0 0
0 1 0

fi
fl“ ı̂ıı det

»
–
ı̂ıı ̂ k̂
1 0 0
0 1 0

fi
fl ´ ̂ det

»
–
ı̂ıı ̂ k̂
1 0 0
0 1 0

fi
fl ` k̂det

»
–
ı̂ıı ̂ k̂
1 0 0
0 1 0

fi
fl

“ ı̂ıı p0 ˆ 0 ´ 0 ˆ 1q ´ ̂ p1 ˆ 0 ´ 0 ˆ 0q ` k̂ p1 ˆ 1 ´ 0 ˆ 0q “ k̂

Second

̂ ˆ ı̂ıı “ det

»
–
ı̂ıı ̂ k̂
0 1 0
1 0 0

fi
fl“ ı̂ıı det

»
–
ı̂ıı ̂ k̂
0 1 0
1 0 0

fi
fl ´ ̂ det

»
–
ı̂ıı ̂ k̂
0 1 0
1 0 0

fi
fl ` k̂det

»
–
ı̂ıı ̂ k̂
0 1 0
1 0 0

fi
fl

“ ı̂ıı p1 ˆ 0 ´ 0 ˆ 0q ´ ̂ p0 ˆ 0 ´ 0 ˆ 1q ` k̂ p0 ˆ 0 ´ 1 ˆ 1q “ ´k̂

Note that, unlike most (or maybe even all) products that you have seen
before, ı̂ıı× ̂ is not the same as ̂× ı̂ıı! �

Example 1.2.21 In this example, we’ll use the mnemonic device to compute
two more complicated cross products. Let a = 〈1, 2, 3〉 and b = 〈1,−1, 2〉.
First

a ˆ b “ det

»
–
ı̂ıı ̂ k̂
1 2 3
1 ´1 2

fi
fl“ ı̂ııdet

»
–
ı̂ıı ̂ k̂
1 2 3
1 ´1 2

fi
fl ´ ̂ det

»
–
ı̂ıı ̂ k̂
1 2 3
1 ´1 2

fi
fl` k̂ det

»
–
ı̂ıı ̂ k̂
1 2 3
1 ´1 2

fi
fl

“ ı̂ıı t2 ˆ 2 ´ 3 ˆ p´1qu ´ ̂ t1 ˆ 2 ´ 3 ˆ 1u` k̂ t1 ˆ p´1q ´ 2 ˆ 1u
“ 7 ı̂ıı ` ̂ ´ 3 k̂

Second

b ˆ a “ det

»
–
ı̂ıı ̂ k̂
1 ´1 2
1 2 3

fi
fl“ ı̂ııdet

»
–
ı̂ıı ̂ k̂
1 ´1 2
1 2 3

fi
fl ´ ̂ det

»
–
ı̂ıı ̂ k̂
1 ´1 2
1 2 3

fi
fl` k̂ det

»
–
ı̂ıı ̂ k̂
1 ´1 2
1 2 3

fi
fl

“ ı̂ıı tp´1q ˆ 3 ´ 2 ˆ 2u ´ ̂ t1 ˆ 3 ´ 2 ˆ 1u` k̂ t1 ˆ 2 ´ p´1q ˆ 1u
“ ´7 ı̂ıı ´ ̂ ` 3 k̂

Here are some important observations.

• The vectors a × b and b× a are not the same! In fact b× a = −a × b.
We shall see in Theorem 1.2.23 below that this was not a fluke.

• The vector a×b has dot product zero with both a and b. So the vector
a × b is prependicular to both a and b. We shall see in Theorem 1.2.23
below that this was also not a fluke.

�

Example 1.2.22 Yet again we use the mnemonic device to compute a more
complicated cross product. This time let a = 〈3, 2, 1〉 and b = 〈6, 4, 2〉. Then
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a ˆ b “ det

»
–
ı̂ıı ̂ k̂
3 2 1
6 4 2

fi
fl“ ı̂ıı det

»
–
ı̂ıı ̂ k̂
3 2 1
6 4 2

fi
fl ´ ̂ det

»
–
ı̂ıı ̂ k̂
3 2 1
6 4 2

fi
fl ` k̂det

»
–
ı̂ıı ̂ k̂
3 2 1
6 4 2

fi
fl

“ ı̂ıı p2 ˆ 2 ´ 1 ˆ 4q ´ ̂ p3 ˆ 2 ´ 1 ˆ 6q ` k̂ p3 ˆ 4 ´ 2 ˆ 6q “ 0

We shall see in Theorem 1.2.23 below that it is not a fluke that the cross
product is 0. It is a consequence of the fact that a and b = 2a are parallel. �

We now move on to learning about the properties of the cross product. Our
first properties lead up to a more intuitive geometric definition of a×b, which
is better for interpreting a × b. These properties of the cross product, which
state that a × b is a vector and then determine its direction and length, are
as follows. We will collect these properties, and a few others, into a theorem
shortly.

(0) a,b are vectors in three dimensions and a× b is a vector in three dimen-
sions.

(1) a × b is perpendicular to both a and b.

Proof. To check that a and a×b are perpendicular, one just has to check that
the dot product a · (a × b) = 0. The six terms in

a · (a × b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1)

cancel pairwise. The computation showing that b · (a × b) = 0 is similar. �

(2)

|a × b| = |a| |b| sin θ where 0 ≤ θ ≤ π is the angle between a,b
= the area of the parallelogram with sides a,b

a

a

b b

θ

Proof. The formula |a × b| = |a| |b| sin θ is gotten by verifying that

|a × b|2 =
(
a × b

)
·
(
a × b

)
= (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a2
2b

2
3 − 2a2b3a3b2 + a2

3b
2
2 + a2

3b
2
1 − 2a3b1a1b3 + a2

1b
2
3

+ a2
1b

2
2 − 2a1b2a2b1 + a2

2b
2
1

is equal to

|a|2 |b|2 sin2 θ = |a|2|b|2(1− cos2 θ)
= |a|2|b|2 − (a · b)2

=
(
a2

1 + a2
2 + a2

3
)(
b21 + b22 + b23

)
−
(
a1b1 + a2b2 + a3b3

)2
= a2

1b
2
2 + a2

1b
2
3 + a2

2b
2
1 + a2

2b
2
3 + a2

3b
2
1 + a2

3b
2
2

−
(
2a1b1a2b2 + 2a1b1a3b3 + 2a2b2a3b3

)
To see that |a| |b| sin θ is the area of the parallelogram with sides a and b, just
recall that the area of any parallelogram is given by the length of its base times
its height. Think of a as the base of the parallelogram. Then |a| is the length
of the base and |b| sin θ is the height.
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a

a

b b

θ

�
These properties almost determine a × b. Property 1 forces the vector a × b
to lie on the line perpendicular to the plane containing a and b. There are
precisely two vectors on this line that have the length given by property 2. In
the left hand figure of

a

b

c

d a

b

a ˆ b

the two vectors are labeled c and d. Which of these two candidates is
correct is determined by the right hand rule10, which says that if you form
your right hand into a fist with your fingers curling from a to b, then when
you stick your thumb straight out from the fist, it points in the direction of
a × b. This is illustrated in the figure on the right above11. The important
special cases

(3)
ı̂ıı× ̂ = k̂, ̂× k̂ = ı̂ıı, k̂× ı̂ıı = ̂

̂× ı̂ıı = −k̂, k̂× ̂ = −ı̂ıı, ı̂ıı× k̂ = −̂

all follow directly from the definition of the cross product (see, for ex-
ample, Example 1.2.20) and all obey the right hand rule. Combining
properties 1, 2 and the right hand rule give the geometric definition of
a×b. To remember these three special cases, just remember this figure.

The product of any two standard basis vectors, taken in the order of the
arrows in the figure, is the third standard basis vector. Going against
the arrows introduces a minus sign.

(4)
a × b = |a| |b| sin θ n̂

where θ is the angle between a,b, |n̂| = 1, n̂ ⊥ a,b, and (a,b, n̂) obey
the right hand rule.

10That the cross product uses the right hand rule, rather than the left hand rule, is an
example of the tyranny of the masses — only roughly 10\% of humans are left-handed.

11This figure is a variant of https://commons.wikimedia.org/wiki/File:Right_hand_
rule_simple.png

https://commons.wikimedia.org/wiki/File:Right_hand_rule_simple.png
https://commons.wikimedia.org/wiki/File:Right_hand_rule_simple.png
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Outline of Proof. We have already seen that the right hand side has the correct
length and, except possibly for a sign, direction. To check that the right hand
rule holds in general, rotate your coordinate system arounda so that a points
along the positive x axis and b lies in the xy-plane with positive y component.
That is a = αı̂ıı and b = βı̂ıı+ γ̂ with α, γ ≥ 0. Then

a × b = αı̂ıı× (βı̂ıı+ γ̂) = αβ ı̂ıı× ı̂ıı+ αγ ı̂ıı× ̂.

The first term vanishes by property 2, because the angle θ between ı̂ıı and ı̂ıı is
zero. So, by property 3, a×b = αγk̂ points along the positive z axis, which is
consistent with the right hand rule. �

aNote that as you translate or rotate the coordinate system, the right hand rule is pre-
served. If (a,b, n̂) obey the right hand rule so do their rotated and translated versions.

The analog of property 7 of the dot product (which says that a · b is zero if
and only if a = 0 or b = 0 or a ⊥ b) follows immediately from property 2.

(5)
a × b = 0 ⇐⇒ a = 0 or b = 0 or a ‖ b.

The remaining properties are all tools for helping do computations with
cross products. Here is a theorem which summarizes the properties of the
cross product. We have already seen the first five. The other properties are all
tools for helping do computations with cross products.

Theorem 1.2.23 Properties of the Cross Product.
(0) a,b are vectors in three dimensions and a× b is a vector in three dimen-

sions.

(1) a × b is perpendicular to both a and b.

(2)

|a × b| = |a| |b| sin θ where 0 ≤ θ ≤ π is the angle between a,b
= the area of the parallelogram with sides a,b

a

a

b b

θ

(3)
ı̂ıı× ̂ = k̂, ̂× k̂ = ı̂ıı, k̂× ı̂ıı = ̂

(4)
a × b = |a| |b| sin θ n̂

where θ is the angle between a,b, |n̂| = 1, n̂ ⊥ a,b, and (a,b, n̂) obey
the right hand rule.

(5)
a × b = 0 ⇐⇒ a = 0 or b = 0 or a ‖ b.

(6)
a × b = −b× a
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(7)
(sa)× b = a × (sb) = s(a × b)

for any scalar (i.e. number) s.

(8)
a × (b + c) = a × b + a × c

(9)
a · (b× c) = (a × b) · c

(10)
a × (b× c) = (c · a)b− (b · a)c

Proof. We have already seen the proofs up to number 5. Numbers 6, 7 and 8
follow immediately from the definition, using a little algebra. To prove numbers
9 and 10 we just write out the definitions of the left hand sides and the right
hand sides and observe that they are equal.
(9) The left hand side is

a · (b× c) = 〈a1, a2, a3〉 · 〈b2c3−b3c2 , b3c1−b1c3 , b1c2−b2c1〉
= a1b2c3−a1b3c2+a2b3c1−a2b1c3+a3b1c2−a3b2c1

The right hand side is

(a × b) · c = 〈a2b3−a3b2 , a3b1−a1b3 , a1b2−a2b1〉 · 〈c1, c2, c3〉
= a2b3c1−a3b2c1+a3b1c2−a1b3c2+a1b2c3−a2b1c3

The left and right hand sides are the same.

(10) We will give the straightforward, but slightly tedious, computations in
(the optional) §1.2.6.

�

Warning 1.2.24 Take particular care with properties 6 and 10. They are
counterintuitive and are a frequent source of errors. In particular, for gen-
eral vectors a, b, c, the cross product is neither commutative nor associative,
meaning that

a × b 6= b× a
a × (b× c) 6= (a × b)× c

For example

ı̂ıı× (̂ııı× ̂) = ı̂ıı× k̂ = −k̂× ı̂ıı = −̂
(̂ııı× ı̂ıı)× ̂ = 0× ̂ = 0

Example 1.2.25 As an illustration of the properties of the dot and cross
product, we now derive the formula for the volume of the parallelepiped with
edges a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, c = 〈c1, c2, c3〉 that was mentioned in
§1.2.4.
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a

c

b

b ˆ c

θ

ϕ

The volume of the parallelepiped is the area of its base times its height12.
The base is the parallelogram with sides b and c. Its area is the length of its
base, which is |b|, times its height, which is |c| sin θ. (Drop a perpendicular
from the head of c to the line containing b). Here θ is the angle between b
and c. So the area of the base is |b| |c| sin θ = |b × c|, by property 2 of the
cross product.

To get the height of the parallelepiped, we drop a perpendicular from the
head of a to the line that passes through the tail of a and is perpendicular
to the base of the parallelepiped. In other words, from the head of a to the
line that contains both the head and the tail of b × c. So the height of the
parallelepiped is |a| | cosϕ|. (The absolute values have been included because
if the angle between b × c and a happens to be greater than 90◦, the cosϕ
produced by taking the dot product of a and (b× c) will be negative.)

All together

volume of parallelepiped = (area of base) (height)
= |b× c| |a| | cosϕ|
=
∣∣a · (b× c)

∣∣
= |a1(b× c)1 + a2(b× c)2 + a3(b× c)3|

=
∣∣∣∣a1 det

[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]∣∣∣∣
=

∣∣∣∣∣∣det

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
�

Example 1.2.26 As a concrete example of the computation of the volume of
a parallelepiped, we consider the parallelepiped with edges

a = 〈0, 1, 2〉
b = 〈1, 1, 0〉
c = 〈0, 1, 0〉

Here is a sketch.
14This is a simple integral calculus exercise.
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a

b

c

b ˆ c

The base of the parallelepiped is the parallelogram with sides b and c. It
is the shaded parallelogram in the sketch above. As

b× c = det

ı̂ıı ̂ k̂
1 1 0
0 1 0


= ı̂ııdet

[
1 0
1 0

]
− ̂ det

[
1 0
0 0

]
+ k̂ det

[
1 1
0 1

]
= ı̂ıı
(
1× 0− 0× 1)− ̂(1× 0− 0× 0) + k̂(1× 1− 1× 0)

= k̂

We should not be surprised that b× c has direction k̂.

• b× c has to be perpendicular to both b and c and

• both b and c lie in the xy-plane,

• so that b× c has to the perpendicular to the xy-plane,

• so that b× c has to the parallel to the z-axis.

The area of the base, i.e. of the shaded parallelogram in the figure above, is

|b× c| = |k̂| = 1

and the volume of the parallelepiped is

|a · (b× c)| = | 〈0, 1, 2〉 · 〈0, 0, 1〉 | = 2

�

1.2.6 (Optional) Some Vector Identities
Here are a few identities involving dot and cross products.

Lemma 1.2.27
(a) a · (b× c) = (a × b) · c

(b) a × (b× c) = (c · a)b− (b · a)c

(c) a × (b× c) + b× (c× a) + c× (a × b) = 0
Proof of (a). We proved this in Theorem 1.2.23, by evaluating the left and
right hand sides, and observing that they are the same. Here is a second proof,
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in which we again write out both sides, but this time we express them in terms
of determinants.

a · b× c = (a1, a2, a3) · det

 ı̂ıı ̂ k̂
b1 b2 b3
c1 c2 c3


= a1 det

[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]

= det

a1 a2 a3
b1 b2 b3
c1 c2 c3


a × b · c = det

 ı̂ıı ̂ k̂
a1 a2 a3
b1 b2 b3

 · (c1, c2, c3)

= c1 det
[
a2 a3
b2 b3

]
− c2 det

[
a1 a3b1 b3

]
+ c3 det

[
a1 a2
b1 b2

]

= det

c1 c2 c3
a1 a2 a3
b1 b2 b3


Exchanging two rows in a determinant changes the sign of the determinant.
Moving the top row of a 3 × 3 determinant to the bottom row requires two
exchanges of rows. So the two 3× 3 determinants are equal. �
Proof of (b). The proof is not exceptionally difficult — just write out both
sides and grind. Substituting in

b× c = (b2c3 − b3c2)̂ııı− (b1c3 − b3c1)̂+ (b1c2 − b2c1)k̂

gives, for the left hand side,

a × (b× c) = det

 ı̂ıı ̂ k̂
a1 a2 a3

b2c3 − b3c2 −b1c3 + b3c1 b1c2 − b2c1


= ı̂ıı

[
a2(b1c2 − b2c1)− a3(−b1c3 + b3c1)

]
−̂
[
a1(b1c2 − b2c1)− a3(b2c3 − b3c2)

]
+k̂
[
a1(−b1c3 + b3c1)− a2(b2c3 − b3c2)

]
On the other hand, the right hand side

(a · c)b− (a · b)c = (a1c1 + a2c2 + a3c3)(b1ı̂ıı+ b2̂+ b3k̂)
− (a1b1 + a2b2 + a3b3)(c1ı̂ıı+ c2̂+ c3k̂)

= ı̂ıı
[
a1b1c1 + a2b1c2 + a3b1c3 − a1b1c1 − a2b2c1 − a3b3c1

]
+ ̂

[
a1b2c1 + a2b2c2 + a3b2c3 − a1b1c2 − a2b2c2 − a3b3c2

]
+ k̂

[
a1b3c1 + a2b3c2 + a3b3c3 − a1b1c3 − a2b2c3 − a3b3c3

]
= ı̂ıı [a2b1c2 + a3b1c3 − a2b2c1 − a3b3c1]

+ ̂ [a1b2c1 + a3b2c3 − a1b1c2 − a3b3c2]
+ k̂ [a1b3c1 + a2b3c2 − a1b1c3 − a2b2c3]

The last formula that we had for the left hand side is the same as the last
formula we had for the right hand side. Oof! This is a little tedious to do by
hand. But any computer algebra system will do it for you in a flash. �
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Proof of (c). We just apply part (b) three times

a × (b× c) + b× (c× a) + c× (a × b)
= (c · a)b− (b · a)c + (a · b)c− (c · b)a + (b · c)a − (a · c)b
= 0

�

1.2.7 (Optional) Application of Cross Products to Rota-
tional Motion

In most computations involving rotational motion, the cross product shows
up in one form or another. This is one of the main applications of the cross
product. Consider, for example, a rigid body which is rotating at a constant
rate of Ω radians per second about an axis whose direction is given by the
unit vector â. Let P be any point on the body. Let’s figure out its velocity.
Pick any point on the axis of rotation and designate it as the origin of our
coordinate system. Denote by r the vector from the origin to the point P . Let
θ denote the angle between â and r. As time progresses the point P sweeps
out a circle of radius R = |r | sin θ.

P

r

v

0

â

θ

Ω

In one second P travels along an arc that subtends an angle of Ω radians,
which is the fraction Ω

2π of a full circle. The length of this arc is Ω
2π × 2πR =

ΩR = Ω|r | sin θ so P travels the distance Ω|r | sin θ in one second and its speed,
which is also the length of its velocity vector, is Ω|r | sin θ.

Now we just need to figure out the direction of the velocity vector. That
is, the direction of motion of the point P . Imagine that both â and r lie in the
plane of a piece of paper, as in the figure above. Then v points either straight
into or straight out of the page and consequently is perpendicular to both â
and r. To distinguish between the “into the page” and “out of the page” cases,
let’s impose the conventions that Ω > 0 and the axis of rotation â is chosen
to obey the right hand rule, meaning that if the thumb of your right hand is
pointing in the direction â, then your fingers are pointing in the direction of
motion of the rigid body. Under these conventions, the velocity vector v obeys

• |v| = Ω|r||â| sin θ

• v ⊥ â, r

• (â, r,v) obey the right hand rule

That is, v is exactly Ωâ× r. It is conventional to define the “angular velocity”
of a rigid body to be vector Ω = Ωâ. That is, the vector with length given
by the rate of rotation and direction given by the axis of rotation of the rigid
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body. In particular, the bigger the rate of rotation, the longer the angular
velocity vector. In terms of this angular velocity vector, the velocity of the
point P is

v = Ω× r

1.2.8 (Optional) Application of Cross Products to Rotat-
ing Reference Frames

Imagine a moving particle that is being tracked by two observers.

a One observer is fixed (out in space) and measures the position of the
particle to be

(
X(t), Y (t), Z(t)

)
.

b The other observer is tied to a merry-go-round (the Earth) and measures
the position of the particle to be

(
x(t), y(t), z(t)

)
.

The merry-go-round is sketched in the figure on the left below. It is rotating
about the Z-axis at a (constant) rate of Ω radians per second. The vector
Ω = Ωk̂, whose length is the rate of rotation and whose direction is the axis
of rotation, is called the angular velocity.

Ω

x

y

moving observer

Ωt x

y

top view
X

Y

The x- and y-axes of the moving observer are painted in red on the merry-
go-round. The figure on the right above shows a top view of the merry-go-
round. The x- and y-axes of the moving observer are again red. The X- and
Y -axes of the fixed observer are blue. We are assuming that at time 0, the
x-axis of the moving observer and the X-axis of the fixed observer coincide.
As the merry-go-round is rotating at Ω radians per second, the angle between
the X-axis and x-axis after t seconds is Ωt.

As an example, suppose that the moving particle is tied to the tip of the
moving observer’s unit x vector. Then

x(t) = 1 y(t) = 0 z(t) = 0
X(t) = cos(Ωt) Y (t) = sin(Ωt) Z(t) = 0

or, if we write r(t) =
(
x(t), y(t), z(t)

)
and R(t) =

(
X(t), Y (t), Z(t)

)
, then

r(t) = (1 , 0 , 0) R(t) =
(

cos(Ωt) , sin(Ωt) , 0
)

In general, denote by ı̂ıı(t) the coordinates of the unit x-vector of the moving
observer at time t, as measured by the fixed observer. Similarly ̂(t) for the
unit y-vector, and k̂(t) for the unit z-vector. As the merry-go-round is rotating
about the Z-axis at a rate of Ω radians per second, the angle between the X-
axis and x-axis after t seconds is Ωt, and

ı̂ıı(t) =
(

cos(Ωt) , sin(Ωt) , 0
)
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̂(t) =
(
− sin(Ωt) , cos(Ωt) , 0

)
k̂(t) =

(
0 , 0 , 1

)

Ωt

Ωt

ı̂ııptq

̂ptq

X

Y

The position of the moving particle, as seen by the fixed observer is

R(t) = x(t) ı̂ıı(t) + y(t) ̂(t) + z(t) k̂(t)

Differentiating, the velocity of the moving particle, as measured by the fixed
observer is

V(t) = dR
dt = dx

dt(t) ı̂
ıı(t) + dy

dt(t) ̂
(t) + dz

dt(t) k̂(t)

+ x(t) d
dtı̂
ıı(t) + y(t) d

dt̂
(t) + z(t) d

dt k̂(t)

We saw, in the last (optional) §1.2.7, that

d
dtı̂
ıı(t) = Ω× ı̂ıı(t) d

dt̂
(t) = Ω× ̂(t) d

dt k̂(t) = Ω× k̂(t)

(You could also verify that these are correct by putting in Ω = (0, 0,Ω) and
explicitly computing the cross products.) So

V(t) =
(dx

dt(t) ı̂
ıı(t) + dy

dt(t) ̂
(t) + dz

dt(t) k̂(t)
)

+ Ω×
(
x(t) ı̂ıı(t) + y(t) ̂(t) + z(t) k̂(t)

)
Differentiating a second time, the acceleration of the moving particle (which
is also F

m , where F is the net force being applied to the particle and m is the
mass of the particle) as measured by the fixed observer is

F
m

= A(t) =
(d2x

dt2(t) ı̂ıı(t) + d2y

dt2(t) ̂(t) + d2z

dt2(t) k̂(t)
)

+ 2Ω×
(dx

dt(t) ı̂
ıı(t) + dy

dt(t) ̂
(t) + dz

dt(t) k̂(t)
)

+ Ω×
(
Ω×

[
x(t) ı̂ıı(t) + y(t) ̂(t) + z(t) k̂(t)

])
Recall that the angular velocity Ω = (0, 0,Ω) does not depend on time.

The rotating observer sees ı̂ıı(t) as ı̂ıı = (1, 0, 0), sees ̂(t) as ̂ = (0, 1, 0), and sees
k̂(t) as k̂ = (0, 0, 1) and so sees

F
m

= a(t) + 2Ω× v(t) + Ω×
[
Ω× r(t)

]
where, as usual,

v(t) = d
dtr(t) =

(dx
dt (t) , dy

dt (t) , dz
dt (t)

)
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a(t) = d2

dt2 r(t) =
(d2x

dt2 (t) , d2y

dt2 (t) , d2z

dt2 (t)
)

So the acceleration of the particle seen by the moving observer is

a(t) = F
m
− 2Ω× v(t)−Ω×

[
Ω× r(t)

]
Here

• F is the sum of all external forces acting on the moving particle,

• Fcor = −2Ω× v(t) is called the Coriolis force and

• −Ω×
[
Ω× r(t)

]
is called the centrifugal force.

As an example, suppose that you are the moving particle and that you are at
the edge of the merry-go-round. Let’s say t = 0 and you are at ı̂ıı. Then F
is the friction that the surface of the merry-go-round applies to the soles of
your shoes. If you are just standing there, v(t) = 0, so that Fcor = 0, and
the friction F exactly cancels the centrifugal force −Ω ×

[
Ω × r(t)

]
so that

you remain at ı̂ıı(t). Assume that Ω > 0. Now suppose that you start walking
around the edge of the merry-go-round. Then, at t = 0, r = ı̂ıı and

• if you walk in the direction of rotation (with speed one), as in the figure
on the left below, v = ̂ and the Coriolis force Fcor = −2Ωk̂ × ̂ = 2Ω ı̂ıı
tries to push you off of the merry-go-round, while

• if you walk opposite to the direction of rotation (with speed one), as in
the figure on the right below, v = −̂ so that the Coriolis force Fcor =
−2Ωk̂ × (−̂) = −2Ω ı̂ıı tries to pull you into the centre of the merry-go-
round.

Ω

v
Fcor

Ω

v

Fcor

On a rotating ball, such as the Earth, the Coriolis force deflects wind to the
right (counterclockwise) in the northern hemisphere and to the left (clockwise)
is the southern hemisphere. In particular, hurricanes/cyclones/typhoons rotate
counterclockwise in the northern hemisphere and clockwise in the southern
hemisphere. On the other hand, when it comes to water draining out of, for
example, a toilet, Coriolis force effects are dominated by other factors like
asymmetry of the toilet.

1.2.9 Exercises

Exercises — Stage 1
1. Let a = 〈2, 0〉 and b = 〈1, 1〉. Evaluate and sketch a + b, a + 2b and

2a − b.
2. Determine whether or not the given points are collinear (that is, lie

on a common straight line)
a (1, 2, 3), (0, 3, 7), (3, 5, 11)

b (0, 3,−5), (1, 2,−2), (3, 0, 4)
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3. Determine whether the given pair of vectors is perpendicular
a 〈1, 3, 2〉 , 〈2,−2, 2〉

b 〈−3, 1, 7〉 , 〈2,−1, 1〉

c 〈2, 1, 1〉 , 〈−1, 4, 2〉
4. Consider the vector a = 〈3, 4〉.

a Find a unit vector in the same direction as a.

b Find all unit vectors that are parallel to a.

c Find all vectors that are parallel to a and have length 10.

d Find all unit vectors that are perpendicular to a.
5. Consider the vector b = 〈3, 4, 0〉.

a Find a unit vector in the same direction as b.

b Find all unit vectors that are parallel to b.

c Find four different unit vectors that are perpendicular to b.
6. Let a = 〈a1, a2〉. Compute the projection of a on ı̂ıı and ̂.
7. Does the triangle with vertices (1, 2, 3), (4, 0, 5) and (3, 6, 4) have a

right angle?
8. Show that the area of the parallelogram determined by the vectors a

and b is |a × b|.

b
b

a

a

9. Show that the volume of the parallelepiped determined by the vectors
a, b and c is

|a · (b× c)|

a

b

c

10. Verify by direct computation that
a ı̂ıı× ̂ = k̂, ̂× k̂ = ı̂ıı, k̂× ı̂ıı = ̂

b a · (a × b) = b · (a × b) = 0
11. Consider the following statement: “If a 6= 0 and if a · b = a · c then

b = c.” If the statment is true, prove it. If the statement is false, give
a counterexample.

12. Consider the following statement: “The vector a × (b × c) is of the
form αb + βc for some real numbers α and β.” If the statement is
true, prove it. If the statement is false, give a counterexample.

13. What geometric conclusions can you draw from a · (b× c) = 〈1, 2, 3〉?
14. What geometric conclusions can you draw from a · (b× c) = 0?
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15. Consider the three points O = (0, 0), A = (a, 0) and B = (b, c).
a Sketch, in a single figure,

• the triangle with vertices O, A and B, and
• the circumscribing circle for the triangle (i.e. the circle that

goes through all three vertices), and
• the vectors

◦
−→
OA, from O to A,
◦
−−→
OB, from O to B,
◦
−−→
OC, from O to C, where C is the centre of the circum-
scribing circle.

Then add to the sketch and evaluate, from the sketch,

• the projection of the vector −−→OC on the vector −→OA, and

• the projection of the vector −−→OC on the vector −−→OB.

b Determine C.

c Evaluate, using the formula 1.2.14,

• the projection of the vector −−→OC on the vector −→OA, and

• the projection of the vector −−→OC on the vector −−→OB.

Exercises — Stage 2
16. Find the equation of a sphere if one of its diameters has end points

(2, 1, 4) and (4, 3, 10).
17. Use vectors to prove that the line joining the midpoints of two sides

of a triangle is parallel to the third side and half its length.
18. Compute the areas of the parallelograms determined by the following

vectors.
a 〈−3, 1〉 , 〈4, 3〉

b 〈4, 2〉 , 〈6, 8〉
19. ∗. Consider the plane W , defined by:

W : −x+ 3y + 3z = 6,

Find the area of the parallelogram on W defined by 0 ≤ x ≤ 3,
0 ≤ y ≤ 2.

20. Compute the volumes of the parallelepipeds determined by the fol-
lowing vectors.

a 〈4, 1,−1〉 , 〈−1, 5, 2〉 , 〈1, 1, 6〉

b 〈−2, 1, 2〉 , 〈3, 1, 2〉 , 〈0, 2, 5〉
21. Compute the dot product of the vectors a and b. Find the angle

between them.
a a = 〈1, 2〉 , b = 〈−2, 3〉

b a = 〈−1, 1〉 , b = 〈1, 1〉

c a = 〈1, 1〉 , b = 〈2, 2〉
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d a = 〈1, 2, 1〉 , b = 〈−1, 1, 1〉

e a = 〈−1, 2, 3〉 , b = 〈3, 0, 1〉
22. Determine the angle between the vectors a and b if

a a = 〈1, 2〉 , b = 〈3, 4〉

b a = 〈2, 1, 4〉 , b = 〈4,−2, 1〉

c a = 〈1,−2, 1〉 , b = 〈3, 1, 0〉
23. Determine all values of y for which the given vectors are perpendicular.

a 〈2, 4〉 , 〈2, y〉

b 〈4,−1〉 ,
〈
y, y2〉

c 〈3, 1, 1〉 ,
〈
2, 5y, y2〉

24. Let u = −2̂ııı+ 5̂ and v = αı̂ıı− 2̂. Find α so that
a u ⊥ v

b u‖v

c The angle between u and v is 60◦.
25. Define a = 〈1, 2, 3〉 and b = 〈4, 10, 6〉.

a Find the component of b in the direction a.

b Find the projection of b on a.

c Find the projection of b perpendicular to a.
26. Compute 〈1, 2, 3〉 × 〈4, 5, 6〉.
27. Calculate the following cross products.

a 〈1,−5, 2〉 × 〈−2, 1, 5〉

b 〈2,−3,−5〉 × 〈4,−2, 7〉

c 〈−1, 0, 1〉 × 〈0, 4, 5〉
28. Let p = 〈−1, 4, 2〉 , q = 〈3, 1,−1〉 , r = 〈2,−3,−1〉. Check, by direct

computation, that
a p× p = 0

b p× q = −q × p

c p× (3r) = 3(p× r)

d p× (q + r) = p× q + p× r

e p× (q × r) 6= (p× q)× r
29. Calculate the area of the triangle with vertices (0, 0, 0), (1, 2, 3) and

(3, 2, 1).
30. ∗. A particle P of unit mass whose position in space at time t is r(t)

has angular momentum L(t) = r(t) × r′(t). If r′′(t) = ρ(t)r(t) for a
scalar function ρ, show that L is constant, i.e. does not change with
time. Here ′ denotes d

dt .

Exercises — Stage 3
31. Show that the diagonals of a parallelogram bisect each other.
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32. Consider a cube such that each side has length s. Name, in order,
the four vertices on the bottom of the cube A,B,C,D and the corre-
sponding four vertices on the top of the cube A′, B′, C ′, D′.

a Show that all edges of the tetrahedron A′C ′BD have the same
length.

b Let E be the center of the cube. Find the angle between EA
and EC.

33. Find the angle between the diagonal of a cube and the diagonal of one
of its faces.

34. Consider a skier who is sliding without friction on the hill y = h(x)
in a two dimensional world. The skier is subject to two forces. One is
gravity. The other acts perpendicularly to the hill. The second force
automatically adjusts its magnitude so as to prevent the skier from
burrowing into the hill. Suppose that the skier became airborne at
some (x0, y0) with y0 = h(x0). How fast was the skier going?

35. A marble is placed on the plane ax + by + cz = d. The coordinate
system has been chosen so that the positive z-axis points straight
up. The coefficient c is nonzero and the coefficients a and b are not
both zero. In which direction does the marble roll? Why were the
conditions “c 6= 0” and “a, b not both zero” imposed?

36. Show that a · (b× c) = (a × b) · c.
37. Show that a × (b× c) = (a · c)b− (a · b)c.
38. Derive a formula for (a × b) · (c× d) that involves dot but not cross

products.
39. A prism has the six vertices

A = (1, 0, 0) A′ = (5, 0, 1)
B = (0, 3, 0) B′ = (4, 3, 1)
C = (0, 0, 4) C ′ = (4, 0, 5)

a Verify that three of the faces are parallelograms. Are they rect-
angular?

b Find the length of AA′.

c Find the area of the triangle ABC.

d Find the volume of the prism.
40. (Three dimensional Pythagorean Theorem) A solid body in space with

exactly four vertices is called a tetrahedron. Let A, B, C and D be the
areas of the four faces of a tetrahedron. Suppose that the three edges
meeting at the vertex opposite the face of area D are perpendicular
to each other. Show that D2 = A2 +B2 + C2.

C

B

A a

b

c
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41. (Three dimensional law of cosines) Let A, B, C and D be the areas
of the four faces of a tetrahedron. Let α be the angle between the
faces with areas B and C, β be the angle between the faces with areas
A and C and γ be the angle between the faces with areas A and B.
(By definition, the angle between two faces is the angle between the
normal vectors to the faces.) Show that

D2 = A2 +B2 + C2 − 2BC cosα− 2AC cosβ − 2AB cos γ

1.3 Equations of Lines in 2d
A line in two dimensions can be specified by giving one point (x0, y0) on the
line and one vector d = 〈dx, dy〉 whose direction is parallel to the line.

(x0, y0)

(x, y)

d

If (x, y) is any point on the line then the vector 〈x− x0, y − y0〉, whose tail
is at (x0, y0) and whose head is at (x, y), must be parallel to d and hence must
be a scalar multiple of d. So

Equation 1.3.1 Parametric Equations.

〈x− x0, y − y0〉 = td

or, writing out in components,

x− x0 = tdx

y − y0 = tdy

These are called the parametric equations of the line, because they contain
a free parameter, namely t. As t varies from −∞ to∞, the point (x0+tdx, y0+
tdy) traverses the entire line.

It is easy to eliminate the parameter t from the equations. Just multiply
x− x0 = tdx by dy, multiply y − y0 = tdy by dx and subtract to give

(x− x0)dy − (y − y0)dx = 0

In the event that dx and dy are both nonzero, we can rewrite this as

Equation 1.3.2 Symmetric Equation.

x− x0

dx
= y − y0

dy

This is called the symmetric equation for the line.
A second way to specify a line in two dimensions is to give one point (x0, y0)

on the line and one vector n = 〈nx, ny〉 whose direction is perpendicular to
that of the line.
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(x0, y0)

(x, y) n

If (x, y) is any point on the line then the vector 〈x− x0, y − y0〉, whose tail
is at (x0, y0) and whose head is at (x, y), must be perpendicular to n so that

Equation 1.3.3

n · 〈x− x0, y − y0〉 = 0

Writing out in components

nx(x− x0) + ny(y − y0) = 0 or nxx+ nyy = nxx0 + nyy0

Observe that the coefficients nx, ny of x and y in the equation of the line are
the components of a vector 〈nx, ny〉 perpendicular to the line. This enables us
to read off a vector perpendicular to any given line directly from the equation
of the line. Such a vector is called a normal vector for the line.
Example 1.3.4 Consider, for example, the line y = 3x + 7. To rewrite this
equation in the form

nxx+ nyy = nxx0 + nyy0

we have to move terms around so that x and y are on one side of the equation
and 7 is on the other side: 3x−y = −7. Then nx is the coefficient of x, namely
3, and ny is the coefficient of y, namely −1. One normal vector for y = 3x+ 7
is 〈3,−1〉.

Of course, if 〈3,−1〉 is perpendicular to y = 3x + 7, so is −5 〈3,−1〉 =
〈−15, 5〉. In fact, if we first multiply the equation 3x − y = −7 by −5 to
get −15x + 5y = 35 and then set nx and ny to the coefficients of x and y
respectively, we get n = 〈−15, 5〉. �

Example 1.3.5 In this example, we find the point on the line y = 6− 3x (call
the line L) that is closest to the point (7, 5).

We’ll start by sketching the line. To do so, we guess two points on L and
then draw the line that passes through the two points.

• If (x, y) is on L and x = 0, then y = 6. So (0, 6) is on L.

• If (x, y) is on L and y = 0, then x = 2. So (2, 0) is on L.

L

p0, 6q

p2, 0q

p7, 5q

x

y
L

p0, 6q

p2, 0q

p7, 5q
P

Q

x

y

Denote by P the point on L that is closest to (7, 5). It is characterized
by the property that the line from (7, 5) to P is perpendicular to L. This is
the case just because if Q is any other point on L, then, by Pythagoras, the
distance from (7, 5) to Q is larger than the distance from (7, 5) to P . See the
figure on the right above.
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Let’s use N to denote the line which passes through (7, 5) and which is
perpendicular to L.

L

(0, 6)

(2, 0)

(7, 5)

P

N

(x, y)
〈3, 1〉

x

y

Since L has the equation 3x + y = 6, one vector perpendicular to L,
and hence parallel to N , is 〈3, 1〉. So if (x, y) is any point on N , the vec-
tor 〈x− 7, y − 5〉 must be of the form t 〈3, 1〉. So the parametric equations of
N are

〈x− 7, y − 5〉 = t 〈3, 1〉 or x = 7 + 3t, y = 5 + t

Now let (x, y) be the coordinates of P . Since P is on N , we have x = 7 + 3t,
y = 5 + t for some t. Since P is also on L, we also have 3x+ y = 6. So

3(7 + 3t) + (5 + t) = 6
⇐⇒ 10t+ 26 = 6
⇐⇒ t = −2
=⇒ x = 7 + 3× (−2) = 1, y = 5 + (−2) = 3

and P is (1, 3). �

1.3.1 Exercises

Exercises — Stage 1
1. A line in R2 has direction d and passes through point c.

Which of the following gives its parametric equation: 〈x, y〉 =
c + td, or 〈x, y〉 = c− td?

2. A line in R2 has direction d and passes through point c.
Which of the following gives its parametric equation: 〈x, y〉 =

c + td, or 〈x, y〉 = −c + td?
3. Two points determine a line. Verify that the equations

〈x− 1, y − 9〉 = t 〈8, 4〉

and
〈x− 9, y − 13〉 = t

〈
1, 1

2
〉

describe the same line by finding two different points that lie on
both lines.

4. A line in R2 has parametric equations

x− 3 = 9t
y − 5 = 7t

There are many different ways to write the parametric equations
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of this line. If we rewrite the equations as

x− x0 = dxt

y − y0 = dyt

what are all possible values of 〈x0, y0〉 and 〈dx, dy〉?

Exercises — Stage 2
5. Find the vector parametric, scalar parametric and symmetric equa-

tions for the line containing the given point and with the given direc-
tion.

a point (1, 2), direction 〈3, 2〉

b point (5, 4), direction 〈2,−1〉

c point (−1, 3), direction 〈−1, 2〉
6. Find the vector parametric, scalar parametric and symmetric equa-

tions for the line containing the given point and with the given normal.
a point (1, 2), normal 〈3, 2〉

b point (5, 4), normal 〈2,−1〉

c point (−1, 3), normal 〈−1, 2〉
7. Use a projection to find the distance from the point (−2, 3) to the line

3x− 4y = −4.
8. Let a, b and c be the vertices of a triangle. By definition, a median of

a triangle is a straight line that passes through a vertex of the triangle
and through the midpoint of the opposite side.

a Find the parametric equations of the three medians.

b Do the three medians meet at a common point? If so, which
point?

9. Let C be the circle of radius 1 centred at (2, 1). Find an equation for
the line tangent to C at the point

(
5
2 , 1 +

√
3

2

)
.

1.4 Equations of Planes in 3d
Specifying one point (x0, y0, z0) on a plane and a vector d parallel to the plane
does not uniquely determine the plane, because it is free to rotate about d.
On the other hand, giving one point

(x0, y0, z0)

d

(x0, y0, z0)

(x, y, z)n

on the plane and one vector n = 〈nx, ny, nz〉 with direction perpendicular to
that of the plane does uniquely determine the plane. If (x, y, z) is any point on
the plane then the vector 〈x− x0, y − y0, z − z0〉, whose tail is at (x0, y0, z0)
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and whose head is at (x, y, z), lies entirely inside the plane and so must be
perpendicular to n. That is,

Equation 1.4.1 The Equation of a Plane.

n · 〈x− x0, y − y0, z − z0〉 = 0

Writing out in components

nx(x− x0) + ny(y − y0) + nz(z − z0) = 0 or nxx+ nyy + nzz = d

where d = nxx0 + nyy0 + nzz0.
Again, the coefficients nx, ny, nz of x, y and z in the equation of the plane

are the components of a vector 〈nx, ny, nz〉 perpendicular to the plane. The
vector n is often called a normal vector for the plane. Any nonzero multiple
of n will also be perpendicular to the plane and is also called a normal vector.

Example 1.4.2 We have just seen that if we write the equation of a plane in
the standard form

ax+ by + cz = d

then it is easy to read off a normal vector for the plane. It is just 〈a, b, c〉. So
for example the planes

P : x+ 2y + 3z = 4 P ′ : 3x+ 6y + 9z = 7

have normal vectors n = 〈1, 2, 3〉 and n′ = 〈3, 6, 9〉, respectively. Since n′ = 3n,
the two normal vectors n and n′ are parallel to each other. This tells us that
the planes P and P ′ are parallel to each other.

When the normal vectors of two planes are perpendicular to each other, we
say that the planes are perpendicular to each other. For example the planes

P : x+ 2y + 3z = 4 P ′′ : 2x− y = 7

have normal vectors n = 〈1, 2, 3〉 and n′′ = 〈2,−1, 0〉, respectively. Since

n · n′′ = 1× 2 + 2× (−1) + 3× 0 = 0

the normal vectors n and n′′ are mutually perpendicular, so the corresponding
planes P and P ′′ are perpendicular to each other. �

Here is an example that illustrates how one can sketch a plane, given the
equation of the plane.

Example 1.4.3 In this example, we’ll sketch the plane

P : 4x+ 3y + 2z = 12

A good way to prepare for sketching a plane is to find the intersection points
of the plane with the x-, y- and z-axes, just as you are used to doing when
sketching lines in the xy-plane. For example, any point on the x axis must be
of the form (x, 0, 0). For (x, 0, 0) to also be on P we need x = 12

4 = 3. So P
intersects the x-axis at (3, 0, 0). Similarly, P intersects the y-axis at (0, 4, 0)
and the z-axis at (0, 0, 6). Now plot the points (3, 0, 0), (0, 4, 0) and (0, 0, 6).
P is the plane containing these three points. Often a visually effective way to
sketch a surface in three dimensions is to

• only sketch the part of the surface in the first octant. That is, the part
with x ≥ 0, y ≥ 0 and z ≥ 0.
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• To do so, sketch the curve of intersection of the surface with the part of
the xy-plane in the first octant and,

• similarly, sketch the curve of intersection of the surface with the part
of the xz-plane in the first octant and the curve of intersection of the
surface with the part of the yz-plane in the first octant.

That’s what we’ll do. The intersection of the plane P with the xy-plane is
the straight line through the two points (3, 0, 0) and (0, 4, 0). So the part
of that intersection in the first octant is the line segment from (3, 0, 0) to
(0, 4, 0). Similarly the part of the intersection of P with the xz-plane that is
in the first octant is the line segment from (3, 0, 0) to (0, 0, 6) and the part of
the intersection of P with the yz-plane that is in the first octant is the line
segment from (0, 4, 0) to (0, 0, 6). So we just have to sketch the three line
segments joining the three axis intercepts (3, 0, 0), (0, 4, 0) and (0, 0, 6). That’s
it.

z

y

x

p3, 0, 0q p0, 4, 0q

p0, 0, 6q

�
Here are two examples that illustrate how one can find the distance between

a point and a plane.

Example 1.4.4 In this example, we’ll compute the distance between the point

x = (1,−1,−3) and the plane P : x+ 2y + 3z = 18

By the “distance between x and the plane P” we mean the shortest distance
between x and any point y on P . In fact, we’ll evaluate the distance in two
different ways. In the next Example 1.4.5, we’ll use projection. In this example,
our strategy for finding the distance will be to

• first observe that the vector n = 〈1, 2, 3〉 is normal to P and then

• start walking1 away from x in the direction of the normal vector n and

• keep walking until we hit P . Call the point on P where we hit, y. Then
the desired distance is the distance between x and y. From the figure
below it does indeed look like distance between x and y is the shortest
distance between x and any point on P . This is in fact true, though we
won’t prove it.
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P

x

y

n

n

x ` tn

So imagine that we start walking, and that we start at time t = 0 at x and
walk in the direction n. Then at time t we might be at

x + tn = (1,−1,−3) + t 〈1, 2, 3〉 = (1 + t,−1 + 2t,−3 + 3t)

We hit the plane P at exactly the time t for which (1 + t,−1 + 2t,−3 + 3t)
satisfies the equation for P , which is x+ 2y + 3z = 18. So we are on P at the
unique time t obeying

(1 + t) + 2(−1 + 2t) + 3(−3 + 3t) = 18 ⇐⇒ 14t = 28 ⇐⇒ t = 2

So the point on P which is closest to x is

y =
[
x + tn

]
t=2 = (1 + t,−1 + 2t,−3 + 3t)

∣∣
t=2 = (3, 3, 3)

and the distance from x to P is the distance from x to y, which is

|y− x| = 2|n| = 2
√

12 + 22 + 32 = 2
√

14

�

Example 1.4.5 Example 1.4.4, revisited. We are again going to find the
distance from the point

x = (1,−1,−3) to the plane P : x+ 2y + 3z = 18

But this time we will use the following strategy.
• We’ll first find any point z on P and then

• we’ll denote by y the point on P nearest x, and we’ll denote by v the
vector from x to z (see the figure below) and then

• we’ll realize, by looking at the figure, that the vector from x to y is
exactly the projection2 of the vector v on n so that

• the distance from x to P , i.e. the length of the vector from x to y, is
exactly |projnv|.

1To see why heading in the normal direction gives the shortest walk, revisit Example
1.3.5.
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x

y
z

projn vv P

n

n

Now let’s find a point on P . The plane P is given by a single equation,
namely

x+ 2y + 3z = 18

in the three unknowns, x, y, z. The easiest way to find one solution to this
equation is to assign two of the unknowns the value zero and then solve for the
third unknown. For example, if we set x = y = 0, then the equation reduces
to 3z = 18. So we may take z = (0, 0, 6).

Then v, the vector from x = (1,−1,−3) to z = (0, 0, 6) is 〈0− 1 , 0− (−1) , 6− (−3)〉 =
〈−1, 1, 9〉 so that, by Equation 1.2.14,

projn v = v · n
|n|2 n

= 〈−1, 1, 9〉 · 〈1, 2, 3〉
| 〈1, 2, 3〉 |2 〈1, 2, 3〉

= 28
14 〈1, 2, 3〉

= 2 〈1, 2, 3〉

and the distance from x to P is

|projn v| =
∣∣2 〈1, 2, 3〉 ∣∣ = 2

√
14

just as we found in Example 1.4.4. �
In the next example, we find the distance between two planes.

Example 1.4.6 Now we’ll increase the degree of difficulty a tiny bit, and
compute the distance between the planes

P : x+ 2y + 2z = 1 and P ′ : 2x+ 4y + 4z = 11

By the “distance between the planes P and P ′” we mean the shortest distance
between any pair of points x and x′ with x in P and x′ in P ′. First observe
that the normal vectors

n = 〈1, 2, 2〉 and n′ = 〈2, 4, 4〉 = 2n

to P and P ′ are parallel to each other. So the planes P and P ′ are parallel
to each other. If they had not been parallel, they would have crossed and the
distance between them would have been zero.

Our strategy for finding the distance will be to

• first find a point x on P and then, like we did in Example 1.4.4,

• start walking away from P in the direction of the normal vector n and
2Now might be a good time to review the Definition 1.2.13 of projection.
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• keep walking until we hit P ′. Call the point on P ′ that we hit x′. Then
the desired distance is the distance between x and x′. From the figure
below it does indeed look like distance between x and x′ is the shortest
distance between any pair of points with one point on P and one point
on P ′. Again, this is in fact true, though we won’t prove it.

P

P ′

x

x′

n

x + tn

We can find a point on P just as we did on Example 1.4.5. The plane P is
given by the single equation

x+ 2y + 2z = 1

in the three unknowns, x, y, z. We can find one solution to this equation by
assigning two of the unknowns the value zero and then solving for the third
unknown. For example, if we set y = z = 0, then the equation reduces to
x = 1. So we may take x = (1, 0, 0).

Now imagine that we start walking, and that we start at time t = 0 at x
and walk in the direction n. Then at time t we might be at

x + tn = (1, 0, 0) + t 〈1, 2, 2〉 = (1 + t, 2t, 2t)

We hit the second plane P ′ at exactly the time t for which (1+t, 2t, 2t) satisfies
the equation for P ′, which is 2x+ 4y+ 4z = 11. So we are on P ′ at the unique
time t obeying

2(1 + t) + 4(2t) + 4(2t) = 11 ⇐⇒ 18t = 9 ⇐⇒ t = 1
2

So the point on P ′ which is closest to x is

x′ =
[
x + tn

]
t= 1

2
= (1 + t, 2t, 2t)

∣∣
t= 1

2
= (3

2 , 1, 1)

and the distance from P to P ′ is the distance from x to x′ which is√
(1− 3

2)2 + (0− 1)2 + (0− 1)2 =
√

9
4 = 3

2

�
Now we’ll find the angle between two intersecting planes.

Example 1.4.7 The orientation (i.e. direction) of a plane is determined by
its normal vector. So, by definition, the angle between two planes is the angle
between their normal vectors. For example, the normal vectors of the two
planes

P1 : 2x+ y − z = 3
P2 : x+ y + z = 4

are
n1 = 〈2, 1,−1〉
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n2 = 〈1, 1, 1〉

If we use θ to denote the angle between n1 and n2, then

cos θ = n1 · n2

|n1| |n2|

= 〈2, 1,−1〉 · 〈1, 1, 1〉
| 〈2, 1,−1〉 | | 〈1, 1, 1〉 |

= 2√
6
√

3

so that

θ = arccos 2√
18

= 1.0799

to four decimal places. That’s in radians. In degrees, it is 1.0799 180
π = 61.87◦

to two decimal places. �

1.4.1 Exercises

Exercises — Stage 1

1. The vector k̂ is a normal vector (i.e. is perpendicular) to the plane
z = 0. Find another nonzero vector that is normal to z = 0.

2. Consider the plane P with equation 3x+ 1
2y + z = 4.

(a) Find the intersection of P with the y-axis.

(b) Find the intersection of P with the z-axis.

(c) Sketch the part of the intersection of P with the yz-plane that
is in the first octant. (That is, with x, y, z ≥ 0.)

3.
(a) Find the equation of the plane that passes through the origin

and has normal vector 〈1, 2, 3〉.

(b) Find the equation of the plane that passes through the point
(0, 0, 1) and has normal vector 〈1, 1, 3〉.

(c) Find, if possible, the equation of a plane that passes through
both (1, 2, 3) and (1, 0, 0) and has normal vector 〈4, 5, 6〉.

(d) Find, if possible, the equation of a plane that passes through
both (1, 2, 3) and (0, 3, 4) and has normal vector 〈2, 1, 1〉.

4. ∗. Find the equation of the plane that contains (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

5.
(a) Find the equation of the plane containing the points (1, 0, 1),

(1, 1, 0) and (0, 1, 1).

(b) Is the point (1, 1, 1) on the plane?

(c) Is the origin on the plane?

(d) Is the point (4,−1,−1) on the plane?
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6. What’s wrong with the following exercise? “Find the equation of the
plane containing (1, 2, 3), (2, 3, 4) and (3, 4, 5).”

Exercises — Stage 2
7. Find the plane containing the given three points.

a (1, 0, 1), (2, 4, 6), (1, 2,−1)

b (1,−2,−3), (4,−4, 4), (3, 2,−3)

c (1,−2,−3), (5, 2, 1), (−1,−4,−5)
8. Find the distance from the given point to the given plane.

a point (−1, 2, 3), plane x+ y + z = 7

b point (1,−4, 3), plane x− 2y + z = 5
9. ∗. A plane Π passes through the points A = (1, 1, 3), B = (2, 0, 2)

and C = (2, 1, 0) in R3.
a Find an equation for the plane Π.

b Find the point E in the plane Π such that the line L through
D = (6, 1, 2) and E is perpendicular to Π.

10. ∗. Let A = (2, 3, 4) and let L be the line given by the equations
x+ y = 1 and x+ 2y + z = 3.

a Write an equation for the plane containing A and perpendicular
to L.

b Write an equation for the plane containing A and L.
11. ∗. Consider the plane 4x+ 2y − 4z = 3. Find all parallel planes that

are distance 2 from the above plane. Your answers should be in the
following form: 4x+ 2y − 4z = C.

12. ∗. Find the distance from the point (1, 2, 3) to the plane that passes
through the points (0, 1, 1), (1,−1, 3) and (2, 0,−1).

Exercises — Stage 3
13. ∗. Consider two planes W1, W2, and a line M defined by:

W1 : −2x+ y + z = 7
W2 : −x+ 3y + 3z = 6

M : x

2 = 2y − 4
4 = z + 5

a Find a parametric equation of the line of intersection L of W1
and W2.

b Find the distance from L to M .
14. Find the equation of the sphere which has the two planes x+ y+ z =

3, x+ y+ z = 9 as tangent planes if the center of the sphere is on the
planes 2x− y = 0, 3x− z = 0.

15. Find the equation of the plane that passes through the point (−2, 0, 1)
and through the line of intersection of 2x+3y−z = 0, x−4y+2z = −5.

16. Find the distance from the point p to the plane n · x = c.
17. Describe the set of points equidistant from (1, 2, 3) and (5, 2, 7).
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18. Describe the set of points equidistant from a and b.
19. ∗. Consider a point P (5,−10, 2) and the triangle with verticesA(0, 1, 1),

B(1, 0, 1) and C(1, 3, 0).
a Compute the area of the triangle ABC.

b Find the distance from the point P to the plane containing the
triangle.

20. ∗. Consider the sphere given by

(x− 1)2 + (y − 2)2 + (z + 1)2 = 2

Suppose that you are at the point (2, 2, 0) on S, and you plan to follow
the shortest path on S to (2, 1,−1). Express your initial direction as
a cross product.

1.5 Equations of Lines in 3d
Just as in two dimensions, a line in three dimensions can be specified by giving
one point (x0, y0, z0) on the line and one vector d = 〈dx, dy, dz〉 whose direction
is parallel to that of the line. If (x, y, z) is any point on the line then the
vector 〈x− x0, y − y0, z − z0〉, whose tail is at (x0, y0, z0) and whose arrow
is at (x, y, z), must be parallel to d and hence a scalar multiple of d. By
translating this statement into a vector equation we get

Equation 1.5.1 Parametric Equations of a Line.

〈x− x0, y − y0, z − z0〉 = td

or the three corresponding scalar equations

x− x0 = tdx y − y0 = tdy z − z0 = tdz

These are called the parametric equations of the line. Solving all three
equations for the parameter t (assuming that dx, dy and dz are all nonzero)

t = x− x0

dx
= y − y0

dy
= z − z0

dz

and erasing the “t =” again gives the (so called) symmetric equations for the
line.

Here is an example in which we find the parametric equations of a line that
is given by the intersection of two planes.

Example 1.5.2 The set of points (x, y, z) that obey x + y + z = 2 form a
plane. The set of points (x, y, z) that obey x − y = 0 form a second plane.
The set of points (x, y, z) that obey both x + y + z = 2 and x − y = 0 lie on
the intersection of these two planes and hence form a line. We shall find the
parametric equations for that line.

To sketch x+ y + z = 2 we observe that if any two of x, y, z are zero, then
the third is 2. So all of (0, 0, 2), (0, 2, 0) and (2, 0, 0) are on x+ y+ z = 2. The

3Note that the change of coordinates X = x− 1, Y = y − 2, Z = z + 1 has absolutely no
effect on any velocity or direction vector. If our position at time t is (x(t), y(t), z(t)) in the
original coordinate system, then it is (X(t), Y (t), Z(t)) = (x(t)−1, y(t)−2, z(t)+1) in the new
coordinate system. The velocity vectors in the two coordinate systems 〈x′(t), y′(t), z′(t)〉 =
〈X′(t), Y ′(t), Z′(t)〉 are identical.
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plane x− y = 0 contains all of the z-axis, since (0, 0, z) obeys x− y = 0 for all
z. Here are separate sketches of (parts of) the two planes.

p0, 2, 0q

p0, 0, 2q

p2, 0, 0q

x ` y ` z “ 2

z

y

x

x ´ y “ 0

And here is a sketch of their intersection

p0, 2, 0q

p0, 0, 2q

p2, 0, 0q p1, 1, 0q

x ` y ` z “ 2
x ´ y “ 0

d

Method 1. Each point on the line has a different value of z. We’ll use z
as the parameter. (We could just as well use x or y.) There is no law that
requires us to use the parameter name t, but that’s what we have done so far,
so set t = z. If (x, y, z) is on the line then z = t and

x+ y + t = 2
x− y = 0

The second equation forces y = x. Substituting this into the first equation
gives

2x+ t = 2 =⇒ x = y = 1− t
2

So the parametric equations are

x = 1− t

2 , y = 1− t

2 , z = t or 〈x− 1, y − 1, z〉 = t

〈
−1

2 ,−
1
2 , 1
〉

Method 2. We first find one point on the line. There are lots of them. We’ll
find the point with z = 0. (We could just as well use z=123.4, but arguably
z = 0 is a little easier.) If (x, y, z) is on the line and z = 0, then

x+ y = 2
x− y = 0

The second equation again forces y = x. Substituting this into the first equa-
tion gives

2x = 2 =⇒ x = y = 1

So (1, 1, 0) is on the line. Now we’ll find a direction vector, d, for the line.
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• Since the line is contained in the plane x+ y+ z = 2, any vector lying on
the line, like d, is also completely contained in that plane. So d must be
perpendicular to the normal vector of x+ y + z = 2, which is 〈1, 1, 1〉.

• Similarly, since the line is contained in the plane x − y = 0, any vector
lying on the line, like d, is also completely contained in that plane. So
d must be perpendicular to the normal vector of x − y = 0, which is
〈1,−1, 0〉.

So we may choose for d any vector which is perpendicular to both 〈1, 1, 1〉 and
〈1,−1, 0〉, like, for example,

d = 〈1,−1, 0〉 × 〈1, 1, 1〉

= det

ı̂ıı ̂ k̂
1 −1 0
1 1 1

 = ı̂ııdet
[
−1 0
1 1

]
− ̂det

[
1 0
1 1

]
+ k̂ det

[
1 −1
1 1

]
= −ı̂ıı− ̂+ 2k̂

We now have both a point on the line (namely (1, 1, 0)) and a direction vector
for the line (namely 〈−1,−1, 2〉), so, as usual, the parametric equations for the
line are

〈x− 1, y − 1, z〉 = t 〈−1,−1, 2〉 or x = 1− t, y = 1− t, z = 2t

This looks a little different than the solution from method 1, but we’ll see in a
moment that they are really the same. Before that, let’s do one more method.

Method 3. We’ll find two points on the line. We have already found that
(1, 1, 0) is on the line. From the picture above, it looks like (0, 0, 2) is also on
the line. This is indeed the case since (0, 0, 2) obeys both x + y + z = 2 and
x − y = 0. Notice that we could also have guessed (0, 0, 2) by setting x = 0
and then solving y + z = x+ y + z = 2, −y = x− y = 0 for x and y. As both
(1, 1, 0) and (0, 0, 2) are on the line, the vector with head at (1, 1, 0) and tail at
(0, 0, 2), which is 〈1− 0, 1− 0, 0− 2〉 = 〈1, 1,−2〉, is a direction vector for the
line. As (0, 0, 2) is a point on the line and 〈1, 1,−2〉 is a direction vector for
the line, the parametric equations for the line are

〈x− 0, y − 0, z − 2〉 = t 〈1, 1,−2〉 or x = t, y = t, z = 2− 2t

This also looks similar, but not quite identical, to our previous answers. Time
for a comparison.

Comparing the answers. The parametric equations given by the three meth-
ods are different. That’s just because we have really used different parameters
in the three methods, even though we have called the parameter t in each case.
To clarify the relation between the three answers, rename the parameter of
method 1 to t1, the parameter of method 2 to t2 and the parameter of method
3 to t3. The parametric equations then become

Method 1: x = 1− t1
2 y = 1− t1

2 z = t1

Method 2: x = 1− t2 y = 1− t2 z = 2t2
Method 3: x = t3 y = t3 z = 2− 2t3

Substituting t1 = 2t2 into the Method 1 equations gives the Method 2 equa-
tions, and substituting t3 = 1 − t2 into the Method 3 equations gives the
Method 2 equations. So all three really give the same line, just parametrized
a little differently. �
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Warning 1.5.3 A line in three dimensions has infinitely many normal
vectors. For example, the line

〈x− 1, y − 1, z〉 = t 〈1, 2,−2〉

has direction vector 〈1, 2,−2〉. Any vector perpendicular to 〈1, 2,−2〉 is per-
pendicular to the line. The vector 〈n1, n2, n3〉 is perpendicular to 〈1, 2,−2〉 if
and only if

0 = 〈1, 2,−2〉 · 〈n1, n2, n3〉 = n1 + 2n2 − 2n3

There is whole plane of 〈n1, n2, n3〉’s obeying this condition, of which 〈2,−1, 0〉,
〈0, 1, 1〉 and 〈2, 0, 1〉 are only three examples.

The next two examples illustrate two different methods for finding the
distance between a point and a line.

Example 1.5.4 In this example, we find the distance between the point
(2, 3,−1) and the line

L : 〈x− 1, y − 2, z − 3〉 = t 〈1, 1, 2〉
or, equivalently, x = 1 + t, y = 2 + t, z = 3 + 2t

The vector from (2, 3,−1) to the point (1+t , 2+t , 3+2t) on L is 〈t− 1 , t− 1 , 2t+ 4〉.
The square of the distance between (2, 3,−1) and the point (1+t , 2+t , 3+2t)
on L is the square of the length of that vector, namely

d(t)2 = (t− 1)2 + (t− 1)2 + (2t+ 4)2

The point on L that is closest to (2, 3,−1) is that whose value of t obeys

0 = d
dtd(t)2 = 2(t− 1) + 2(t− 1) + 2(2)(2t+ 4) (∗)

Before we solve this equation for t and finish of our computation, observe
that this equation (divided by 2) says that

〈1 , 1 , 2〉 · 〈t− 1 , t− 1 , 2t+ 4〉 = 0

That is, the vector from (2, 3,−1) to the point on L nearest (2, 3,−1) is per-
pendicular to L’s direction vector.

Now back to our computation. The equation (∗) simplifies to 12t+ 12 = 0.
So the optimal t = −1 and the distance is

d(−1) =
√

(−1− 1)2 + (−1− 1)2 + (−2 + 4)2 =
√

12

�

Example 1.5.5 Example 1.5.4 revisited. In this example, we again find
the distance between the point (2, 3,−1) and the line

L : 〈x− 1, y − 2, z − 3〉 = t 〈1, 1, 2〉

but we use a different method. In the figure below, Q is the point (2, 3,−1).
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Q

N

P
projd v

v

w

d
L

If we drop a perpendicular from Q to the line L, it hits the line L at the
point N , which is the point on L that is nearest Q. So the distance from Q to
L is exactly the distance from Q to N , which is exactly the length of the vector
from Q to N . In the figure above, w is the vector from Q to N . Now the vector
w has to be perpendicular to the direction vector for L. That is, w has to be
perpendicular to d = 〈1, 1, 2〉. However, as we saw in Warning 1.5.3, there are
a huge number of vectors in different directions that are perpendicular to d.
So you might think that it is very hard to even determine the direction of w.

Fortunately, it isn’t. Here is the strategy.

• Pick any point on L and call it P .

• It is very easy to find the vector from P to N — it is just the projection
of the vector from P to Q (called v in the figure above) on d.

• Once we know projd v, we will be able to compute

w = projd v− v

• and then the distance from Q to the line L is just |w|.

Here is the computation. We’ll choose P to be the point on L that has
t = 0, which is (1, 2, 3). So the vector from P = (1, 2, 3) to Q = (2, 3,−1) is

v = 〈2− 1, 3− 2,−1− 3〉 = 〈1, 1,−4〉

The projection of v = 〈1, 1,−4〉 on d = 〈1, 1, 2〉 is

projd v = 〈1, 1,−4〉 · 〈1, 1, 2〉
| 〈1, 1, 2〉 |2 〈1, 1, 2〉 = −6

6 〈1, 1, 2〉 = 〈−1,−1,−2〉

and then

w = projd v− v = 〈−1,−1,−2〉 − 〈1, 1,−4〉 = 〈−2,−2, 2〉

and finally the distance from Q to the line L is

|w| = | 〈−2,−2, 2〉 | = |2 〈−1,−1, 1〉 | = 2
√

3

�
The next two (optional) examples illustrate two different methods for find-

ing the distance between two lines.

Example 1.5.6 (Optional) Distance between lines. In this example, we
find the distance between the lines

L : 〈x− 1, y − 2, z − 3〉 = t 〈1, 0,−1〉
L′ : 〈x− 1, y − 2, z − 1〉 = t 〈1,−2, 1〉
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We can rewrite the equations of the lines as

L : x = 1 + t, y = 2, z = 3− t
L′ : x = 1 + t, y = 2− 2t, z = 1 + t

Of course the value of t in the parametric equation for L need not be the
same as the value of t in the parametric equation for L′. So let us denote by
x(s) = (1 + s , 2 , 3− s) and y(t) = (1 + t , 2− 2t , 1 + t) the points on L and
L′, respectively, that are closest together. Note that the vector from x(s) to
y(t) is 〈t− s , −2t , −2 + s+ t〉. Then, in particular,

• x(s) is the point on L that is closest to the point y(t), and

• y(t) is the point on L′ that is closest to the point x(s).

So, as we saw in Example 1.5.4, the vector, 〈t− s , −2t , −2 + s+ t〉, that joins
x(s) and y(t), must be perpendicular to both the direction vector of L and the
direction vector of L′. Consequently

0 = 〈1, 0,−1〉 · 〈t− s , −2t , −2 + s+ t〉 = 2− 2s
0 = 〈1,−2, 1〉 · 〈t− s , −2t , −2 + s+ t〉 = −2 + 6t

So s = 1 and t = 1
3 and the distance between L and L′ is∣∣ 〈t− s , −2t , −2 + s+ t〉

∣∣
s=1, t=1/3 =

∣∣ 〈−2/3 , −2/3 , −2/3〉
∣∣

= 2√
3

�

Example 1.5.7 Example 1.5.6 revisited, again optional. In this exam-
ple, we again find the distance between the lines

L : 〈x− 1, y − 2, z − 3〉 = t 〈1, 0,−1〉
L′ : 〈x− 1, y − 2, z − 1〉 = t 〈1,−2, 1〉

this time using a projection, much as in Example 1.4.5. The procedure, which
will be justified below, is

• first form a vector n that is perpendicular to the direction vectors of
both lines by taking the cross product of the two direction vectors. In
this example,

〈1, 0,−1〉 × 〈1,−2, 1〉 = det

ı̂ıı ̂ k̂
1 0 −1
1 −2 1

 = −2̂ııı− 2̂− 2k̂

Since we just want n̂ to be perpendicular to both direction vectors, we
may simplify our computations by dividing this vector by −2, and take
n = 〈1, 1, 1〉.

• Next find one point on L and one point on L′ and subtract to form a
vector v whose tail is at one point and whose head is at the other point.
This vector goes from one line to the other line. In this example, the
point (1, 2, 3) is on L (just set t = 0 in the equation for L) and the point
(1, 2, 1) is on L′ (just set t = 0 in the equation for L′), so that we may
take

v = 〈1− 1 , 2− 2 , 3− 1〉 = 〈0, 0, 2〉
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• The distance between the two lines is the length of the projection of v
on n. In this example, by 1.2.14, the distance is

∣∣projn v
∣∣ =

∣∣∣∣v · n|n|2 n
∣∣∣∣ = |v · n|

|n|

= | 〈0, 0, 2〉 · 〈1, 1, 1〉 |
| 〈1, 1, 1〉 |

= 2√
3

just as we found in Example 1.5.6

Now, here is the justification for the procedure.

• As we did in Example 1.5.6, denote by x(s) and y(t) the points on L
and L′, respectively, that are closest together. Note that, as we observed
in Example 1.5.6, the vector from x(s) to y(t) is perpendicular to the
direction vectors of both lines, and so is parallel to n.

• Denote by P the plane through x(s) that is perpendicular to n. As x(s)
is on L and the direction vector of L is perpendicular to n, the line L is
contained in P .

• Denote by P ′ the plane through y(t) that is perpendicular to n. As y(t)
is on L′ and the direction vector of L′ is perpendicular to n, the line L′
is contained in P ′.

• The planes P and P ′ are parallel to each other. As x(s) is on P and
y(t) is on P ′, and the vector from x(s) to y(t) is perpendicular to both
P and P ′, the distance from P to P ′ is exactly the length of the vector
from x(s) to y(t). That is also the distance from L to L′.

• The vector v constructed in the procedure above is a vector between L
and L′ and so is also a vector between P and P ′. Looking at the figure
below1, we see that the vector from x(s) to y(t) is (up to a sign) the
projection of v on n.

projnv

P

P 1

xpsq

yptq

n

v

• So the distance from P to P ′, and hence the distance from L to L′, is
exactly the length of projnv.

�

1.5.1 Exercises

Exercises — Stage 1
1and possibly reviewing the Definition 1.2.13 of projection
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1. What is wrong with the following exercise?
“Give an equation for the line passing through the point (3, 1, 3)

that is normal to the vectors 〈4,−6, 2〉 and
〈 1

3 ,−
1
2 ,

1
6
〉
.”

2. Find, if possible, four lines in 3d with
• no two of the lines parallel to each other and

• no two of the lines intersecting.

Exercises — Stage 2
3. Find a vector parametric equation for the line of intersection of the

given planes.
a x− 2z = 3 and y + 1

2z = 5

b 2x− y − 2z = −3 and 4x− 3y − 3z = −5
4. Determine a vector equation for the line of intersection of the planes

a x+ y + z = 3 and x+ 2y + 3z = 7

b x+ y + z = 3 and 2x+ 2y + 2z = 7
5. In each case, determine whether or not the given pair of lines intersect.

Also find all planes containing the pair of lines.
a 〈x, y, z〉 = 〈−3, 2, 4〉+t 〈−4, 2, 1〉 and 〈x, y, z〉 = 〈2, 1, 2〉+t 〈1, 1,−1〉

b 〈x, y, z〉 = 〈−3, 2, 4〉 + t 〈−4, 2, 1〉 and 〈x, y, z〉 = 〈2, 1,−1〉 +
t 〈1, 1,−1〉

c 〈x, y, z〉 = 〈−3, 2, 4〉 + t 〈−2,−2, 2〉 and 〈x, y, z〉 = 〈2, 1,−1〉 +
t 〈1, 1,−1〉

d 〈x, y, z〉 = 〈3, 2,−2〉 + t 〈−2,−2, 2〉 and 〈x, y, z〉 = 〈2, 1,−1〉 +
t 〈1, 1,−1〉

6. Find the equation of the line through (2,−1,−1) and parallel to each
of the two planes x+ y = 0 and x− y+ 2z = 0. Express the equations
of the line in vector and scalar parametric forms and in symmetric
form.

7. ∗. Let L be the line given by the equations x+y = 1 and x+2y+z = 3.
Write a vector parametric equation for L.

8.
a Find a vector parametric equation for the line x + 2y + 3z =

11, x− 2y + z = −1.

b Find the distance from (1, 0, 1) to the line x+ 2y+ 3z = 11, x−
2y + z = −1.

9. Let L1 be the line passing through (1,−2,−5) in the direction of
d1 = 〈2, 3, 2〉. Let L2 be the line passing through (−3, 4,−1) in the
direction d2 = 〈5, 2, 4〉.

a Find the equation of the plane P that contains L1 and is parallel
to L2.

b Find the distance from L2 to P .
10. ∗. Let L be a line which is parallel to the plane 2x + y − z = 5 and

perpendicular to the line x = 3− t, y = 1− 2t and z = 3t.
a Find a vector parallel to the line L.
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b Find parametric equations for the line L if L passes through a
point Q(a, b, c) where a < 0, b > 0, c > 0, and the distances
from Q to the xy--plane, the xz--plane and the yz--plane are 2,
3 and 4 respectively.

11. ∗. Let L be the line of intersection of the planes x + y + z = 6 and
x− y + 2z = 0.

a Find the points in which the line L intersects the coordinate
planes.

b Find parametric equations for the line through the point (10, 11, 13)
that is perpendicular to the line L and parallel to the plane
y = z.

12. ∗. The line L has vector parametric equation r(t) = (2+3t)̂ııı+4t̂− k̂.
a Write the symmetric equations for L.

b Let α be the angle between the line L and the plane given by
the equation x− y + 2z = 0. Find α.

13. ∗. Find the parametric equation for the line of intersection of the
planes

x+ y + z = 11 and x− y − z = 13.
14. ∗.

a Find a point on the y-axis equidistant from (2, 5,−3) and (−3, 6, 1).

b Find the equation of the plane containing the point (1, 3, 1) and
the line r(t) = t ı̂ıı+ t ̂+ (t+ 2) k̂.

Exercises — Stage 3
15. ∗. Let A = (0, 2, 2), B = (2, 2, 2), C = (5, 2, 1).

a Find the parametric equations for the line which contains A and
is perpendicular to the triangle ABC.

b Find the equation of the set of all points P such that −→PA is per-
pendicular to −−→PB. This set forms a Plane/Line/Sphere/Cone/
Paraboloid/Hyperboloid (circle one) in space.

c A light source at the origin shines on the triangle ABC making
a shadow on the plane x+7y+z = 32. (See the diagram.) Find
Ã.

A

Ã

B

B̃

C
C̃

p0, 0, 0q

x ` 7y ` z “ 32

16. Let P, Q, R and S be the vertices of a tetrahedron. Denote by p, q, r
and s the vectors from the origin to P, Q, R and S respectively. A
line is drawn from each vertex to the centroid of the opposite face,
where the centroid of a triangle with vertices a, b and c is 1

3 (a+b+c).
Show that these four lines meet at 1

4 (p + q + r + s).
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17. Calculate the distance between the lines x+2
3 = y−7

−4 = z−2
4 and x−1

−3 =
y+2

4 = z+1
1 .

1.6 Curves and their Tangent Vectors
The right hand side of the parametric equation (x, y, z) = (1, 1, 0) + t 〈1, 2,−2〉
that we just saw in Warning 1.5.3 is a vector-valued function of the one real
variable t. We are now going to study more general vector-valued functions of
one real variable. That is, we are going to study functions that assign to each
real number t (typically in some interval) a vector r(t). For example

r(t) =
(
x(t), y(t), z(t)

)
might be the position1 of a particle at time t. As t varies r(t) sweeps out a
curve.

r(0)

r(1)
r(2)

While in some applications t will indeed be “time”, it does not have to be.
It can be simply a parameter that is used to label the different points on the
curve that r(t) sweeps out. We then say that r(t) provides a parametrization
of the curve.
Example 1.6.1 Parametrization of x2 + y2 = a2. While we will often
use t as the parameter in a parametrized curve r(t), there is no need to call
it t. Sometimes it is natural to use a different name for the parameter. For
example, consider the circle2 x2 + y2 = a2. It is natural to use the angle θ in
the sketch below to label the point

(
a cos θ , a sin θ

)
on the circle.

x

y

x2 ` y2 “ a2

`
a cos θ , a sin θ

˘

θ

That is,
r(θ) =

(
a cos θ , a sin θ

)
0 ≤ θ < 2π

is a parametrization of the circle x2 +y2 = a2. Just looking at the figure above,
it is clear that, as θ runs from 0 to 2π, r(θ) traces out the full circle.

However beware that just knowing that r(t) lies on a specified curve does
not guarantee that, as t varies, r(t) covers the entire curve. For example, as t
runs over the whole real line, 2

π arctan(t) runs over the interval (−1, 1). For all

1When we say r(t) =
(
x(t), y(t), z(t)

)
, we mean that

(
x(t), y(t), z(t)

)
is the point at the

head of the vector r(t) when its tail is at the origin.
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t,

r(t) =
(
x(t), y(t)

)
= a

(
2
π

arctan(t) ,
√

1− 4
π2 arctan2(t)

)
is well-defined and obeys x(t)2 + y(t)2 = a2. But this r(t) does not cover the
entire circle because y(t) is always positive. �

Example 1.6.2 Parametrization of (x−h)2 +(y−k)2 = a2. We can tweak
the parametrization of Example 1.6.1 to get a parametrization of the circle of
radius a that is centred on (h, k). One way to do so is to redraw the sketch of
Example 1.6.1 with the circle translated so that its centre is at (h, k).

x

y

px ´ hq2 ` py ´ kq2 “ a2

a sin θa

ph, kq

`
h ` a cos θ , k ` a sin θ

˘

θ

We see from the sketch that

r(θ) =
(
h+ a cos θ , k + a sin θ

)
0 ≤ θ < 2π

is a parametrization of the circle (x− h)2 + (y − k)2 = a2.
A second way to come up with this parametrization is to observe that we can

turn the trig identity cos2 t+sin2 t = 1 into the equation (x−h)2+(y−k)2 = a2

of the circle by

• multiplying the trig identity by a2 to get (a cos t)2 + (a sin t)2 = a2 and
then

• setting a cos t = x − h and a sin t = y − k , which turns (a cos t)2 +
(a sin t)2 = a2 into (x− h)2 + (y − k)2 = a2.

�

Example 1.6.3 Parametrization of x
2

a2 + y2

b2 = 1 and of x2/3 +y2/3 = a2/3.
We can build parametrizations of the curves x

2

a2 + y2

b2 = 1 and x2/3 +y2/3 = a2/3

from the trig identity cos2 t + sin2 t = 1, like we did in the second part of the
last example.

• Setting cos t = x
a and sin t = y

b turns cos2 t+sin2 t = 1 into x2

a2 + y2

b2 = 1.

• Setting cos t =
(
x
a

) 1
3 and sin t =

(
y
a

) 1
3 turns cos2 t + sin2 t = 1 into

x2/3

a2/3 + y2/3

a2/3 = 1.

So

r(t) =
(
a cos t , b sin t

)
0 ≤ t < 2π

r(t) =
(
a cos3 t , a sin3 t

)
0 ≤ t < 2π

give parametrizations of x
2

a2 + y2

b2 = 1 and x2/3 + y2/3 = a2/3, respectively. To
2We of course assume that the constant a > 0.



CHAPTER 1. VECTORS AND GEOMETRY IN TWO AND THREE DIMENSIONS62

see that running t from 0 to 2π runs r(t) once around the curve, look at the
figures below.

x

y

x2

a2
` y2

b2
“ 1

t “ 0
t “ π

t “ π{2

t “ 3π{2

x

y

x2/3 + y2/3 = a2/3

t = 0
t = π

t = π/2

t = 3π/2

The curve x2/3 + y2/3 = a2/3 is called an astroid. From its equation, we
would expect its sketch to look like a deformed circle. But it is probably not so
obvious that it would have the pointy bits of the right hand figure. We will not
explain here why they arise. The astroid is studied in some detail in Example
1.1.7 of the CLP-4 text. In particular, the above sketch is carefully developed
there. �

Example 1.6.4 Parametrization of ey = 1 +x2. A very easy method that
can often create parametrizations for a curve is to use x or y as a parameter.
Because we can solve ey = 1 + x2 for y as a function of x, namely y = ln

(
1 +

x2), we can use x as the parameter simply by setting t = x. This gives the
parametrization

r(t) =
(
t , ln(1 + t2)

)
−∞ < t <∞

�

Example 1.6.5 Parametrization of x2 + y2 = a2, again. It is also quite
common that one can use either x or y to parametrize part of, but not all of,
a curve. A simple example is the circle x2 + y2 = a2. For each −a < x < a,
there are two points on the circle with that value of x. So one cannot use x
to parametrize the whole circle. Similarly, for each −a < y < a, there are two
points on the circle with that value of y. So one cannot use y to parametrize
the whole circle. On the other hand

r(t) =
(
t ,
√
a2 − t2

)
−a < t < a

r(t) =
(
t , −

√
a2 − t2

)
−a < t < a

provide parametrizations of the top half and bottom half, respectively, of the
circle using x as the parameter, and

r(t) =
(√

a2 − t2 , t
)

−a < t < a

r(t) =
(
−
√
a2 − t2 , t

)
−a < t < a

provide parametrizations of the right half and left half, respectively, of the
circle using y as the parameter. �

Example 1.6.6 Unparametrization of r(t) = (cos t, 7−t). In this example,
we will undo the parametrization r(t) = (cos t, 7 − t) and find the Cartesian
equation of the curve in question. We may rewrite the parametrization as

x = cos t
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y = 7− t

Note that we can eliminate the parameter t simply by using the second equation
to solve for t as a function of y. Namely t = 7− y. Substituting this into the
first equation gives us the Cartesian equation

x = cos(7− y)

�
Curves often arise as the intersection of two surfaces. For example, the

intersection of the sphere x2 + y2 + z2 = 1 with the plane y = x is a circle.
The part of that circle that is in the first octant is the red curve in the figure
below.

z

y
x y “ x

x2 ` y2 ` z2 “ 1

One way to parametrize such curves is to choose one of the three coordinates
x, y, z as the parameter, and solve the two given equations for the remaining
two coordinates, as functions of the parameter. Here are two examples.

Example 1.6.7 The set of all (x, y, z) obeying

x− y = 0
x2 + y2 + z2 = 1

is the circle sketched above. We can choose to use y as the parameter and
think of

x = y

x2 + z2 = 1− y2

as a system of two equations for the two unknowns x and z, with y being treated
as a given constant, rather than as an unknown. We can now (trivially) solve
the first equation for x, substitute the result into the second equation, and
finally solve for z.

x = y, x2 + z2= 1− y2 =⇒ z2 = 1− 2y2

If, for example, we are interested in points (x, y, z) on the curve with z ≥ 0,
we have z =

√
1− 2y2 and

r(y) =
(
y , y ,

√
1− 2y2

)
, − 1√

2
≤ y ≤ 1√

2
is a parametrization for the part of the circle above the xy-plane. If, on the
other hand, we are interested in points (x, y, z) on the curve with z ≤ 0, we
have z = −

√
1− 2y2 and

r(y) =
(
y , y , −

√
1− 2y2

)
, − 1√

2
≤ y ≤ 1√

2
is a parametrization for the part of the circle below the xy-plane. �
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Example 1.6.8 The previous example was rigged so that it was easy to solve
for x and z as functions of y. In practice it is not always easy, or even possible,
to do so. A more realistic example is the set of all (x, y, z) obeying

x2 + y2

2 + z2

3 = 1

x2 + 2y2 = z

which is the blue curve in the figure

x2 ` y2

2
` z2

3
“ 1

z “ x2 ` 2y2

(Don’t worry about how we make sketches like this. We’ll develop some
surface sketching technique in §1.7 below.) Substituting x2 = z − 2y2 (from
the second equation) into the first equation gives

−3
2y

2 + z + z2

3 = 1

or, completing the square,

−3
2y

2 + 1
3

(
z + 3

2

)2
= 7

4

If, for example, we are interested in points (x, y, z) on the curve with y ≥ 0,
this can be solved to give y as a function of z.

y =
√

2
9

(
z + 3

2

)2
− 14

12

Then x2 = z − 2y2 also gives x as a function of z. If x ≥ 0,

x =
√
z − 4

9

(
z + 3

2

)2
+ 14

6

=
√

4
3 −

4
9z

2 − 1
3z

The other signs of x and y can be gotten by using the appropriate square
roots. In this example, (x, y, z) is on the curve, i.e. satisfies the two original
equations, if and only if all of (±x,±y, z) are also on the curve. �
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1.6.1 Derivatives and Tangent Vectors
This being a Calculus text, one of our main operations is differentiation. We
are now interested in parametrizations r(t). It is very easy and natural to
extend our definition of derivative to r(t) as follows.

Definition 1.6.9 The derivative of the vector valued function r(t) is defined
to be

r′(t) = dr
dt (t) = lim

h→0

r(t+ h)− r(t)
h

rptq

rpt ` hq

rpt ` hq ´ rptq

when the limit exists. In particular, if r(t) = x(t)̂ııı+ y(t)̂+ z(t)k̂, then

r′(t) = x′(t)̂ııı+ y′(t)̂+ z′(t)k̂

That is, to differentiate a vector valued function of t, just differentiate each of
its components. ♦

And of course differentiation interacts with arithmetic operations, like ad-
dition, in the obvious way. Only a little more thought is required to see that
differentiation interacts quite nicely with dot and cross products too. Here are
some examples.

Example 1.6.10 Let

a(t) = t2 ı̂ıı+ t4 ̂+ t6 k̂
b(t) = e−t ı̂ıı+ e−3t ̂+ e−5t k̂
γ(t) = t2

s(t) = sin t

We are about to compute some derivatives. To make it easier to follow what
is going on, we’ll use some colour. When we apply the product rule

d
dt
[
f(t) g(t)

]
= f ′(t) g(t) + f(t) g′(t)

we’ll use blue to highlight the factors f ′(t) and g′(t). Here we go.

γ(t) b(t) = t2e−t ı̂ıı+ t2e−3t ̂+ t2e−5t k̂

gives

d
dt
[
γ(t)b(t)

]
=
[
2te−t−t2e−t

]̂
ııı+

[
2te−3t−3t2e−3t]̂+

[
2te−5t−5t2e−5t]k̂

= 2t
{
e−t ı̂ıı+ e−3t ̂+ e−5t k̂

}
+ t2

{
− e−t ı̂ıı− 3e−3t ̂− 5e−5t k̂

}
= γ′(t)b(t) + γ(t)b′(t)

and

a(t) · b(t) = t2e−t + t4e−3t + t6e−5t

gives

d
dt
[
a(t) · b(t)

]
=
[
2te−t−t2e−t

]
+
[
4t3e−3t−3t4e−3t]+

[
6t5e−5t−5t6e−5t]
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=
[
2te−t + 4t3e−3t + 6t5e−5t]+

[
−t2e−t−3t4e−3t−5t6e−5t]

=
{

2t ı̂ıı+ 4t3 ̂+ 6t5 k̂
}
·
{
e−t ı̂ıı+ e−3t ̂+ e−5t k̂

}
+
{
t2 ı̂ıı+ t4 ̂+ t6 k̂

}
·
{
− e−t ı̂ıı− 3e−3t ̂− 5e−5t k̂

}
= a′(t) · b(t) + a(t) · b′(t)

and

a(t)× b(t) = det

 ı̂ıı ̂ k̂
t2 t4 t6

e−t e−3t e−5t


= ı̂ıı
(
t4e−5t − t6e−3t)− ̂(t2e−5t − t6e−t) + k̂(t2e−3t − t4e−t)

gives

d
dt
[
a(t)× b(t)

]
= ı̂ıı

(
4t3e−5t − 6t5e−3t) − ̂( 2te−5t − 6t5e−t) + k̂( 2te−3t − 4t3e−t)

+ ı̂ıı
(
−5t4e−5t+3t6e−3t)− ̂(−5t2e−5t+t6e−t) + k̂(−3t2e−3t+t4e−t)

=
{

2t ı̂ıı+ 4t3 ̂+ 6t5 k̂
}
×
{
e−t ı̂ıı+ e−3t ̂+ e−5t k̂

}
+
{
t2 ı̂ıı+ t4 ̂+ t6 k̂

}
×
{
− e−t ı̂ıı− 3e−3t ̂− 5e−5t k̂

}
= a′(t)× b(t) + a(t)× b′(t)

and

a
(
s(t)

)
= (sin t)2 ı̂ıı+ (sin t)4 ̂+ (sin t)6 k̂

=⇒ d
dt
[
a
(
s(t)

)]
= 2(sin t) cos t ı̂ıı+ 4(sin t)3 cos t ̂+ 6(sin t)5 cos t k̂

=
{

2(sin t) ı̂ıı+ 4(sin t)3̂+ 6(sin t)5k̂
}

cos t
= a′

(
s(t)

)
s′(t)

�
Of course these examples extend to general (differentiable) a(t), b(t), γ(t)

and s(t) and give us (most of) the following theorem.

Theorem 1.6.11 Arithmetic of differentiation. Let
• a(t),b(t) be vector valued differentiable functions of t ∈ R that take values

in Rn and

• α, β ∈ R be constants and

• γ(t) and s(t) be real valued differentiable functions of t ∈ R

Then

(a) d
dt
[
α a(t) + β b(t)

]
= α a′(t) + β b′(t) (linear combination)

(b) d
dt
[
γ(t)b(t)

]
= γ′(t)b(t) + γ(t)b′(t) (multiplication by scalar function)

(c) d
dt
[
a(t) · b(t)

]
= a′(t) · b(t) + a(t) · b′(t) (dot product)

(d) d
dt
[
a(t)× b(t)

]
= a′(t)× b(t) + a(t)× b′(t) (cross product)

(e) d
dt
[
a
(
s(t)

)]
= a′

(
s(t)

)
s′(t) (composition)
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Let’s think about the geometric significance of r′(t). In particular, let’s
think about the relationship between r′(t) and distances along the curve. The
derivative r′(t) is the limit of r(t+h)−r(t)

h as h→ 0. The numerator, r(t+ h)−
r(t), is the vector with head at r(t+ h) and tail at r(t).

r(t)

r(t+ h)

r(t+ h)− r(t) ≈ r′(t) h

When h is very small this vector

• has the essentially the same direction as the tangent vector to the curve
at r(t) and

• has length being essentially the length of the part of the curve between
r(t) and r(t+ h).

Taking the limit as h→ 0 yields that

• r′(t) is a tangent vector to the curve at r(t) that points in the direction
of increasing t and

• if s(t) is the length of the part of the curve between r(0) and r(t), then
ds
dt (t) =

∣∣dr
dt (t)

∣∣.
This is worth stating formally.

Lemma 1.6.12 Let r(t) be a parametrized curve.
(a) Denote by T̂(t) the unit tangent vector to the curve at r(t) pointing in

the direction of increasing t. If r′(t) 6= 0 then

T̂(t) = r′(t)
|r′(t)|

(b) Denote by s(t) the length of the part of the curve between r(0) and r(t).
Then

ds
dt (t) =

∣∣∣∣dr
dt (t)

∣∣∣∣
s(T )− s(T0) =

∫ T

T0

∣∣∣∣dr
dt (t)

∣∣∣∣ dt

rp0q

rptq
T̂ptq

sptq

(c) In particular, if the parameter happens to be arc length, i.e. if t = s, so
that ds

ds = 1, then ∣∣∣∣dr
ds (s)

∣∣∣∣ = 1 T̂(s) = r′(s)

As an application, we have the
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Lemma 1.6.13 If r(t) =
(
x(t) , y(t) , z(t)

)
is the position of a particle at time

t, then

velocity at time t = v(t) = r′(t) = x′(t)̂ııı+ y′(t)̂+ z′(t)k̂ = ds
dt (t) T̂(t)

speed at time t = ds
dt (t) = |v(t)| = |r′(t)| =

√
(x′(t)2 + y′(t)2 + z′(t)2

acceleration at time t = a(t) = r′′(t) = v′(t) =
(
x′′(t)̂ııı+ y′′(t)̂+ z′′(t)k̂

and the distance travelled between times T0 and T is

s(T )− s(T0) =
∫ T

T0

∣∣∣dr
dt (t)

∣∣∣dt =
∫ T

T0

√
(x′(t)2 + y′(t)2 + z′(t)2 dt

Note that the velocity v(t) = r′(t) is a vector quantity while the speed
ds
dt (t) = |r′(t)| is a scalar quantity.

Example 1.6.14 Circumference of a circle. In general it can be quite
difficult to compute arc lengths. So, as an easy warmup example, we will
compute the circumference of the circle3 x2 + y2 = a2. We’ll also find a unit
tangent to the circle at any point on the circle. We’ll use the parametrization

r(θ) =
(
a cos θ , a sin θ

)
0 ≤ θ ≤ 2π

of Example 1.6.1. Using Lemma 1.6.12, but with the parameter t renamed to
θ

r′(θ) = −a sin θı̂ıı+ a cos θ̂

T̂(θ) = r′(θ)
|r′(θ)| = − sin θı̂ıı+ cos θ̂

ds
dθ (θ) =

∣∣r′(θ)∣∣ = a

s(Θ)− s(0) =
∫ Θ

0

∣∣r′(θ)∣∣dθ = aΘ

As4 s(Θ) is the arc length of the part of the circle with 0 ≤ θ ≤ Θ, the
circumference of the whole circle is

s(2π) = 2πa

which is reassuring, since this formula has been known5 for thousands of years.

x

y

x2 ` y2 “ a2

`
a cos θ , a sin θ

˘

θ

T̂pθq

The formula s(Θ) − s(0) = aΘ also makes sense — the part of the circle
with 0 ≤ θ ≤ Θ is the fraction Θ

2π of the whole circle, and so should have length
Θ
2π × 2πa. Also note that

r(θ) · T̂(θ) =
(
a cos θ , a sin θ

)
·
(
− sin θ , cos θ

)
= 0
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so that the tangent to the circle at any point is perpendicular to the radius
vector of the circle at that point. This is another geometric fact that has been
known6 for thousands of years. �

Example 1.6.15 Arc length of a helix. Consider the curve

r(t) = 6 sin(2t)̂ııı+ 6 cos(2t)̂+ 5tk̂

where the standard basis vectors ı̂ıı = (1, 0, 0), ̂ = (0, 1, 0) and k̂ = (0, 0, 1).
We’ll first sketch it, by observing that

• x(t) = 6 sin(2t) and y(t) = 6 cos(2t) obey

x(t)2 + y(t)2 = 36 sin2(2t) + 36 cos2(2t) = 36

So all points of the curve lie on the cylinder x2 + y2 = 36 and

• as t increases,
(
x(t), y(t)

)
runs clockwise around the circle x2 + y2 = 36

and at the same time z(t) = 5t just increases linearly.

Our curve is the helix

y

z

x

t “ 0

t “ π
2

t “ π

We have marked three points of the curve on the above sketch. The first
has t = 0 and is 0̂ııı+ 6̂+ 0k̂. The second has t = π

2 and is 0̂ııı− 6̂+ 5π
2 k̂, and

the third has t = π and is 0̂ııı+ 6̂+ 5πk̂. We’ll now use Lemma 1.6.12 to find
a unit tangent T̂(t) to the curve at r(t) and also the arclength of the part of
curve between t = 0 and t = π.

r(t) = 6 sin(2t)̂ııı+ 6 cos(2t)̂+ 5tk̂
r′(t) = 12 cos(2t)̂ııı− 12 sin(2t)̂+ 5k̂

ds
dt (t) =

∣∣r′(t)∣∣ =
√

122 cos2(2t) + 122 sin2(2t) + 52 =
√

122 + 52

= 13

T̂(t) = r′(t)
|r′(t))| = 12

13 cos(2t)̂ııı− 12
13 sin(2t)̂+ 5

13 k̂

s(π)− s(0) =
∫ π

0

∣∣r′(t)∣∣dt = 13π

�
3We of course assume that the constant a > 0.
4You might guess that Θ is a capital Greek theta. You’d be right.
5The earliest known written approximations of π, in Egypt and Babylon, date from

1900–1600BC. The first recorded algorithm for rigorously evaluating π was developed by
Archimedes around 250 BC. The first use of the symbol π, for the ratio between the circum-
ference of a circle and its diameter, in print was in 1706 by William Jones.

6It is Proposition 18 in Book 3 of Euclid’s Elements. It was published around 300BC.
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Example 1.6.16 Velocity and acceleration. Imagine that, at time t, a
particle is at

r(t) =
[
h+ a cos

(
2π t
T

)]
ı̂ıı+

[
k + a sin

(
2π t
T

)]
̂

As |r(t) − h ı̂ıı − k ̂| = a, the particle is running around the circle of radius a
centred on (h, k). When t increases by T , the argument, 2π t

T , of cos
(
2π t

T

)
and

sin
(
2π t

T

)
increases by exactly 2π and the particle runs exactly once around

the circle. In particular, it travels a distance 2πa. So it is moving at speed
2πa
T . According to Lemma 1.6.13, it has

velocity = r′(t) = −2πa
T

sin
(

2π t
T

)
ı̂ıı+ 2πa

T
cos
(

2π t
T

)
̂

speed = ds
dt (t) = |r′(t)| = 2πa

T

acceleration = r′′(t) = −4π2a

T 2 cos
(

2π t
T

)
ı̂ıı− 4π2a

T 2 sin
(

2π t
T

)
̂

= −4π2

T 2

[
r(t)− h ı̂ıı− k ̂

]
Here are some observations.

• The velocity r′(t) has dot product zero with r(t)− h ı̂ıı− k ̂, which is the
radius vector from the centre of the circle to the particle. So the velocity
is perpendicular to the radius vector, and hence parallel to the tangent
vector of the circle at r(t).

• The speed given by Lemma 1.6.13 is exactly the speed we found above,
just before we started applying Lemma 1.6.13.

• The acceleration r′′(t) points in the direction opposite to the radius vec-
tor.

x

y

rptq
r1ptq

r2ptq

ph, kq

�

1.6.2 Exercises

Exercises — Stage 1
Questions 1.6.2.1 through 1.6.2.5 provide practice with curve parametriza-

tion. Being comfortable with the algebra and interpretation of these descrip-
tions are essential ingredients in working effectively with parametrizations.
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1. Consider the following time-parametrized curve:

r(t) =
(

cos
(π

4 t
)
, (t− 5)2

)
List the three points (−1/

√
2, 0), (1, 25), and (0, 25) in chronolog-

ical order.
2. At what points in the xy-plane does the curve (sin t, t2) cross itself?

What is the difference in t between the first time the curve crosses
through a point, and the last?

3. Find the specified parametrization of the first quadrant part of the
circle x2 + y2 = a2.

a In terms of the y coordinate.

b In terms of the angle between the tangent line and the positive
x-axis.

c In terms of the arc length from (0, a).
4.

x

y

1

1

P

A circle of radius a rolls along the x-axis in the positive direction,
starting with its centre at (a, a). In that position, we mark the top-
most point on the circle P . As the circle moves, P moves with it. Let
θ be the angle the circle has rolled - see the diagram below.

a Give the position of the centre of the circle as a function of θ.

b Give the position of P a function of θ.

P
θ

5. The curve C is defined to be the intersection of the ellipsoid

x2 − 1
4y

2 + 3z2 = 1

and the plane
x+ y + z = 0.

When y is very close to 0, and z is negative, find an expression
giving z in terms of y.
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6. A particle traces out a curve in space, so that its position at time t is

r(t) = e−t ı̂ıı+ 1
t
̂+ (t− 1)2(t− 3)2 k̂

for t > 0.
Let the positive z axis point vertically upwards, as usual. When is

the particle moving upwards, and when is it moving downwards? Is
it moving faster at time t = 1 or at time t = 3?

7. Below is the graph of the parametrized function r(t). Let s(t) be the
arclength along the curve from r(0) to r(t).

r(t+ h)

r(t)

r(0)

Indicate on the graph s(t+ h)− s(t) and r(t+ h)− r(t). Are the
quantities scalars or vectors?

8. What is the relationship between velocity and speed in a vector-valued
function of time?

9. ∗. Let r(t) be a vector valued function. Let r′, r′′ , and r′′′ denote
dr
dt ,

d2r
dt2 and d3r

dt3 , respectively. Express

d
dt
[
(r× r′) · r′′

]
in terms of r, r′ , r′′ , and r′′′. Select the correct answer.

a (r′ × r′′) · r′′′

b (r′ × r′′) · r + (r× r′) · r′′′

c (r× r′) · r′′′

d 0

e None of the above.

Exercises — Stage 2
10. ∗. Find the speed of a particle with the given position function

r(t) = 5
√

2 t ı̂ıı+ e5t ̂− e−5t k̂

Select the correct answer:
a |v(t)| =

(
e5t + e−5t)

b |v(t)| =
√

10 + 5et + 5e−t

c |v(t)| =
√

10 + e10t + e−10t

d |v(t)| = 5
(
e5t + e−5t)

e |v(t)| = 5
(
et + e−t

)
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11. Find the velocity, speed and acceleration at time t of the particle
whose position is r(t). Describe the path of the particle.

a r(t) = a cos t ı̂ıı+ a sin t ̂+ ct k̂

b r(t) = a cos t sin t ı̂ıı+ a sin2 t ̂+ a cos t k̂
12. ∗.

a Let
r(t) =

(
t2, 3, 1

3 t
3)

Find the unit tangent vector to this parametrized curve at t = 1,
pointing in the direction of increasing t.

b Find the arc length of the curve from (a) between the points
(0, 3, 0) and (1, 3,− 1

3 ).

13. Using Lemma 1.6.12, find the arclength of r(t) =
(
t,
√

3
2 t

2, t3
)
from

t = 0 to t = 1.
14. A particle’s position at time t is given by r(t) = (t + sin t, cos t) 7.

What is the magnitude of the acceleration of the particle at time t?

15. ∗. A curve in R3 is given by the vector equation r(t) =
(

2t cos t, 2t sin t, t
3

3

)
a Find the length of the curve between t = 0 and t = 2.

b Find the parametric equations of the tangent line to the curve
at t = π.

16. ∗. Let r(t) =
(
3 cos t, 3 sin t, 4t

)
be the position vector of a particle as

a function of time t ≥ 0.
a Find the velocity of the particle as a function of time t.

b Find the arclength of its path between t = 1 and t = 2.
17. ∗. Consider the curve

r(t) = 1
3 cos3 t ı̂ıı+ 1

3 sin3 t ̂+ sin3 t k̂

a Compute the arc length of the curve from t = 0 to t = π
2 .

b Compute the arc length of the curve from t = 0 to t = π.
18. ∗. Let r(t) =

( 1
3 t

3, 1
2 t

2, 1
2 t
)
, t ≥ 0. Compute s(t), the arclength of the

curve at time t.
19. ∗. Find the arc length of the curve r(t) =

(
tm , tm , t3m/2

)
for 0 ≤

a ≤ t ≤ b, and where m > 0. Express your result in terms of m, a,
and b.

20. If a particle has constant mass m, position r, and is moving with
velocity v, then its angular momentum is L = m(r× v).

For a particle with massm = 1 and position function r = (sin t, cos t, t),
find

∣∣dL
dt
∣∣.

21. ∗. Consider the space curve Γ whose vector equation is

r(t) = t sin(πt) ı̂ıı+ t cos(πt) ̂+ t2k̂ 0 ≤ t <∞

This curve starts from the origin and eventually reaches the ellipsoid
7The particle traces out a cycloid--see Question 1.6.2.4
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E whose equation is 2x2 + 2y2 + z2 = 24.
a Determine the coordinates of the point P where Γ intersects E.

b Find the tangent vector of Γ at the point P .

c Does Γ intersect E at right angles? Why or why not?
22. ∗. Suppose a particle in 3-dimensional space travels with position

vector r(t), which satisfies r′′(t) = −r(t). Show that the “energy”
|r(t)|2 + |r′(t)|2 is constant (that is, independent of t).

Exercises — Stage 3
23. ∗. A particle moves along the curve C of intersection of the surfaces

z2 = 12y and 18x = yz in the upward direction. When the particle is
at (1, 3, 6) its velocity v and acceleration a are given by

v = 6 ı̂ıı+ 12 ̂+ 12 k̂ a = 27 ı̂ıı+ 30 ̂+ 6 k̂

a Write a vector parametric equation for C using u = z
6 as a pa-

rameter.

b Find the length of C from (0, 0, 0) to (1, 3, 6).

c If u = u(t) is the parameter value for the particle’s position at
time t, find du

dt when the particle is at (1, 3, 6).

d Find d2u
dt2 when the particle is at (1, 3, 6).

24. ∗. A particle of mass m = 1 has position r0 = 1
2 k̂ and velocity

v0 = π2

2 ı̂ıı at time 0. It moves under a force

F(t) = −3t ı̂ıı+ sin t ̂+ 2e2t k̂.

a Determine the position r(t) of the particle depending on t.

b At what time after time t = 0 does the particle cross the plane
x = 0 for the first time?

c What is the velocity of the particle when it crosses the plane
x = 0 in part (b)?

25. ∗. Let C be the curve of intersection of the surfaces y = x2 and
z = 2

3x
3. A particle moves along C with constant speed such that

dx
dt > 0. The particle is at (0, 0, 0) at time t = 0 and is at (3, 9, 18) at
time t = 7

2 .
a Find the length of the part of C between (0, 0, 0) and (3, 9, 18).

b Find the constant speed of the particle.

c Find the velocity of the particle when it is at
(
1, 1, 2

3
)
.

d Find the acceleration of the particle when it is at
(
1, 1, 2

3
)
.

26. A camera mounted to a pole can swivel around in a full circle. It is
tracking an object whose position at time t seconds is x(t) metres east
of the pole, and y(t) metres north of the pole.

In order to always be pointing directly at the object, how fast
should the camera be programmed to rotate at time t? (Give your
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answer in terms of x(t) and y(t) and their derivatives, in the units
rad/sec.)

27. A projectile falling under the influence of gravity and slowed by air
resistance proportional to its speed has position satisfying

d2r
dt2

= −gk̂− αdr
dt

where α is a positive constant. If r = r0 and dr
dt = v0 at time

t = 0, find r(t). (Hint: Define u(t) = eαt dr
dt (t) and substitute dr

dt (t) =
e−αtu(t) into the given differential equation to find a differential equa-
tion for u.)

28. ∗. At time t = 0 a particle has position and velocity vectors r(0) =
〈−1, 0, 0〉 and v(0) = 〈0,−1, 1〉. At time t, the particle has accelera-
tion vector

a(t) = 〈cos t, sin t, 0〉

a Find the position of the particle after t seconds.

b Show that the velocity and acceleration of the particle are always
perpendicular for every t.

c Find the equation of the tangent line to the particle’s path at
t = −π/2.

d True or False: None of the lines tangent to the path of the
particle pass through (0, 0, 0). Justify your answer.

29. ∗. The position of a particle at time t (measured in seconds s) is given
by

r(t) = t cos
(
πt

2

)
ı̂ıı+ t sin

(
πt

2

)
̂+ t k̂

a Show that the path of the particle lies on the cone z2 = x2 + y2.

b Find the velocity vector and the speed at time t.

c Suppose that at time t = 1s the particle flies off the path on a
line L in the direction tangent to the path. Find the equation
of the line L.

d How long does it take for the particle to hit the plane x = −1
after it started moving along the straight line L?

30. ∗.
a The curve r1(t) =

〈
1 + t, t2, t3

〉
and r2(t) = 〈cos t, sin t, t〉 in-

tersect at the point P (1, 0, 0). Find the angle of intersection
between the curves at the point P .

b Find the distance between the line of intersection of the planes
x+y−z = 4 and 2x−z = 4 and the line r(t) = 〈t,−1 + 2t, 1 + 3t〉.

1.7 Sketching Surfaces in 3d
In practice students taking multivariable calculus regularly have great difficulty
visualising surfaces in three dimensions, despite the fact that we all live in three
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dimensions. We’ll now develop some technique to help us sketch surfaces in
three dimensions1.

We all have a fair bit of experience drawing curves in two dimensions.
Typically the intersection of a surface (in three dimensions) with a plane is
a curve lying in the (two dimensional) plane. Such an intersection is usually
called a cross-section. In the special case that the plane is one of the coordinate
planes, the intersection is sometimes called a trace. One can often get a pretty
good idea of what a surface looks like by sketching a bunch of cross-sections.
Here are some examples.

Example 1.7.1 4x2 + y2 − z2 = 1. Sketch the surface that satisfies 4x2 +
y2 − z2 = 1.
Solution. We’ll start by fixing any number z0 and sketching the part of the
surface that lies in the horizontal plane z = z0.

z

y

x

z “ z0

The intersection of our surface with that horizontal plane is a horizontal
cross-section. Any point (x, y, z) lying on that horizontal cross-section satisfies
both

z = z0 and 4x2 + y2 − z2 = 1
⇐⇒ z = z0 and 4x2 + y2 = 1 + z2

0

Think of z0 as a constant. Then 4x2 + y2 = 1 + z2
0 is a curve in the xy-plane.

As 1 + z2
0 is a constant, the curve is an ellipse. To determine its semi-axes2, we

observe that when y = 0, we have x = ± 1
2

√
1 + z2

0 and when x = 0, we have
y = ±

√
1 + z2

0 . So the curve is just an ellipse with x semi-axis 1
2

√
1 + z2

0 and
y semi-axis

√
1 + z2

0 . It’s easy to sketch.

x

y

(1
2

√
1 + z20 , 0)

(0 ,
√

1 + z20 )

Remember that this ellipse is the part of our surface that lies in the plane
z = z0. Imagine that the sketch of the ellipse is on a single sheet of paper. Lift
the sheet of paper up, move it around so that the x- and y-axes point in the
directions of the three dimensional x- and y-axes and place the sheet of paper
into the three dimensional sketch at height z0. This gives a single horizontal

1Of course you could instead use some fancy graphing software, but part of the point is
to build intuition. Not to mention that you can’t use fancy graphing software on your exam.



CHAPTER 1. VECTORS AND GEOMETRY IN TWO AND THREE DIMENSIONS77

ellipse in 3d, as in the figure below.
z

y

x

z “ z0

We can build up the full surface by stacking many of these horizontal ellipses
— one for each possible height z0. So we now draw a few of them as in the
figure below. To reduce the amount of clutter in the sketch, we have only
drawn the first octant (i.e. the part of three dimensions that has x ≥ 0, y ≥ 0
and z ≥ 0).

z

y

x

z = 1

z = 2

z = 3

Here is why it is OK, in this case, to just sketch the first octant. Replacing
x by −x in the equation 4x2 + y2− z2 = 1 does not change the equation. That
means that a point (x, y, z) is on the surface if and only if the point (−x, y, z)
is on the surface. So the surface is invariant under reflection in the yz-plane.
Similarly, the equation 4x2 + y2 − z2 = 1 does not change when y is replaced
by −y or z is replaced by −z. Our surface is also invariant reflection in the
xz- and xy-planes. Once we have the part in the first octant, the remaining
octants can be gotten simply by reflecting about the coordinate planes.

We can get a more visually meaningful sketch by adding in some vertical
cross-sections. The x = 0 and y = 0 cross-sections (also called traces — they
are the parts of our surface that are in the yz- and xz-planes, respectively) are

x = 0, y2 − z2 = 1 and y = 0, 4x2 − z2 = 1

These equations describe hyperbolae3. If you don’t remember how to sketch
them, don’t worry. We’ll do it now. We’ll first sketch them in 2d. Since

y2 = 1 + z2 =⇒ |y| ≥ 1
and y = ±1 when z = 0
and for large z, y ≈ ±z

4x2 = 1 + z2 =⇒ |x| ≥ 1
2

and x = ± 1
2 when z = 0
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and for large z, x ≈ ± 1
2z

the sketches are

y

z z = y

y2 − z2 = 1

x

z

4x2 − z2 = 1

Now we’ll incorporate them into the 3d sketch. Once again imagine that
each is a single sheet of paper. Pick each up and move it into the 3d sketch,
carefully matching up the axes. The red (blue) parts of the hyperbolas above
become the red (blue) parts of the 3d sketch below (assuming of course that
you are looking at this on a colour screen).

z

y

x

z = 1

z = 2

z = 3

Now that we have a pretty good idea of what the surface looks like we can
clean up and simplify the sketch. Here are a couple of possibilities.

z

y

x

Here are two figures created by graphing software.
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-2

-1

0

1

2

2

1

-1

0
-1

0

1

-2
-2

2

This type of surface is called a hyperboloid of one sheet.
There are also hyperboloids of two sheets. For example, replacing the +1

on the right hand side of x2 + y2 − z2 = 1 gives x2 + y2 − z2 = −1, which is a
hyperboloid of two sheets. We’ll sketch it quickly in the next example. �

Example 1.7.2 4x2 + y2 − z2 = −1. Sketch the surface that satisfies 4x2 +
y2 − z2 = −1.
Solution. As in the last example, we’ll start by fixing any number z0 and
sketching the part of the surface that lies in the horizontal plane z = z0. The
intersection of our surface with that horizontal plane is

z = z0 and 4x2 + y2 = z2
0 − 1

Think of z0 as a constant.
• If |z0| < 1, then z2

0−1 < 0 and there are no solutions to x2 +y2 = z2
0−1.

• If |z0| = 1 there is exactly one solution, namely x = y = 0.

• If |z0| > 1 then 4x2 + y2 = z2
0 − 1 is an ellipse with x semi-axis 1

2

√
z2

0 − 1
and y semi-axis

√
z2

0 − 1. These semi-axes are small when |z0| is close to
1 and grow as |z0| increases.

The first octant parts of a few of these horizontal cross-sections are drawn in
the figure below.

z

y

x

z “ 1.02

z “ 2

z “ 3

2The semi-axes of an ellipse are the line segments from the centre of the ellipse to the
farthest points on the ellipse and to the nearest points on the ellipse. For a circle the lengths
of all of these line segments are just the radius.

3It’s not just a figure of speech!
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Next we add in the x = 0 and y = 0 cross-sections (i.e. the parts of our
surface that are in the yz- and xz-planes, respectively)

x = 0, z2 = 1 + y2 and y = 0, z2 = 1 + 4x2

z

y

x

z “ 1.05

z “ 2

z “ 3

Now that we have a pretty good idea of what the surface looks like we clean
up and simplify the sketch.

z

y

x
Here is are two figures created by graphing software.

-2

-1

0

1

2

2

1

0

-1

-2
-2

-1

0

1

2

This type of surface is called a hyperboloid of two sheets. �

Example 1.7.3 yz = 1. Sketch the surface yz = 1.
Solution. This surface has a special property that makes it relatively easy
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to sketch. There are no x’s in the equation yz = 1. That means that if some
y0 and z0 obey y0z0 = 1, then the point (x, y0, z0) lies on the surface yz = 1
for all values of x. As x runs from −∞ to ∞, the point (x, y0, z0) sweeps out
a straight line parallel to the x-axis. So the surface yz = 1 is a union of lines
parallel to the x-axis. It is invariant under translations parallel to the x-axis.
To sketch yz = 1, we just need to sketch its intersection with the yz-plane
and then translate the resulting curve parallel to the x-axis to sweep out the
surface.

We’ll start with a sketch of the hyperbola yz = 1 in two dimensions.

y

z

yz = 1

Next we’ll move this 2d sketch into the yz-plane, i.e. the plane x = 0, in
3d, except that we’ll only draw in the part in the first octant.

z

y

x
The we’ll draw in x = x0 cross-sections for a couple of more values of x0

z

y

x

and clean up the sketch a bit
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z

y

x
Here are two figures created by graphing software.

0

1

2

3

4

5

0

1

5

4

3

2

0

1

2

3

4

5

�

Example 1.7.4 xyz = 4. Sketch the surface xyz = 4.
Solution. We’ll sketch this surface using much the same procedure as we
used in Examples 1.7.1 and 1.7.2. We’ll only sketch the part of the surface in
the first octant. The remaining parts (in the octants with x, y < 0, z ≥ 0, with
x, z < 0, y ≥ 0 and with y, z < 0, x ≥ 0) are just reflections of the first octant
part.

As usual, we start by fixing any number z0 and sketching the part of the
surface that lies in the horizontal plane z = z0. The intersection of our surface
with that horizontal plane is the hyperbola

z = z0 and xy = 4
z0

Note that x → ∞ as y → 0 and that y → ∞ as x → 0. So the hyperbola has
both the x-axis and the y-axis as asymptotes, when drawn in the xy-plane. The
first octant parts of a few of these horizontal cross-sections (namely, z0 = 4,
z0 = 2 and z0 = 1

2 ) are drawn in the figure below.
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z

y

x

z “ 1{2

z “ 2

z “ 4

Next we add some vertical cross-sections. We can’t use x = 0 or y = 0
because any point on xyz = 4 must have all of x, y, z nonzero. So we use

x = 4, yz = 1 and y = 4, xz = 1

instead. They are again hyperbolae.

z

y

x

x “ 4

y “ 4

Finally, we clean up and simplify the sketch.

z

y

x

Here are two figures created by graphing software.
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0

1

2

3

4

0

1

2

0
1

2

4

3

3
4

5

5

�

1.7.1 Level Curves and Surfaces
Often the reason you are interested in a surface in 3d is that it is the graph
z = f(x, y) of a function of two variables f(x, y). Another good way to visualize
the behaviour of a function f(x, y) is to sketch what are called its level curves.
By definition, a level curve of f(x, y) is a curve whose equation is f(x, y) = C,
for some constant C. It is the set of points in the xy-plane where f takes the
value C. Because it is a curve in 2d, it is usually easier to sketch than the
graph of f . Here are a couple of examples.

Example 1.7.5 f(x, y) = x2 + 4y2 − 2x + 2. Sketch the level curves of
f(x, y) = x2 + 4y2 − 2x+ 2.
Solution. Fix any real number C. Then, for the specified function f , the
level curve f(x, y) = C is the set of points (x, y) that obey

x2 + 4y2 − 2x+ 2 = C ⇐⇒ x2 − 2x+ 1 + 4y2 + 1 = C

⇐⇒ (x− 1)2 + 4y2 = C − 1

Now (x − 1)2 + 4y2 is the sum of two squares, and so is always at least zero.
So if C − 1 < 0, i.e. if C < 1, there is no curve f(x, y) = C. If C − 1 = 0,
i.e. if C = 1, then f(x, y) = C − 1 = 0 if and only if both (x − 1)2 = 0 and
4y2 = 0 and so the level curve consists of the single point (1, 0). If C > 1,
then f(x, y) = C become (x− 1)2 + 4y2 = C− 1 > 0 which describes an ellipse
centred on (1, 0). It intersects the x-axis when y = 0 and

(x− 1)2 = C − 1 ⇐⇒ x− 1 = ±
√
C − 1 ⇐⇒ x = 1±

√
C − 1

and it intersects the line x = 1 (i.e. the vertical line through the centre) when

4y2 = C − 1 ⇐⇒ 2y = ±
√
C − 1 ⇐⇒ y = ± 1

2
√
C − 1

So, when C > 1, f(x, y) = C is the ellipse centred on (1, 0) with x semi-axis√
C − 1 and y semi-axis 1

2
√
C − 1. Here is a sketch of some representative level

curves of f(x, y) = x2 + 4y2 − 2x+ 2.
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x

y

x “ 1

1

1

f“1 f“2
f“5

f“10
f“17

It is often easier to develop an understanding of the behaviour of a function
f(x, y) by looking at a sketch of its level curves, than it is by looking at a
sketch of its graph. On the other hand, you can also use a sketch of the level
curves of f(x, y) as the first step in building a sketch of the graph z = f(x, y).
The next step would be to redraw, for each C, the level curve f(x, y) = C, in
the plane z = C, as we did in Example 1.7.1. �

Example 1.7.6 ex+y+z = 1. The function f(x, y) is given implicitly by the
equation ex+y+z = 1. Sketch the level curves of f .
Solution. This one is not as nasty as it appears. That “f(x, y) is given
implicitly by the equation ex+y+z = 1” means that, for each x, y, the solution
z of ex+y+z = 1 is f(x, y). So, for the specified function f and any fixed real
number C, the level curve f(x, y) = C is the set of points (x, y) that obey

ex+y+C = 1 ⇐⇒ x+ y + C = 0 (by taking the logarithm of both sides)
⇐⇒ x+ y = −C

This is of course a straight line. It intersects the x-axis when y = 0 and x = −C
and it intersects the y-axis when x = 0 and y = −C. Here is a sketch of some
level curves.

x

y

1

1

f=0f=1

f=−1

f=2

f=−2

f=3

f=−3

�
We have just seen that sketching the level curves of a function f(x, y) can

help us understand the behaviour of f . We can generalise this to functions
F (x, y, z) of three variables. A level surface of F (x, y, z) is a surface whose
equation is of the form F (x, y, z) = C for some constant C. It is the set of



CHAPTER 1. VECTORS AND GEOMETRY IN TWO AND THREE DIMENSIONS86

points (x, y, z) at which F takes the value C.

Example 1.7.7 F (x, y, z) = x2 + y2 + z2. Let F (x, y, z) = x2 + y2 + z2. If
C > 0, then the level surface F (x, y, z) = C is the sphere of radius

√
C centred

on the origin. Here is a sketch of the parts of the level surfaces F = 1 (radius
1), F = 4 (radius 2) and F = 9 (radius 3) that are in the first octant.

z

y

x

F “ 9

F “ 1

F “ 4

�

Example 1.7.8 F (x, y, z) = x2 + z2. Let F (x, y, z) = x2 + z2 and C > 0.
Consider the level surface x2 + z2 = C. The variable y does not appear in this
equation. So for any fixed y0, the intersection of the our surface x2 + z2 = C
with the plane y = y0 is the circle of radius

√
C centred on x = z = 0. Here is

a sketch of the first quadrant part of one such circle.
z

y

x

F “ C

y “ y0

The full surface is the horizontal stack of all of those circles with y0 running
over R. It is the cylinder of radius

√
C centred on the y-axis. Here is a sketch

of the parts of the level surfaces F = 1 (radius 1), F = 4 (radius 2) and F = 9
(radius 3) that are in the first octant.
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z

y

x

F “ 9

F “ 4

F “ 1

�

Example 1.7.9 F (x, y, z) = ex+y+z. Let F (x, y, z) = ex+y+z and C > 0.
Consider the level surface ex+y+z = C, or equivalently, x + y + z = lnC. It
is the plane that contains the intercepts (lnC, 0, 0), (0, lnC, 0) and (0, 0, lnC).
Here is a sketch of the parts of the level surfaces

• F = e (intercepts (1, 0, 0), (0, 1, 0), (0, 0, 1)),

• F = e2 (intercepts (2, 0, 0), (0, 2, 0), (0, 0, 2)) and

• F = e3 (intercepts (3, 0, 0), (0, 3, 0), (0, 0, 3))

that are in the first octant.
z

y

x

F “e3

F “e
F “e2

�

1.7.2 Exercises

Exercises — Stage 1
1. ∗. Match the following equations and expressions with the corre-

sponding pictures. Cartesian coordinates are (x, y, z), cylindrical co-
ordinates are (r, θ, z), and spherical coordinates are (ρ, θ, ϕ).
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(A)

-2

-1

0

1

2

0

-1

-2

1

-2

0

1

-1

22

(B)

-1

-0.5

0

0.5

1

0
-0.5

-1

0.5

-1
-0.5

0.5
0

11

(C)

0

0.2

0.4

0.6

0.8

1

1
1

0.5

0

-0.5

-1

0

0.5

-0.5

-1

(D)

-2

-1

0

1

2

-1

-2

0

-1
-2

0
1

2

2

1

(E)

-10

0

10

20

30

40

50

-1

-2

0

1 0
1

2

-1
-22

(F)

0

0.5

1

1.5

2

-2

-2

-1

0

2

1

2

1

0

-1

(a) ϕ = π/3 (b) r = 2 cos θ (c) x2 + y2 = z2 + 1
(d) y = x2 + z2 (e) ρ = 2 cosϕ (f) z = x4 + y4 − 4xy

2. In each of (a) and (b) below, you are provided with a sketch of the first
quadrant parts of a few level curves of some function f(x, y). Sketch
the first octant part of the corresponding graph z = f(x, y).
(a)

x

y

1 2 3 4

1

2

3

4

f“4

f“3
f“2

f“1
f“0

(b)

x

y

1 2

1

2

f“4

f“3

f“2

f“1

f“0

3. Sketch a few level curves for the function f(x, y) whose graph z =
f(x, y) is sketched below.

z

y

x

Exercises — Stage 2
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4. Sketch some of the level curves of
a f(x, y) = x2 + 2y2

b f(x, y) = xy

c f(x, y) = xe−y

5. ∗. Sketch the level curves of f(x, y) = 2y
x2+y2 .

6. ∗. Draw a “contour map” of f(x, y) = e−x
2+4y2 , showing all types of

level curves that occur.
7. ∗. A surface is given implicitly by

x2 + y2 − z2 + 2z = 0

a Sketch several level curves z =constant.

b Draw a rough sketch of the surface.
8. ∗. Sketch the hyperboloid z2 = 4x2 + y2 − 1.
9. Describe the level surfaces of

a f(x, y, z) = x2 + y2 + z2

b f(x, y, z) = x+ 2y + 3z

c f(x, y, z) = x2 + y2

10. Sketch the graphs of
a f(x, y) = sin x 0 ≤ x ≤ 2π, 0 ≤ y ≤ 1

b f(x, y) =
√
x2 + y2

c f(x, y) = |x|+ |y|
11. Sketch and describe the following surfaces.

a 4x2 + y2 = 16

b x+ y + 2z = 4

c y2

9 + z2

4 = 1 + x2

16

d y2 = x2 + z2

e x2

9 + y2

12 + z2

9 = 1

f x2 + y2 + z2 + 4x− by + 9z − b = 0 where b is a constant.

g x

4 = y2

4 + z2

9

h z = x2

Exercises — Stage 3
12. The surface below has circular level curves, centred along the z-axis.

The lines given are the intersection of the surface with the right half
of the yz-plane. Give an equation for the surface.
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z

y

x

z = 3(y − 1)

z = −3(y − 1)

1.8 Cylinders
There are some classes of relatively simple, but commonly occurring, surfaces
that are given their own names. One such class is cylindrical surfaces. You
are probably used to thinking of a cylinder as being something that looks like
x2 + y2 = 1.

y

z

x
In Mathematics, the word “cylinder” is given a more general meaning.

Definition 1.8.1 Cylinder. A cylinder is a surface that consists of all
points that are on all lines that are

• parallel to a given line and

• pass through a given fixed curve, that lies in a fixed plane that is not
parallel to the given line.

♦

Example 1.8.2 Here are sketches of three cylinders. The familiar cylinder on
the left below
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x2 ` y2 “ 1 x2 ` py ´ zq2 “ 1

is called a right circular cylinder, because the given fixed curve (x2 +y2 = 1,
z = 0) is a circle and the given line (the z-axis) is perpendicular (i.e. at right
angles) to the fixed curve.

The cylinder on the left above can be thought of as a vertical stack of circles.
The cylinder on the right above can also be thought of as a stack of circles,
but the centre of the circle at height z has been shifted rightward to (0, z, z).
For that cylinder, the given fixed curve is once again the circle x2 + y2 = 1,
z = 0, but the given line is y = z, x = 0.

We have already seen the the third cylinder

z

y

x yz “ 1
x, y, z ą 0

in Example 1.7.3. It is called a hyperbolic cylinder. In this example, the
given fixed curve is the hyperbola yz = 1, x = 0 and the given line is the
x-axis. �

1.9 Quadric Surfaces
Another named class of relatively simple, but commonly occurring, surfaces is
the quadric surfaces.

Definition 1.9.1 Quadrics. A quadric surface is surface that consists of
all points that obey Q(x, y, z) = 0, with Q being a polynomial of degree two1.

♦
For Q(x, y, z) to be a polynomial of degree two, it must be of the form

Q(x, y, z) = Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J

for some constants A, B, · · ·, J . Each constant z cross section of a quadric
1Technically, we should also require that the polynomial can’t be factored into the product

of two polynomials of degree one.
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surface has an equation of the form

Ax2 +Dxy +By2 + gx+ hy + j = 0, z = z0

If A = B = D = 0 but g and h are not both zero, this is a straight line. If
A, B, and D are not all zero, then by rotating and translating our coordinate
system the equation of the cross section can be brought into one of the forms2

• αx2 + βy2 = γ with α, β > 0, which, if γ > 0, is an ellipse (or a circle),

• αx2−βy2 = γ with α, β > 0, which, if γ 6= 0, is a hyperbola, and if γ = 0
is two lines,

• x2 = δy, which, if δ 6= 0 is a parabola, and if δ = 0 is a straight line.

There are similar statements for the constant x cross sections and the constant
y cross sections. Hence quadratic surfaces are built by stacking these three
types of curves.

We have already seen a number of quadric surfaces in the last couple of
sections.

• We saw the quadric surface 4x2 + y2 − z2 = 1 in Example 1.7.1.

Its constant z cross sections are ellipses and its x = 0 and y = 0 cross
sections are hyperbolae. It is called a hyperboloid of one sheet.

• We saw the quadric surface x2 + y2 = 1 in Example 1.8.2.

Its constant z cross sections are circles and its x = 0 and y = 0 cross
sections are straight lines. It is called a right circular cylinder.

Appendix A.8 contains other quadric surfaces.

2This statement can be justified using a linear algebra eigenvalue/eigenvector analysis.
It is beyond what we can cover here, but is not too difficult for a standard linear algebra
course.



Chapter 2

Partial Derivatives

In this chapter we are going to generalize the definition of “derivative” to func-
tions of more than one variable and then we are going to use those derivatives.
We will parallel the development in Chapters 1 and 2 of the CLP-1 text. We
shall

• define limits and continuity of functions of more than one variable (Def-
initions 2.1.2 and 2.1.3) and then

• study the properties of limits in more than one dimension (Theorem
2.1.5) and then

• define derivatives of functions of more than one variable (Definition 2.2.1).

We are going to be able to speed things up considerably by recycling what we
have already learned in the CLP-1 text.

We start by generalizing the definition of “limit” to functions of more than
one variable.

2.1 Limits
Before we really start, let’s recall some useful notation.

Definition 2.1.1
• N is the set {1, 2, 3, · · · } of all natural numbers.

• R is the set of all real numbers.

• ∈ is read “is an element of”.

• /∈ is read “is not an element of”.

•
{
A
∣∣ B } is read “the set of all A such that B”

• If S is a set and T is a subset of S, then S \ T is
{
x ∈ S

∣∣ x /∈ T }, the
set S with the elements of T removed. In particular, if S is a set and a
is an element of S, then S \ {a} =

{
x ∈ S

∣∣ x 6= a
}
is the set S with

the element a removed.

• If n is a natural number, Rn is used for both the set of n-component
vectors 〈x1, x2, · · · , xn〉 and the set of points (x1, x2, · · · , xn) with n co-
ordinates.

93
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• If S and T are sets, then f : S → T means that f is a function which
assigns to each element of S an element of T . The set S is called the
domain of f .

•

[a, b] =
{
x ∈ R

∣∣ a ≤ x ≤ b } (a, b] =
{
x ∈ R

∣∣ a < x ≤ b
}

[a, b) =
{
x ∈ R

∣∣ a ≤ x < b
}

(a, b) =
{
x ∈ R

∣∣ a < x < b
}
♦

The definition of the limit of a function of more than one variable looks
just like the definition1 of the limit of a function of one variable. Very roughly
speaking

lim
x→a

f(x) = L

if f(x) approaches L whenever x approaches a. Here is a more careful definition
of limit.
Definition 2.1.2 Limit. Let

• m and n be natural numbers2

• a ∈ Rm

• the function f(x) be defined for all x near3 a and take values in Rn

• L ∈ Rn

We write

lim
x→a

f(x) = L

if4 the value of the function f(x) is sure to be arbitrarily close to L whenever
the value of x is close enough to a, without5 being exactly a. ♦

Now that we have extended the definition of limit, we can extend the defi-
nition of continuity.

Definition 2.1.3 Continuity. Let
• m and n be natural numbers

• a ∈ Rm

• the function f(x) be defined for all x near a and take values in Rn

a The function f is continuous at a point a if

lim
x→a

f(x) = f(a)
1Definition 1.3.3 in the CLP-1 text.
2In this text, we will interested inm,n ∈

{
1, 2, 3

}
, but the definition works for all natural

numbers m,n.
3To be precise, there is a number r > 0 such that f(x) is defined for all x obeying

|x− a| < r.
4There is a precise, formal version of this definition that looks just like Definition 1.7.1

of the CLP-1 text.
5You may find the condition “without being exactly a” a little strange, but there is a

good reason for it, which we have already seen in Calculus I. In the definition f ′(x) =
lim
x→a

f(x)−f(a)
x−a , the function whose limit is being taken, namely f(x)−f(a)

x−a , is not defined at
all at x = a. This will again happen when we define derivatives of functions of more than
one variable.
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b The function f is continuous on a set D if it is continuous at every point
of D.

♦
Here are a few very simple examples. There will be some more substantial

examples later — after, as we did in the CLP-1 text, we build some tools that
can be used to build complicated limits from simpler ones.

Example 2.1.4
a If f(x, y) is the constant function which always takes the value L, then

lim
(x,y)→(a,b)

f(x, y) = L

b If f : R2 → R2 is defined by f(x, y) = (x, y), then

lim
(x,y)→(a,b)

f(x, y) = (a, b)

c By definition, as (x, y) approaches (a, b), x approaches a and y approaches
b, so that if f : R2 → R is defined by f(x, y) = x, then

lim
(x,y)→(a,b)

f(x, y) = a

Similarly, if g : R2 → R is defined by g(x, y) = y, then

lim
(x,y)→(a,b)

g(x, y) = b

�
Limits of multivariable functions have much the same computational prop-

erties as limits of functions of one variable. The following theorem summarizes
a bunch of them. For simplicity, it concerns primarily real valued functions.
That is, functions that output real numbers as opposed to vectors. However it
does contain one vector valued function. The function X in the theorem takes
as input an n-component vector and returns an m-component vector. We will
not deal with many vector valued functions here in CLP-3, but we will see a
lot in CLP-4.
Theorem 2.1.5 Arithmetic, and Other, Properties of Limits. Let

• m and n be natural numbers

• a ∈ Rm and b ∈ Rn

• D be a subset of Rm that contains all x ∈ Rm that are near a

• c, F,G ∈ R

and

f, g : D \ {a} → R X : Rn \ {b} → D \ {a} γ : R→ R

Assume that

lim
x→a

f(x) = F lim
x→a

g(x) = G lim
y→b

X(y) = a lim
t→F

γ(t) = γ(F )

Then
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a lim
x→a

[
f(x) + g(x)

]
= F +G

lim
x→a

[
f(x)− g(x)

]
= F −G

b lim
x→a

f(x) g(x) = FG

lim
x→a

cf(x) = cF

c lim
x→a

f(x)
g(x) = F

G if G 6= 0

d lim
y→b

f
(
X(y)

)
= F

e lim
x→a

γ
(
f(x)

)
= γ(F )

This shows that multivariable limits interact very nicely with arithmetic,
just as single variable limits did. Also recall, from Theorem 1.6.8 in the CLP-1
text,

Theorem 2.1.6 The following functions are continuous everywhere in their
domains

• polynomials, rational functions

• roots and powers

• trig functions and their inverses

• exponential and the logarithm
Example 2.1.7 In this example we evaluate

lim
(x,y)→(2,3)

x+ sin y
x2y2 + 1

as a typical application of Theorem 2.1.5. Here “ a= ” means that part (a) of
Theorem 2.1.5 justifies that equality. Start by computing separately the limits
of the numerator and denominator.

lim
(x,y)→(2,3)

(
x+ sin y

) a= lim
(x,y)→(2,3)

x+ lim
(x,y)→(2,3)

sin y

e= lim
(x,y)→(2,3)

x+ sin
(

lim
(x,y)→(2,3)

y
)

= 2 + sin 3

lim
(x,y)→(2,3)

(
x2y2 + 1

) a= lim
(x,y)→(2,3)

x2y2 + lim
(x,y)→(2,3)

1

b=
(

lim
(x,y)→(2,3)

x
)(

lim
(x,y)→(2,3)

x
)(

lim
(x,y)→(2,3)

y
)(

lim
(x,y)→(2,3)

y
)

+ 1

= 2232 + 1

Since the limit of the denominator is nonzero, we can simply divide.

lim
(x,y)→(2,3)

x+ sin y
x2y2 + 1

c=
lim

(x,y)→(2,3)
(x+ sin y)

lim
(x,y)→(2,3)

(x2y2 + 1)

= 2 + sin 3
37

Here we have used that sin x is a continuous function. �
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While the CLP-1 text’s Definition 1.3.3 of the limit of a function of one
variable, and our Definition 2.1.2 of the limit of a multivariable function look
virtually identical, there is a substantial practical difference between the two.
In dimension one, you can approach a point from the left or from the right and
that’s it. There are only two possible directions of approach. In two or more
dimensions there is “much more room” and there are infinitely many possible
types of approach. One can even spiral in to a point. See the middle and right
hand figures below.

The next few examples illustrate the impact that the“extra room” in di-
mensions greater than one has on limits.

Example 2.1.8 As a second example, we consider lim
(x,y)→(0,0)

x2y
x2+y2 . In this

example, both the numerator, x2y, and the denominator, x2 + y2, tend to zero
as (x, y) approaches (0, 0), so we have to be more careful.

A good way to see the behaviour of a function f(x, y) when (x, y) is close
to (0, 0) is to switch to the polar coordinates, r, θ, that are defined by

x = r cos θ
y = r sin θ r

px, yq

x

y

θ

The points (x, y) that are close to (0, 0) are those with small r, regardless of
what θ is. Recall that lim

(x,y)→(0,0)
f(x, y) = L when f(x, y) approaches L as (x, y)

approaches (0, 0). Substituting x = r cos θ, y = r sin θ into that statement
turns it into the statement that lim

(x,y)→(0,0)
f(x, y) = L when f(r cos θ, r sin θ)

approaches L as r approaches 0. For our current example

x2y

x2 + y2 = (r cos θ)2(r sin θ)
r2 = r cos2 θ sin θ

As
∣∣r cos2 θ sin θ

∣∣ ≤ r tends to 0 as r tends to 0 (regardless of what θ does as
r tends to 0) we have

lim
(x,y)→(0,0)

x2y

x2 + y2 = 0

�

Example 2.1.9 As a third example, we consider lim
(x,y)→(0,0)

x2−y2

x2+y2 . Once again,

the best way to see the behaviour of f(x, y) = x2−y2

x2+y2 for (x, y) close to (0, 0) is
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to switch to polar coordinates.

f(x, y) = x2 − y2

x2 + y2 = (r cos θ)2 − (r sin θ)2

r2 = cos2 θ − sin2 θ = cos(2θ)

Note that, this time, f is independent of r but does depend on θ. Here is a
greatly magnified sketch of a number of level curves for f(x, y).

f“cosp90˝q“0

f“cosp0q“1

f“cosp30˝q“?
3{2

f“cosp60˝q“1{2

f“cosp135˝q“´1{?
2

f“cosp180˝q“´1

r “ 10´137

Observe that

• as (x, y) approaches (0, 0) along the ray with 2θ = 30◦, f(x, y) approaches
the value

√
3

2 (and in fact f(x, y) takes the value cos(30◦) =
√

3
2 at every

point of that ray)

• as (x, y) approaches (0, 0) along the ray with 2θ = 60◦, f(x, y) approaches
the value 1

2 (and in fact f(x, y) takes the value cos(60◦) = 1
2 at every

point of that ray)

• as (x, y) approaches (0, 0) along the ray with 2θ = 90◦, f(x, y) approaches
the value 0 (and in fact f(x, y) takes the value cos(90◦) = 0 at every point
of that ray)

• and so on

So there is not single number L such that f(x, y) approaches L as r = |(x, y)| →
0, no matter what the direction of approach is. The limit lim

(x,y)→(0,0)
x2−y2

x2+y2 does
not exist.

Here is another way to come to the same conclusion.

• Pick any really small positive number. We’ll use 10−137 as an example.

• Pick any real number F between −1 and 1. We’ll use F =
√

3
2 as an

example.

• Looking at the sketch above, we see that f(x, y) takes the value F along
an entire ray θ = const, r > 0. In the case F =

√
3

2 , the ray is 2θ = 30◦,
r > 0. In particular, because the ray extends all the way to (0, 0), f takes
the value F for some (x, y) obeying |(x, y)| < 10−137.

• That is true regardless of which really small number you picked. So
f(x, y) = x2−y2

x2+y2 does not approach any single value as r = |(x, y)| ap-
proaches 0 and we conclude that lim

(x,y)→(0,0)
x2−y2

x2+y2 does not exist.

�



CHAPTER 2. PARTIAL DERIVATIVES 99

2.1.1 Optional — A Nasty Limit That Doesn’t Exist
Example 2.1.10 In this example we study the behaviour of the function

f(x, y) =
{

(2x−y)2

x−y if x 6= y

0 if x = y

as (x, y) → (0, 0). Here is a graph of the level curve, f(x, y) = −3, for this
function.

y

x

´3f “ ´3

Here is a larger graph of level curves, f(x, y) = c, for various values of the
constant c.

y

x

1

´1

2f “ 2

´2

3

f “ ´3

1
2

1
2

´1
2

´1
2

As before, it helps to convert to polar coordinates — it is a good approach6.
In polar coordinates

f(r cos θ, r sin θ) =
{
r (2 cos θ−sin θ)2

cos θ−sin θ if cos θ 6= sin θ
0 if cos θ = sin θ

If we approach the origin along any fixed ray θ = const, then f(r cos θ, r sin θ)
is the constant (2 cos θ−sin θ)2

cos θ−sin θ (or 0 if cos θ = sin θ) times r and so approaches
zero as r approaches zero. You can see this in the figure below, which shows
the level curves again, with the rays θ = 1

8π and θ = 3
16π superimposed.
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y

x

1 2 f “ 31
2

θ “ 3
16
π

θ “ 1
8
π

If you move towards the origin on either of those rays, you first cross the
f = 3 level curve, then the f = 2 level curve, then the f = 1 level curve, then
the f = 1

2 level curve, and so on.
That f(x, y) → 0 as (x, y) → (0, 0) along any fixed ray is suggestive,

but does not imply that the limit exists and is zero. Recall that to have
lim(x,y)→(0,0) f(x, y) = 0, we need f(x, y) → 0 no matter how (x, y) → (0, 0).
It is not sufficient to check only straight line approaches.

In fact, the limit of f(x, y) as (x, y) → (0, 0) does not exist. A good way
to see this is to observe that if you fix any r > 0, no matter how small, f(x, y)
takes all values from −∞ to +∞ on the circle x2 + y2 = r2. You can see
this in the figure below, which shows the level curves yet again, with a circle
x2 + y2 = r2 superimposed. For every single −∞ < c < ∞, the level curve
f(x, y) = c crosses the circle.

y

x

1

´1

2

´2

f “ 3

´3

1
2

´1
2

Consequently there is no one number L such that f(x, y) is close to L
whenever (x, y) is sufficiently close to (0, 0). The limit lim(x,y)→(0,0) f(x, y)
does not exist.

Another way to see that f(x, y) does not have any limit as (x, y) → (0, 0)
is to show that f(x, y) does not have a limit as (x, y) approaches (0, 0) along
some specific curve. This can be done by picking a curve that makes the
denominator, x − y, tend to zero very quickly. One such curve is x − y = x3

or, equivalently, y = x− x3. Along this curve, for x 6= 0,

f(x, x− x3) = (2x− x+ x3)2

x− x+ x3 = (x+ x3)2

x3
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= (1 + x2)2

x
−→

{
+∞ as x→ 0 with x > 0
−∞ as x→ 0 with x < 0

The choice of the specific power x3 is not important. Any power xp with
p > 2 will have the same effect.

If we send (x, y) to (0, 0) along the curve x − y = ax2 or, equivalently,
y = x− ax2, where a is a nonzero constant,

lim
x→0

f(x, x− ax2) = lim
x→0

(2x− x+ ax2)2

x− x+ ax2 = lim
x→0

(x+ ax2)2

ax2

= lim
x→0

(1 + ax)2

a
= 1
a

This limit depends on the choice of the constant a. Once again, this proves
that f(x, y) does not have a limit as (x, y)→ (0, 0). �

2.1.2 Exercises

Exercises — Stage 1
1. Suppose f(x, y) is a function such that lim

(x,y)→(0,0)
f(x, y) = 10.

True or false: |f(0.1, 0.1)− 10| < |f(0.2, 0.2)− 10|
2. A millstone pounds wheat into flour. The wheat sits in a basin, and

the millstone pounds up and down.
Samples of wheat are taken from various places along the basin.

Their diameters are measured and their position on the basin is recorded.
Consider this claim: “As the particles get very close to the mill-

stone, the diameters of the particles approach 50 µm.” In this context,
describe the variables below from Definition 2.1.2.

a x

b a

c L

3. Let f(x, y) = x2

x2 + y2 .

a Find a ray approaching the origin along which f(x, y) = 1.

b Find a ray approaching the origin along which f(x, y) = 0.

c What does the above work show about a limit of f(x, y)?
4. Let f(x, y) = x2 − y2

a Express the function in terms of the polar coordinates r and θ,
and simplify.

b Suppose (x, y) is a distance of 1 from the origin. What are the
largest and smallest values of f(x, y)?

c Let r > 0. Suppose (x, y) is a distance of r from the origin.
What are the largest and smallest values of f(x, y)?

d Let ε > 0. Find a positive value of r that guarantees |f(x, y)| < ε
whenever (x, y) is at most r units from the origin.

6Not just a pun.
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e What did you just show?
5. Suppose f(x, y) is a polynomial. Evaluate lim

(x,y)→(a,b)
f(x, y), where

(a, b) ∈ R2.

Exercises — Stage 2
6. Evaluate, if possible,

a lim
(x,y)→(2,−1)

(
xy + x2)

b lim
(x,y)→(0,0)

x

x2 + y2

c lim
(x,y)→(0,0)

x2

x2 + y2

d lim
(x,y)→(0,0)

x3

x2 + y2

e lim
(x,y)→(0,0)

x2y2

x2 + y4

f lim
(x,y)→(0,0)

(sin x) (ey − 1)
xy

7. ∗.

a Find the limit: lim
(x,y)→(0,0)

x8 + y8

x4 + y4 .

b Prove that the following limit does not exist: lim
(x,y)→(0,0)

xy5

x8 + y10 .

8. ∗. Evaluate each of the following limits or show that it does not exist.

a lim
(x,y)→(0,0)

x3 − y3

x2 + y2

b lim
(x,y)→(0,0)

x2 − y4

x2 + y4

Exercises — Stage 3
9. ∗. Evaluate each of the following limits or show that it does not exist.

a lim
(x,y)→(0,0)

2x2 + x2y − y2x+ 2y2

x2 + y2

b lim
(x,y)→(0,1)

x2y2 − 2x2y + x2

(x2 + y2 − 2y + 1)2

10. Define, for all (x, y) 6= (0, 0), f(x, y) = x2y
x4+y2 .

a Let 0 ≤ θ < 2π. Compute lim
r→0+

f(r cos θ, r sin θ).

b Compute lim
x→0

f(x, x2).

c Does lim
(x,y)→(0,0)

f(x, y) exist?
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11. ∗. Compute the following limits or explain why they do not exist.

a lim
(x,y)→(0,0)

xy

x2 + y2

b lim
(x,y)→(0,0)

sin(xy)
x2 + y2

c lim
(x,y)→(−1,1)

x2 + 2xy2 + y4

1 + y4

d lim
(x,y)→(0,0)

|y|x

12. Evaluate each of the following limits or show that it does not exist.

a lim
(x,y)→(0,0)

{
x2

y−x if y 6= x

0 if y = x

b lim
(x,y)→(0,0)

{
x8

y−x if y 6= x

0 if y = x

2.2 Partial Derivatives
We are now ready to define derivatives of functions of more than one variable.
First, recall how we defined the derivative, f ′(a), of a function of one variable,
f(x). We imagined that we were walking along the x-axis, in the positive
direction, measuring, for example, the temperature along the way. We denoted
by f(x) the temperature at x. The instantaneous rate of change of temperature
that we observed as we passed through x = a was

df
dx (a) = lim

h→0

f(a+ h)− f(a)
h

= lim
x→a

f(x)− f(a)
x− a

Next suppose that we are walking in the xy-plane and that the temperature
at (x, y) is f(x, y). We can pass through the point (x, y) = (a, b) moving in
many different directions, and we cannot expect the measured rate of change
of temperature if we walk parallel to the x-axis, in the direction of increasing
x, to be the same as the measured rate of change of temperature if we walk
parallel to the y-axis in the direction of increasing y. We’ll start by considering
just those two directions. We’ll consider other directions (like walking parallel
to the line y = x) later.

Suppose that we are passing through the point (x, y) = (a, b) and that
we are walking parallel to the x-axis (in the positive direction). Then our y-
coordinate will be constant, always taking the value y = b. So we can think of
the measured temperature as the function of one variable B(x) = f(x, b) and
we will observe the rate of change of temperature

dB
dx (a) = lim

h→0

B(a+ h)−B(a)
h

= lim
h→0

f(a+ h, b)− f(a, b)
h

This is called the “partial derivative f with respect to x at (a, b)” and is denoted
∂f
∂x (a, b). Here

• the symbol ∂, which is read “partial”, indicates that we are dealing with
a function of more than one variable, and
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• the x in ∂f
∂x indicates that we are differentiating with respect to x, while

y is being held fixed, i.e. being treated as a constant.

• ∂f
∂x is read “partial dee f dee x”.

Do not write d
dx when ∂

∂x is appropriate. We shall later encounter situations
when d

dxf and ∂
∂xf are both defined and have different meanings.

If, instead, we are passing through the point (x, y) = (a, b) and are walking
parallel to the y-axis (in the positive direction), then our x-coordinate will be
constant, always taking the value x = a. So we can think of the measured
temperature as the function of one variable A(y) = f(a, y) and we will observe
the rate of change of temperature

dA
dy (b) = lim

h→0

A(b+ h)−A(b)
h

= lim
h→0

f(a, b+ h)− f(a, b)
h

This is called the “partial derivative f with respect to y at (a, b)” and is denoted
∂f
∂y (a, b).

Just as was the case for the ordinary derivative df
dx (x) (see Definition 2.2.6

in the CLP-1 text), it is common to treat the partial derivatives of f(x, y) as
functions of (x, y) simply by evaluating the partial derivatives at (x, y) rather
than at (a, b).

Definition 2.2.1 Partial Derivatives. The x- and y-partial derivatives of
the function f(x, y) are

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)
h

∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)
h

respectively. The partial derivatives of functions of more than two variables
are defined analogously. ♦

Partial derivatives are used a lot. And there many notations for them.

Definition 2.2.2 The partial derivative ∂f
∂x (x, y) of a function f(x, y) is also

denoted

∂f

∂x
fx(x, y) fx Dxf(x, y) Dxf D1f(x, y) D1f

The subscript 1 on D1f indicates that f is being differentiated with respect to
its first variable. The partial derivative ∂f

∂x (a, b) is also denoted

∂f

∂x

∣∣∣∣
(a,b)

with the subscript (a, b) indicating that ∂f
∂x is being evaluated at (x, y) = (a, b).

The notation
(
∂f
∂x

)
y
is used to make explicit that the variable y is being

held fixed1. ♦

Remark 2.2.3 The Geometric Interpretation of Partial Derivatives.
1There are applications in which there are several variables that cannot be varied inde-

pendently. For example, the pressure, volume and temperature of an ideal gas are related
by the equation of state PV = (constant)T . In those applications, it may not be clear from
the context which variables are being held fixed.
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We’ll now develop a geometric interpretation of the partial derivative

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)
h

in terms of the shape of the graph z = f(x, y) of the function f(x, y). That
graph appears in the figure below. It looks like the part of a deformed sphere
that is in the first octant.

The definition of ∂f∂x (a, b) concerns only points on the graph that have y = b.
In other words, the curve of intersection of the surface z = f(x, y) with the
plane y = b. That is the red curve in the figure. The two blue vertical line
segments in the figure have heights f(a, b) and f(a + h, b), which are the two
numbers in the numerator of f(a+h,b)−f(a,b)

h .

z

y

x

z “ fpx, yq
y “ b

h

fpa, bq
fpa ` h, bq

pa, b, 0q

pa ` h, b, 0q

fpa ` h, bq ´ fpa, bq

A side view of the curve (looking from the left side of the y-axis) is sketched
in the figure below.

z

x

z “ fpx, bq, y “ b

fpa, bq
fpa ` h, bq

pa, b, 0q pa ` h, b, 0q

fpa ` h, bq ´ fpa, bq

Again, the two blue vertical line segments in the figure have heights f(a, b)
and f(a+h, b), which are the two numbers in the numerator of f(a+h,b)−f(a,b)

h .
So the numerator f(a+h, b)− f(a, b) and denominator h are the rise and run,
respectively, of the curve z = f(x, b) from x = a to x = a + h. Thus ∂f

∂x (a, b)
is exactly the slope of (the tangent to) the curve of intersection of the surface
z = f(x, y) and the plane y = b at the point

(
a, b, f(a, b)

)
. In the same way
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∂f
∂y (a, b) is exactly the slope of (the tangent to) the curve of intersection of the
surface z = f(x, y) and the plane x = a at the point

(
a, b, f(a, b)

)
.

2.2.1 Evaluation of Partial Derivatives
From the above discussion, we see that we can readily compute partial deriva-
tives ∂

∂x by using what we already know about ordinary derivatives d
dx . More

precisely,

• to evaluate ∂f
∂x (x, y), treat the y in f(x, y) as a constant and differentiate

the resulting function of x with respect to x.

• To evaluate ∂f
∂y (x, y), treat the x in f(x, y) as a constant and differentiate

the resulting function of y with respect to y.

• To evaluate ∂f
∂x (a, b), treat the y in f(x, y) as a constant and differentiate

the resulting function of x with respect to x. Then evaluate the result at
x = a, y = b.

• To evaluate ∂f
∂y (a, b), treat the x in f(x, y) as a constant and differentiate

the resulting function of y with respect to y. Then evaluate the result at
x = a, y = b.

Now for some examples.

Example 2.2.4 Let
f(x, y) = x3 + y2 + 4xy2

Then, since ∂
∂x treats y as a constant,

∂f

∂x
= ∂

∂x
(x3) + ∂

∂x
(y2) + ∂

∂x
(4xy2)

= 3x2 + 0 + 4y2 ∂

∂x
(x)

= 3x2 + 4y2

and, since ∂
∂y treats x as a constant,

∂f

∂y
= ∂

∂y
(x3) + ∂

∂y
(y2) + ∂

∂y
(4xy2)

= 0 + 2y + 4x ∂
∂y

(y2)

= 2y + 8xy

In particular, at (x, y) = (1, 0) these partial derivatives take the values

∂f

∂x
(1, 0) = 3(1)2 + 4(0)2 = 3

∂f

∂y
(1, 0) = 2(0) + 8(1)(0) = 0

�

Example 2.2.5 Let
f(x, y) = y cosx+ xexy
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Then, since ∂
∂x treats y as a constant, ∂

∂xe
yx = yeyx and

∂f

∂x
(x, y) = y

∂

∂x
(cosx) + exy

∂

∂x
(x) + x

∂

∂x

(
exy
)

(by the product rule)

= −y sin x+ exy + xyexy

∂f

∂y
(x, y) = cosx ∂

∂y
(y) + x

∂

∂y

(
exy
)

= cosx+ x2exy

�
Let’s move up to a function of four variables. Things generalize in a quite

straight forward way.

Example 2.2.6 Let

f(x, y, z, t) = x sin(y + 2z) + t2e3y ln z

Then

∂f

∂x
(x, y, z, t) = sin(y + 2z)

∂f

∂y
(x, y, z, t) = x cos(y + 2z) + 3t2e3y ln z

∂f

∂z
(x, y, z, t) = 2x cos(y + 2z) + t2e3y/z

∂f

∂t
(x, y, z, t) = 2te3y ln z

�
Now here is a more complicated example — our function takes a special

value at (0, 0). To compute derivatives there we revert to the definition.

Example 2.2.7 Set

f(x, y) =
{

cos x−cos y
x−y if x 6= y

0 if x = y

If b 6= a, then for all (x, y) sufficiently close to (a, b), f(x, y) = cos x−cos y
x−y and

we can compute the partial derivatives of f at (a, b) using the familiar rules
of differentiation. However that is not the case for (a, b) = (0, 0). To evaluate
fx(0, 0), we need to set y = 0 and find the derivative of

f(x, 0) =
{

cos x−1
x if x 6= 0

0 if x = 0

with respect to x at x = 0. As we cannot use the usual differentiation rules,
we evaluate the derivative2 by applying the definition

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

cosh−1
h − 0
h

(Recall that h 6= 0 in the limit.)

= lim
h→0

cosh− 1
h2

= lim
h→0

− sin h
2h (By l’Hôpital’s rule.)
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= lim
h→0

− cosh
2 (By l’Hôpital again.)

= −1
2

We could also evaluate the limit of cosh−1
h2 by substituting in the Taylor ex-

pansion

cosh = 1− h2

2 + h4

4! − · · ·

We can also use Taylor expansions to understand the behaviour of f(x, y)
for (x, y) near (0, 0). For x 6= y,

cosx− cos y
x− y

=

[
1− x2

2! + x4

4! − · · ·
]
−
[
1− y2

2! + y4

4! − · · ·
]

x− y

=
−x

2−y2

2! + x4−y4

4! − · · ·
x− y

= − 1
2!
x2 − y2

x− y
+ 1

4!
x4 − y4

x− y
− · · ·

= −x+ y

2! + x3 + x2y + xy2 + y3

4! − · · ·

So for (x, y) near (0, 0),

f(x, y) ≈
{
−x+y

2 if x 6= y

0 if x = y

So it sure looks like (and in fact it is true that)
• f(x, y) is continuous at (0, 0) and

• f(x, y) is not continuous at (a, a) for small a 6= 0 and

• fx(0, 0) = fy(0, 0) = −1
2

�

Example 2.2.8 Again set

f(x, y) =
{

cos x−cos y
x−y if x 6= y

0 if x = y

We’ll now compute fy(x, y) for all (x, y).
The case y 6= x: When y 6= x,

fy(x, y) = ∂

∂y

cosx− cos y
x− y

=
(x− y) ∂∂y (cosx− cos y)− (cosx− cos y) ∂∂y (x− y)

(x− y)2

(by the quotient rule)

= (x− y) sin y + cosx− cos y
(x− y)2

2It is also possible to evaluate the derivative by using the technique of the optional Section
2.15 in the CLP-1 text.
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The case y = x: When y = x,

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)
h

= lim
h→0

f(x, x+ h)− f(x, x)
h

= lim
h→0

cos x−cos(x+h)
x−(x+h) − 0

h
(Recall that h 6= 0 in the limit.)

= lim
h→0

cos(x+ h)− cosx
h2

Now we apply L’Hôpital’s rule, remembering that, in this limit, x is a constant
and h is the variable — so we differentiate with respect to h.

fy(x, y) = lim
h→0

− sin(x+ h)
2h

Note that if x is not an integer multiple of π, then the numerator − sin(x+ h)
does not tend to zero as h tends to zero, and the limit giving fy(x, y) does not
exist. On the other hand, if x is an integer multiple of π, both the numerator
and denominator tend to zero as h tends to zero, and we can apply L’Hôpital’s
rule a second time. Then

fy(x, y) = lim
h→0

− cos(x+ h)
2

= −cosx
2

The conclusion:

fy(x, y) =


(x−y) sin y+cos x−cos y

(x−y)2 if x 6= y

− cos x
2 if x = y with x an integer multiple of π

DNE if x = y with x not an integer multiple of π

�

Example 2.2.9 Optional — A Little Weirdness. In this example, we
will see that the function

f(x, y) =
{

x2

x−y if x 6= y

0 if x = y

is not continuous at (0, 0) and yet has both partial derivatives fx(0, 0) and
fy(0, 0) perfectly well defined. We’ll also see how that is possible. First let’s
compute the partial derivatives. By definition,

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)
h

= lim
h→0

h︷︸︸︷
h2

h−0 − 0
h

= lim
h→0

1

= 1

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)
h

= lim
h→0

02

0−h − 0
h

= lim
h→0

0

= 0

So the first order partial derivatives fx(0, 0) and fy(0, 0) are perfectly well
defined.
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To see that, nonetheless, f(x, y) is not continuous at (0, 0), we take the
limit of f(x, y) as (x, y) approaches (0, 0) along the curve y = x − x3. The
limit is

lim
x→0

f
(
x, x− x3) = lim

x→0

x2

x− (x− x3) = lim
x→0

1
x

which does not exist. Indeed as x approaches 0 through positive numbers, 1
x ap-

proaches +∞, and as x approaches 0 through negative numbers, 1
x approaches

−∞.
So how is this possible? The answer is that fx(0, 0) only involves values of

f(x, y) with y = 0. As f(x, 0) = x, for all values of x, we have that f(x, 0)
is a continuous, and indeed a differentiable, function. Similarly, fy(0, 0) only
involves values of f(x, y) with x = 0. As f(0, y) = 0, for all values of y, we
have that f(0, y) is a continuous, and indeed a differentiable, function. On the
other hand, the bad behaviour of f(x, y) for (x, y) near (0, 0) only happens for
x and y both nonzero. �

Our next example uses implicit differentiation.

Example 2.2.10 The equation

z5 + y2ez + e2x = 0

implicitly determines z as a function of x and y. That is, the function z(x, y)
obeys

z(x, y)5 + y2ez(x,y) + e2x = 0

For example, when x = y = 0, the equation reduces to

z(0, 0)5 = −1

which forces3 z(0, 0) = −1. Let’s find the partial derivative ∂z
∂x (0, 0).

We are not going to be able to explicitly solve the equation for z(x, y). All
we know is that

z(x, y)5 + y2ez(x,y) + e2x = 0

for all x and y. We can turn this into an equation for ∂z∂x (0, 0) by differentiating4

the whole equation with respect to x, giving

5z(x, y)4 ∂z

∂x
(x, y) + y2ez(x,y) ∂z

∂x
(x, y) + 2e2x = 0

and then setting x = y = 0, giving

5z(0, 0)4 ∂z

∂x
(0, 0) + 2 = 0

As we already know that z(0, 0) = −1,

∂z

∂x
(0, 0) = − 2

5z(0, 0)4 = −2
5

�
Next we have a partial derivative disguised as a limit.

3The only real number z which obeys z5 = −1 is z = −1. However there are four other
complex numbers which also obey z5 = −1.

4You should have already seen this technique, called implicit differentiation, in your first
Calculus course. It is covered in Section 2.11 in the CLP-1 text.
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Example 2.2.11 In this example we are going to evaluate the limit

lim
z→0

(x+ y + z)3 − (x+ y)3

(x+ y)z

The critical observation is that, in taking the limit z → 0, x and y are fixed.
They do not change as z is getting smaller and smaller. Furthermore this limit
is exactly of the form of the limits in the Definition 2.2.1 of partial derivative,
disguised by some obfuscating changes of notation.

Set
f(x, y, z) = (x+ y + z)3

(x+ y)
Then

lim
z→0

(x+ y + z)3 − (x+ y)3

(x+ y)z = lim
z→0

f(x, y, z)− f(x, y, 0)
z

= lim
h→0

f(x, y, 0 + h)− f(x, y, 0)
h

= ∂f

∂z
(x, y, 0)

=
[
∂

∂z

(x+ y + z)3

x+ y

]
z=0

Recalling that ∂
∂z treats x and y as constants, we are evaluating the derivative

of a function of the form (const+z)3

const . So

lim
z→0

(x+ y + z)3 − (x+ y)3

(x+ y)z = 3(x+ y + z)2

x+ y

∣∣∣∣
z=0

= 3(x+ y)

�
The next example highlights a potentially dangerous difference between

ordinary and partial derivatives.

Example 2.2.12 In this example we are going to see that, in contrast to the
ordinary derivative case, ∂r∂x is not, in general, the same as

(
∂x
∂r

)−1.
Recall that Cartesian and polar coordinates5 (for (x, y) 6= (0, 0) and r > 0)

are related by

x = r cos θ
y = r sin θ

r =
√
x2 + y2

tan θ = y

x

r

px, yq

x

y

θ

We will use the functions

x(r, θ) = r cos θ and r(x, y) =
√
x2 + y2

Fix any point (x0, y0) 6= (0, 0) and let (r0, θ0), 0 ≤ θ0 < 2π, be the correspond-
ing polar coordinates. Then

∂x

∂r
(r, θ) = cos θ ∂r

∂x
(x, y) = x√

x2 + y2
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so that

∂x

∂r
(r0, θ0) =

(
∂r

∂x
(x0, y0)

)−1
⇐⇒ cos θ0 =

(
x0√
x2

0 + y2
0

)−1

= (cos θ0)−1

⇐⇒ cos2 θ0 = 1
⇐⇒ θ0 = 0, π

We can also see pictorially why this happens. By definition, the partial
derivatives

∂x

∂r
(r0, θ0) = lim

dr→0

x(r0 + dr, θ0)− x(r0, θ0)
dr

∂r

∂x
(x0, y0) = lim

dx→0

r(x0 + dx, y0)− r(x0, y0)
dx

Here we have just renamed the h of Definition 2.2.1 to dr and to dx in the two
definitions.

In computing ∂x
∂r (r0, θ0), θ0 is held fixed, r is changed by a small amount

dr and the resulting dx = x(r0 + dr, θ0)− x(r0, θ0) is computed. In the figure
on the left below, dr is the length of the orange line segment and dx is the
length of the blue line segment.

dr

θ0

dx

px0,y0q

dr

dx
px0,y0q

On the other hand, in computing ∂r
∂x , y is held fixed, x is changed by a

small amount dx and the resulting dr = r(x0 + dx, y0)− r(x0, y0) is computed.
In the figure on the right above, dx is the length of the pink line segment and
dr is the length of the orange line segment.

Here are the two figures combined together. We have arranged that the
same dr is used in both computations. In order for the dr’s to be the same in
both computations, the two dx’s have to be different (unless θ0 = 0, π). So, in
general, ∂x∂r (r0, θ0) 6=

(
∂r
∂x (x0, y0)

)−1.

dr

θ0

dx

dx
px0,y0q

�
5If you are not familiar with polar coordinates, don’t worry about it. There will be an

introduction to them in §3.2.1.
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Example 2.2.13 Optional — Example 2.2.12, continued. The inverse
function theorem, for functions of one variable, says that, if y(x) and x(y)
are inverse functions, meaning that y

(
x(y)

)
= y and x

(
y(x)

)
= x, and are

differentiable with dy
dx 6= 0, then

dx
dy (y) = 1

dy
dx
(
x(y)

)
To see this, just apply d

dy to both sides of y
(
x(y)

)
= y to get dy

dx
(
x(y)

) dx
dy (y) =

1, by the chain rule (see Theorem 2.9.3 in the CLP-1 text). In the CLP-1 text,
we used this to compute the derivatives of the logarithm (see Theorem 2.10.1
in the CLP-1 text) and of the inverse trig functions (see Theorem 2.12.7 in the
CLP-1 text).

We have just seen, in Example 2.2.12, that we can’t be too naive in extend-
ing the single variable inverse function theorem to functions of two (or more)
variables. On the other hand, there is such an extension, which we will now
illustrate, using Cartesian and polar coordinates. For simplicity, we’ll restrict
our attention to x > 0, y > 0, or equivalently, r > 0, 0 < θ < π

2 . The functions
which convert between Cartesian and polar coordinates are

x(r, θ) = r cos θ r(x, y) =
√
x2 + y2

y(r, θ) = r sin θ θ(x, y) = arctan
(y
x

) r

px, yq

x

y

θ

The two functions on the left convert from polar to Cartesian coordinates
and the two functions on the right convert from Cartesian to polar coordinates.
The inverse function theorem (for functions of two variables) says that,

• if you form the first order partial derivatives of the left hand functions
into the matrix [

∂x
∂r (r, θ) ∂x

∂θ (r, θ)
∂y
∂r (r, θ) ∂y

∂θ (r, θ)

]
=
[
cos θ −r sin θ
sin θ r cos θ

]
• and you form the first order partial derivatives of the right hand functions

into the matrix[
∂r
∂x (x, y) ∂r

∂y (x, y)
∂θ
∂x (x, y) ∂θ

∂y (x, y)

]
=

 x√
x2+y2

y√
x2+y2

− y

x2
1+( yx )2

1
x

1+( yx )2

 =
[

x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

]

• and if you evaluate the second matrix at x = x(r, θ), y = y(r, θ),[
∂r
∂x

(
x(r, θ), y(r, θ)

)
∂r
∂y

(
x(r, θ), y(r, θ)

)
∂θ
∂x

(
x(r, θ), y(r, θ)

)
∂θ
∂y

(
x(r, θ), y(r, θ)

)] =
[

cos θ sin θ
− sin θ

r
cos θ
r

]

• and if you multiply6 the two matrices together[
∂r
∂x

(
x(r, θ), y(r, θ)

)
∂r
∂y

(
x(r, θ), y(r, θ)

)
∂θ
∂x

(
x(r, θ), y(r, θ)

)
∂θ
∂y

(
x(r, θ), y(r, θ)

)] [∂x∂r (r, θ) ∂x
∂θ (r, θ)

∂y
∂r (r, θ) ∂y

∂θ (r, θ)

]
=
[

cos θ sin θ
− sin θ

r
cos θ
r

] [
cos θ −r sin θ
sin θ r cos θ

]
=
[

(cos θ)(cos θ) + (sin θ)(sin θ) (cos θ)(−r sin θ) + (sin θ)(r cos θ)
(− sin θ

r )(cos θ) + ( cos θ
r )(sin θ) (− sin θ

r )(−r sin θ) + ( cos θ
r )(r cos θ)

]
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• then the result is the identity matrix[
1 0
0 1

]
and indeed it is!

This two variable version of the inverse function theorem can be derived by
applying the derivatives ∂

∂r and ∂
∂θ to the equations

r
(
x(r, θ), y(r, θ)

)
= r

θ
(
x(r, θ), y(r, θ)

)
= θ

and using the two variable version of the chain rule, which we will see in §2.4.
�

2.2.2 Exercises

Exercises — Stage 1
1. Let f(x, y) = ex cos y. The following table gives some values of f(x, y).

x = 0 x = 0.01 x = 0.1
y = −0.1 0.99500 1.00500 1.09965
y = −0.01 0.99995 1.01000 1.10512
y = 0 1.0 1.01005 1.10517

(a) Find two different approximate values for ∂f∂x (0, 0) using the data
in the above table.

(b) Find two different approximate values for ∂f∂y (0, 0) using the data
in the above table.

(c) Evaluate ∂f
∂x (0, 0) and ∂f

∂y (0, 0) exactly.

2. You are traversing an undulating landscape. Take the z-axis to be
straight up towards the sky, the positive x-axis to be due south,
and the positive y-axis to be due east. Then the landscape near
you is described by the equation z = f(x, y), with you at the point
(0, 0, f(0, 0)). The function f(x, y) is differentiable.

Suppose fy(0, 0) < 0. Is it possible that you are at a summit?
Explain.

3. ∗. Let

f(x, y) =
{

x2y
x2+y2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

Compute, directly from the definitions,

a ∂f

∂x
(0, 0)

b ∂f

∂y
(0, 0)

c d
dtf(t, t)

∣∣∣
t=0

6Matrix multiplication is usually covered in courses on linear algebra, which you may or
may not have taken. That’s why this example is optional.
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Exercises — Stage 2
4. Find all first partial derivatives of the following functions and evaluate

them at the given point.
a f(x, y, z) = x3y4z5 (0,−1,−1)

b w(x, y, z) = ln (1 + exyz) (2, 0,−1)

c f(x, y) = 1√
x2 + y2

(−3, 4)

5. Show that the function z(x, y) = x+y
x−y obeys

x
∂z

∂x
(x, y) + y

∂z

∂y
(x, y) = 0

6. ∗. A surface z(x, y) is defined by zy − y + x = ln(xyz).
a Compute ∂z

∂x ,
∂z
∂y in terms of x, y, z.

b Evaluate ∂z
∂x and ∂z

∂y at (x, y, z) = (−1,−2, 1/2).

7. ∗. Find ∂U
∂T and ∂T

∂V at (1, 1, 2, 4) if (T,U, V,W ) are related by

(TU − V )2 ln(W − UV ) = ln 2
8. ∗. Suppose that u = x2 + yz, x = ρr cos(θ), y = ρr sin(θ) and z = ρr.

Find ∂u
∂r at the point (ρ0, r0, θ0) = (2, 3, π/2).

9. Use the definition of the derivative to evaluate fx(0, 0) and fy(0, 0)
for

f(x, y) =
{
x2−2y2

x−y if x 6= y

0 if x = y

Exercises — Stage 3
10. Let f be any differentiable function of one variable. Define z(x, y) =

f(x2 + y2). Is the equation

y
∂z

∂x
(x, y)− x∂z

∂y
(x, y) = 0

necessarily satisfied?
11. Define the function

f(x, y) =
{

(x+2y)2

x+y if x+ y 6= 0
0 if x+ y = 0

a Evaluate, if possible, ∂f∂x (0, 0) and ∂f
∂y (0, 0).

b Is f(x, y) continuous at (0, 0)?
12. Consider the cylinder whose base is the radius-1 circle in the xy-plane

centred at (0, 0), and which slopes parallel to the line in the yz-plane
given by z = y.
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When you stand at the point (0,−1, 0), what is the slope of the
surface if you look in the positive y direction? The positive x direc-
tion?

2.3 Higher Order Derivatives
You have already observed, in your first Calculus course, that if f(x) is a
function of x, then its derivative, df

dx (x), is also a function of x, and can be
differentiated to give the second order derivative d2f

dx2 (x), which can in turn be
differentiated yet again to give the third order derivative, f (3)(x), and so on.

We can do the same for functions of more than one variable. If f(x, y)
is a function of x and y, then both of its partial derivatives, ∂f

∂x (x, y) and
∂f
∂y (x, y) are also functions of x and y. They can both be differentiated with
respect to x and they can both be differentiated with respect to y. So there
are four possible second order derivatives. Here they are, together with various
alternate notations.

∂

∂x

(
∂f

∂x

)
(x, y) = ∂2f

∂x2 (x, y) = fxx(x, y)

∂

∂y

(
∂f

∂x

)
(x, y) = ∂2 f

∂y∂x
(x, y)= fxy(x, y)

∂

∂x

(
∂f

∂y

)
(x, y) = ∂2 f

∂x∂y
(x, y)= fyx(x, y)

∂

∂y

(
∂f

∂y

)
(x, y) = ∂2f

∂y2 (x, y) = fyy(x, y)

In ∂2 f
∂y ∂x = ∂2

∂y ∂xf , the derivative closest to f , in this case ∂
∂x , is applied first.

In fxy, the derivative with respect to the variable closest to f , in this case
x, is applied first.

Example 2.3.1 Let f(x, y) = emy cos(nx). Then

fx = −nemy sin(nx) fy = memy cos(nx)
fxx = −n2emy cos(nx) fyx = −mnemy sin(nx)
fxy = −mnemy sin(nx) fyy = m2emy cos(nx)

�

Example 2.3.2 Let f(x, y) = eαx+βy. Then

fx = αeαx+βy fy = βeαx+βy

fxx = α2eαx+βy fyx = βαeαx+βy

fxy = αβeαx+βy fyy = β2eαx+βy
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More generally, for any integers m,n ≥ 0,

∂m+nf

∂xm ∂yn
= αmβneαx+βy

�

Example 2.3.3 If f(x1, x2, x3, x4) = x4
1 x

3
2 x

2
3 x4, then

∂4 f

∂x1 ∂x2 ∂x3 ∂x4
= ∂3

∂x1 ∂x2 ∂x3

(
x4

1 x
3
2 x

2
3
)

= ∂2

∂x1 ∂x2

(
2 x4

1 x
3
2 x3

)
= ∂

∂x1

(
6 x4

1 x
2
2 x3

)
= 24 x3

1 x
2
2 x3

and

∂4 f

∂x4 ∂x3 ∂x2 ∂x1
= ∂3

∂x4 ∂x3 ∂x2

(
4x3

1 x
3
2 x

2
3 x4

)
= ∂2

∂x4 ∂x3

(
12 x3

1 x
2
2 x

2
3 x4

)
= ∂

∂x4

(
24 x3

1 x
2
2 x3 x4

)
= 24 x3

1 x
2
2 x3

�
Notice that in Example 2.3.1,

fxy = fyx = −mnemy sin(nx)

and in Example 2.3.2
fxy = fyx = αβeαx+βy

and in Example 2.3.3

∂4 f

∂x1 ∂x2 ∂x3 ∂x4
= ∂4 f

∂x4 ∂x3 ∂x2 ∂x1
= 24 x3

1 x
2
2 x3

In all of these examples, it didn’t matter what order we took the derivatives
in. The following theorem1 shows that this was no accident.

Theorem 2.3.4 Clairaut’s Theorem or Schwarz’s Theorem. If the
partial derivatives ∂2f

∂x∂y and ∂2f
∂y∂x exist and are continuous at (x0, y0), then

∂2f

∂x∂y
(x0, y0) = ∂2f

∂y∂x
(x0, y0)

1The history of this important theorem is pretty convoluted. See “A note on the history
of mixed partial derivatives” by Thomas James Higgins which was published in Scripta
Mathematica 7 (1940), 59-62. The Theorem is named for Alexis Clairaut (1713--1765), a
French mathematician, astronomer, and geophysicist, and Hermann Schwarz (1843--1921),
a German mathematician.
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2.3.1 Optional — The Proof of Theorem 2.3.4
2.3.1.1 Outline

Here is an outline of the proof of Theorem 2.3.4. The (numbered) details are
in the subsection below. Fix real numbers x0 and y0 and define

F (h, k) = 1
hk

[
f(x0 + h, y0 + k)− f(x0, y0 + k)− f(x0 + h, y0) + f(x0, y0)

]
We define F (h, k) in this way because both partial derivatives ∂2f

∂x∂y (x0, y0) and
∂2f
∂y∂x (x0, y0) are limits of F (h, k) as h, k → 0. Precisely, we show in item (1)
in the details below that

∂

∂y

∂f

∂x
(x0, y0) = lim

k→0
lim
h→0

F (h, k)

∂

∂x

∂f

∂y
(x0, y0) = lim

h→0
lim
k→0

F (h, k)

Note that the two right hand sides here are identical except for the order in
which the limits are taken.

Now, by the mean value theorem (four times),

F (h, k) (2)= 1
h

[
∂f

∂y
(x0 + h, y0 + θ1k)− ∂f

∂y
(x0, y0 + θ1k)

]
(3)= ∂

∂x

∂f

∂y
(x0 + θ2h, y0 + θ1k)

F (h, k) (4)= 1
k

[
∂f

∂x
(x0 + θ3h, y0 + k)− ∂f

∂x
(x0 + θ3h, y0)

]
(5)= ∂

∂y

∂f

∂x
(x0 + θ3h, y0 + θ4k)

for some numbers 0 < θ1, θ2, θ3, θ4 < 1. All of the numbers θ1, θ2, θ3, θ4 depend
on x0, y0, h, k. Hence

∂

∂x

∂f

∂y
(x0 + θ2h, y0 + θ1k) = ∂

∂y

∂f

∂x
(x0 + θ3h, y0 + θ4k)

for all h and k. Taking the limit (h, k) → (0, 0) and using the assumed conti-
nuity of both partial derivatives at (x0, y0) gives

lim
(h,k)→(0,0)

F (h, k) = ∂

∂x

∂f

∂y
(x0, y0) = ∂

∂y

∂f

∂x
(x0, y0)

as desired. To complete the proof we just have to justify the details (1), (2),
(3), (4) and (5).

2.3.1.2 The Details

(1) By definition,

∂

∂y

∂f

∂x
(x0, y0) = lim

k→0

1
k

[
∂f

∂x
(x0, y0 + k)− ∂f

∂x
(x0, y0)

]
= lim
k→0

1
k

[
lim
h→0

f(x0 + h, y0 + k)− f(x0, y0 + k)
h

− lim
h→0

f(x0 + h, y0)− f(x0, y0)
h

]
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= lim
k→0

lim
h→0

f(x0 + h, y0 + k)− f(x0, y0 + k)− f(x0 + h, y0) + f(x0, y0)
hk

= lim
k→0

lim
h→0

F (h, k)

Similarly,

∂

∂x

∂f

∂y
(x0, y0) = lim

h→0

1
h

[
∂f

∂y
(x0 + h, y0)− ∂f

∂y
(x0, y0)

]
= lim
h→0

1
h

[
lim
k→0

f(x0 + h, y0 + k)− f(x0 + h, y0)
k

− lim
k→0

f(x0, y0 + k)− f(x0, y0)
k

]
= lim
h→0

lim
k→0

f(x0 + h, y0 + k)− f(x0 + h, y0)− f(x0, y0 + k) + f(x0, y0)
hk

= lim
h→0

lim
k→0

F (h, k)

(2) The mean value theorem (Theorem 2.13.4 in the CLP-1 text) says that,
for any differentiable function ϕ(x),

• the slope of the line joining the points
(
x0, ϕ(x0)

)
and

(
x0+k, ϕ(x0+

k)
)
on the graph of ϕ

is the same as

• the slope of the tangent to the graph at some point between x0 and
x0 + k.

That is, there is some 0 < θ1 < 1 such that

ϕ(x0 + k)− ϕ(x0)
k

= dϕ

dx
(x0 + θ1k)

x

y

y “ ϕpxq

x0 x0`kx0`θ1k

Applying this with x replaced by y and ϕ replaced by G(y) = f(x0 +
h, y)− f(x0, y) gives

G(y0 + k)−G(y0)
k

= dG
dy (y0 + θ1k) for some 0 < θ1 < 1

= ∂f

∂y
(x0 + h, y0 + θ1k)− ∂f

∂y
(x0, y0 + θ1k)

Hence, for some 0 < θ1 < 1,

F (h, k) = 1
h

[
G(y0 + k)−G(y0)

k

]
= 1
h

[
∂f

∂y
(x0 + h, y0 + θ1k)− ∂f

∂y
(x0, y0 + θ1k)

]
(3) Define H(x) = ∂f

∂y (x, y0 + θ1k). By the mean value theorem,

F (h, k) = 1
h

[H(x0 + h)−H(x0)]
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= dH
dx (x0 + θ2h) for some 0 < θ2 < 1

= ∂

∂x

∂f

∂y
(x0 + θ2h, y0 + θ1k)

(4) Define A(x) = f(x, y0 + k)− f(x, y0). By the mean value theorem,

F (h, k) = 1
k

[
A(x0 + h)−A(x0)

h

]
= 1

k

dA
dx (x0 + θ3h) for some 0 < θ3 < 1

= 1
k

[
∂f

∂x
(x0 + θ3h, y0 + k)− ∂f

∂x
(x0 + θ3h, y0)

]

(5) Define B(y) = ∂f
∂x (x0 + θ3h, y). By the mean value theorem

F (h, k) = 1
k

[B(y0 + k)−B(y0)]

= dB
dy (y0 + θ4k) for some 0 < θ4 < 1

= ∂

∂y

∂f

∂x
(x0 + θ3h, y0 + θ4k)

This completes the proof of Theorem 2.3.4.

2.3.2 Optional — An Example of ∂2 f
∂x∂y

(x0, y0) 6= ∂2 f
∂y∂x

(x0, y0)

In Theorem 2.3.4, we showed that ∂2f
∂x∂y (x0, y0) = ∂2f

∂y∂x (x0, y0) if the partial
derivatives ∂2f

∂x∂y and ∂2f
∂y∂x exist and are continuous at (x0, y0). Here is an

example which shows that if the partial derivatives ∂2f
∂x∂y and ∂2f

∂y∂x are not
continuous at (x0, y0), then it is possible that ∂2f

∂x∂y (x0, y0) 6= ∂2f
∂y∂x (x0, y0).

Define

f(x, y) =
{
xy x

2−y2

x2+y2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

This function is continuous everywhere. Note that f(x, 0) = 0 for all x and
f(0, y) = 0 for all y. We now compute the first order partial derivatives. For
(x, y) 6= (0, 0),

∂f

∂x
(x, y) = y

x2 − y2

x2 + y2 + xy
2x

x2 + y2 − xy
2x(x2 − y2)
(x2 + y2)2

= y
x2 − y2

x2 + y2 + xy
4xy2

(x2 + y2)2

∂f

∂y
(x, y) = x

x2 − y2

x2 + y2 − xy
2y

x2 + y2 − xy
2y(x2 − y2)
(x2 + y2)2

= x
x2 − y2

x2 + y2 − xy
4yx2

(x2 + y2)2

For (x, y) = (0, 0),

∂f

∂x
(0, 0) =

[
d

dxf(x, 0)
]
x=0

=
[

d
dx0

]
x=0

= 0
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∂f

∂y
(0, 0) =

[
d
dy f(0, y)

]
y=0

=
[

d
dy 0

]
y=0

= 0

By way of summary, the two first order partial derivatives are

fx(x, y) =
{
y x

2−y2

x2+y2 + 4x2y3

(x2+y2)2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

fy(x, y) =
{
xx

2−y2

x2+y2 − 4x3y2

(x2+y2)2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

Both ∂f
∂x (x, y) and ∂f

∂y (x, y) are continuous. Finally, we compute

∂2 f

∂x∂y
(0, 0) =

[
d

dxfy(x, 0)
]
x=0

= lim
h→0

1
h

[fy(h, 0)− fy(0, 0)]

= lim
h→0

1
h

[
h
h2 − 02

h2 + 02 − 0
]

= 1

∂2 f

∂y∂x
(0, 0) =

[
d
dy fx(0, y)

]
y=0

= lim
k→0

1
k

[fx(0, k)− fx(0, 0)]

= lim
k→0

1
k

[
k

02 − k2

02 + k2 − 0
]

= −1

2.3.3 Exercises

Exercises — Stage 1
1. Let all of the third order partial derivatives of the function f(x, y, z)

exist and be continuous. Show that

fxyz(x, y, z) = fxzy(x, y, z) = fyxz(x, y, z) = fyzx(x, y, z)
= fzxy(x, y, z) = fzyx(x, y, z)

2. Find, if possible, a function f(x, y) for which fx(x, y) = ey and
fy(x, y) = ex.

Exercises — Stage 2
3. Find the specified partial derivatives.

a f(x, y) = x2y3; fxx(x, y), fxyy(x, y), fyxy(x, y)

b f(x, y) = exy
2 ; fxx(x, y), fxy(x, y), fxxy(x, y), fxyy(x, y)

c f(u, v, w) = 1
u+ 2v + 3w , ∂3f

∂u∂v∂w
(u, v, w) , ∂3f

∂u∂v∂w
(3, 2, 1)

4. Find all second partial derivatives of f(x, y) =
√
x2 + 5y2.

5. Find the specified partial derivatives.
a f(x, y, z) = arctan

(
e
√
xy
)
; fxyz(x, y, z)

b f(x, y, z) = arctan
(
e
√
xy
)
+arctan

(
e
√
xz
)
+arctan

(
e
√
yz
)
; fxyz(x, y, z)

c f(x, y, z) = arctan
(
e
√
xyz
)
; fxx(1, 0, 0)
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6. ∗. Let f(r, θ) = rm cosmθ be a function of r and θ, where m is a
positive integer.

a Find the second order partial derivatives frr, frθ, fθθ and eval-
uate their respective values at (r, θ) = (1, 0).

b Determine the value of the real number λ so that f(r, θ) satisfies
the differential equation

frr + λ

r
fr + 1

r2 fθθ = 0

Exercises — Stage 3

7. Let α > 0 be a constant. Show that u(x, y, z, t) = 1
t3/2

e−(x2+y2+z2)/(4αt)

satisfies the heat equation

ut = α
(
uxx + uyy + uzz

)
for all t > 0

2.4 The Chain Rule
You already routinely use the one dimensional chain rule

d
dtf

(
x(t)

)
= df

dx
(
x(t)

) dx
dt (t)

in doing computations like

d
dt sin(t2) = cos(t2) 2t

In this example, f(x) = sin(x) and x(t) = t2.
We now generalize the chain rule to functions of more than one variable. For

concreteness, we concentrate on the case in which all functions are functions of
two variables. That is, we find the partial derivatives ∂F

∂s and ∂F
∂t of a function

F (s, t) that is defined as a composition

F (s, t) = f
(
x(s, t) , y(s, t)

)
We are using the name F for the new function F (s, t) as a reminder that it is
closely related to, though not the same as, the function f(x, y). The partial
derivative ∂F

∂s is the rate of change of F when s is varied with t held constant.
When s is varied, both the x-argument, x(s, t), and the y-argument, y(s, t), in
f
(
x(s, t) , y(s, t)

)
vary. Consequently, the chain rule for f

(
x(s, t) , y(s, t)

)
is a

sum of two terms — one resulting from the variation of the x-argument and
the other resulting from the variation of the y-argument.

Theorem 2.4.1 The Chain Rule. Assume that all first order partial deriva-
tives of f(x, y), x(s, t) and y(s, t) exist and are continuous. Then the same is
true for F (s, t) = f

(
x(s, t) , y(s, t)

)
and

∂F

∂s
(s, t) = ∂f

∂x

(
x(s, t) , y(s, t)

) ∂x
∂s

(s, t) + ∂f

∂y

(
x(s, t) , y(s, t)

) ∂y
∂s

(s, t)

∂F

∂t
(s, t) = ∂f

∂x

(
x(s, t) , y(s, t)

) ∂x
∂t

(s, t) + ∂f

∂y

(
x(s, t) , y(s, t)

) ∂y
∂t

(s, t)
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We will give the proof of this theorem in §2.4.4, below. It is common to
state this chain rule as

∂F

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s

∂F

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t

That is, it is common to suppress the function arguments. But you should
make sure that you understand what the arguments are before doing so.

Theorem 2.4.1 is given for the case that F is the composition of a function of
two variables, f(x, y), with two functions, x(s, t) and y(s, t), of two variables
each. There is nothing magical about the number two. There are obvious
variants for any numbers of variables. For example,

Equation 2.4.2 If F (t) = f
(
x(t), y(t), z(t)

)
, then

dF
dt (t) = ∂f

∂x

(
x(t) , y(t) , z(t)

) dx
dt (t) + ∂f

∂y

(
x(t) , y(t) , z(t)

) dy
dt (t)

+ ∂f

∂z

(
x(t) , y(t) , z(t)

) dz
dt (t)

and
Equation 2.4.3 if F (s, t) = f

(
x(s, t)

)
, then

∂F

∂t
(s, t) = df

dx
(
x(s, t)

) ∂x
∂t

(s, t)

There will be a large number of examples shortly. First, here is a memory
aid.

2.4.1 Memory Aids for the Chain Rule
We recommend strongly that you use the following procedure, without leaving
out any steps, the first couple of dozen times that you use the chain rule.

• Step 1: List explicitly all the functions involved and specify the argu-
ments of each function. Ensure that all different functions have different
names. Invent new names for some of the functions if necessary. In the
case of the chain rule in Theorem 2.4.1, the list would be

f(x, y) x(s, t) y(s, t) F (s, t) = f
(
x(s, t), y(s, t)

)
While the functions f and F are closely related, they are not the same.
One is a function of x and y while the other is a function of s and t.

• Step 2: Write down the template

∂F

∂s
= ∂f

∂s

Note that

◦ The function F appears once in the numerator on the left. The
function f , from which F is constructed by a change of variables,
appears once in the numerator on the right.

◦ The variable in the denominator on the left appears once in the
denominator on the right.
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• Step 3: Fill in the blanks with every variable that makes sense. In
particular, since f is a function of x and y, it may only be differentiated
with respect to x and y. So we add together two copies of our template
— one for x and one for y:

∂F

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s

Note that x and y are functions of s so that the derivatives ∂x
∂s and ∂y

∂s

make sense. The first term, ∂f
∂x

∂x
∂s , arises from the variation of x with

respect to s and the second term, ∂f
∂y

∂y
∂s , arises from the variation of y

with respect to s.

• Step 4: Put in the functional dependence explicitly. Fortunately, there
is only one functional dependence that makes sense. The left hand side is
a function of s and t. Hence the right hand side must also be a function
of s and t. As f is a function of x and y, this is achieved by evaluating
f at x = x(s, t) and y = y(s, t).

∂F

∂s
(s, t) = ∂f

∂x

(
x(s, t), y(s, t)

)∂x
∂s

(s, t) + ∂f

∂y

(
x(s, t), y(s, t)

)∂y
∂s

(s, t)

If you fail to put in the arguments, or at least if you fail to remember what
the arguments are, you may forget that ∂f

∂x and ∂f
∂y depend on s and t.

Then, if you have to compute a second derivative of F , you will probably
fail to differentiate the factors ∂f

∂x

(
x(s, t), y(s, t)

)
and ∂f

∂y

(
x(s, t), y(s, t)

)
.

To help remember the formulae of Theorem 2.4.1, it is sometimes also useful
to pretend that our variables are physical quantities with f, F having units of
grams, x, y having units of meters and s, t having units of seconds. Note that

• the left hand side, ∂F∂s , has units grams per second.

• Each term on the right hand side contains the partial derivative of f with
respect to a different independent variable. That independent variable
appears once in the denominator and once in the numerator, so that its
units (in this case meters) cancel out. Thus both of the terms ∂f

∂x
∂x
∂s and

∂f
∂y

∂y
∂s on the right hand side also have the units grams per second.

• Hence both sides of the equation have the same units.

Here is a pictorial procedure that uses a tree diagram to help remember
the chain rule ∂

∂sf
(
x(s, t), y(s, t)

)
= ∂f

∂x
∂x
∂s + ∂f

∂y
∂y
∂s . As in the figure on the left

below,

• write, on the top row, “f”.

• Write, on the middle row, each of the variables that the function f(x, y)
depends on, namely“x” and “y”.

• Write, on the bottom row,

◦ below x, each of the variables that the function x(s, t) depends on,
namely “s” and “t”, and

◦ below y, each of the variables that the function y(s, t) depends on,
namely “s” and “t”.

• Draw a line joining each function with each of the variables that it de-
pends on.
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• Then, as in the figure on the right below, write beside each line, the
partial derivative of the function at the top of the line with respect to
the variable at the bottom of the line.

f

x y

s t s t

f

x y

s t s t

Bf
Bx

Bf
By

Bx
Bt

By
Bt

Bx
Bs

By
Bs

• Finally

◦ observe, from the figure below, that there are two paths from f , on
the top, to s, on the bottom. One path goes from f at the top,
through x in the middle to s at the bottom. The other path goes
from f at the top, through y in the middle to s at the bottom.

◦ For each such path, multiply together the partial derivatives beside
the lines of the path. In this example, the two products are ∂f

∂x
∂x
∂s ,

for the first path, and ∂f
∂y

∂y
∂s , for the second path.

◦ Then add together those products, giving, in this example, ∂f∂x
∂x
∂s +

∂f
∂y

∂y
∂s .

◦ Put in the arguments, as in Step 4, above.

• That’s it. We have

∂

∂s
f
(
x(s, t), y(s, t)

)
= ∂f

∂x

(
x(s, t), y(s, t)

)∂x
∂s

(s, t)

+ ∂f

∂y

(
x(s, t), y(s, t)

)∂y
∂s

(s, t)

f

x y

s t s t

Bf
Bx

Bf
By

Bx
Bs

By
Bs

Bx
Bt

By
Bt

Example 2.4.4 The right hand side of the chain rule

d
dtf

(
x(t) , y(t) , z(t)

)
= ∂f

∂x

(
x(t) , y(t) , z(t)

) dx
dt (t) + ∂f

∂y

(
x(t) , y(t) , z(t)

) dy
dt (t)

+ ∂f

∂z

(
x(t) , y(t) , z(t)

) dz
dt (t)

of Equation 2.4.2, without arguments, is ∂f
∂x

dx
dt + ∂f

∂y
dy
dt + ∂f

∂z
dz
dt . The corre-

sponding tree diagram is
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f

x y z

t t t

Bf
Bx Bf

By

Bf
Bz

dx
dt

dy
dt

dz
dt

Because x(t), y(t) and z(t) are each functions of just one variable, the
derivatives beside the lower lines in the tree are ordinary, rather than partial,
derivatives. �

2.4.2 Chain Rule Examples
Let’s do some routine examples first and work our way to some trickier ones.

Example 2.4.5 ∂
∂sf
(
x(s, t), y(s, t)

)
. In this example we find ∂

∂sf
(
x(s, t), y(s, t)

)
for

f(x, y) = exy x(s, t) = s y(s, t) = cos t

Define F (s, t) = f
(
x(s, t) , y(s, t)

)
. The appropriate chain rule for this example

is the upper equation of Theorem 2.4.1.

∂F

∂s
(s, t) = ∂f

∂x

(
x(s, t) , y(s, t)

) ∂x
∂s

(s, t) + ∂f

∂y

(
x(s, t) , y(s, t)

) ∂y
∂s

(s, t)

For the given functions

f(x, y) = exy

∂f

∂x
(x, y) = yexy

∂f

∂x

(
x(s, t), y(s, t)

)
= y(s, t)ex(s,t) y(s,t) = cos t es cos t

∂f

∂y
(x, y) = xexy

∂f

∂y

(
x(s, t), y(s, t)

)
= x(s, t)ex(s,t) y(s,t) = s es cos t

∂x

∂s
= 1 ∂y

∂s
= 0

so that

∂F

∂s
(s, t) =

∂f
∂x︷ ︸︸ ︷{

cos t es cos t} ∂x
∂s︷︸︸︷
(1) +

∂f
∂y︷ ︸︸ ︷{

s es cos t} ∂y
∂s︷︸︸︷
(0) = cos t es cos t

�

Example 2.4.6 d
dtf
(
x(t), y(t)

)
. In this example we find d

dtf
(
x(t), y(t)

)
for

f(x, y) = x2 − y2 x(t) = cos t y(t) = sin t

Define F (t) = f
(
x(t), y(t)

)
. Since F (t) is a function of one variable its

derivative is denoted dF
dt rather than ∂F

∂t . The appropriate chain rule for this
example (see 2.4.2) is

dF
dt (t) = ∂f

∂x

(
x(t), y(t)

)dx
dt (t) + ∂f

∂y

(
x(t), y(t)

)dy
dt (t)
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For the given functions

f(x, y) = x2 − y2

∂f

∂x
(x, y) = 2x ∂f

∂x

(
x(t), y(t)

)
= 2x(t) = 2 cos t

∂f

∂y
(x, y) = −2y ∂f

∂y

(
x(t), y(t)

)
= −2y(t) = −2 sin t

dx
dt = − sin t dy

dt = cos t

so that

dF
dt (t) = (2 cos t)(− sin t) + (−2 sin t)(cos t) = −4 sin t cos t

Of course, in this example we can compute F (t) explicitly

F (t) = f
(
x(t), y(t)

)
= x(t)2 − y(t)2 = cos2 t− sin2 t

and then differentiate

F ′(t) = 2(cos t)(− sin t)− 2(sin t)(cos t) = −4 sin t cos t

�

Example 2.4.7 ∂
∂tf(x+ct). Define u(x, t) = x+ct and w(x, t) = f(x+ct) =

f
(
u(x, t)

)
. Then

∂

∂t
f(x+ ct) = ∂w

∂t
(x, t) = df

du
(
u(x, t)

)∂u
∂t

(x, t) = c f ′(x+ ct)

�

Example 2.4.8 ∂2

∂t2 f(x + ct). Define w(x, t) = f(x + ct) and W (x, t) =
∂w
∂t (x, t) = cf ′(x+ ct) = F

(
u(x, t)

)
where F (u) = cf ′(u) and u(x, t) = x+ ct.

Then

∂2

∂t2
f(x+ ct) = ∂W

∂t
(x, t) = dF

du
(
u(x, t)

)∂u
∂t

(x, t) = c f ′′(x+ ct) c

= c2 f ′′(x+ ct)

�

Example 2.4.9 Equation of state. Suppose that we are told that F (P, V, T ) =
0 and that we are to find ∂P

∂T .
Before we can find ∂P

∂T , we first have to decide what it means. This happens
regularly in applications. In fact, this particular problem comes from thermo-
dynamics. The variables P, V, T are the pressure, volume and temperature,
respectively, of some gas. These three variables are not independent. They are
related by an equation of state, here denoted F (P, V, T ) = 0. Given values for
any two of P, V, T , the third can be found by solving F (P, V, T ) = 0. We are
being asked to find ∂P

∂T . This implicitly instructs us to treat P , in this problem,
as the dependent variable. So a careful wording of this problem (which you
will never encounter in the “real world”) would be the following. The function
P (V, T ) is defined by F

(
P (V, T ), V, T ) = 0. Find

(
∂P
∂T

)
V
. That is, find the rate

of change of pressure as the temperature is varied, while holding the volume
fixed.

Since we are not told explicitly what F is, we cannot solve explicitly for
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P (V, T ). So, instead we differentiate both sides of

F
(
P (V, T ), V, T

)
= 0

with respect to T , while holding V fixed. Think of the left hand side, F
(
P (V, T ), V, T

)
,

as being F
(
P (V, T ), Q(V, T ), R(V, T )

)
with Q(V, T ) = V and R(V, T ) = T . By

the chain rule,

∂

∂T
F
(
P (V, T ), Q(V, T ), R(V, T )

)
= F1

∂P

∂T
+ F2

∂Q

∂T
+ F3

∂R

∂T
= 0

with Fj referring to the partial derivative of F with respect to its jth argument.
Experienced chain rule users never introduce Q and R. Instead, they just write

∂F

∂P

∂P

∂T
+ ∂F

∂V

∂V

∂T
+ ∂F

∂T

∂T

∂T
= 0

Recalling that V and T are the independent variables and that, in computing
∂
∂T , V is to be treated as a constant,

∂V

∂T
= 0 ∂T

∂T
= 1

Now putting in the functional dependence

∂F

∂P

(
P (V, T ), V, T

)∂P
∂T

(V, T ) + ∂F

∂T

(
P (V, T ), V, T

)
= 0

and solving
∂P

∂T
(V, T ) = −

∂F
∂T

(
P (V, T ), V, T

)
∂F
∂P

(
P (V, T ), V, T

)
�

Example 2.4.10 Suppose that f(x, y) = 0 and that we are to find d2y
dx2 .

Once again, x and y are not independent variables. Given a value for either
x or y, the other is determined by solving f(x, y) = 0. Since we are asked to
find d2y

dx2 , it is y that is to be viewed as a function of x, rather than the other
way around. So f(x, y) = 0 really means that, in this problem, f

(
x, y(x)

)
= 0

for all x. Differentiating both sides of this equation with respect to x,

f
(
x, y(x)

)
= 0 for all x

=⇒ d
dxf

(
x, y(x)

)
= 0

Note that d
dxf

(
x, y(x)

)
is not the same as fx

(
x, y(x)

)
. The former is, by

definition, the rate of change with respect to x of g(x) = f
(
x, y(x)

)
. Precisely,

dg
dx = lim

∆x→0

g(x+ ∆x)− g(x)
∆x

= lim
∆x→0

f
(
x+ ∆x , y(x+ ∆x)

)
− f

(
x , y(x)

)
∆x (∗)

On the other hand, by definition,

fx(x, y) = lim
∆x→0

f(x+ ∆x, y)− f(x, y)
∆x

=⇒ fx
(
x, y(x)

)
= lim

∆x→0

f
(
x+ ∆x , y(x)

)
− f

(
x , y(x)

)
∆x (∗∗)
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The right hand sides of (∗) and (∗∗) are not the same. In dg
dx , as ∆x varies

the value of y that is substituted into the first f(· · · ) on the right hand side,
namely y(x+ ∆x), changes as ∆x changes. That is, we are computing the rate
of change of f along the (curved) path y = y(x). In (∗∗), the corresponding
value of y is y(x) and is independent of ∆x. That is, we are computing the rate
of change of f along a horizontal straight line. As a concrete example, suppose
that f(x, y) = x+y. Then, 0 = f

(
x , y(x)

)
= x+y(x) gives y(x) = −x so that

d
dxf

(
x, y(x)

)
= d

dxf(x,−x) = d
dx [x+ (−x)] = d

dx0 = 0

But f(x, y) = x+ y implies that fx(x, y) = 1 for all x and y so that

fx(x, y(x)) = fx(x, y)
∣∣∣
y=−x

= 1
∣∣∣
y=−x

= 1

Now back to

f
(
x, y(x)

)
= 0 for all x

=⇒ d
dxf

(
x, y(x)

)
= 0

=⇒ fx
(
x, y(x)

)dx
dx + fy

(
x, y(x)

)dy
dx (x) = 0 by the chain rule

=⇒ dy
dx (x) = −

fx
(
x, y(x)

)
fy
(
x, y(x)

)
=⇒ d2y

dx2 (x) = − d
dx

[
fx
(
x, y(x)

)
fy
(
x, y(x)

)]

= −
fy
(
x, y(x)

) d
dx [fx

(
x, y(x)

)
]− fx

(
x, y(x)

) d
dx [fy

(
x, y(x)

)
]

fy
(
x, y(x)

)2 (†)

by the quotient rule. Now it suffices to substitute in d
dx
[
fx
(
x, y(x)

)]
and

d
dx
[
fy
(
x, y(x)

)]
. For the former apply the chain rule to h(x) = u

(
x, y(x)

)
with

u(x, y) = fx
(
x, y
)
.

d
dx
[
fx
(
x, y(x)

)]
= dh

dx (x)

= ux
(
x, y(x)

)dx
dx + uy

(
x, y(x)

)dy
dx (x)

= fxx
(
x, y(x)

)dx
dx + fxy

(
x, y(x)

)dy
dx (x)

= fxx
(
x, y(x)

)
− fxy

(
x, y(x)

) [fx(x, y(x)
)

fy
(
x, y(x)

)]
Substituting this and

d
dx
[
fy
(
x, y(x)

)]
= fyx

(
x, y(x)

)dx
dx + fyy

(
x, y(x)

)dy
dx (x)

= fyx
(
x, y(x)

)
− fyy

(
x, y(x)

) [fx(x, y(x)
)

fy
(
x, y(x)

)]
into the right hand side of (†) gives the final answer.

d2y

dx2 (x) = −
fyfxx − fyfxy fxfy − fxfyx + fxfyy

fx
fy

f2
y
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= −
f2
y fxx − 2fxfyfxy + f2

xfyy

f3
y

with all of fx, fy, fxx, fxy, fyy having arguments
(
x , y(x)

)
. �

We now move on to the proof of Theorem 2.4.1. To give you an idea of
how the proof will go, we first review the proof of the familiar one dimensional
chain rule.

2.4.3 Review of the Proof of d
dtf

(
x(t)

)
= df

dx

(
x(t)

)
dx
dt (t)

As a warm up, let’s review the proof of the one dimensional chain rule

d
dtf

(
x(t)

)
= df

dx
(
x(t)

) dx
dt (t)

assuming that dx
dt exists and that df

dx is continuous. We wish to find the deriva-
tive of F (t) = f

(
x(t)

)
. By definition

F ′(t) = lim
h→0

F (t+ h)− F (t)
h

= lim
h→0

f
(
x(t+ h)

)
− f

(
x(t)

)
h

Notice that the numerator is the difference of f(x) evaluated at two nearby
values of x, namely x1 = x(t + h) and x0 = x(t). The mean value theorem
is a good tool for studying the difference in the values of f(x) at two nearby
points. Recall that the mean value theorem says that, for any given x0 and
x1, there exists an (in general unknown) c between them so that

f(x1)− f(x0) = f ′(c) (x1 − x0)

For this proof, we choose x0 = x(t) and x1 = x(t + h). The the mean value
theorem tells us that there exists a ch so that

f
(
x(t+ h)

)
− f

(
x(t)

)
= f(x1)− f(x0) = f ′(ch)

[
x(t+ h)− x(t)

]
We have put the subscript h on ch to emphasise that ch, which is between
x0 = x(t) and x1 = x(t + h), may depend on h. Now since ch is trapped
between x(t) and x(t + h) and since x(t + h) → x(t) as h → 0, we have that
ch must also tend to x(t) as h→ 0. Plugging this into the definition of F ′(t),

F ′(t) = lim
h→0

f
(
x(t+ h)

)
− f

(
x(t)

)
h

= lim
h→0

f ′(ch)
[
x(t+ h)− x(t)

]
h

= lim
h→0

f ′(ch) lim
h→0

x(t+ h)− x(t)
h

= f ′
(
x(t)

)
x′(t)

as desired.

2.4.4 Proof of Theorem 2.4.1
We’ll now prove the formula for ∂

∂sf
(
x(s, t) , y(s, t)

)
that is given in Theorem

2.4.1. The proof uses the same ideas as the proof of the one variable chain
rule, that we have just reviewed.
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We wish to find the partial derivative with respect to s of F (s, t) = f
(
x(s, t) , y(s, t)

)
.

By definition

∂F

∂s
(s, t) = lim

h→0

F (s+ h, t)− F (s, t)
h

= lim
h→0

f
(
x(s+ h, t) , y(s+ h, t)

)
− f

(
x(s, t) , y(s, t)

)
h

The numerator is the difference of f(x, y) evaluated at two nearby values of
(x, y), namely (x1, y1) =

(
x(s+h, t) , y(s+h, t)

)
and (x0, y0) =

(
x(s, t) , y(s, t)

)
.

In going from (x0, y0) to (x1, y1), both the x and y-coordinates change. By
adding and subtracting we can separate the change in the x-coordinate from
the change in the y-coordinate.

f(x1, y1)− f(x0, y0) =
{
f(x1, y1)− f(x0, y1)

}
+
{
f(x0, y1)− f(x0, y0)

}
The first half,

{
f(x1, y1)− f(x0, y1)

}
, has the same y argument in both terms

and so is the difference of the function of one variable g(x) = f(x, y1) (viewing
y1 just as a constant) evaluated at the two nearby values, x0, x1, of x. Conse-
quently, we can make use of the mean value theorem as we did in §2.4.3 above.
There is a cx,h between x0 = x(s, t) and x1 = x(s+ h, t) such that

f(x1, y1)− f(x0, y1) = g(x1)− g(x0) = g′(cx,h)[x1 − x0] = ∂f

∂x
(cx,h , y1) [x1 − x0]

= ∂f

∂x

(
cx,h , y(s+ h, t)

) [
x(s+ h, t)− x(s, t)

]
We have introduced the two subscripts in cx,h to remind ourselves that it may
depend on h and that it lies between the two x-values x0 and x1.

Similarly, the second half,
{
f(x0, y1) − f(x0, y0)

}
, is the difference of the

function of one variable h(y) = f(x0, y) (viewing x0 just as a constant) evalu-
ated at the two nearby values, y0, y1, of y. So, by the mean value theorem,

f(x0, y1)− f(x0, y0) = h(y1)− h(y0) = h′(cy,h)[y1 − y0] = ∂f

∂y
(x0, cy,h) [y1 − y0]

= ∂f

∂y

(
x(s, t) , cy,h

) [
y(s+ h, t)− y(s, t)

]
for some (unknown) cy,h between y0 = y(s, t) and y1 = y(s+ h, t). Again, the
two subscripts in cy,h remind ourselves that it may depend on h and that it
lies between the two y-values y0 and y1. So, noting that, as h tends to zero,
cx,h, which is trapped between x(s, t) and x(s+h, t), must tend to x(s, t), and
cy,h, which is trapped between y(s, t) and y(s+ h, t), must tend to y(s, t),

∂F

∂s
(s, t)) = lim

h→0

f
(
x(s+ h, t) , y(s+ h, t)

)
− f

(
x(s, t) , y(s, t)

)
h

= lim
h→0

∂f
∂x

(
cx,h , y(s+ h, t)

) [
x(s+ h, t)− x(s, t)

]
h

+ lim
h→0

∂f
∂y

(
x(s, t) , cy,h

) [
y(s+ h, t)− y(s, t)

]
h

= lim
h→0

∂f

∂x

(
cx,h , y(s+ h, t)

)
lim
h→0

x(s+ h, t)− x(s, t)
h

+ lim
h→0

∂f

∂y

(
x(s, t) , cy,h

)
lim
h→0

y(s+ h, t)− y(s, t)
h

= ∂f

∂x

(
x(s, t) , y(s, t)

) ∂x
∂s

(s, t) + ∂f

∂y

(
x(s, t) , y(s, t)

) ∂y
∂s

(s, t)
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We can of course follow the same procedure to evaluate the partial derivative
with respect to t. This concludes the proof of Theorem 2.4.1.

2.4.5 Exercises

Exercises — Stage 1
1. Write out the chain rule for each of the following functions.

a ∂h
∂x for h(x, y) = f

(
x, u(x, y)

)
b dh

dx for h(x) = f
(
x, u(x), v(x)

)
c ∂h

∂x for h(x, y, z) = f
(
u(x, y, z), v(x, y), w(x)

)
2. A piece of the surface z = f(x, y) is shown below for some continuously

differentiable function f(x, y). The level curve f(x, y) = z1 is marked
with a blue line. The three points P0, P1, and P2 lie on the surface.

z

yx

z “ z1

z “ z2

x “ x1

x “ x2

z “ fpx, yq

y “ ypxq, z “ z1
P0

P1

P2

On the level curve z = z1, we can think of y as a function of x.
Let w(x) = f(x, y(x)) = z1. We approximate, at P0, fx(x, y) ≈ ∆f

∆x
and dw

dx (x) ≈ ∆w
∆x . Identify the quantities ∆f , ∆w, and ∆x from the

diagram.
3. ∗. Let w = f(x, y, t) with x and y depending on t. Suppose that at

some point (x, y) and at some time t, the partial derivatives fx, fy
and ft are equal to 2, −3 and 5 respectively, while dx

dt = 1 and dy
dt = 2.

Find and explain the difference between dw
dt and ft.

4. Thermodynamics texts use the relationship(
∂y

∂x

)(
∂z

∂y

)(
∂x

∂z

)
= −1

Explain the meaning of this equation and prove that it is true.
5. What is wrong with the following argument? Suppose that w =

f(x, y, z) and z = g(x, y). By the chain rule,

∂w

∂x
= ∂w

∂x

∂x

∂x
+ ∂w

∂y

∂y

∂x
+ ∂w

∂z

∂z

∂x
= ∂w

∂x
+ ∂w

∂z

∂z

∂x

Hence 0 = ∂w
∂z

∂z
∂x and so ∂w

∂z = 0 or ∂z
∂x = 0.

Exercises — Stage 2
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6. Use two methods (one using the chain rule) to evaluate ∂w
∂s and ∂w

∂t
given that the function w = x2 + y2 + z2, with x = st, y = s cos t and
z = s sin t.

7. Evaluate ∂3

∂x∂y2 f(2x+ 3y, xy) in terms of partial derivatives of f . You
may assume that f is a smooth function so that the Chain Rule and
Clairaut’s Theorem on the equality of the mixed partial derivatives
apply.

8. Find all second order derivatives of g(s, t) = f(2s+ 3t, 3s− 2t). You
may assume that f(x, y) is a smooth function so that the Chain Rule
and Clairaut’s Theorem on the equality of the mixed partial deriva-
tives apply.

9. ∗. Assume that f(x, y) satisfies Laplace’s equation ∂2f
∂x2 + ∂2f

∂y2 = 0.
Show that this is also the case for the composite function g(s, t) =
f(s − t, s + t). That is, show that ∂2g

∂s2 + ∂2g
∂t2 = 0. You may assume

that f(x, y) is a smooth function so that the Chain Rule and Clairaut’s
Theorem on the equality of the mixed partial derivatives apply.

10. ∗. Let z = f(x, y) where x = 2s+ t and y = s− t. Find the values of
the constants a, b and c such that

a
∂2z

∂x2 + b
∂2z

∂x ∂y
+ c

∂2z

∂y2 = ∂2z

∂s2 + ∂2z

∂t2

You may assume that z = f(x, y) is a smooth function so that the
Chain Rule and Clairaut’s Theorem on the equality of the mixed par-
tial derivatives apply.

11. ∗. Let F be a function on R2. Denote points in R2 by (u, v) and the
corresponding partial derivatives of F by Fu(u, v), Fv(u, v), Fuu(u, v),
Fuv(u, v), etc.. Assume those derivatives are all continuous. Express

∂2

∂x ∂y
F (x2 − y2, 2xy)

in terms of partial derivatives of the function F .
12. ∗. u(x, y) is defined as

u(x, y) = ey F
(
xe−y

2)
for an arbitrary function F (z).

a If F (z) = ln(z), find ∂u
∂x and ∂u

∂y .

b For an arbitrary F (z) show that u(x, y) satisfies

2xy∂u
∂x

+ ∂u

∂y
= u

13. ∗. Let f(x) and g(x) be two functions of x satisfying f ′′(7) = −2 and
g′′(−4) = −1. If z = h(s, t) = f(2s+ 3t) + g(s− 6t) is a function of s
and t, find the value of ∂

2z
∂t2 when s = 2 and t = 1.

14. ∗. Suppose that w = f(xz, yz), where f is a differentiable function.
Show that

x
∂w

∂x
+ y

∂w

∂y
= z

∂w

∂z
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15. ∗. Suppose z = f(x, y) has continuous second order partial deriva-
tives, and x = r cos t, y = r sin t. Express the following partial deriva-
tives in terms r, t, and partial derivatives of f .

a ∂z

∂t

b ∂2z

∂t2

16. ∗. Let z = f(x, y), where f(x, y) has continuous second-order partial
derivatives, and

fx(2, 1) = 5, fy(2, 1) = −2,
fxx(2, 1) = 2, fxy(2, 1) = 1, fyy(2, 1) = −4

Find d2

dt2 z
(
x(t), y(t)

)
when x(t) = 2t2, y(t) = t3 and t = 1.

17. ∗. Assume that the function F (x, y, z) satisfies the equation ∂F
∂z =

∂2F
∂x2 + ∂2F

∂y2 and the mixed partial derivatives ∂2F
∂x∂y and ∂2F

∂y∂x are equal.
Let A be some constant and let G(γ, s, t) = F (γ + s, γ − s,At). Find
the value of A such that ∂G

∂t = ∂2G
∂γ2 + ∂2G

∂s2 .

18. ∗. Let f(x) be a differentiable function, and suppose it is given that
f ′(0) = 10. Let g(s, t) = f(as − bt), where a and b are constants.
Evaluate ∂g

∂s at the point (s, t) = (b, a), that is, find ∂g
∂s

∣∣
(b,a).

19. ∗. Let f(u, v) be a differentiable function of two variables, and let z be
a differentiable function of x and y defined implicitly by f(xz, yz) = 0.
Show that

x
∂z

∂x
+ y

∂z

∂y
= −z

20. ∗. Let w(s, t) = u(2s+3t, 3s−2t) for some twice differentiable function
u = u(x, y).

a Find wss in terms of uxx, uxy , and uyy. You can assume that
uxy = uyx.

b Suppose uxx + uyy = 0. For what constant A will wss = Awtt?
21. ∗. Suppose that f(x, y) is twice differentiable (with fxy = fyx), and

x = r cos θ and y = r sin θ.
a Evaluate fθ, fr and frθ in terms of r, θ and partial derivatives
of f with respect to x and y.

b Let g(x, y) be another function satisfying gx = fy and gy = −fx.
Express fr and fθ in terms of r, θ and gr, gθ.

22. ∗. By definition, the gradient of the differentiable function f(x, y) at
the point

(
x0 , y0

)
is

∇∇∇f(x0, y0) =
〈
∂f

∂x

(
x0 , y0

)
,
∂f

∂y

(
x0 , y0

)〉
Suppose that we know

∇∇∇f(3, 6) = 〈7, 8〉

Suppose also that
∇∇∇g(1, 2) = 〈−1, 4〉 ,
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and
∇∇∇h(1, 2) = 〈−5, 10〉 .

Assuming g(1, 2) = 3, h(1, 2) = 6, and z(s, t) = f
(
g(s, t), h(s, t)

)
, find

∇∇∇z(1, 2)
23. ∗.

a Let f be an arbitrary differentiable function defined on the entire
real line. Show that the function w defined on the entire plane
as

w(x, y) = e−yf(x− y)

satisfies the partial differential equation:

w + ∂w

∂x
+ ∂w

∂y
= 0

b The equations x = u3 − 3uv2, y = 3u2v − v3 and z = u2 − v2

define z as a function of x and y. Determine ∂z
∂x at the point

(u, v) = (2, 1) which corresponds to the point (x, y) = (2, 11).
24. ∗. The equations

x2 − y cos(uv) = v

x2 + y2 − sin(uv) = 4
π
u

define x and y implicitly as functions of u and v (i.e. x = x(u, v), and
y = y(u, v)) near the point (x, y) = (1, 1) at which (u, v) =

(
π
2 , 0
)
.

a Find
∂x

∂u
and ∂y

∂u

at (u, v) =
(
π
2 , 0
)
.

b If z = x4 + y4, determine ∂z
∂u at the point (u, v) =

(
π
2 , 0
)
.

25. ∗. Let f(u, v) be a differentiable function, and let u = x + y and
v = x− y. Find a constant, α, such that

(fx)2 + (fy)2 = α
(
(fu)2 + (fv)2)

Exercises — Stage 3
26. The wave equation

∂2u

∂x2 −
1
c2
∂2u

∂t2
= 0

arises in many models involving wave-like phenomena. Let u(x, t) and
v(ξ, η) be related by the change of variables

u(x, t) = v
(
ξ(x, t), η(x, t)

)
ξ(x, t) = x− ct
η(x, t) = x+ ct

a Show that ∂2u
∂x2 − 1

c2
∂2u
∂t2 = 0 if and only if ∂2v

∂ξ∂η = 0.

b Show that ∂2u
∂x2 − 1

c2
∂2u
∂t2 = 0 if and only if u(x, t) = F (x− ct) +

G(x+ ct) for some functions F and G.
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c Interpret F (x − ct) + G(x + ct) in terms of travelling waves.
Think of u(x, t) as the height, at position x and time t, of a wave
that is travelling along the x-axis.

Remark: Don’t be thrown by the strange symbols ξ and η. They
are just two harmless letters from the Greek alphabet, called “xi” and
“eta” respectively.

27. Evaluate
a ∂y

∂z if eyz − x2z ln y = π

b dy
dx if F (x, y, x2 − y2) = 0

c
(
∂y
∂x

)
u
if xyuv = 1 and x+ y + u+ v = 0

2.5 Tangent Planes and Normal Lines
The tangent line to the curve y = f(x) at the point

(
x0, f(x0)

)
is the straight

line that fits the curve best1 at that point. Finding tangent lines was probably
one of the first applications of derivatives that you saw. See, for example,
Theorem 2.3.2 in the CLP-1 text. The analog of the tangent line one dimension
up is the tangent plane. The tangent plane to a surface S at a point (x0, y0, z0)
is the plane that fits S best at (x0, y0, z0). For example, the tangent plane to
the hemisphere

S =
{

(x, y, z)
∣∣ x2 + y2 + (z − 1)2 = 1, 0 ≤ z ≤ 1

}
at the origin is the xy-plane, z = 0.

z

y

x

We are now going to determine, as our first application of partial deriva-
tives, the tangent plane to a general surface S at a general point (x0, y0, z0)
lying on the surface. We will also determine the line which passes through
(x0, y0, z0) and whose direction is perpendicular to S at (x0, y0, z0). It is called
the normal line to S at (x0, y0, z0).

For example, the following figure shows the side view of the tangent plane
(in black) and normal line (in blue) to the surface z = x2 + y2 (in red) at the
point (0, 1, 1).

1It is possible, but beyond the scope of this text, to give a precise meaning to “fits best”.
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y

z z “ x2 ` y2 tangent plane

normal line

p0, 1, 1q

side view
Recall, from 1.4.1, that to specify any plane, we need

• one point on the plane and

• a vector perpendicular to the plane, i.e. a normal vector,

and recall, from 1.5.1, that to specify any line, we need

• one point on the line and

• a direction vector for the line.

We already have one point that is on both the tangent plane of interest and
the normal line of interest — namely

(
x0, y0, z0

)
. Furthermore we can use any

(nonzero) vector that is perpendicular to S at (x0, y0, z0) as both the normal
vector to the tangent plane and the direction vector of the normal line.

So our main task is to determine a normal vector to the surface S at
(x0, y0, z0). That’s what we do now, first for surfaces of the form z = f(x, y)
and then, more generally, for surfaces of the form G(x, y, z) = 0.

2.5.1 Surfaces of the Form z = f(x, y)
We construct a vector perpendicular to the surface z = f(x, y) at

(
x0 , y0 , f(x0, y0)

)
by, first, constructing two tangent vectors to the specified surface at the speci-
fied point, and, second, taking the cross product of those two tangent vectors.
Consider the red curve in the figure below. It is the intersection of our surface
z = f(x, y)

z

y

x

z “ fpx, yq
y“y0

x“x0

`
x0, y0, fpx0, y0q

˘

px0, y0, 0q

with the plane y = y0. Here is a side view of the red curve.
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z

x

z “ fpx, y0q, y “ y0

px0 , y0 , fpx0,y0qq
px0`h , y0 , fpx0`h,y0qq

px0,y0,0q px0`h,y0,0q
The vector from the point

(
x0 , y0 , f(x0, y0)

)
, on the red curve, to the

point
(
x0 + h , y0 , f(x0 + h, y0)

)
, also on the red curve, is almost tangent to

the red curve, if h is very small. As h tends to 0, that vector, which is

〈h , 0 , f(x0 + h, y0)− f(x0, y0)〉

becomes exactly tangent to the curve. However its length also tends to 0. If
we divide by h, and then take the limit h→ 0, we get

lim
h→0

1
h
〈h , 0 , f(x0 + h, y0)− f(x0, y0)〉 = lim

h→0

〈
1 , 0 , f(x0 + h, y0)− f(x0, y0)

h

〉
Since the limit limh→0

f(x0+h,y0)−f(x0,y0)
h is the definition of the partial deriva-

tive fx(x0, y0), we get that

lim
h→0

1
h
〈h , 0 , f(x0 + h, y0)− f(x0, y0)〉 = 〈1 , 0 , fx(x0, y0)〉

is a nonzero vector that is exactly tangent to the red curve and hence is also
tangent to our surface z = f(x, y) at the point

(
x0 , y0 , f(x0, y0)

)
.

For the second tangent vector, we repeat the process with the blue curve
in the figure at the beginning of this subsection. That blue curve is the inter-
section of our surface z = f(x, y) with the plane x = x0. Here is a front view
of the blue curve.

z

y

z “ fpx0, yq, x “ x0

px0 , y0 , fpx0,y0qq

px0 , y0`h , fpx0,y0`hqq

px0,y0,0q px0,y0`h,0q
When h is very small, the vector

1
h
〈0 , h , f(x0, y0 + h)− f(x0, y0)〉

from the point
(
x0 , y0 , f(x0, y0)

)
, on the blue curve, to

(
x0 , y0+h , f(x0, y0+

h)
)
, also on the blue curve, (and lengthened by a factor 1

h ) is almost tangent
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to the blue curve. Taking the limit h→ 0 gives the tangent vector

lim
h→0

1
h
〈0 , h , f(x0, y0 + h)− f(x0, y0)〉 = lim

h→0

〈
0 , 1 , f(x0, y0 + h)− f(x0, y0)

h

〉
= 〈0 , 1 , fy(x0, y0)〉

to the blue curve at the point
(
a , b , f(a, b)

)
.

Now that we have two vectors in the tangent plane to the surface z = f(x, y)
at
(
x0 , y0 , f(x0, y0)

)
, we can find a normal vector to the tangent plane by

taking their cross product. Their cross product is

〈1 , 0 , fx(x0, y0)〉 × 〈0 , 1 , fy(x0, y0)〉 = det

ı̂ıı ̂ k̂
1 0 fx(x0, y0)
0 1 fy(x0, y0)


= −fx(x0, y0) ı̂ıı− fy(x0, y0) ̂+ k̂

and we have that the vector

−fx(x0, y0) ı̂ıı− fy(x0, y0) ̂+ k̂

is perpendicular to the surface z = f(x, y) at
(
x0 , y0 , f(x0, y0)

)
.

The tangent plane to the surface z = f(x, y) at
(
x0 , y0 , f(x0, y0)

)
is the

plane through
(
x0 , y0 , f(x0, y0)

)
with normal vector−fx(x0, y0) ı̂ıı−fy(x0, y0) ̂+

k̂. This plane has equation

−fx(x0, y0) (x− x0)− fy(x0, y0) (y − y0) +
(
z − f(x0, y0)

)
= 0

or, after a little rearrangement,

z = f(x0, y0) + fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0)

Now that we have the normal vector, finding the equation of the normal line
to the surface z = f(x, y) at the point

(
x0 , y0 , f(x0, y0)

)
is straightforward.

Writing it in parametric form,

〈x, y, z〉 = 〈x0, y0, f(x0, y0)〉+ t 〈−fx(x0, y0) , −fy(x0, y0) , 1〉

By way of summary

Theorem 2.5.1 Tangent Plane and Normal Line.
a The vector

−fx(x0, y0) ı̂ıı− fy(x0, y0) ̂+ k̂

is normal to the surface z = f(x, y) at
(
x0 , y0 , f(x0, y0)

)
.

b The equation of the tangent plane to the surface z = f(x, y) at the point(
x0 , y0 , f(x0, y0)

)
may be written as

z = f(x0, y0) + fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0)

c The parametric equation of the normal line to the surface z = f(x, y) at
the point

(
x0 , y0 , f(x0, y0)

)
is

〈x, y, z〉 = 〈x0, y0, f(x0, y0)〉+ t 〈−fx(x0, y0) , −fy(x0, y0) , 1〉

or, writing it component by component,

x = x0 − t fx(x0, y0) y = y0 − t fy(x0, y0) z = f(x0, y0) + t
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Example 2.5.2 As a warm-up example, we’ll find the tangent plane and
normal line to the surface z = x2 + y2 at the point (1, 0, 1). To do so, we just
apply Theorem 2.5.1 with x0 = 1, y0 = 0 and

f(x, y) = x2 + y2 f(1, 0) = 1
fx(x, y) = 2x fx(1, 0) = 2
fy(x, y) = 2y fy(1, 0) = 0

So the tangent plane is

z = f(x0, y0) + fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0)
= 1 + 2(x− 1) + 0(y − 0)
= −1 + 2x

and the normal line is

〈x, y, z〉 = 〈x0, y0, f(x0, y0)〉+ t 〈−fx(x0, y0) , −fy(x0, y0) , 1〉
= 〈1, 0, 1〉+ t 〈−2 , 0 , 1〉
= 〈1− 2t , 0 , 1 + t〉

�
That was pretty simple — find the partial derivatives and substitute in the

coordinates. Let’s do something a bit more challenging.

Example 2.5.3 Optional. Find the distance from (0, 3, 0) to the surface
z = x2 + y2.
Solution. Write f(x, y) = x2 + y2. Let’s denote by

(
a, b, f(a, b)

)
the point

on z = f(x, y) that is nearest (0, 3, 0). Before we really get into the problem,
let’s make a simple sketch and think about what the lines from (0, 3, 0) to
the surface look like and, in particular, the angles between these lines and the
surface.

z

y

x

z “ x2 ` y2

p0, 3, 0q

z

y

x

z “ x2 ` y2

p0, 3, 0q

pa, b, a2 ` b2q

The line from (0, 3, 0) to
(
a, b, f(a, b)

)
, the point on z = f(x, y) nearest

(0, 3, 0), is distinguished from the other lines from (0, 3, 0) to the surface, by
being perpendicular to the surface. We will provide a detailed justification for
this claim below.

Let’s first exploit the fact that the vector from (0, 3, 0) to
(
a, b, f(a, b)

)
must

be perpendicular to the surface to determine
(
a, b, f(a, b)

)
, and consequently

the distance from (0, 3, 0) to the surface. By Theorem 2.5.1.a, with x0 = a and
y0 = b, the vector

−fx(a, b) ı̂ıı− fy(a, b) ̂+ k̂ = −2a ı̂ıı− 2b ̂+ k̂ (∗)
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is normal to the surface z = f(x, y) at
(
a, b, f(a, b)

)
. So the vector from (0, 3, 0)

to
(
a, b, f(a, b)

)
, namely

a ı̂ıı+ (b− 3) ̂+ f(a, b) k̂ = a ı̂ıı+ (b− 3) ̂+ (a2 + b2) k̂ (∗∗)

must be parallel to (∗). This does not force the vector (∗) to equal (∗∗), but it
does force the existence of some number t obeying

a ı̂ıı+ (b− 3) ̂+ (a2 + b2) k̂ = t
(
− 2a ı̂ıı− 2b ̂+ k̂

)
or equivalently 

a = −2a t
b− 3 = −2b t

a2 + b2 = t

We now have a system of three equations in the three unknowns a, b and t. If
we can solve them, we will have found the point on the surface that we want.

• The first equation is a(1 + 2t) = 0 so that either a = 0 or t = − 1
2 .

• The third equation forces t ≥ 0, so a = 0, and the last equation reduces
to t = b2.

• Substituting this into the middle equation gives

b− 3 = −2b3 or equivalently 2b3 + b− 3 = 0

In general, cubic equations are very hard to solve2. But, in this case, we can
guess one solution3, namely b = 1. So (b − 1) must be a factor of 2b3 + b − 3
and a little division then gives us

0 = 2b3 + b− 3 = (b− 1)(2b2 + 2b+ 3)

We can now find the roots of the quadratic factor by using the high school
formula

−2±
√

22 − 4(2)(3)
4

Since 22 − 4(2)(3) < 0, the factor 2b2 + 2b + 3 has no real roots. So the only
real solution to the cubic equation 2b3 + b− 3 = 0 is b = 1.

In summary,

• a = 0, b = 1 and

• the point on z = x2 + y2 nearest (0, 3, 0) is (0, 1, 1) and

• the distance from (0, 3, 0) to z = x2 + y2 is the distance from (0, 3, 0) to
(0, 1, 1), which is

√
(−2)2 + 12 =

√
5.

Finally back to the claim that, because
(
a, b, f(a, b)

)
is the point on z =

f(x, y) that is nearest4 (0, 3, 0), the vector from (0, 3, 0) to
(
a, b, f(a, b)

)
must be

perpendicular to the surface z = f(x, y) at
(
a, b, f(a, b)

)
. Note that the square

of the distance from (0, 3, 0) to a general point
(
x, y, f(x, y)

)
on z = f(x, y) is

D(x, y) = x2 + (y − 3)2 + f(x, y)2

If x = a, y = b minimizes D(x, y) then, in particular,
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• restricting our attention to the slice y = b of the surface, x = a minimizes
g(x) = D(x, b) = x2 + (b− 3)2 + f(x, b)2 so that

0 = g′(a) = ∂

∂x

[
x2 + (b− 3)2 + f(x, b)2

]∣∣∣∣
x=a

= 2a+ 2f(a, b) fx(a, b)
= 2 〈a , b− 3 , f(a, b)〉 · 〈1 , 0 , fx(a, b)〉

and

• restricting our attention to the slice x = a of the surface, y = b minimizes
h(y) = D(a, y) = a2 + (y − 3)2 + f(a, y)2 so that

0 = h′(b) = ∂

∂y

[
a2 + (y − 3)2 + f(a, y)2

]∣∣∣∣
y=b

= 2(b− 3) + 2f(a, b) fy(a, b)
= 2 〈a , b− 3 , f(a, b)〉 · 〈0 , 1 , fy(a, b)〉

We have expressed the final right hand sides of both of the above bullets as
the dot product of the vector 〈a , b− 3 , f(a, b)〉 with something because

• 〈a , b− 3 , f(a, b)〉 is the vector from (0, 3, 0) to the point (a , b , f(a, b)
)

on the surface and

• the vanishing of the dot product of two vectors implies that the two
vectors are perpendicular.

Thus, that

〈a , b− 3 , f(a, b)〉 · 〈1 , 0 , fx(a, b)〉 = 〈a , b− 3 , f(a, b)〉 · 〈0 , 1 , fy(a, b)〉
= 0

tells us that the vector 〈a , b− 3 , f(a, b)〉 from (0, 3, 0) to
(
a, b, f(a, b)

)
is per-

pendicular to both 〈1 , 0 , fx(a, b)〉 and 〈0 , 1 , fy(a, b)〉 and hence is parallel to
their cross product 〈1 , 0 , fx(a, b)〉 × 〈0 , 1 , fy(a, b)〉, which we already know
is a normal vector to the surface z = f(x, y) at

(
a, b, f(a, b)

)
.

This shows that the point on the surface that minimises the distance to
(0, 3, 0) is joined to (0, 3, 0) by a line that is parallel to the normal vector —
just as we required. �

2.5.2 Surfaces of the Form G(x, y, z) = 0
We now use a little trickery to construct a vector perpendicular to the surface
G(x, y, z) = 0 at the point

(
x0 , y0 , z0

)
. Imagine that you are walking on

2The method for solving cubics was developed in the 15th century by del Ferro, Cardano
and Ferrari (Cardano’s student). Ferrari then went on to discover a formula for the roots
of a quartic. Both the cubic and quartic formulae are extremely cumbersome, and no such
formula exists for polynomials of degree 5 and higher. This is the famous Abel-Ruffini
theorem.

3See Appendix A.16 in the CLP-2 text. There it is shown that any integer root of a
polynomial with integer coefficients must divide the constant term exactly. So in this case
only ±1 and ±3 could be integer roots. So it is good to check to see if any of these are
solutions before moving on to more sophisticated techniques.

4Note that we are assuming that
(
a, b, f(a, b)

)
is the point on the surface that is nearest

(0, 3, 0). That there exists such a point is intuitively obvious from a sketch of the surface.
The mathematical proof that there exists such a point is beyond the scope of this text.
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the surface and that at time 0 you are at the point
(
x0 , y0 , z0

)
. Let r(t) =(

x(t) , y(t) , z(t)
)
denote your position at time t.

z

y

x

Gpx, y, zq “ 0 rp0q “ `
x0, y0, z0

˘

rptq

Because you are walking along the surface, we know that r(t) always lies
on the surface and so

G
(
x(t) , y(t) , z(t)

)
= 0

for all t. Differentiating this equation with respect to t gives, by the chain rule,

∂G

∂x

(
x(t) , y(t) , z(t)

)
x′(t) + ∂G

∂y

(
x(t) , y(t) , z(t)

)
y′(t)

+ ∂G

∂z

(
x(t) , y(t) , z(t)

)
z′(t) = 0

Then setting t = 0 gives

∂G

∂x

(
x0 , y0 , z0

)
x′(0) + ∂G

∂y

(
x0 , y0 , z0

)
y′(0) + ∂G

∂z

(
x0 , y0 , z0

)
z′(0) = 0

Expressing this as a dot product allows us to turn this into a statement about
vectors.〈

∂G

∂x

(
x0 , y0 , z0

)
,
∂G

∂y

(
x0 , y0 , z0

)
,
∂G

∂z

(
x0 , y0 , z0

)〉
· r′(0) = 0 (∗)

The first vector in this dot product is sufficiently important that it is given its
own name.
Definition 2.5.4 Gradient. The gradient5 of the function G(x, y, z) at the
point

(
x0 , y0 , z0

)
is〈

∂G

∂x

(
x0 , y0 , z0

)
,
∂G

∂y

(
x0 , y0 , z0

)
,
∂G

∂z

(
x0 , y0 , z0

)〉
It is denoted ∇∇∇G(x0, y0, z0). ♦

So (∗) tells us that the gradient ∇∇∇G(x0, y0, z0), is perpendicular to the
vector r′(0).

Now if t is very close to zero, the vector r(t) − r(0), from r(0) to r(t), is
almost tangent to the path that we are walking on. The limit

r′(0) = lim
t→0

r(t)− r(0)
t

5The gradient will also play a big role in Section 2.7.
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is thus exactly tangent to our path, and consequently to the surfaceG(x, y, z) =
0 at (x0, y0, z0). This is true for all paths on the surface that pass through
(x0, y0, z0) at time t = 0, which tells us that ∇∇∇G(x0, y0, z0) is perpendicular to
the surface at (x0, y0, z0). We have just found a normal vector!

The above argument goes through unchanged for surfaces of the form6

G(x, y, z) = K, for any constant K. So we have

Theorem 2.5.5 Tangent Plane and Normal Line. Let K be a constant
and (x0, y0, z0) be a point on the surface G(x, y, z) = K. Assume that the
gradient

∇∇∇G(x0, y0, z0) =
〈
∂G

∂x

(
x0 , y0 , z0

)
,
∂G

∂y

(
x0 , y0 , z0

)
,
∂G

∂z

(
x0 , y0 , z0

)〉
of G at (x0, y0, z0) is nonzero.

a The vector ∇∇∇G(x0, y0, z0) is normal to the surface G(x, y, z) = K at
(x0, y0, z0).

b The equation of the tangent plane to the surface G(x, y, z) = K at (x0, y0, z0)
is

∇∇∇G(x0, y0, z0) · 〈x− x0 , y − y0 , z − z0〉 = 0

c The parametric equation of the normal line to the surface G(x, y, z) = K
at (x0, y0, z0) is

〈x, y, z〉 = 〈x0, y0, z0〉+ t∇∇∇G(x0, y0, z0)

Remark 2.5.6 Theorem 2.5.1 about the tangent planes and normal lines to
the surface z = f(x, y) is actually a very simple consequence of Theorem 2.5.5
about the tangent planes and normal lines to the surface G(x, y, z) = 0. This is
just because we can always rewrite the equation z = f(x, y) as z − f(x, y) = 0
and apply Theorem 2.5.5 with G(x, y, z) = z − f(x, y). Since

∇∇∇G(x0, y0, z0) = −fx(x0, y0) ı̂ıı− fy(x0, y0) ̂+ k̂

Theorem 2.5.5 then gives7 Theorem 2.5.1.
Here are a couple of routine examples.

Example 2.5.7 Find the tangent plane and the normal line to the surface

z = x2 + 5xy − 2y2

at the point (1, 2, 3).
Solution. As a preliminary check, note that

12 + 5× 1× 2− 2(2)2 = 3

which verifies that the point (1, 2, 3) is indeed on the surface. This is a good
reality check and also increases our confidence that the question is asking what
we think that it is asking. Rewrite the equation of the surface as G(x, y, z) =
x2 + 5xy − 2y2 − z = 0. Then the gradient

∇∇∇G(x, y, z) = (2x+ 5y) ı̂ıı+ (5x− 4y) ̂− k̂
6Alternatively, one could rewrite G = K as G −K = 0 and replace G by G −K in the

above argument.
7Indeed we could write Theorem 2.5.1 as a corollary of Theorem 2.5.5. But in a textbook

one tries to start with the concrete and move to the more general.
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so that, by Theorem 2.5.5,

n =∇∇∇G(1, 2, 3) = 12 ı̂ıı− 3 ̂− k̂

is a normal vector to the surface at (1, 2, 3). Equipped8 with the normal, it is
easy to work out an equation for the tangent plane.

n · 〈x− 1 , y − 2 , z − 3〉 = 〈12 , −3 , −1〉 · 〈x− 1 , y − 2 , z − 3〉 = 0

or
12x− 3y − z = 3

We can quickly check that the point (1, 2, 3) does indeed lie on the plane:

12× 1− 3× 2− 3 = 3

The normal line is

〈x− 1 , y − 2 , z − 3〉 = tn = t 〈12 , −3 , −1〉

or
x− 1

12 = y − 2
−3 = z − 3

−1

(
= t
)

�
Another warm-up example. This time the surface is a hyperboloid of one

sheet.
Example 2.5.8 Find the tangent plane and the normal line to the surface

x2 + y2 − z2 = 4

at the point (2,−3, 3).
Solution. As a preliminary check, note that the point (2,−3, 3) is indeed on
the surface:

22 + (−3)2 − (3)2 = 4

The equation of the surface is G(x, y, z) = x2 + y2− z2 = 4. Then the gradient
of G is

∇∇∇G(x, y, z) = 2x ı̂ıı+ 2y ̂− 2z k̂

so that, at (2,−3, 3),

∇∇∇G(2,−3, 3) = 4 ı̂ıı− 6 ̂− 6 k̂

and so, by Theorem 2.5.5,

n = 1
2
(
4 ı̂ıı− 6 ̂− 6 k̂

)
= 2 ı̂ıı− 3 ̂− 3 k̂

is a normal vector to the surface at (2,−3, 3). The tangent plane is

n · 〈x− 2 , y + 3 , z − 3〉 = 〈2 , −3 , −3〉 · 〈x− 2 , y + 3 , z − 3〉 = 0

or
2x− 3y − 3z = 4

Again, as a check, we can verify that our point (2,−3, 3) is indeed on the plane:

2× 2− 3× (−3)− 3× 3 = 4
8The spelling “equipt” is a bit archaic. There must be a joke here about quips.
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The normal line is

〈x− 2 , y + 3 , z − 3〉 = tn = t 〈2 , −3 , −3〉

or
x− 2

2 = y + 3
−3 = z − 3

−3

(
= t
)

�

Warning 2.5.9 The vector ∇∇∇G(x, y, z) is not a normal vector to the surface
G(x, y, z) =K at (x0, y0, z0). The vector ∇∇∇G(x0, y0, z0) is a normal vector to
G(x, y, z)=K at (x0, y0, z0) (provided G(x0, y0, z0) = K).

As an example of the consequences of failing to evaluate ∇∇∇G(x, y, z) at the
point (x0, y0, z0), consider the problem

Find the tangent plane to the surface x2 + y2 + z2 = 1 at the point (0, 0, 1).

In this case, the surface is G(x, y, z) = x2 + y2 + z2 = 1. The gradient of G is
∇∇∇G(x, y, z) = 2x ı̂ıı+ 2y ̂+ 2z k̂. To correctly apply part (b) of Theorem 2.5.5,
we evaluate ∇∇∇G(0, 0, 1) = 2 k̂ and find that the tangent plane at (0, 0, 1) is

∇∇∇G(0, 0, 1) · 〈x− 0 , y − 0 , z − 1〉 = 0 or 2(z − 1) = 0 or z = 1

This is of course correct — the tangent plane to the unit sphere at the north
pole is indeed horizontal.

But if we were to incorrectly apply part (b) of Theorem 2.5.5 by failing to
evaluate ∇∇∇G(x, y, z) at (0, 0, 1), we would find that the “tangent plane” is

∇∇∇G(x, y, z) · 〈x− 0 , y − 0 , z − 1〉 = 0
or 2x(x− 0) + 2y(y − 0) + 2z(z − 1) = 0
or x2 + y2 + z2 − z = 0

This is horribly wrong. It is not even a plane, as any plane has an equation of
the form ax+ by + cz = d, with a, b, c and d constants.

Now we’ll move on to some more involved examples.

Example 2.5.10 Suppose that we wish to find the highest and lowest points
on the surface G(x, y, z) = x2 − 2x+ y2 − 4y + z2 − 6z = 2. That is, we wish
to find the points on the surface with the maximum value of z and with the
minimum9 value of z.

Completing three squares,

G(x, y, z) = x2 − 2x+ y2 − 4y + z2 − 6z
= (x− 1)2 + (y − 2)2 + (z − 3)2 − 14.

So the surface G(x, y, z) = 2 is a sphere, whose highest point is the north pole
and whose lowest point is the south pole. But let’s pretend that G(x, y, z) = 2
is some complicated surface that we can’t easily picture.

We’ll find its highest and lowest points by exploiting the fact that the tan-
gent plane to G = 2 is horizontal at the highest and lowest points. Equivalently,
the normal vector to G = 2 is vertical at the highest and lowest points. To see
that this is the case, look at the figure below. If the tangent plane at (x0, y0, z0)
is not horizontal, then the tangent plane contains points near (x0, y0, z0) with
z bigger than z0 and points near (x0, y0, z0) with z smaller than z0. Near
(x0, y0, z0), the tangent plane is a good approximation to the surface. So the
surface also contains10 such points.
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y

z

x2 ´ 2x ` y2 ´ 4y ` z2 ´ 6z “ 2

px0, y0, z0q

side view
The gradient is

∇∇∇G(x, y, z) = (2x− 2) ı̂ıı+ (2y − 4) ̂+ (2z − 6) k̂

It is vertical when the ı̂ıı and ̂ components are both zero. This happens when
2x − 2 = 0 and 2y − 4 = 0, i.e. when x = 1 and y = 2. So the normal vector
to the surface G = 2 at the point (x, y, z) is vertical when x = 1, y = 2 and
(don’t forget that (x, y, z) has to be on G = 2)

G(1, 2, z) = 12 − 2× 1 + 22 − 4× 2 + z2 − 6z = 2
⇐⇒ z2 − 6z − 7 = 0
⇐⇒ (z − 7)(z + 1) = 0
⇐⇒ z = 7, −1

The highest point is (1, 2, 7) and the lowest point is (1, 2,−1), as expected. �
We could have short-cut the last example by using that the surface was a

sphere. Here is an example in the same spirit for which we don’t have an easy
short-cut.
Example 2.5.11 In the last example, we found the points on a specified surface
having the largest and smallest values of z. We’ll now ramp up the level of
difficulty a bit and find the points on the surface x2 +2y2 +3z2 = 72 that have
the largest and smallest values of x+ y + 3z.

To develop a strategy for tackling this problem, consider the following
sketch.

x ` y ` 3z “ C

x2 ` 2y2 ` 3z2 “ 72

The red ellipse in the sketch is intended to represent (schematically) our
surface

x2 + 2y2 + 3z2 = 72
which is an ellipsoid. The middle diagonal (black) line is intended to represent

9Recall that “minimum” means the most negative, not the closest to zero.
10While this is intuitively obvious, proving it is beyond the scope of this text.
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(schematically) the plane x + y + 3z = C for some more or less randomly
chosen value of the constant C. At each point on that plane, the function,
x+ y + 3z, (that we are trying to maximize and minimize) takes the value C.
In particular, for the C chosen in the figure, x+ y+ 3z = C does intersect our
surface, indicating that x+ y+ 3z does indeed take the value C somewhere on
our surface.

To maximize x + y + 3z, imagine slowly increasing the value of C. As we
do so, the plane x+y+3z = C moves to the right. We want to stop increasing
C at the biggest value of C for which the plane x+ y + 3z = C intersects our
surface x2 + 2y2 + 3z2 = 72. For that value of C the plane x + y + 3z = C,
which is represented by the right hand blue line in the sketch, is tangent to our
surface.

Similarly, to minimize x + y + 3z, imagine slowly decreasing the value of
C. As we do so, the plane x+ y + 3z = C moves to the left. We want to stop
decreasing C at the smallest value of C for which the plane x + y + 3z = C
intersects our surface x2 + 2y2 + 3z2 = 72. For that value of C the plane
x+ y+ 3z = C, which is represented by the left hand blue line in the sketch, is
again tangent to our surface. The previous Example 2.5.10 was similar, except
that the plane was z = C.

We are now ready to compute. We need to find the points (a, b, c) (in the
sketch, they are the black dot points of tangency) for which

• (a, b, c) is on the surface and

• the normal vector to the surface x2 +2y2 +3z2 = 72 at (a, b, c) is parallel
to 〈1, 1, 3〉, which is a normal vector to the plane x+ y + 3z = C

Since the gradient of x2 + 2y2 + 3z2 is 〈2x , 4y , 6z〉 = 2 〈x , 2y , 3z〉, these two
conditions are, in equations,

a2 + 2b2 + 3c2 = 72
〈a , 2b , 3c〉 = t 〈1, 1, 3〉 for some number t

The second equation says that a = t, b = t
2 and c = t. Substituting this into

the first equation gives

t2 + 1
2 t

2 + 3t2 = 72 ⇐⇒ 9
2 t

2 = 72 ⇐⇒ t2 = 16 ⇐⇒ t = ±4

So

• the point on the surface x2 + 2y2 + 3z2 = 72 at which x + y + 3z takes
its maximum value is (a, b, c) =

(
t, t2 , t

)∣∣∣
t=4

= (4, 2, 4) and

• x+ y + 3z takes the value 4 + 2 + 3× 4 = 18 there.

• The point on the surface x2 + 2y2 + 3z2 = 72 at which x+ y + 3z takes
its minimum value is (a, b, c) =

(
t, t2 , t

)∣∣∣
t=−4

= (−4,−2,−4) and

• x+ y + 3z takes the value −4− 2 + 3× (−4) = −18 there.

�

Example 2.5.12 Find the distance from the point (1, 1, 1) to the plane x +
2y + 3z = 20.
Solution 1. First note that the point (1, 1, 1) is not itself on the plane x +
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2y + 3z = 20 because

1 + 2× 1 + 3× 1 = 6 6= 20

Denote by (a, b, c) the point on the plane x + 2y + 3z = 20 that is nearest
(1, 1, 1). Then the vector from (1, 1, 1) to (a, b, c), namely 〈a− 1 , b− 1 , c− 1〉,
must be perpendicular11 to the plane. As the gradient of x+ 2y + 3z, namely
〈1 , 2 , 3〉, is a normal vector to the plane, 〈a− 1 , b− 1 , c− 1〉 must be parallel
to 〈1 , 2 , 3〉. So there must be some number t so that

〈a− 1 , b− 1 , c− 1〉 = t 〈1 , 2 , 3〉

or

a = t+ 1, b = 2t+ 1, c = 3t+ 1

As (a, b, c) must be on the plane, we know that a+ 2b+ 3c = 20 and so

(t+ 1) + 2(2t+ 1) + 3(3t+ 1) = 20 =⇒ 14t = 14 =⇒ t = 1

The distance from (1, 1, 1) to the plane x + 2y + 3z = 20 is the length of the
vector 〈a− 1 , b− 1 , c− 1〉 = t 〈1 , 2 , 3〉 = 〈1 , 2 , 3〉 which is

√
14.

x ` 2y ` 3z “ 20

P “ pa, b, cq

Q “ p1, 1, 1q

R “ p20, 0, 0q

〈1, 2, 3〉

θ

Solution 2. Denote by P = (a, b, c) the point on the plane x+ 2y + 3z = 20
that is nearest the point Q = (1, 1, 1). Pick any other point on the plane and
call it R. For example (x, y, z) = (20, 0, 0) obeys x + 2y + 3z = 20 and so
R = (20, 0, 0) is a point on the plane.

The triangle PQR is right angled. Denote by θ the angle between the
hypotenuse QR and the side QP . The distance from Q = (1, 1, 1) to the plane
is the length of the line segment QP , which is

distance = |QP | = |QR| cos θ

Now, the dot product between the vector from Q to R, which is 〈19,−1,−1〉,
with the vector 〈1, 2, 3〉, which is normal to the plane and hence parallel to the
side QP is

〈19,−1,−1〉 · 〈1, 2, 3〉 = 14
= | 〈19,−1,−1〉 | | 〈1, 2, 3〉 | cos θ
= |QR|

√
14 cos θ

so that, finally,

distance = |QR| cos θ = 14√
14

=
√

14

�
11We saw why this vector must be perpendicular to the plane in Example 2.5.3.
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Example 2.5.13 Let F (x, y, z) = 0 and G(x, y, z) = 0 be two surfaces. These
two surfaces intersect along a curve. Find a tangent vector to this curve at the
point (x0, y0, z0).
Solution. Call the tangent vector T. Then T has to be

• tangent to the surface F (x, y, z) = 0 at (x0, y0, z0) and

• tangent to the surface G(x, y, z) = 0 at (x0, y0, z0).

Consequently T has to be

• perpendicular to the vector∇∇∇F (x0, y0, z0), which is normal to F (x, y, z) =
0 at (x0, y0, z0), and at the same time has to be

• perpendicular to the vector∇∇∇G(x0, y0, z0), which is normal toG(x, y, z) =
0 at (x0, y0, z0).

Recall that an easy way to construct a vector that is perpendicular to two
other vectors is to take their cross product. So we take

T =∇∇∇F (x0, y0, z0)×∇∇∇G(x0, y0, z0) = det

 ı̂ıı ̂ k̂
Fx Fy Fz
Gx Gy Gz


=
(
FyGz − FzGy

)
ı̂ıı+

(
FzGx − FxGz

)
̂+

(
FxGy − FyGx

)
k̂

where all partial derivatives are evaluated at (x, y, z) = (x0, y0, z0). �

Let’s put Example 2.5.13 into action.

Example 2.5.14 Consider the curve that is the intersection of the surfaces

x2 + y2 + z2 = 5 and x2 + y2 = 4z

Find a tangent vector to this curve at the point
(√

3 , 1 , 1
)
.

Solution. As a preliminary check, we verify that the point
(√

3 , 1 , 1
)
really

is on the curve. To do so, we check that
(√

3 , 1 , 1
)
satisfies both equations:(√

3
)2 + 12 + 12 = 5

(√
3
)2 + 12 = 4× 1

We’ll find the specified tangent vector by using the strategy of Example 2.5.13.
Write F (x, y, z) = x2 + y2 + z2 and G(x, y, z) = x2 + y2 − 4z. Then

• the vector

∇∇∇F (
√

3, 1, 1) = 〈2x , 2y , 2z〉
∣∣∣
(x,y,z)=(

√
3,1,1)

= 2
〈√

3 , 1 , 1
〉

is normal to the surface F (x, y, z) = 5 at
(√

3 , 1 , 1
)
, and

• the vector

∇∇∇G(
√

3, 1, 1) = 〈2x , 2y , −4〉
∣∣∣
(x,y,z)=(

√
3,1,1)

= 2
〈√

3 , 1 , −2
〉

is normal to the surface G(x, y, z) = 0 at
(√

3 , 1 , 1
)
.

So a tangent vector is

〈√
3 , 1 , 1

〉
×
〈√

3 , 1 , −2
〉

= det

 ı̂ıı ̂ k̂√
3 1 1√
3 1 −2
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=
(
− 2− 1

)
ı̂ıı+

(√
3 + 2

√
3
)
̂+

(√
3−
√

3
)
k̂

= −3 ı̂ıı+ 3
√

3 ̂

There is an easy common factor of 3 in both components. So we can create
a slightly neater tangent vector by dividing the length of −3 ı̂ıı + 3

√
3 ̂ by 3,

giving
〈
−1 ,

√
3 , 0

〉
. �

Example 2.5.15 (Optional) computer graphics hidden-surface elim-
ination. When you look at a solid three dimensional object, you do not see
all of the surface of the object — parts of the surface are hidden from your
view by other parts of the object. For example, the following sketch shows,
schematically, a ray of light leaving your eye and hitting the surface of the
object at the light dot. The object is solid, so the light cannot penetrate any
further. But, if it could, it would follow the dotted line, hitting the surface of
the object three more times. Your eye can see the light dot, but cannot see the
other three dark dots.

Recreating this effect in computer generated graphics is called “hidden-
surface elimination”. In general, implementing hidden-surface elimination can
be quite complicated. Often a technique called “ray tracing” is used12. How-
ever, it is easy if you know about vectors and gradients, and you are only
looking at a single convex body. By definition, a solid is convex if, whenever
two points are in the solid, then the line segment joining the two points is also
contained in the solid.

not convex convex

So suppose that we are looking at a convex solid, that the equation of the
surface of the solid is G(x, y, z) = 0, and that our eye is at (xe, ye, ze).

• First consider a light ray that leaves our eye and then just barely nicks
the solid at the point (x, y, z), as in the figure on the left below. The light
ray is a tangent line to the surface at (x, y, z). So the direction vector of
the light ray, 〈x− xe, y − ye, z − ze〉, is tangent to the surface at (x, y, z)
and consequently is perpendicular to the normal vector, n =∇∇∇G(x, y, z),
of the surface at (x, y, z). Thus

〈x− xe, y − ye, z − ze〉 · ∇∇∇G(x, y, z) = 0
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Gpx,y,zq“0

pxe,ye,zeq

〈x´xe,y´ye,z´ze〉
∇∇∇Gpx,y,zq

px,y,zq

Gpx,y,zq“0

v

n

px,y,zq

pxe,ye,zeq

px1,y1,z1q
v

n1

• Now consider a light ray that leaves our eye and then passes through the
solid, as in the figure on the right above. Call the point at which the
light ray first enters the solid (x, y, z) and the point at which the light
ray leaves the solid (x′, y,′ z′).

◦ Let v be a vector that has the same direction as, i.e. is a positive
multiple of, the vector 〈x− xe, y − ye, z − ze〉.

◦ Let n be an outward pointing normal to the solid at (x, y, z). It will
be either ∇∇∇G(x, y, z) or −∇∇∇G(x, y, z).

◦ Let n′ be an outward pointing normal to the solid at (x′, y′, z′). It
will be either ∇∇∇G(x′, y′, z′) or −∇∇∇G(x′, y′, z′).

Then

◦ at the point (x, y, z) where the ray enters the solid, which is a visible
point, the direction vector v points into the solid. The angle θ
between v and the outward pointing normal n is greater than 90◦,
so that the dot product v · n = |v| |n| cos θ < 0. But

◦ at the point (x′, y′, z′) where the ray leaves the solid, which is a
hidden point, the direction vector v points out of the solid. The
angle θ between v and the outward pointing normal n′ is less than
90◦, so that the dot product v · n′ = |v| |n′| cos θ > 0.

Our conclusion is that, if we are looking in the direction v, and if the
outward pointing normal13 to the surface of the solid at (x, y, z) is ∇∇∇G(x, y, z)
then the point (x, y, z) is hidden if and only if v · ∇∇∇G(x, y, z) > 0.

This method was used by the computer graphics program that created the
shaded figures14 in Examples 1.7.1 and 1.7.2, which are reproduced here.

�
12You can find out more about it by plugging “ray tracing” into the search engine of your
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Tangent planes, in addition to being geometric objects, provide a simple
but powerful tool for approximating functions of two variables near a specified
point. We saw something very similar in the CLP-1 text where we approxi-
mated functions of one variable by their tangent lines. This brings us to our
next topic — approximating functions.

2.5.3 Exercises

Exercises — Stage 1
1. Is it reasonable to say that the surfaces x2 + y2 + (z − 1)2 = 1 and

x2 + y2 + (z + 1)2 = 1 are tangent to each other at (0, 0, 0)?
2. Let the point r0 = (x0, y0, z0) lie on the surfaceG(x, y, z) = 0. Assume

that ∇∇∇G(x0, y0, z0) 6= 0. Suppose that the parametrized curve r(t) =(
x(t), y(t), z(t)

)
is contained in the surface and that r(t0) = r0. Show

that the tangent line to the curve at r0 lies in the tangent plane to
G = 0 at r0.

3. Let F (x0, y0, z0) = G(x0, y0, z0) = 0 and let the vectors∇∇∇F (x0, y0, z0)
and∇∇∇G(x0, y0, z0) be nonzero and not be parallel to each other. Find
the equation of the normal plane to the curve of intersection of the
surfaces F (x, y, z) = 0 and G(x, y, z) = 0 at (x0, y0, z0). By definition,
that normal plane is the plane through (x0, y0, z0) whose normal vector
is the tangent vector to the curve of intersection at (x0, y0, z0).

4. Let f(x0, y0) = g(x0, y0) and let 〈fx(x0, y0), fy(x0, y0)〉 6= 〈gx(x0, y0), gy(x0, y0)〉.
Find the equation of the tangent line to the curve of intersection of
the surfaces z = f(x, y) and z = g(x, y) at (x0 , y0 , z0 = f(x0, y0)).

Exercises — Stage 2

5. ∗. Let f(x, y) = x2y

x4 + 2y2 . Find the tangent plane to the surface

z = f(x, y) at the point
(
−1 , 1 , 1

3
)
.

6. ∗. Find the tangent plane to

27√
x2 + y2 + z2 + 3

= 9

at the point (2, 1, 1).
7. Find the equations of the tangent plane and the normal line to the

graph of the specified function at the specified point.
a f(x, y) = x2 − y2 at (−2, 1)

b f(x, y) = exy at (2, 0)
8. ∗. Consider the surface z = f(x, y) defined implicitly by the equation

xyz2 +y2z3 = 3+x2. Use a 3--dimensional gradient vector to find the
equation of the tangent plane to this surface at the point (−1, 1, 2).
Write your answer in the form z = ax + by + c, where a, b and c are
constants.

choice.
13If ∇∇∇G(x, y, z) is the inward pointing normal, just replace G by −G.
14Those figures are not convex. But it was still possible to use the method discussed above

because any light ray from our eye that passes through the figure intersects the figure at
most twice. It first enters the figure at a visible point and then exits the figure at a hidden
point.
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9. ∗. A surface is given by

z = x2 − 2xy + y2.

a Find the equation of the tangent plane to the surface at x = a,
y = 2a.

b For what value of a is the tangent plane parallel to the plane
x− y + z = 1?

10. ∗. Find the tangent plane and normal line to the surface z = f(x, y) =
2y

x2+y2 at (x, y) = (−1, 2).

11. ∗. Find all the points on the surface x2 + 9y2 + 4z2 = 17 where the
tangent plane is parallel to the plane x− 8z = 0.

12. ∗. Let S be the surface z = x2 + 2y2 + 2y − 1. Find all points
P (x0, y0, z0) on S with x0 6= 0 such that the normal line at P contains
the origin (0, 0, 0).

13. ∗. Find all points on the hyperboloid z2 = 4x2 + y2 − 1 where the
tangent plane is parallel to the plane 2x− y + z = 0.

14. Find a vector of length
√

3 which is tangent to the curve of intersection
of the surfaces z2 = 4x2 + 9y2 and 6x+ 3y + 2z = 5 at (2, 1,−5).

Exercises — Stage 3
15. Find all horizontal planes that are tangent to the surface with equation

z = xye−(x2+y2)/2

What are the largest and smallest values of z on this surface?
16. ∗. Let S be the surface

xy − 2x+ yz + x2 + y2 + z3 = 7

a Find the tangent plane and normal line to the surface S at the
point (0, 2, 1).

b The equation defining S implicitly defines z as a function of x
and y for (x, y, z) near (0, 2, 1). Find expressions for ∂z

∂x and ∂z
∂y .

Evaluate ∂z
∂y at (x, y, z) = (0, 2, 1).

c Find an expression for ∂2z
∂x∂y .

17. ∗.
a Find a vector perpendicular at the point (1, 1, 3) to the surface
with equation x2 + z2 = 10.

b Find a vector tangent at the same point to the curve of inter-
section of the surface in part (a) with surface y2 + z2 = 10.

c Find parametric equations for the line tangent to that curve at
that point.

18. ∗. Let P be the point where the curve

r(t) = t3 ı̂ıı+ t ̂+ t2 k̂, (0 ≤ t <∞)



CHAPTER 2. PARTIAL DERIVATIVES 155

intersects the surface
z3 + xyz − 2 = 0

Find the (acute) angle between the curve and the surface at P .
19. Find the distance from the point (1, 1, 0) to the circular paraboloid

with equation z = x2 + y2.

2.6 Linear Approximations and Error
A frequently used, and effective, strategy for building an understanding of the
behaviour of a complicated function near a point is to approximate it by a
simple function. The following suite of such approximations is standard fare
in Calculus I courses. See, for example, §3.4 in the CLP-1 text.

g(t0 + ∆t) ≈ g(t0) constant approximation
g(t0 + ∆t) ≈ g(t0) + g′(t0) ∆t linear, or tangent line, approximation
g(t0 + ∆t) ≈ g(t0) + g′(t0) ∆t+ 1

2g
′′(t0) ∆t2 quadratic approximation

More generally, for any natural number n, the approximation

g(t0 + ∆t) ≈ g(t0) + g′(t0) ∆t+ 1
2g
′′(t0) ∆t2 + · · ·+ 1

n!g
(n)(t0) ∆tn

is known as the Taylor polynomial of degree n. You may have also found
a formula for the error introduced in making this approximation. The error
En(∆t) is defined by

g(t0 + ∆t) = g(t0) + g′(t0)∆t+ 1
2!g
′′(t0)∆t2 + · · ·+ 1

n!g
(n)(t0)∆tn + En(∆t)

and obeys1

En(∆t) = 1
(n+1)!g

(n+1)(t0 + c∆t)∆tn+1

for some (unknown) 0 ≤ c ≤ 1.
It is a simple matter to use these one dimensional approximations to gen-

erate the analogous multidimensional approximations. To introduce the ideas,
we’ll generate the linear approximation to a function, f(x, y), of two variables,
near the point (x0, y0). Define

g(t) = f
(
x0 + t∆x , y0 + t∆y

)
We have defined g(t) so that

g(0) = f
(
x0 , y0

)
and g(1) = f

(
x0 + ∆x , y0 + ∆y

)
Consequently, setting t0 = 0 and ∆t = 1,

f
(
x0 + ∆x , y0 + ∆y

)
= g(1) = g(t0 + ∆t)
≈ g(t0) + g′(t0) ∆t
= g(0) + g′(0)

We can now compute g′(0) using the multivariable chain rule of 2.4.2:

g′(t) = ∂f

∂x

(
x0 + t∆x , y0 + t∆y

)
∆x+ ∂f

∂y

(
x0 + t∆x , y0 + t∆y

)
∆y

so that,
1You may have seen it written as En(x) = 1

(n+1)!g
(n+1)(c)(x− a)n+1
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Equation 2.6.1

f
(
x0 + ∆x , y0 + ∆y

)
≈ f

(
x0 , y0

)
+ ∂f

∂x

(
x0 , y0

)
∆x+ ∂f

∂y

(
x0 , y0

)
∆y

Of course exactly the same procedure works for functions of three or more
variables. In particular

Equation 2.6.2

f
(
x0 + ∆x , y0 + ∆y , z0 + ∆z

)
≈ f

(
x0 , y0 , z0

)
+ ∂f

∂x

(
x0 , y0 , z0

)
∆x+ ∂f

∂y

(
x0 , y0 , z0

)
∆y

+ ∂f

∂z

(
x0 , y0 , z0

)
∆z

While these linear approximations are quite simple, they tend to be pretty
decent provided ∆x and ∆y are small. See the optional §2.6.1 for a more
precise statement.

Remark 2.6.3 Applying 2.6.1, with ∆x = x− x0 and ∆y = y − y0. gives

f
(
x , y

)
≈ f

(
x0 , y0

)
+ ∂f

∂x

(
x0 , y0

)
(x− x0) + ∂f

∂y

(
x0 , y0

)
(y − y0)

Looking at part (b) of Theorem 2.5.1, we see that this just says that the tangent
plane to the surface z = f(x, y) at the point

(
x0 , y0 , f(x0, y0)

)
remains close

to the surface when (x, y) is close to (x0, y0).

Example 2.6.4 Let
f(x, y) =

√
x2 + y2

Then

∂f

∂x
(x, y) = 1

2
2x√
x2 + y2

fx(x0, y0) = x0√
x2

0 + y2
0

∂f

∂y
(x, y) = 1

2
2y√
x2 + y2

fy(x0, y0) = y0√
x2

0 + y2
0

so that the linear approximation to f(x, y) at (x0, y0) is

f
(
x0 + ∆x , y0 + ∆y

)
≈ f

(
x0 , y0

)
+ fx

(
x0 , y0

)
∆x+ fy

(
x0 , y0

)
∆y

=
√
x2

0 + y2
0 + x0√

x2
0 + y2

0
∆x+ y0√

x2
0 + y2

0
∆y

�

Definition 2.6.5 People often write ∆f for the change f
(
x0 +∆x , y0 +∆y

)
−

f
(
x0 , y0

)
in the value of f . Then the linear approximation 2.6.1 becomes

∆f ≈ ∂f

∂x

(
x0 , y0

)
∆x+ ∂f

∂y

(
x0 , y0

)
∆y

If they want to emphasize that that ∆x, ∆y and ∆f are really small (they may
even say “infinitesimal”), they’ll write2 dx, dy and df instead. In this notation

df ≈ ∂f

∂x

(
x0 , y0

)
dx+ ∂f

∂y

(
x0 , y0

)
dy

People sometimes call dx, dy and df “differentials” and sometimes df is called
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the “total differential of f” to indicate that it includes the impact of small
changes in both x and y. ♦

Definition 2.6.6 Suppose that we wish to approximate a quantity Q and that
the approximation turns out to be Q+ ∆Q. Then

• the absolute error in the approximation is |∆Q| and

• the relative error in the approximation is
∣∣∣∆QQ ∣∣∣ and

• the percentage error in the approximation is 100
∣∣∣∆QQ ∣∣∣

♦
In Example 3.4.5 of the CLP-1 text we found an approximate value for the

number
√

4.1 by using a linear approximation to the single variable function
f(x) =

√
x. We can make similar use of linear approximations to multivariable

functions.

Example 2.6.7 Find an approximate value for (0.998)3

1.003 .

Solution. Set f(x, y) = x3

y
. We are to find (approximately) f(0.998 , 1.003).

We can easily find

f(1, 1) = 13

1 = 1

and since
∂f

∂x
= 3x2

y
and ∂f

∂y
= −x

3

y2

we can also easily find

∂f

∂x
(1, 1) = 312

1 = 3

∂f

∂y
(1, 1) = 113

12 = −1

So, setting ∆x = −0.002 and ∆y = 0.003, we have

0.9983

1.003 = f(0.998 , 1.003) = f(1 + ∆x , 1 + ∆y)

≈ f
(
1, 1
)

+ ∂f

∂x

(
1, 1
)

∆x+ ∂f

∂y

(
1, 1
)

∆y

≈ 1 + 3(−0.002)− 1(0.003) = 0.991

By way of comparison, the exact answer is 0.9910389 to seven decimal places.
�

Example 2.6.8 Find an approximate value for (4.2)1/2+(26.7)1/3+(256.4)1/4.
Solution. Set f(x, y, z) = x1/2 + y1/3 + z1/4. We are to find (approximately)
f(4.2 , 26.7 , 256.4). We can easily find

f(4, 27, 256) = (4)1/2 + (27)1/3 + (256)1/4 = 2 + 3 + 4 = 9

and since
∂f

∂x
= 1

2x1/2
∂f

∂y
= 1

3y2/3
∂f

∂z
= 1

4z3/4

2Don’t take the notation dx or the terminology “infinitesimal” too seriously. It is just
intended to signal “very small”.
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we can also easily find

∂f

∂x
(4, 27, 256) = 1

2(4)1/2 = 1
2 ×

1
2

∂f

∂y
(4, 27, 256) = 1

3(27)2/3 = 1
3 ×

1
9

∂f

∂z
(4, 27, 256) = 1

4(256)3/4 = 1
4 ×

1
64

So, setting ∆x = 0.2, ∆y = −0.3, and ∆z = 0.4, we have

(4.2)1/2 + (26.7)1/3 + (256.4)1/4 = f(4.2 , 26.7 , 256.4)
= f(4 + ∆x , 27 + ∆y , 256 + ∆z)

≈ f
(
4, 27, 256

)
+ ∂f

∂x

(
4, 27, 256

)
∆x+ ∂f

∂y

(
4, 27, 256

)
∆y

+ ∂f

∂z

(
4, 27, 256

)
∆z

≈ 9 + 0.2
2× 2 −

0.3
3× 9 + 0.4

4× 64 = 9 + 1
20 −

1
90 + 1

640
= 9.0405

to four decimal places. The exact answer is 9.03980 to five decimal places.
That’s a difference of about

1009.0405− 9.0398
9 % = 0.008%

Note that we could have used the single variable approximation techniques in
the CLP-1 text to separately approximate (4.2)1/2, (26.7)1/3 and (256.4)1/4 and
then added the results together. Indeed what we have done here is equivalent.

�

Example 2.6.9 A triangle has sides a = 10.1cm and b = 19.8cm which include
an angle 35◦. Approximate the area of the triangle.

θ

b

a

Solution. The triangle has height h = a sin θ and hence has area

A(a, b, θ) = 1
2bh = 1

2ab sin θ

The sin θ in this formula hides a booby trap built into this problem. In prepar-
ing the linear approximation we will need to use the derivative of sin θ. But the
standard derivative d

dθ sin θ = cos θ only applies when θ is expressed in radians
— not in degrees. See Warning 3.4.23 in the CLP-1 text.

So we are obliged to convert 35◦ into

35◦ = (30 + 5) π

180 radians =
(π

6 + π

36

)
radians

We need to compute (approximately) A(10.1 , 19.8 , π6 + π
36
)
. We will, of

course3, choose

a0 = 10 b0 = 20 θ0 = π

6



CHAPTER 2. PARTIAL DERIVATIVES 159

∆a = 0.1 ∆b = −0.2 ∆θ = π

36

By way of preparation, we evaluate

A
(
a0, b0, θ0

)
= 1

2a0b0 sin θ0 = 1
2(10)(20)1

2 = 50

∂A

∂a

(
a0, b0, θ0

)
= 1

2b0 sin θ0 = 1
2(20)1

2 = 5

∂A

∂b

(
a0, b0, θ0

)
= 1

2a0 sin θ0 = 1
2(10)1

2 = 5
2

∂A

∂θ

(
a0, b0, θ0

)
= 1

2a0b0 cos θ0 = 1
2(10)(20)

√
3

2 = 50
√

3

So the linear approximation gives

Area = A(10.1 , 19.8 , π6 + π

36
)

= A(a0 + ∆a , b0 + ∆b , θ0 + ∆θ
)

≈ A
(
a0, b0, θ0

)
+ ∂A

∂a

(
a0, b0, θ0

)
∆a+ ∂A

∂b

(
a0, b0, θ0

)
∆b

+ ∂A

∂θ

(
a0, b0, θ0

)
∆θ

= 50 + 5× 0.1 + 5
2 × (−0.2) + 50

√
3 π36

= 50 + 5
10 −

5
10 + 50

√
3 π36

= 50
(

1 +
√

3 π36

)
≈ 57.56

to two decimal places. The exact answer is 57.35 to two decimal places. Our
approximation has an error of about

100 57.56− 57.35
57.35 % = 0.37%

�
Another practical use of these linear approximations is to quantify how

errors made in measured quantities propagate in computations using those
measured quantities. Let’s explore this idea a little by recycling the last ex-
ample.

Example 2.6.10 Example 2.6.9, continued. Suppose, that, as in Example
2.6.9, we are attempting to determine the area of a triangle by measuring the
lengths of two of its sides together with the angle between them and then using
the formula

A(a, b, θ) = 1
2ab sin θ

Of course, in the real world 4, we cannot measure lengths and angles exactly.
So if we need to know the area to within 1%, the question becomes: “How
accurately do we have to measure the side lengths and included angle if we
want the area that we compute to have an error of no more than about 1%?”

Let’s call the exact side lengths and included angle a0, b0 and θ0, respec-
tively, and the measured side lengths and included angle a0 + ∆a, b0 + ∆b and

3There are other choices possible. For example, we could write 35◦ = 45◦ − 10◦. To get
a good approximation we try to make ∆θ as small as possible, while keeping the arithmetic
reasonably simple.
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θ0 + ∆θ. So ∆a, ∆b and ∆θ represent the errors in our measurements. Then,
by 2.6.2, the error in our computed area will be approximately

∆A ≈ ∂A

∂a

(
a0, b0, θ0

)
∆a+ ∂A

∂b

(
a0, b0, θ0

)
∆b+ ∂A

∂θ

(
a0, b0, θ0

)
∆θ

= ∆a
2 b0 sin θ0 + ∆b

2 a0 sin θ0 + ∆θ
2 a0b0 cos θ0

and the percentage error in our computed area will be

100 |∆A|
A(a0, b0, θ0) ≈

∣∣∣∣100∆a
a0

+ 100∆b
b0

+ 100∆θ cos θ0

sin θ0

∣∣∣∣
By the triangle inequality, |u+ v| ≤ |u|+ |v|, and the fact that |uv| = |u| |v|,∣∣∣∣100∆a

a0
+ 100∆b

b0
+ 100∆θ cos θ0

sin θ0

∣∣∣∣
≤ 100

∣∣∣∣∆aa0

∣∣∣∣+ 100
∣∣∣∣∆bb0

∣∣∣∣+ 100|∆θ|
∣∣∣∣cos θ0

sin θ0

∣∣∣∣
We want this to be less than 1.

Of course we do not know exactly what a0, b0 and θ0 are. But suppose
that we are confident that a0 ≥ 10, b0 ≥ 10 and π

6 ≤ θ0 ≤ π
2 so that cot θ0 ≤

cot π6 =
√

3 ≤ 2. Then

100
∣∣∣∣∆aa0

∣∣∣∣ ≤ 100
∣∣∣∣∆a10

∣∣∣∣ = 10 |∆a|

100
∣∣∣∣∆bb0

∣∣∣∣ ≤ 100
∣∣∣∣∆b10

∣∣∣∣ = 10 |∆b|

100|∆θ|
∣∣∣∣cos θ0

sin θ0

∣∣∣∣ ≤ 100|∆θ| 2 = 200 |∆θ|

and

100 |∆A|
A(a0, b0, θ0) . 10 |∆a|+ 10 |∆b|+ 200 |∆θ|

So it will suffice to have measurement errors |∆a|, |∆b| and |∆θ| obey

10 |∆a|+ 10 |∆b|+ 200 |∆θ| < 1

�

Example 2.6.11 A Question
Suppose that three variables are measured with percentage error ε1, ε2 and

ε3 respectively. In other words, if the exact value of variable number i is xi
and measured value of variable number i is xi + ∆xi then

100
∣∣∣∣∆xixi

∣∣∣∣ = εi

Suppose further that a quantity P is then computed by taking the product of
the three variables. So the exact value of P is

P (x1, x2, x3) = x1x2x3

and the measured value is P (x1 + ∆x1 , x2 + ∆x2 , x3 + ∆x3). What is the
4Of course in our “real world” everyone uses calculus.
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percentage error in this measured value of P?
Solution. The percentage error in the measured value P (x1 + ∆x1 , x2 +
∆x2 , x3 + ∆x3) is

100
∣∣∣∣P (x1 + ∆x1 , x2 + ∆x2 , x3 + ∆x3)− P (x1, x2, x3)

P (x1, x2, x3)

∣∣∣∣
We can get a much simpler approximate expression for this percentage error,
which is good enough for virtually all applications, by applying

P (x1 + ∆x1 , x2 + ∆x2 , x3 + ∆x3)
≈ P (x1, x2, x3) + Px1(x1, x2, x3) ∆x1 + Px2(x1, x2, x3) ∆x2

+ Px3(x1, x2, x3) ∆x3

The three partial derivatives are

Px1(x1, x2, x3) = ∂

∂x1

[
x1x2x3

]
= x2x3

Px2(x1, x2, x3) = ∂

∂x2

[
x1x2x3

]
= x1x3

Px3(x1, x2, x3) = ∂

∂x3

[
x1x2x3

]
= x1x2

So

P (x1 + ∆x1 , x2 + ∆x2 , x3 + ∆x3)
≈ P (x1, x2, x3) + x2x3 ∆x1 + x1x3 ∆x2 + x1x2 ∆x3

and the (approximate) percentage error in P is

100
∣∣∣∣P (x1 + ∆x1, x2 + ∆x2, x3 + ∆x3)− P (x1, x2, x3)

P (x1, x2, x3)

∣∣∣∣
≈ 100

∣∣∣∣x2x3∆x1 + x1x3∆x2 + x1x2∆x3

P (x1, x2, x3)

∣∣∣∣
= 100

∣∣∣∣x2x3∆x1 + x1x3∆x2 + x1x2∆x3

x1x2x3

∣∣∣∣
=
∣∣∣∣100∆x1

x1
+ 100∆x2

x2
+ 100∆x3

x3

∣∣∣∣
≤ ε1 + ε2 + ε3

More generally, if we take a product of n, rather than three, variables the
percentage error in the product becomes at most (approximately)

n∑
i=1

εi. This

is the basis of the experimentalist’s rule of thumb that when you take products,
percentage errors add.

Still more generally, if we take a “product”
∏n
i=1 x

mi
i , the percentage error

in the “product” becomes at most (approximately)
n∑
i=1
|mi|εi. �

2.6.1 Quadratic Approximation and Error Bounds
Recall that, in the CLP-1 text, we started with the constant approximation,
then improved it to the linear approximation by adding in degree one terms,
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then improved that to the quadratic approximation by adding in degree two
terms, and so on. We can do the same thing here. Once again, set

g(t) = f
(
x0 + t∆x , y0 + t∆y

)
and recall that

g(0) = f
(
x0 , y0

)
and g(1) = f

(
x0 + ∆x , y0 + ∆y

)
We’ll now see what the quadratic approximation

g(t0 + ∆t) ≈ g(t0) + g′(t0) ∆t+ 1
2g
′′(t0) ∆t2

and the corresponding exact formula (see (3.4.32) in the CLP-1 text)

g(t0 + ∆t) = g(t0) + g′(t0) ∆t+ 1
2g
′′(t0 + c∆t) ∆t2 for some 0 ≤ c ≤ 1

tells us about f . We have already found, using the chain rule, that

g′(t) = ∂f

∂x

(
x0 + t∆x , y0 + t∆y

)
∆x+ ∂f

∂y

(
x0 + t∆x , y0 + t∆y

)
∆y

We now need to evaluate g′′(t). Temporarily write f1 = ∂f
∂x and f2 = ∂f

∂y so
that

g′(t) = f1
(
x0 + t∆x , y0 + t∆y

)
∆x+ f2

(
x0 + t∆x , y0 + t∆y

)
∆y

Then we have, again using the chain rule,

d
dt
[
f1
(
x0 + t∆x , y0 + t∆y

)]
= ∂f1

∂x

(
x0 + t∆x , y0 + t∆y

)
∆x+ ∂f1

∂y

(
x0 + t∆x , y0 + t∆y

)
∆y

= ∂2f

∂x2

(
x0 + t∆x , y0 + t∆y

)
∆x+ ∂2 f

∂y∂x

(
x0 + t∆x , y0 + t∆y

)
∆y (∗)

and
d
dt
[
f2
(
x0 + t∆x , y0 + t∆y

)]
= ∂f2

∂x

(
x0 + t∆x , y0 + t∆y

)
∆x+ ∂f2

∂y

(
x0 + t∆x , y0 + t∆y

)
∆y

= ∂2 f

∂x∂y

(
x0 + t∆x , y0 + t∆y

)
∆x+ ∂2f

∂y2

(
x0 + t∆x , y0 + t∆y

)
∆y (∗∗)

Adding ∆x times (∗) to ∆y times (∗∗) and recalling that ∂2 f
∂y∂x = ∂2 f

∂x∂y , gives

g′′(t) = ∂2f

∂x2

(
x0 + t∆x , y0 + t∆y

)
∆x2

+ 2 ∂
2 f

∂x∂y

(
x0 + t∆x , y0 + t∆y

)
∆x∆y

+ ∂2f

∂y2

(
x0 + t∆x , y0 + t∆y

)
∆y2

Now setting t0 = 0 and ∆t = 1, the quadratic approximation

f
(
x0 + ∆x , y0 + ∆y

)
= g(1) ≈ g(0) + g′(0) + 1

2g
′′(0)

is
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Equation 2.6.12

f
(
x0 + ∆x , y0 + ∆y

)
≈ f

(
x0 , y0

)
+ ∂f

∂x

(
x0 , y0

)
∆x+ ∂f

∂y

(
x0 , y0

)
∆y

+ 1
2

{
∂2f

∂x2

(
x0, y0

)
∆x2 + 2 ∂

2 f

∂x∂y

(
x0, y0

)
∆x∆y + ∂2f

∂y2

(
x0, y0

)
∆y2

}
and the corresponding exact formula

f
(
x0 + ∆x , y0 + ∆y

)
= g(1) = g(0) + g′(0) + 1

2g
′′(c)

is
Equation 2.6.13

f
(
x0 + ∆x , y0 + ∆y

)
= f

(
x0 , y0

)
+ ∂f

∂x

(
x0 , y0

)
∆x+ ∂f

∂y

(
x0 , y0

)
∆y

+ 1
2

{
∂2f

∂x2

(
r(c)

)
∆x2 + 2 ∂

2 f

∂x∂y

(
r(c)

)
∆x∆y + ∂2f

∂y2

(
r(c)

)
∆y2

}
where r(c) =

(
x0+c∆x , y0+c∆y

)
and c is some (unknown) number satisfying

0 ≤ c ≤ 1.
Equation 2.6.14 If we can bound the second derivatives∣∣∣∣∂2f

∂x2

(
r(c)

)∣∣∣∣ , ∣∣∣∣ ∂2 f

∂x∂y

(
r(c)

)∣∣∣∣ , ∣∣∣∣∂2f

∂y2

(
r(c)

)∣∣∣∣ ≤M
we can massage 2.6.13 into the form∣∣∣∣f(x0 + ∆x , y0 + ∆y

)
−
{
f
(
x0 , y0

)
+ ∂f

∂x

(
x0 , y0

)
∆x+ ∂f

∂y

(
x0 , y0

)
∆y
}∣∣∣∣

≤ M

2
(
|∆x|2 + 2|∆x| |∆y|+ |∆y|2

)
Why might we want to do this? The left hand side of 2.6.14 is exactly the

error in the linear approximation 2.6.1. So the right hand side is a rigorous
bound on the error in the linear approximation.

Example 2.6.15 Example 2.6.7, continued. Suppose that we approximate
(0.998)3

1.003 as in Example 2.6.7 and we want a rigorous bound on the approxima-
tion. We can get such a rigorous bound by applying 2.6.13. Set

f(x, y) = x3

y

and
x0 = 1 ∆x = −0.002 y0 = 1 ∆y = 0.003

Then the exact answer is f
(
x0 + ∆x , y0 + ∆y

)
and the approximate answer

is f
(
x0 , y0

)
+ ∂f

∂x

(
x0 , y0

)
∆x+ ∂f

∂y

(
x0 , y0

)
∆y, so that, by 2.6.13, the error in

the approximation is exactly

1
2

∣∣∣∣∂2f

∂x2

(
r(c)

)
∆x2 + 2 ∂

2 f

∂x∂y

(
r(c)

)
∆x∆y + ∂2f

∂y2

(
r(c)

)
∆y2

∣∣∣∣
with r(c) =

(
1 − 0.002c , 1 + 0.0003c

)
for some, unknown, 0 ≤ c ≤ 1. For our
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function f

f(x, y) = x3

y

∂f

∂x
(x, y) = 3x2

y

∂f

∂y
(x, y) = −x

3

y2

∂2f

∂x2 (x, y) = 6x
y

∂2f

∂x∂y
(x, y) = −3x2

y2
∂2f

∂y2 (x, y) = 2x3

y3

We don’t know what r(c) =
(
1 − 0.002c , 1 + 0.0003c

)
is. But we know that

0 ≤ c ≤ 1, so we definitely know that the x component of r(c) is smaller that
1 and the y component of r(c) is bigger than 1. So∣∣∣∣∂2f

∂x2

(
r(c)

)∣∣∣∣ ≤ 6
∣∣∣∣ ∂2f

∂x∂y

(
r(c)

)∣∣∣∣ ≤ 3
∣∣∣∣∂2f

∂y2

(
r(c)

)∣∣∣∣ ≤ 2

and

error ≤ 1
2
[
6∆x2 + 2× 3|∆x∆y|+ 2∆y2]

≤ 3(0.002)2 + 3(0.002)(0.003) + (0.003)2

= 0.000039

By way of comparison, the exact error is 0.0000389, to seven decimal places.
�

Example 2.6.16 In this example, we find the quadratic approximation of
f(x, y) =

√
1 + 4x2 + y2 at (x0, y0) = (1, 2) and use it to compute approxi-

mately f(1.1 , 2.05). We know that we will need all partial derivatives up to
order 2, so we first compute them and evaluate them at (x0, y0) = (1, 2).

f(x, y) =
√

1 + 4x2 + y2 f(x0, y0) = 3

fx(x, y) = 4x√
1 + 4x2 + y2

fx(x0, y0) = 4
3

fy(x, y) = y√
1 + 4x2 + y2

fy(x0, y0) = 2
3

fxx(x, y) = 4√
1 + 4x2 + y2

− 16x2

[1 + 4x2 + y2]3/2
fxx(x0, y0) = 4

3 −
16
27

= 20
27

fxy(x, y) = − 4xy
[1 + 4x2 + y2]3/2

fxy(x0, y0) = − 8
27

fyy(x, y) = 1√
1 + 4x2 + y2

− y2

[1 + 4x2 + y2]3/2
fyy(x0, y0) = 1

3 −
4
27

= 5
27

We now just substitute them into 2.6.12 to get that the quadratic approxima-
tion to f about (x0, y0) is

f
(
x0 + ∆x , y0 + ∆y

)
≈ f(x0, y0) + fx(x0, y0)∆x+ fy(x0, y0)∆y

+ 1
2

[
fxx(x0, y0)∆x2 + 2fxy(x0, y0)∆x∆y + fyy(x0, y0)∆y2

]
= 3 + 4

3∆x+ 2
3∆y + 10

27∆x2 − 8
27∆x∆y + 5

54∆y2
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In particular, with ∆x = 0.1 and ∆y = 0.05,

f(1.1 , 2.05) ≈ 3+ 4
3(0.1)+ 2

3(0.05)+ 10
27(0.01)− 8

27(0.005)+ 5
54(0.0025)

= 3.1691

The actual value, to four decimal places, is 3.1690. The percentage error is
about 0.004\%. �

Example 2.6.17 In this example, we find the quadratic approximation of
f(x, y) = e2x sin(3y) about (x0, y0) = (0, 0) in two different ways.

The first way uses the canned formula 2.6.12. We compute all partial deriva-
tives up to order 2 at (x0, y0).

f(x, y) = e2x sin(3y) f(x0, y0) = 0
fx(x, y) = 2e2x sin(3y) fx(x0, y0) = 0
fy(x, y) = 3e2x cos(3y) fy(x0, y0) = 3
fxx(x, y) = 4e2x sin(3y) fxx(x0, y0) = 0
fxy(x, y) = 6e2x cos(3y) fxy(x0, y0) = 6
fyy(x, y) = −9e2x sin(3y) fyy(x0, y0) = 0

So the quadratic approximation to f about (0, 0) is

f
(
x , y

)
≈ f(x, y) + fx(x, y)x+ fy(0, 0)y

+ 1
2

[
fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2

]
= 3y + 6xy

That’s pretty simple — just compute a bunch of partial derivatives and sub-
stitute into the formula 2.6.12.

But there is also a sneakier, and often computationally more efficient,
method to get the same result. It exploits the single variable Taylor expansions

ex = 1 + x+ 1
2!x

2 + · · ·

sin y = y − 1
3!y

3 + · · ·

Replacing x by 2x in the first and y by 3y in the second and multiplying the
two together, keeping track only of terms of degree at most two, gives

f(x, y) = e2x sin(3y)

=
[
1 + (2x) + 1

2! (2x)2 + · · ·
][

(3y)− 1
3! (3y)3 + · · ·

]
=
[
1 + 2x+ 2x2 + · · ·

][
3y − 9

2y
3 + · · ·

]
= 3y + 6xy + 6x2y + · · · − 9

2y
3 − 9xy3 − 9x2y3 + · · ·

= 3y + 6xy + · · ·

just as in the first computation. �
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2.6.2 Optional — Taylor Polynomials
We have just found linear and quadratic approximations to the function f(x, y),
for (x, y) near the point (x0, y0). In CLP-1, we found not only linear and
quadratic approximations, but in fact a whole hierarchy of approximations.
For each integer n ≥ 0, the nth degree Taylor polynomial for f(x) about x = a
was defined, in Definition 3.4.11 of the CLP-1 text, to be

n∑
k=0

1
k!f

(k)(a) · (x− a)k

We’ll now define, and find, the Taylor polynomial of degree n for the func-
tion f(x, y) about (x, y) = (x0, y0). It is going to be a polynomial of degree n
in ∆x and ∆y. The most general such polynomial is

Tn(∆x,∆y) =
∑
`,m≥0
`+m≤n

a`,m (∆x)`(∆y)m

with all of the coefficients a`,m being constants. The specific coefficients for the
Taylor polynomial are determined by the requirement that all partial deriva-
tives of Tn(∆x,∆y) at ∆x = ∆y = 0 are the same as the corresponding partial
derivatives of f

(
x0 + ∆x , y0 + ∆y

)
at ∆x = ∆y = 0.

By way of preparation for our computation of the derivatives of Tn(∆x,∆y),
consider

d
dt t

4 = 4t3 d2

dt2 t
4 = (4)(3)t2 d3

dt3 t
4 = (4)(3)(2)t

d4

dt4 t
4 = (4)(3)(2)(1) = 4! d5

dt5 t
4 = 0 d6

dt6 t
4 = 0

and

d
dt t

4
∣∣∣∣
t=0

= 0 d2

dt2 t
4
∣∣∣∣
t=0

= 0 d3

dt3 t
4
∣∣∣∣
t=0

= 0

d4

dt4 t
4
∣∣∣∣
t=0

= 4! d5

dt5 t
4
∣∣∣∣
t=0

= 0 d6

dt6 t
4
∣∣∣∣
t=0

= 0

More generally, for any natural numbers p, m,

dp

dtp t
m =

{
m(m− 1) · · · (m− p+ 1)tm−p if p ≤ m
0 if p > m

so that
dp

dtp t
m

∣∣∣∣
t=0

=
{
m! if p = m

0 if p 6= m

Consequently

∂p

∂(∆x)p
∂q

∂(∆y)q (∆x)`(∆y)m
∣∣∣∣
∆x=∆y=0

=
{
`!m! if p = ` and q = m

0 if p 6= ` or q 6= m

and

∂p+q Tn
∂(∆x)p ∂(∆y)q (0, 0) =

∑
`,m≥0
`+m≤n

a`,m
∂p

∂(∆x)p
∂q

∂(∆y)q (∆x)`(∆y)m
∣∣∣∣
∆x=∆y=0
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=
{
p! q! ap,q if p+ q ≤ n
0 if p+ q > n

Our requirement that the derivatives of f and Tn match is the requirement
that, for all p+ q ≤ n,

∂p+q Tn
∂(∆x)p ∂(∆y)q (0, 0) = ∂p+q

∂(∆x)p ∂(∆y)q f
(
x0 + ∆x , y0 + ∆y

)∣∣∣
∆x=∆y=0

= ∂p+q f

∂xp ∂yq
(x0, y0)

This requirement gives

p! q! ap,q = ∂p+q f

∂xp ∂yq
(x0, y0)

So the Taylor polynomial of degree n for the function f(x, y) about (x, y) =
(x0, y0) is the right hand side of

Equation 2.6.18

f
(
x0 + ∆x , y0 + ∆y

)
≈

∑
`,m≥0
`+m≤n

1
`! m!

∂`+m f

∂x` ∂ym
(x0, y0) (∆x)`(∆y)m

This is for functions, f(x, y), of two variables. There are natural extensions
of this for functions of any (finite) number of variables. For example, the Taylor
polynomial of degree n for a function, f(x, y, z), of three variables is the right
hand side of

f
(
x0 + ∆x , y0 + ∆y , z0 + ∆z

)
≈

∑
k,`,m≥0
k+`+m≤n

1
k! `! m!

∂k+`+m f

∂xk ∂y` ∂zm
(x0, y0, z0) (∆x)k(∆y)`(∆z)m

2.6.3 Exercises

Exercises — Stage 1
1. Let x0 and y0 be constants and let m and n be integers. If m <

0 assume that x0 6= 0, and if n < 0 assume that y0 6= 0. Define
P (x, y) = xmyn.

a Find the linear approximation to P (x0 + ∆x, y0 + ∆y).

b Denote by

P% = 100
∣∣∣∣P (x0 + ∆x, y0 + ∆y)− P (x0, y0)

P (x0, y0)

∣∣∣∣
x% = 100

∣∣∣∣∆xx0

∣∣∣∣
y% = 100

∣∣∣∣∆yy0

∣∣∣∣
the percentage errors in P , x and y respectively. Use the linear
approximation to find an (approximate) upper bound on P% in
terms of m, n, x% and y%.
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2. Consider the following work.
We compute, approximately, the y-coordinate of the point whose

polar coordinates are r = 0.9 and θ = 2◦. In general, the y-coordinate
of the point whose polar coordinates are r and θ is Y (r, θ) = r sin θ.
The partial derivatives

Yr(r, θ) = sin θ Yθ(r, θ) = r cos θ

So the linear approximation to Y (r0 + ∆r, θ0 + ∆θ) with r0 = 1 and
θ0 = 0 is

Y (1 + ∆r, 0 + ∆θ) ≈ Y (1, 0) + Yr(1, 0) ∆r + Yθ(1, 0) ∆θ
= 0 + (0) ∆r + (1)∆θ

Applying this with ∆r = −0.1 and ∆θ = 2 gives the (approximate)
y-coordinate

Y (0.9, 2) = Y (1− 0.1 , 0 + 2) ≈ 0 + (0) (−0.1) + (1)(2) = 2

This conclusion is ridiculous. We’re saying that the y-coordinate
is more than twice the distance from the point to the origin. What
was the mistake?

Exercises — Stage 2
3. Find an approximate value for f(x, y) = sin(πxy+ln y) at (0.01, 1.05)

without using a calculator or computer.

4. ∗. Let f(x, y) = x2y

x4 + 2y2 . Find an approximate value for f(−0.9 , 1.1)
without using a calculator or computer.

5. Four numbers, each at least zero and each at most 50, are rounded
to the first decimal place and then multiplied together. Estimate the
maximum possible error in the computed product.

6. ∗. One side of a right triangle is measured to be 3 with a maximum
possible error of ±0.1, and the other side is measured to be 4 with
a maximum possible error of ±0.2. Use the linear approximation to
estimate the maximum possible error in calculating the length of the
hypotenuse of the right triangle.

7. ∗. If two resistors of resistance R1 and R2 are wired in parallel, then
the resulting resistance R satisfies the equation 1

R = 1
R1

+ 1
R2

. Use
the linear approximation to estimate the change in R if R1 decreases
from 2 to 1.9 ohms and R2 increases from 8 to 8.1 ohms.

8. The total resistance R of three resistors, R1, R2, R3, connected in
parallel is determined by

1
R

= 1
R1

+ 1
R2

+ 1
R3

If the resistances, measured in Ohms, are R1 = 25Ω, R2 = 40Ω and
R3 = 50Ω, with a possible error of 0.5\% in each case, estimate the
maximum error in the calculated value of R.

9. The specific gravity S of an object is given by S = A
A−W where A

is the weight of the object in air and W is the weight of the object in
water. If A = 20 ± .01 and W = 12 ± .02 find the approximate
percentage error in calculating S from the given measurements.
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10. ∗. The pressure in a solid is given by

P (s, r) = sr(4s2 − r2 − 2)

where s is the specific heat and r is the density. We expect to mea-
sure (s, r) to be approximately (2, 2) and would like to have the most
accurate value for P . There are two different ways to measure s and
r. Method 1 has an error in s of ±0.01 and an error in r of ±0.1,
while method 2 has an error of ±0.02 for both s and r.

Should we use method 1 or method 2? Explain your reasoning
carefully.

11. A rectangular beam that is supported at its two ends and is subjected
to a uniform load sags by an amount

S = C
p`4

wh3

where p = load, ` = length, h = height, w = width and C is a
constant. Suppose p ≈ 100, ` ≈ 4, w ≈ .1 and h ≈ .2. Will the sag of
the beam be more sensitive to changes in the height of the beam or
to changes in the width of the beam.

12. ∗. Let z = f(x, y) = 2y
x2+y2 . Find an approximate value for f(−0.8, 2.1).

13. ∗. Suppose that a function z = f(x, y) is implicitly defined by an
equation:

xyz + x+ y2 + z3 = 0

a Find ∂z
∂x .

b If f(−1, 1) < 0, find the linear approximation of the function
z = f(x, y) at (−1, 1).

c If f(−1, 1) < 0, use the linear approximation in (b) to approxi-
mate f(−1.02, 0.97).

14. ∗. Let z = f(x, y) be given implicitly by

ez + yz = x+ y.

a Find the differential dz.

b Use linear approximation at the point (1, 0) to approximate
f(0.99, 0.01).

15. ∗. Two sides and the enclosed angle of a triangle are measured to be
3 ± .1m, 4 ± .1m and 90 ± 1◦ respectively. The length of the third
side is then computed using the cosine law C2 = A2 +B2−2AB cos θ.
What is the approximate maximum error in the computed value of
C?

16. ∗. Use differentials to find a reasonable approximation to the value of
f(x, y) = xy

√
x2 + y2 at x = 3.02, y = 3.96. Note that 3.02 ≈ 3 and

3.96 ≈ 4.
17. ∗. Use differentials to estimate the volume of metal in a closed metal

can with diameter 8cm and height 12cm if the metal is 0.04cm thick.
18. ∗. Let z be a function of x, y such that

z3 − z + 2xy − y2 = 0, z(2, 4) = 1.
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a Find the linear approximation to z at the point (2, 4).

b Use your answer in (a) to estimate the value of z at (2.02, 3.96).

Exercises — Stage 3
19. ∗. Consider the surface given by:

z3 − xyz2 − 4x = 0.

a Find expressions for ∂z
∂x ,

∂z
∂y as functions of x, y, z.

b Evaluate ∂z
∂x ,

∂z
∂y at (1, 1, 2).

c Measurements are made with errors, so that x = 1±0.03 and y =
1 ± 0.02. Find the corresponding maximum error in measuring
z.

d A particle moves over the surface along the path whose projec-
tion in the xy--plane is given in terms of the angle θ as

x(θ) = 1 + cos θ, y(θ) = sin θ

from the point A : x = 2, y = 0 to the point B : x = 1, y = 1.
Find dz

dθ at points A and B.

20. ∗. Consider the function f that maps each point (x, y) in R2 to ye−x.
a Suppose that x = 1 and y = e, but errors of size 0.1 are made in

measuring each of x and y. Estimate the maximum error that
this could cause in f(x, y).

b The graph of the function f sits in R3 , and the point (1, e, 1)
lies on that graph. Find a nonzero vector that is perpendicular
to that graph at that point.

21. ∗. A surface is defined implicitly by z4 − xy2z2 + y = 0.
a Compute ∂z

∂x ,
∂z
∂y in terms of x, y, z.

b Evaluate ∂z
∂x and ∂z

∂y at (x, y, z) = (2,−1/2, 1).

c If x decreases from 2 to 1.94, and y increases from −0.5 to −0.4,
find the approximate change in z from 1.

d Find the equation of the tangent plane to the surface at the
point (2,−1/2, 1).

22. ∗. A surface z = f(x, y) has derivatives ∂f
∂x = 3 and ∂f

∂y = −2 at
(x, y, z) = (1, 3, 1).

a If x increases from 1 to 1.2, and y decreases from 3 to 2.6, find
the change in z using a linear approximation.

b Find the equation of the tangent plane to the surface at the
point (1, 3, 1).

23. ∗. According to van der Waal’s equation, a gas satisfies the equation

(pV 2 + 16)(V − 1) = TV 2,

where p, V and T denote pressure, volume and temperature respec-
tively. Suppose the gas is now at pressure 1, volume 2 and temperature
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5. Find the approximate change in its volume if p is increased by 0.2
and T is increased by 0.3.

24. ∗. Consider the function f(x, y) = e−x
2+4y2 .

a Find the equation of the tangent plane to the graph z = f(x, y)
at the point where (x, y) = (2, 1).

b Find the tangent plane approximation to the value of f(1.99, 1.01)
using the tangent plane from part (a).

25. ∗. Let z = f(x, y) = ln(4x2 + y2).
a Use a linear approximation of the function z = f(x, y) at (0, 1)

to estimate f(0.1, 1.2).

b Find a point P (a, b, c) on the graph of z = f(x, y) such that
the tangent plane to the graph of z = f(x, y) at the point P is
parallel to the plane 2x+ 2y − z = 3.

26. ∗.
a Find the equation of the tangent plane to the surface x2z3 +
y sin(πx) = −y2 at the point P = (1, 1,−1).

b Let z be defined implicitly by x2z3 + y sin(πx) = −y2. Find ∂z
∂x

at the point P = (1, 1,−1).

c Let z be the same implicit function as in part (ii), defined by
the equation x2z3 + y sin(πx) = −y2. Let x = 0.97, and y = 1.
Find the approximate value of z.

27. ∗. The surface x4 + y4 + z4 + xyz = 17 passes through (0, 1, 2), and
near this point the surface determines x as a function, x = F (y, z), of
y and z.

a Find Fy and Fz at (x, y, z) = (0, 1, 2).

b Use the tangent plane approximation (also known as linear,
first order or differential approximation) to find the approximate
value of x (near 0) such that (x, 1.01, 1.98) lies on the surface.

2.7 Directional Derivatives and the Gradient

2.7.1 Directional Derivatives and the Gradient
The principal interpretation of df

dx (a) is the rate of change of f(x), per unit
change of x, at x = a. The natural analog of this interpretation for multivari-
able functions is the directional derivative, which we now introduce through a
question.

2.7.1.1 A Question

Suppose that you are standing at (a, b) near a campfire. The temperature you
feel at (x, y) is f(x, y). You start to move with velocity v = 〈v1, v2〉. What
rate of change of temperature do you feel?
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2.7.1.2 The Answer

Let’s set the beginning of time, t = 0, to the time at which you leave (a, b).
Then

• at time 0 you are at (a, b) and feel the temperature f(a, b) and

• at time t you are at (a + v1t , b + v2t) and feel the temperature f(a +
v1t , b+ v2t). So

• the change in temperature between time 0 and time t is f(a + v1t , b +
v2t)− f(a, b),

• the average rate of change of temperature, per unit time, between time
0 and time t is f(a+v1t , b+v2t)−f(a,b)

t and the

• instantaneous rate of change of temperature per unit time as you leave
(a, b) is lim

t→0
f(a+v1t , b+v2t)−f(a,b)

t .

Concentrate on the t dependence in this limit by writing f(a+ v1t , b+ v2t) =
g(t). Then

lim
t→0

f(a+ v1t , b+ v2t)− f(a, b)
t

= lim
t→0

g(t)− g(0)
t

= dg
dt (0)

= d
dt
[
f(a+ v1t , b+ v2t)

]∣∣∣
t=0

By the chain rule, we can write the right hand side in terms of partial deriva-
tives of f .

d
dt
[
f(a+ v1t , b+ v2t)

]
= fx(a+ v1t , b+ v2t) v1 + fy(a+ v1t , b+ v2t) v2

So, the instantaneous rate of change per unit time as you leave (a, b) is

lim
t→0

f(a+ v1t , b+ v2t)− f(a, b)
t

=
[
fx(a+ v1t , b+ v2t) v1 + fy(a+ v1t , b+ v2t) v2

]∣∣∣
t=0

= fx(a, b) v1 + fy(a, b) v2

= 〈fx(a, b) , fy(a, b)〉 · 〈v1, v2〉

Notice that we have expressed the rate of change as the dot product of the
velocity vector with a vector of partial derivatives of f . We have seen such
a vector of partial derivatives of f before; in Definition 2.5.4, we defined the
gradient of the three variable function G(x, y, z) at the point

(
x0 , y0 , z0

)
to be〈

Gx
(
x0 , y0 , z0

)
, Gy

(
x0 , y0 , z0

)
, Gz

(
x0 , y0 , z0

)〉
. Here we see the natural

two dimensional analog.

Definition 2.7.1 The vector 〈fx(a, b) , fy(a, b)〉 is denoted ∇∇∇f(a, b) and is
called “the gradient of the function f at the point (a, b)”. ♦

In general, the gradient of f is a vector with one component for each variable
of f . The jth component is the partial derivative of f with respect to the jth

variable.
Now because the dot product ∇∇∇f(a, b) · v appears frequently, we introduce

some handy notation.
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Definition 2.7.2 Given any vector v = 〈v1, v2〉, the expression

〈fx(a, b), fy(a, b)〉 · 〈v1, v2〉 =∇∇∇f(a, b) · v

is denoted Dvf(a, b). ♦

Armed with this useful notation we can answer our question very succinctly.

Equation 2.7.3 The rate of change of f per unit time as you leave (a, b)
moving with velocity v is

Dvf(a, b) =∇∇∇f(a, b) · v
We can compute the rate of change of temperature per unit distance (as

opposed to per unit time) in a similar way. The change in temperature between
time 0 and time t is f(a + v1t, b + v2t) − f(a, b). Between time 0 and time t,
you have travelled a distance |v|t. So the instantaneous rate of change of
temperature per unit distance as you leave (a, b) is

lim
t→0

f(a+ v1t, b+ v2t)− f(a, b)
t|v|

This is exactly 1
|v| times lim

t→0
f(a+v1t,b+v2t)−f(a,b)

t which we computed above to
be Dvf(a, b). So

Equation 2.7.4 Given any nonzero vector v, the rate of change of f per unit
distance as you leave (a, b) moving in direction v is

∇∇∇f(a, b) · v
|v| = D v

|v|
f(a, b)

Definition 2.7.5 D v
|v|
f(a, b) is called the directional derivative of the function

f(x, y) at the point (a, b) in the direction1 v. ♦

2.7.1.3 The Implications

We have just seen that the instantaneous rate of change of f per unit distance
as we leave (a, b) moving in direction v is a dot product, which we can write
as

∇∇∇f(a, b) · v
|v| = |∇∇∇f(a, b)| cos θ

where θ is the angle between the gradient vector ∇∇∇f(a, b) and the direction
vector v. Writing it in this way allows us to make some useful observations.
Since cos θ is always between −1 and +1

• the direction of maximum rate of increase is that having θ = 0. So to
get maximum rate of increase per unit distance, as you leave (a, b), you
should move in the same direction as the gradient ∇∇∇f(a, b). Then the
rate of increase per unit distance is |∇∇∇f(a, b)|.

• The direction of minimum (i.e. most negative) rate of increase is that
having θ = 180◦. To get minimum rate of increase per unit distance you
should move in the direction opposite∇∇∇f(a, b). Then the rate of increase
per unit distance is −|∇∇∇f(a, b)|.

• The directions giving zero rate of increase are those perpendicular to
∇∇∇f(a, b). If you move in a direction perpendicular to ∇∇∇f(a, b), then
f(x, y) remains constant as you leave (a, b). At that instant, you are

1Some people require direction vectors to have unit length. We don’t.
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moving so that f(x, y) remains constant and consequently you are moving
along the level curve f(x, y) = f(a, b). So ∇∇∇f(a, b) is perpendicular to
the level curve f(x, y) = f(a, b) at (a, b). The corresponding statement in
three dimensions is that ∇∇∇F (a, b, c) is perpendicular to the level surface
F (x, y, z) = F (a, b, c) at (a, b, c). Hence a good way to find a vector
normal to the surface F (x, y, z) = F (a, b, c) at the point (a, b, c) is to
compute the gradient ∇∇∇F (a, b, c). This is precisely what we saw back in
Theorem 2.5.5.

Now that we have defined the directional derivative, here are some exam-
ples.

Example 2.7.6 Find the directional derivative of the function f(x, y) = ex+y2

at the point (0, 1) in the direction −ı̂ıı+ ̂.
Solution. To compute the directional derivative, we need the gradient. To
compute the gradient, we need some partial derivatives. So we start with the
partial derivatives of f at (0, 1):

fx(0, 1) = ex+y2
∣∣∣
x=0
y=1

= e

fy(0, 1) = 2yex+y2
∣∣∣
x=0
y=1

= 2e

So the gradient of f at (0, 1) is

∇∇∇f(0, 1) = fx(0, 1) ı̂ıı+ fy(0, 1) ̂ = e ı̂ıı+ 2e ̂

and the direction derivative in the direction −ı̂ıı+ ̂ is

D −ı̂ıı+̂
|−ı̂ıı+̂|

f(0, 1) =∇∇∇f(0, 1) · −ı̂
ıı+ ̂

| − ı̂ıı+ ̂|
=
(
e ı̂ıı+ 2e ̂

)
· −ı̂

ıı+ ̂√
2

= e√
2

�

Example 2.7.7 Find the directional derivative of the function w(x, y, z) =
xyz+ ln(xz) at the point (1, 3, 1) in the direction 〈1 , 0 , 1〉. In what directions
is the directional derivative zero?
Solution. First, the partial derivatives of w at (1, 3, 1) are

wx(1, 3, 1) =
[
yz + 1

x

] ∣∣∣∣
(1,3,1)

= 3× 1 + 1
1 = 4

wy(1, 3, 1) = xz

∣∣∣∣
(1,3,1)

= 1× 1 = 1

wz(1, 3, 1) =
[
xy + 1

z

] ∣∣∣∣
(1,3,1)

= 1× 3 + 1
1 = 4

so the gradient of w at (1, 3, 1) is

∇∇∇w(1, 3, 1) = 〈wx(1, 3, 1) , wy(1, 3, 1) , wz(1, 3, 1)〉 = 〈4 , 1 , 4〉

and the direction derivative in the direction 〈1 , 0 , 1〉 is

D 〈1 , 0 , 1〉
|〈1 , 0 , 1〉|

w(1, 3, 1) =∇∇∇w(1, 3, 1) · 〈1 , 0 , 1〉
| 〈1 , 0 , 1〉 | = 〈4 , 1 , 4〉 · 〈1 , 0 , 1〉√

2

= 8√
2

= 4
√

2
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The directional derivative of w at (1, 3, 1) in the direction t 6= 0 is zero if and
only if

0 = D t
|t|
w(1, 3, 1) =∇∇∇w(1, 3, 1) · t

|t| = 〈4 , 1 , 4〉 · t
|t|

which is the case if and only if t is perpendicular to 〈4 , 1 , 4〉. So if we walk
in the direction of any vector in the plane, 4x+ y + 4z = 0 (which has normal
vector 〈4 , 1 , 4〉) then the directional derivative is zero. �

Example 2.7.8 Let

f(x, y) = 5− x2 − 2y2 (a, b) =
(
− 1,−1

)
In this example, we’ll explore the behaviour of the function f(x, y) near the
point (a, b).

Note that for any fixed f0 < 5, f(x, y) = f0 is the ellipse x2 + 2y2 = 5− f0.
So the graph z = f(x, y) consists of a bunch of horizontal ellipses stacked one
on top of each other.

• Since the ellipse x2+2y2 = 5−f0 has x-semi-axis
√

5− f0 and y-semi-axis√
5−f0

2 ,

◦ the ellipses start with a point on the z axis when f0 = 5 and
◦ increase in size as f0 decreases.

• The part of the graph z = f(x, y) in the first octant is sketched in the
left hand figure below.

• Several level curves, f(x, y) = f0, are sketched in the right hand figure
below.

• The gradient vector

∇∇∇f(a, b) = 〈−2x,−4y〉
∣∣
(−1,−1) = 〈2, 4〉 = 2 〈1, 2〉

at (−1,−1) is also illustrated in the righ hand sketch.

We have that, at (a, b) = (−1,−1),

• the unit vector giving the direction of maximum rate of increase is the unit
vector in the direction of the gradient vector 2 〈1, 2〉, which is 1√

5 〈1, 2〉.
The maximum rate of increase is | 〈2, 4〉 | = 2

√
5.

• The unit vector giving the direction of minimum rate of increase is
− 1√

5 〈1, 2〉 and that minimum rate is −| 〈2, 4〉 | = −2
√

5.

• The directions giving zero rate of increase are perpendicular to ∇∇∇f(a, b).
One vector perpendicular2 to 〈1, 2〉 is 〈2,−1〉. So the unit vectors giving
the direction of zero rate of increase are the ± 1√

5 (2,−1). These are the
directions of the tangent vector at (a, b) to the level curve of f through
(a, b), which is the curve f(x, y) = f(a, b).
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Example 2.7.9 What is the rate of change of f(x, y, z) = x2 + y2 + z2 at
(3, 5, 4) moving in the positive x-direction along the curve of intersection of
the surfaces G(x, y, z) = 25 and H(x, y, z) = 0 where

G(x, y, z) = 2x2 − y2 + 2z2 and H(x, y, z) = x2 − y2 + z2

Solution. As a first check note that (3, 5, 4) really does lie on both surfaces
because

G(3, 5, 4) = 2
(
32)− 52 + 2

(
42) = 18− 25 + 32 = 25

H(3, 5, 4) = 32 − 52 + 42 = 9− 25 + 16 = 0

We compute gradients to get the normal vectors to the surfaces G(x, y, z) = 25
and H(x, y, z) = 0 at (3, 5, 4).

∇∇∇G(3, 5, 4) =
[
4x ı̂ıı− 2y ̂+ 4z k̂

]
(3,5,4)

= 12 ı̂ıı− 10 ̂+ 16 k̂ = 2
(
6 ı̂ıı− 5 ̂+ 8 k̂

)
∇∇∇H(3, 5, 4) =

[
2x ı̂ıı− 2y ̂+ 2z k̂

]
(3,5,4)

= 6 ı̂ıı− 10 ̂+ 8 k̂ = 2
(
3 ı̂ıı− 5 ̂+ 4 k̂

)
The direction of interest is tangent to the curve of intersection. So the direc-
tion of interest is tangent to both surfaces and hence is perpendicular to both
gradients. Consequently one tangent vector to the curve at (3, 5, 4) is

∇∇∇G(3, 5, 4) ×∇∇∇H(3, 5, 4) = 4
(
6 ı̂ıı− 5 ̂+ 8 k̂

)
×
(
3 ı̂ıı− 5 ̂+ 4 k̂

)
= 4 det

ı̂ıı ̂ k̂
6 −5 8
3 −5 4


= 4

(
20 ı̂ıı− 15 k̂

)
= 20

(
4 ı̂ıı− 3 k̂

)
and the unit tangent vector to the curve at (3, 5, 4) that has positive x compo-
nent is

4 ı̂ıı− 3 k̂
|4 ı̂ıı− 3 k̂|

= 4
5 ı̂
ıı− 3

5 k̂

The desired rate of change is

D 4
5 ı̂ıı−

3
5 k̂f(3, 5, 4) =∇∇∇f(3, 5, 4) ·

(
4
5 ı̂
ıı− 3

5 k̂
)

2Check this by taking the dot product of 〈1, 2〉 and 〈2,−1〉.
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=

[2x ı̂ıı+2y ̂+2z k̂](x,y,z)=(3,5,4)︷ ︸︸ ︷(
6 ı̂ıı+ 10 ̂+ 8 k̂

)
·
(

4
5 ı̂
ıı− 3

5 k̂
)

= 0

Actually, we could have known that the rate of change would be zero.

• indent=-0.1in

• Any point (x, y, z) on the curve obeys both y2 = x2 + z2 and 2x2 − y2 +
2z2 = 25.

• Substituting y2 = x2 + z2 into 2x2 − y2 + 2z2 = 25 gives x2 + z2 = 25.

• So, at any point on the curve, x2 + z2 = 25 and y2 = x2 + z2 = 25 so
that x2 + y2 + z2 = 50.

• That is, f(x, y, z) = x2 + y2 + z2 takes the value 50 at every point of the
curve.

• So of course the rate of change of f along the curve is 0.

�
Let’s change things up a little. In the next example, we are told the rates

of change in two different directions. From this we are to determine the rate
of change in a third direction.

Example 2.7.10 The rate of change of a given function f(x, y) at the point
P0 = (1, 2) in the direction towards P1 = (2, 3) is 2

√
2 and in the direction

towards P2 = (1, 0) is −3. What is the rate of change of f at P0 towards the
origin P3 = (0, 0)?
Solution. We can easily determine the rate of change of f at the point P0 in
any direction once we know the gradient ∇∇∇f(1, 2) = a ı̂ıı + b ̂. So we will first
use the two given rates of change to determine a and b, and then we determine
the rate of change towards (0, 0).

The two rates of change that we are given are those in the directions of the
vectors

−−−→
P0P1 = 〈1, 1〉 −−−→

P0P2 = 〈0,−2〉

As you might guess, the notation −−→PQ means the vector whose tail is at P and
whose head is at Q. So the given rates of change tell us that

2
√

2 = D 〈1,1〉
|〈1,1〉|

f(1, 2) =∇∇∇f(1, 2) · 〈1, 1〉
| 〈1, 1〉 | = 〈a, b〉 · 〈1, 1〉√

2

= a√
2

+ b√
2

−3 = D 〈0,−2〉
|〈0,−2〉|

f(1, 2) =∇∇∇f(1, 2) · 〈0,−2〉
| 〈0,−2〉 | = 〈a, b〉 · 〈0,−2〉

2
= −b

These two lines give us two linear equations in the two unknowns a and b.
The second equation directly gives us b = 3. Substituting b = 3 into the first
equation gives

a√
2

+ 3√
2

= 2
√

2 =⇒ a+ 3 = 4 =⇒ a = 1
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A direction vector from P0 = (1, 2) towards P3 = (0, 0) is
−−−→
P0P3 = 〈−1,−2〉

and the rate of change (per unit distance) in that direction is

D 〈−1,−2〉
|〈−1,−2〉|

f(1, 2) =∇∇∇f(1, 2) · 〈−1,−2〉
| 〈−1,−2〉 | = 〈a, b〉 · 〈−1,−2〉√

5

= 〈1, 3〉 · 〈−1,−2〉√
5

= − 7√
5

�

Example 2.7.11 Optional. Find all points (a, b, c) for which the spheres
(x− a)2 + (y − b)2 + (z − c)2 = 1 and x2 + y2 + z2 = 1 intersect orthogonally.
That is, the tangent planes to the two spheres are to be perpendicular at each
point of intersection.
Solution. Let (x0, y0, z0) be a point of intersection. That is

(x0 − a)2 + (y0 − b)2 + (z0 − c)2 = 1
x2

0 + y2
0 + z2

0 = 1

A normal vector to G(x, y, z) = (x− a)2 + (y− b)2 + (z− c)2 = 1 at (x0, y0, z0)
is

N =∇∇∇G(x0, y0, z0) = 〈2(x0 − a) , 2(y0 − b) , 2(z0 − c)〉
A normal vector to g(x, y, z) = x2 + y2 + z2 = 1 at (x0, y0, z0) is

n =∇∇∇g(x0, y0, z0) = 〈2x0 , 2y0 , 2z0〉

The two tangent planes are perpendicular if and only if N̂ and n̂ are perpen-
dicular, which is the case if and only if

0 = N̂ · n̂ = 4x0(x0 − a) + 4y0(y0 − b) + 4z0(z0 − c)

or, dividing the equation by 4,

x0(x0 − a) + y0(y0 − b) + z0(z0 − c) = 0

Let’s pause to take stock. We need to find all (a, b, c)’s such that the
statement

(x0, y0, z0) is a point of intersection of the two spheres (S1)

implies the statement

the normal vectors N̂ and n̂ are perpendicular (S2)

In equations, we need to find all (a, b, c)’s such that the statement

(x0, y0, z0) obeys x2
0 + y2

0 + z2
0 = 1

and (x0 − a)2 + (y0 − b)2 + (z0 − c)2 = 1 (S1)

implies the statement

(x0, y0, z0) obeys x0(x0 − a) + y0(y0 − b) + z0(z0 − c) = 0 (S2)

Now if we expand (S2) then we can, with a little care, massage it into something
that looks more like (S1).

x0(x0 − a) + y0(y0 − b) + z0(z0 − c) = x2
0 + y2

0 + z2
0 − ax0 − by0 − cz0
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= 1
2
{[
x2

0 + y2
0 + z2

0
]

+
[
(x0 − a)2 + (y0 − b)2 + (z0 − c)2]− a2 − b2 − c2

}
If (S1) is true, then

[
x2

0 +y2
0 +z2

0
]

= 1 and
[
(x0−a)2 +(y0−b)2 +(z0−c)2] = 1

so that

x0(x0 − a) + y0(y0 − b) + z0(z0 − c) = 1
2
{

1 + 1 − a2 − b2 − c2
}

and statement (S2) is true if and only if

a2 + b2 + c2 = 2

Our conclusion is that the set of allowed points (a, b, c) is the sphere of
radius

√
2 centred on the origin. �

Example 2.7.12 Optional — The gradient in polar coordinates. What
is the gradient of a function in polar coordinates?
Solution. As was the case in Examples 2.4.9 and 2.4.10, figuring out what
the question is asking is half the battle. By Definition 2.5.4, the gradient of a
function g(x, y) is the vector 〈gx(x, y), gy(x, y)〉. In this question we are told
that we are given some function f(r, θ) of the polar coordinates3 r and θ. We
are supposed to convert this function to Cartesian coordinates.

This means that we are to consider the function

g(x, y) = f
(
r(x, y), θ(x, y)

)
with

r(x, y) =
√
x2 + y2

θ(x, y) = arctan y

x

Then we are to compute the gradient of g(x, y) and express the answer in terms
of r and θ. By the chain rule,

∂g

∂x
= ∂f

∂r

∂r

∂x
+ ∂f

∂θ

∂θ

∂x

= ∂f

∂r

1
2

2x√
x2 + y2

+ ∂f

∂θ

−y/x2

1 + (y/x)2

= ∂f

∂r

x√
x2 + y2

− ∂f

∂θ

y

x2 + y2

= ∂f

∂r

r cos θ
r
− ∂f

∂θ

r sin θ
r2

since x = r cos θ and y = r sin θ

= ∂f

∂r
cos θ − ∂f

∂θ

sin θ
r

Similarly

∂g

∂y
= ∂f

∂r

∂r

∂y
+ ∂f

∂θ

∂θ

∂y

= ∂f

∂r

1
2

2y√
x2 + y2

+ ∂f

∂θ

1/x
1 + (y/x)2

= ∂f

∂r

y√
x2 + y2

+ ∂f

∂θ

x

x2 + y2
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= ∂f

∂r
sin θ + ∂f

∂θ

cos θ
r

So
〈gx, gy〉 = fr 〈cos θ, sin θ〉+ fθ

r
〈− sin θ, cos θ〉

or, with all the arguments written explicitly,

〈gx(x, y), gy(x, y)〉 = fr
(
r(x, y), θ(x, y)

)
〈cos θ(x, y) , sin θ(x, y)〉

+ 1
r(x, y)fθ

(
r(x, y), θ(x, y)

)
〈− sin θ(x, y) , cos θ(x, y)〉

�

2.7.2 Exercises

Exercises — Stage 1
1. ∗. Find the directional derivative of f(x, y, z) = exyz in the 〈0, 1, 1〉

direction at the point (0, 1, 1).
2. ∗. Find ∇∇∇

(
y2 + sin(xy)

)
.

Exercises — Stage 2
3. Find the rate of change of the given function at the given point in the

given direction.
a f(x, y) = 3x− 4y at the point (0, 2) in the direction −2̂ııı.

b f(x, y, z) = x−1+y−1+z−1 at (2,−3, 4) in the direction ı̂ıı+̂+k̂.
4. In what directions at the point (2, 0) does the function f(x, y) = xy

have the specified rates of change?
a −1

b −2

c −3
5. Find ∇∇∇f(a, b) given the directional derivatives

D(̂ııı+̂)/
√

2f(a, b) = 3
√

2 D(3ı̂ıı−4̂)/5f(a, b) = 5

6. ∗. You are standing at a location where the surface of the earth is
smooth. The slope in the southern direction is 4 and the slope in the
south-eastern direction is

√
2. Find the slope in the eastern direction.

7. ∗. Assume that the directional derivative of w = f(x, y, z) at a point
P is a maximum in the direction of the vector 2̂ııı− ̂+ k̂, and the value
of the directional derivative in that direction is 3

√
6.

a Find the gradient vector of w = f(x, y, z) at P .

b Find the directional derivative of w = f(x, y, z) at P in the
direction of the vector ı̂ıı+ ̂

8. ∗. A hiker is walking on a mountain with height above the z = 0
plane given by

z = f(x, y) = 6− xy2

The positive x-axis points east and the positive y-axis points north,
3Polar coordinates were defined in Example 2.1.8.



CHAPTER 2. PARTIAL DERIVATIVES 181

and the hiker starts from the point P (2, 1, 4).
a In what direction should the hiker proceed from P to ascend

along the steepest path? What is the slope of the path?

b Walking north from P , will the hiker start to ascend or descend?
What is the slope?

c In what direction should the hiker walk from P to remain at the
same height?

9. Two hikers are climbing a (small) mountain whose height is z =
1000 − 2x2 − 3y2. They start at (1, 1, 995) and follow the path of
steepest ascent. Their (x, y) coordinates obey y = axb for some
constants a, b. Determine a and b.

10. ∗. A mosquito is at the location (3, 2, 1) in R3. She knows that the
temperature T near there is given by T = 2x2 + y2 − z2.

a She wishes to stay at the same temperature, but must fly in
some initial direction. Find a direction in which the initial rate
of change of the temperature is 0.

b If you and another student both get correct answers in part (a),
must the directions you give be the same? Why or why not?

c What initial direction or directions would suit the mosquito if
she wanted to cool down as fast as possible?

11. ∗. The air temperature T (x, y, z) at a location (x, y, z) is given by:

T (x, y, z) = 1 + x2 + yz.

a A bird passes through (2, 1, 3) travelling towards (4, 3, 4) with
speed 2. At what rate does the air temperature it experiences
change at this instant?

b If instead the bird maintains constant altitude (z = 3) as it
passes through (2, 1, 3) while also keeping at a fixed air temper-
ature, T = 8, what are its two possible directions of travel?

12. ∗. Let f(x, y) = 2x2 + 3xy + y2 be a function of x and y.
a Find the maximum rate of change of f(x, y) at the point P

(
1,− 4

3
)
.

b Find the directions in which the directional derivative of f(x, y)
at the point P

(
1,− 4

3
)
has the value 1

5 .
13. ∗. The temperature T (x, y) at a point of the xy-plane is given by

T (x, y) = yex
2

A bug travels from left to right along the curve y = x2 at a speed of
0.01m/sec. The bug monitors T (x, y) continuously. What is the rate
of change of T as the bug passes through the point (1, 1)?

14. ∗. Suppose the function T = F (x, y, z) = 3+xy−y2 +z2−x describes
the temperature at a point (x, y, z) in space, with F (3, 2, 1) = 3.

a Find the directional derivative of T at (3, 2, 1), in the direction
of the point (0, 1, 2).

b At the point (3, 2, 1), in what direction does the temperature
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decrease most rapidly?

c Moving along the curve given by x = 3et, y = 2 cos t, z =
√

1 + t,
find dT

dt , the rate of change of temperature with respect to t, at
t = 0.

d Suppose ı̂ıı+5̂+ak̂ is a vector that is tangent to the temperature
level surface T (x, y, z) = 3 at (3, 2, 1). What is a?

15. ∗. Let

f(x, y, z) = (2x+ y)e−(x2+y2+z2)

g(x, y, z) = xz + y2 + yz + z2

a Find the gradients of f and g at (0, 1,−1).

b A bird at (0, 1,−1) flies at speed 6 in the direction in which
f(x, y, z) increases most rapidly. As it passes through (0, 1,−1),
how quickly does g(x, y, z) appear (to the bird) to be changing?

c A bat at (0, 1,−1) flies in the direction in which f(x, y, z) and
g(x, y, z) do not change, but z increases. Find a vector in this
direction.

16. ∗. A bee is flying along the curve of intersection of the surfaces
3z + x2 + y2 = 2 and z = x2 − y2 in the direction for which z is
increasing. At time t = 2, the bee passes through the point (1, 1, 0)
at speed 6.

a Find the velocity (vector) of the bee at time t = 2.

b The temperature T at position (x, y, z) at time t is given by
T = xy − 3x+ 2yt+ z. Find the rate of change of temperature
experienced by the bee at time t = 2.

17. ∗. The temperature at a point (x, y, z) is given by T (x, y, z) =
5e−2x2−y2−3z2 , where T is measured in centigrade and x, y, z in me-
ters.

a Find the rate of change of temperature at the point P (1, 2,−1)
in the direction toward the point (1, 1, 0).

b In which direction does the temperature decrease most rapidly?

c Find the maximum rate of decrease at P .
18. ∗. The directional derivative of a function w = f(x, y, z) at a point P

in the direction of the vector ı̂ıı is 2, in the direction of the vector ı̂ıı+ ̂
is −
√

2, and in the direction of the vector ı̂ıı+ ̂+ k̂ is − 5√
3 . Find the

direction in which the function w = f(x, y, z) has the maximum rate
of change at the point P . What is this maximum rate of change?

19. ∗. Suppose it is known that the direction of the fastest increase of
the function f(x, y) at the origin is given by the vector 〈1, 2〉. Find a
unit vector u that is tangent to the level curve of f(x, y) that passes
through the origin.

20. ∗. The shape of a hill is given by z = 1000−0.02x2−0.01y2. Assume
that the x-axis is pointing East, and the y-axis is pointing North, and
all distances are in metres.

a What is the direction of the steepest ascent at the point (0, 100, 900)?
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(The answer should be in terms of directions of the compass).

b What is the slope of the hill at the point (0, 100, 900) in the
direction from (a)?

c If you ride a bicycle on this hill in the direction of the steepest
descent at 5 m/s, what is the rate of change of your altitude
(with respect to time) as you pass through the point (0, 100,
900)?

21. ∗. Let the pressure P and temperature T at a point (x, y, z) be

P (x, y, z) = x2 + 2y2

1 + z2 , T (x, y, z) = 5 + xy − z2

a If the position of an airplane at time t is

(x(t), y(t), z(t)) = (2t, t2 − 1, cos t)

find d
dt (PT )2 at time t = 0 as observed from the airplane.

b In which direction should a bird at the point (0,−1, 1) fly if
it wants to keep both P and T constant. (Give one possible
direction vector. It does not need to be a unit vector.)

c An ant crawls on the surface z3 + zx + y2 = 2. When the ant
is at the point (0,−1, 1), in which direction should it go for
maximum increase of the temperature T = 5 + xy − z2? Your
answer should be a vector 〈a, b, c〉, not necessarily of unit length.
(Note that the ant cannot crawl in the direction of the gradient
because that leads off the surface. The direction vector 〈a, b, c〉
has to be on the tangent plane to the surface.)

22. ∗. Suppose that f(x, y, z) is a function of three variables and let
u = 1√

6 〈1, 1, 2〉 and v = 1√
3 〈1,−1,−1〉 and w = 1√

3 〈1, 1, 1〉. Suppose
that at a point (a, b, c),

Duf = 0
Dvf = 0
Dwf = 4

Find ∇∇∇f at (a, b, c).
23. ∗. The elevation of a hill is given by the equation f(x, y) = x2y2e−x−y.

An ant sits at the point (1, 1, e−2).
a Find the unit vector u = 〈u1, u2〉 that maximizes

lim
t→0

f
(
(1, 1) + tu

)
− f(1, 1)

t

b Find a vector v = 〈v1, v2, v3〉 pointing in the direction of the
path that the ant could take in order to stay on the same eleva-
tion level e−2.

c Find a vector v = 〈v1, v2, v3〉 pointing in the direction of the
path that the ant should take in order to maximize its instan-
taneous rate of level increase.
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24. ∗. Let the temperature in a region of space be given by T (x, y, z) =
3x2 + 1

2y
2 + 2z2 degrees.

a A sparrow is flying along the curve r(s) =
( 1

3s
3, 2s, s2) at a

constant speed of 3ms−1. What is the velocity of the sparrow
when s = 1?

b At what rate does the sparrow feel the temperature is changing
at the point A

( 1
3 , 2, 1

)
for which s = 1.

c At the point A
( 1

3 , 2, 1
)
in what direction will the temperature

be decreasing at maximum rate?

d An eagle crosses the path of the sparrow at A
( 1

3 , 2, 1
)
, is moving

at right angles to the path of the sparrow, and is also moving
in a direction in which the temperature remains constant. In
what directions could the eagle be flying as it passes through
the point A?

25. ∗. Assume that the temperature T at a point (x, y, z) near a flame at
the origin is given by

T (x, y, z) = 200
1 + x2 + y2 + z2

where the coordinates are given in meters and the temperature is in
degrees Celsius. Suppose that at some moment in time, a moth is
at the point (3, 4, 0) and is flying at a constant speed of 1m/s in the
direction of maximum increase of temperature.

a Find the velocity vector v of the moth at this moment.

b What rate of change of temperature does the moth feel at that
moment?

26. ∗. We say that u is inversely proportional to v if there is a constant
k so that u = k/v. Suppose that the temperature T in a metal ball
is inversely proportional to the distance from the centre of the ball,
which we take to be the origin. The temperature at the point (1, 2, 2)
is 120◦.

a Find the constant of proportionality.

b Find the rate of change of T at (1, 2, 2) in the direction towards
the point (2, 1, 3).

c Show that at most points in the ball, the direction of greatest
increase is towards the origin.

27. ∗. The depth of a lake in the xy-plane is equal to f(x, y) = 32− x2−
4x− 4y2 meters.

a Sketch the shoreline of the lake in the xy-plane.

Your calculus instructor is in the water at the point (−1, 1). Find a
unit vector which indicates in which direction he should swim in order
to:

a [(b)] stay at a constant depth?

b [(c)] increase his depth as rapidly as possible (i.e. be most likely
to drown)?
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Exercises — Stage 3
28. The temperature T (x, y) at points of the xy-plane is given by T (x, y) =

x2 − 2y2.
a Draw a contour diagram for T showing some isotherms (curves
of constant temperature).

b In what direction should an ant at position (2,−1) move if it
wishes to cool off as quickly as possible?

c If the ant moves in that direction at speed v at what rate does
its temperature decrease?

d What would the rate of decrease of temperature of the ant be if
it moved from (2,−1) at speed v in direction 〈−1,−2〉?

e Along what curve through (2,−1) should the ant move to con-
tinue experiencing maximum rate of cooling?

29. ∗. Consider the function f(x, y, z) = x2 + cos(yz).
a Give the direction in which f is increasing the fastest at the
point (1, 0, π/2).

b Give an equation for the plane T tangent to the surface

S =
{

(x, y, z)
∣∣ f(x, y, z) = 1

}
at the point (1, 0, π/2).

c Find the distance between T and the point (0, 1, 0).

d Find the angle between the plane T and the plane

P =
{

(x, y, z)
∣∣ x+ z = 0

}
.

30. ∗. A function T (x, y, z) at P = (2, 1, 1) is known to have T (P ) = 5,
Tx(P ) = 1, Ty(P ) = 2, and Tz(P ) = 3.

a A bee starts flying at P and flies along the unit vector pointing
towards the point Q = (3, 2, 2). What is the rate of change of
T (x, y, z) in this direction?

b Use the linear approximation of T at the point P to approximate
T (1.9, 1, 1.2).

c Let S(x, y, z) = x+z. A bee starts flying at P ; along which unit
vector direction should the bee fly so that the rate of change of
T (x, y, z) and of S(x, y, z) are both zero in this direction?

31. ∗. Consider the functions F (x, y, z) = z3 + xy2 + xz and G(x, y, z) =
3x− y + 4z. You are standing at the point P (0, 1, 2).

a You jump from P to Q(0.1 , 0.9 , 1.8). Use the linear approx-
imation to determine approximately the amount by which F
changes.

b You jump from P in the direction along which G increases most
rapidly. Will F increase or decrease?

c You jump from P in a direction 〈a , b , c〉 along which the rates
of change of F and G are both zero. Give an example of such a
direction (need not be a unit vector).
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32. ∗. A meteor strikes the ground in the heartland of Canada. Using
satellite photographs, a model

z = f(x, y) = − 100
x2 + 2x+ 4y2 + 11

of the resulting crater is made and a plan is drawn up to convert the
site into a tourist attraction. A car park is to be built at (4, 5) and
a hiking trail is to be made. The trail is to start at the car park and
take the steepest route to the bottom of the crater.

a Sketch a map of the proposed site clearly marking the car park,
a few level curves for the function f and the trail.

b In which direction does the trail leave the car park?
33. ∗. You are standing at a lone palm tree in the middle of the Expo-

nential Desert. The height of the sand dunes around you is given in
meters by

h(x, y) = 100e−(x2+2y2)

where x represents the number of meters east of the palm tree (west
if x is negative) and y represents the number of meters north of the
palm tree (south if y is negative).

a Suppose that you walk 3 meters east and 2 meters north. At
your new location, (3, 2), in what direction is the sand dune
sloping most steeply downward?

b If you walk north from the location described in part (a), what
is the instantaneous rate of change of height of the sand dune?

c If you are standing at (3, 2) in what direction should you walk
to ensure that you remain at the same height?

d Find the equation of the curve through (3, 2) that you should
move along in order that you are always pointing in a steepest
descent direction at each point of this curve.

34. ∗. Let f(x, y) be a differentiable function with f(1, 2) = 7. Let

u = 3
5 ı̂
ıı+ 4

5 ̂
, v = 3

5 ı̂
ıı− 4

5 ̂


be unit vectors. Suppose it is known that the directional derivatives
Duf(1, 2) and Dvf(1, 2) are equal to 10 and 2 respectively.

a Show that the gradient vector ∇∇∇f at (1, 2) is 10̂ııı+ 5̂.

b Determine the rate of change of f at (1, 2) in the direction of
the vector ı̂ıı+ 2̂.

c Using the tangent plane approximation, estimate the value of
f(1.01, 2.05).
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2.8 A First Look at Partial Differential Equa-
tions

Many phenomena are modelled by equations that relate the rates of change of
various quantities. As rates of change are given by derivatives, the resulting
equations contain derivatives and so are called differential equations. We saw a
number of such differential equations in §2.4 of the CLP-2 text. In particular,
a partial differential equation is an equation for an unknown function of two or
more variables that involves the partial derivatives of the unknown function.
The standard acronym for partial differential equation is PDE. PDEs1 play
a central role in modelling a huge number of different phenomena. Here is a
table giving a bunch of named PDEs and what they are used for. It is far from
complete.

Maxwell’s equations describes electromagnetic radiation
Navier-Stokes equations describes fluid motion
Heat equation describes heat flow
Wave equation describes wave motion
Schrödinger equation describes atoms, molecules and crystals
Black-Scholes models used for pricing financial options
Einstein’s equations connects gravity and geometry
Laplace’s equation used in many applications, including electrostatics
We are just going to scratch the surface of the study of partial of differential

equations. Many of you will take a separate course on the subject. Some
very important PDEs are very hard. One of the millon U.S. dollar prizes2

announced in 2000 by the Clay Institute concerns the Navier-Stokes equations.
On the other hand, we already know enough to accomplish some PDE tasks.
In particular, we can check if a given function really does satisfy a given PDE.
Here are some examples.

Example 2.8.1 x ∂z∂x + y ∂z∂y = 0. Show that the function z(x, y) = x+y
x−y obeys

x
∂z

∂x
+ y

∂z

∂y
= 0

Solution. We simply evaluate the two terms on the left hand side when
z = z(x, y) = x+y

x−y .

x
∂z

∂x
= x

∂

∂x

(
x+ y

x− y

)
= x

(1)(x− y)− (x+ y)(1)
(x− y)2 = −2xy

(x− y)2

y
∂z

∂y
= y

∂

∂y

(
x+ y

x− y

)
= y

(1)(x− y)− (x+ y)(−1)
(x− y)2 = 2xy

(x− y)2

So
x
∂z

∂x
+ y

∂z

∂y
= −2xy

(x− y)2 + 2xy
(x− y)2 = 0

and z(x, y) = x+y
x−y really does solve the PDE x ∂z∂x + y ∂z∂y = 0.

Beware however, that while we have found one solution to the given PDE,
we have not found all solutions. There are many others. Trivially, if z(x, y) = 7,

1There is a divided community on what the plural of PDE should be. Most people use
PDEs as the plural. But some people use PDE as its own plural.

2See https://www.claymath.org/millennium-problems or https://en.wikipedia.
org/wiki/Millennium_Prize_Problems

https://www.claymath.org/millennium-problems
https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://en.wikipedia.org/wiki/Millennium_Prize_Problems
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or any other constant, then we certainly have x ∂z∂x = 0 and y ∂z∂y = 0 so that
x ∂z∂x + y ∂z∂y = 0. Less trivially, in the next example, we’ll find a ton34 of
solutions. �

Example 2.8.2 x ∂z∂x + y ∂z∂y = 0, again. Let G(u) be any differentiable
function. Show that the function z(x, y) = G

(
y
x

)
obeys

x
∂z

∂x
+ y

∂z

∂y
= 0

for all x 6= 0.
Solution. We again simply evaluate the two terms on the left hand side when
z = z(x, y) = G

(
y
x

)
. By the chain rule

x
∂z

∂x
= x

∂

∂x

(
G
(y
x

))
= xG′

(y
x

)( ∂

∂x

y

x

)
= xG′

(y
x

)(
− y

x2

)
= −G′

(y
x

) y
x

y
∂z

∂y
= y

∂

∂y

(
G
(y
x

))
= yG′

(y
x

)( ∂

∂y

y

x

)
= yG′

(y
x

)( 1
x

)
= G′

(y
x

) y
x

So
x
∂z

∂x
+ y

∂z

∂y
= −G′

(y
x

) y
x

+G′
(y
x

) y
x

= 0

and z(x, y) = G
(
y
x

)
really does solve the PDE x ∂z∂x + y ∂z∂y = 0. Note that we

can rewrite the solution x+y
x−y of Example 2.8.1 as 1+y/x

1−y/x , which is of the form
G
(
y
x

)
. �

Example 2.8.3 Harmonic. A function u(x, y) is said to be harmonic if it
satisfies Laplace’s equation

uxx + uyy = 0

We will now find all harmonic polynomials (in the variables x and y) of degree
at most two. Any polynomial of degree at most two is of the form

u(x, y) = a+ bx+ cy + αx2 + βxy + γy2

for some constants a, b, c, α, β, γ. We will need uxx and uyy, so we compute
them now.

u(x, y) = a+ bx+ cy + αx2 + βxy + γy2

ux(x, y) = b+ 2αx+ βy

uxx(x, y) = 2α
3Or, if you prefer, we will find 1.01605 tonnes of solutions. Although the authors of this

text believe strongly in the supremacy of the modern metric system over the archaic chaos
of imperial units, they are less certain of the appropriateness of revising well established
colloquialisms. It is not at all clear that rewriting I have a ton of work to do as I have a
tonne of work to do achieves very much except to give the impression that the author is
wasting time adding two letters when they are expressing the sheer quantity of tasks that
require their attention. Speaking of which, the authors should end this footnote, and get on
with the next example.

4In the previous footnote, the authors, writing from Canada, are using imperial tons
rather than U.S. tons. The interested reader is invited to proceed to their favourite search
engine to discover just how much time they can waste investigating the history, similarities
and differences of these systems.
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uy(x, y) = c+ βx+ 2γy
uyy(x, y) = 2γ

The polynomial u(x, y) is harmonic if and only if

0 = uxx(x, y) + uyy(x, y) = 2α+ 2γ

So the polynomial u(x, y) is harmonic if and only if α+ γ = 0, i.e. if and only
if the polynomial is of the form

u(x, y) = a+
degree 1︷ ︸︸ ︷
bx+ cy+

degree 2︷ ︸︸ ︷
α(x2 − y2) + βxy

with a, b, c, α, and β all constants. Notice that since both terms in the equation
involve a second derivative, we would not expect there to be any conditions
on the constant and linear terms. There aren’t. Beware that, while we have
found all harmonic degree-two polynomials, there are many other harmonic
functions, like, for example ex cos y. �

2.8.1 Optional — Solving the Advection and Wave Equa-
tions

In this section we consider
∂2w

∂x2 (x, t)− 1
c2
∂2w

∂t2
(x, t) = 0

This is an extremely important5 partial differential equation called the “wave
equation” (in one spatial dimension) that is used in modelling water waves,
sound waves, seismic waves, light waves and so on. The reason that we are
looking at it here is that we can use what we have just learned to see that its
solutions are waves travelling with speed c.

To start, we’ll use gradients and the chain rule to find the solution of the
slightly simpler equation

∂w

∂x
(x, t)− 1

c

∂w

∂t
(x, t) = 0

which is called an advection equation. By way of motivation for what will
follow, note that

• we can rewrite the above equation as〈
1 , −1

c

〉
· ∇∇∇w(x, t) = 0

• This equation tells that the gradient of any solution w(x, t) must always
be perpendicular to the constant vector

〈
1 , − 1

c

〉
.

• A vector 〈a, b〉 is perpendicular to
〈
1 , − 1

c

〉
if and only if

〈a, b〉 ·
〈

1 , −1
c

〉
= 0 ⇐⇒ a− b

c
= 0 ⇐⇒ b = ac ⇐⇒ 〈a, b〉 = a 〈1, c〉

That is, a vector is perpendicular to
〈
1 , − 1

c

〉
if and only if it is parallel

to 〈1, c〉.
5If you plug “wave equation” into your favourite search engine you will get more than a

million hits.
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• Thus the gradient of any solution w(x, t) must always be parallel to the
constant vector 〈1 , c〉.

• Recall that one of our implications following Definition 2.7.5 is that the
gradient of w(x, t) must always be perpendicular to the level curves of
w.

• So the level curves of w(x, t) are always perpendicular to the constant
vector

〈
1 , c

〉
. They must be straight lines with equations of the form

〈1 , c〉 · 〈x− x0 , t− t0〉 = 0 or x+ ct = u with u a constant

t

x

x ` c t “ 0

x ` c t “ 1

x ` c t “ ´1

x ` c t “ ´2

x ` c t “ ´3

x ` c t “ 2

x ` c t “ 3

• That is, for each constant u, w(x, t) takes the same value at each point
of the straight line x+ct = u. Call that value U(u). So w(x, t) = U(u) =
U(x+ ct) for some function U .

This solution represents a wave packet moving to the left with speed c. You
can see this by observing that all points (x, t) in space-time for which x + ct
takes the same fixed value, say z, have the same value of U(x + ct), namely
U(z). So if you move so that your position at time t is x = z − ct (i.e. move
the left with speed c) you always see the same value of w. The figure below
illustrates this. It contains the graphs of U(x), U(x+ c) = U(x+ ct)

∣∣
t=1 and

U(x+ 2c) = U(x+ ct)
∣∣
t=2 for a bump shaped U(x). In the figure the location

of the tick z on the x-axis was chosen so that so that U(z) = maxx U(x).

x

y

z ´ 2c

y “ Upx`2cq
t “ 2

z ´ c

y “ Upx`cq
t “ 1

z

y “ Upxq
t “ 0

The above argument that lead to the solution w(x, t) = U(x + ct) was
somewhat handwavy. But we can easily turn it into a much tighter argument
by simply changing variables from (x, y) to (u, v) with u = x + ct. It doesn’t
much matter what we choose (within reason) for the new variable v. Let’s take
v = x − ct. Then x = u+v

2 and t = u−v
2c and it is easy to translate back and

forth between x, t and u, v.
Now define the function W (u, v) by

w(x, t) = W (x+ ct , x− ct)

By the chain rule

∂w

∂x
(x, t) = ∂

∂x

[
W (x+ ct , x− ct)

]
= ∂W

∂u
(x+ ct , x− ct) ∂

∂x
(x+ ct) + ∂W

∂v
(x+ ct , x− ct) ∂

∂x
(x− ct)
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= ∂W

∂u
(x+ ct , x− ct) + ∂W

∂v
(x+ ct , x− ct)

and
∂w

∂t
(x, t) = ∂

∂t

[
W (x+ ct , x− ct)

]
= ∂W

∂u
(x+ ct , x− ct) ∂

∂t
(x+ ct) + ∂W

∂v
(x+ ct , x− ct) ∂

∂t
(x− ct)

= ∂W

∂u
(x+ ct , x− ct)× c+ ∂W

∂v
(x+ ct , x− ct)× (−c)

Subtracting 1
c times the second equation from the first equation gives

∂w

∂x
(x, t)− 1

c

∂w

∂t
(x, t) = 2∂W

∂v
(x+ ct , x− ct)

So

w(x, t) obeys the equation ∂w

∂x
(x, t)− 1

c

∂w

∂t
(x, t) = 0 for all x, r

if and only if

W (u, v) obeys the equation ∂W

∂v
(x+ ct , x− ct) = 0 for all x, t,

which, substituting in x = u+v
2 and t = u−v

2c , is the case if and only if

W (u, v) obeys the equation ∂W

∂v
(u , v) = 0 for all u, v

The equation ∂W
∂v (u , v) = 0 means that W (u, v) is independent of v, so that

W (u, v) is of the form W (u, v) = U(u), for some function U , and, so finally,

w(x, t) = W (x+ ct , x− ct) = U(x+ ct)

Now that we have solved our toy equation, let’s move on to the 1d wave
equation.

Example 2.8.4 Wave Equation. We’ll now expand the above argument to
find the general solution to

∂2w

∂x2 (x, t)− 1
c2
∂2w

∂t2
(x, t) = 0

We’ll again make the change of variables from (x, y) to (u, v) with u = x+ct
and v = x− ct and again define the function W (u, v) by

w(x, t) = W (x+ ct , x− ct)

By the chain rule, we still have

∂w

∂x
(x, t) = ∂

∂x

[
W (x+ ct , x− ct)

]
= ∂W

∂u
(x+ ct , x− ct) + ∂W

∂v
(x+ ct , x− ct)

∂w

∂t
(x, t) = ∂

∂t

[
W (x+ ct , x− ct)

]
= ∂W

∂u
(x+ ct , x− ct)× c+ ∂W

∂v
(x+ ct , x− ct)× (−c)
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We now need to differentiate a second time. Write W1(u, v) = ∂W
∂u (u, v) and

W2(u, v) = ∂W
∂v (u, v) so that

∂w

∂x
(x, t) = W1(x+ ct , x− ct) +W2(x+ ct , x− ct)

∂w

∂t
(x, t) = cW1(x+ ct , x− ct)− cW2(x+ ct , x− ct)

Using the chain rule again

∂2w

∂x2 (x, t) = ∂

∂x

[
∂w

∂x
(x, t)

]
= ∂

∂x
[W1(x+ ct , x− ct)] + ∂

∂x
[W2(x+ ct , x− ct)]

= ∂W1

∂u
+ ∂W1

∂v
+ ∂W2

∂u
+ ∂W2

∂v

= ∂2W

∂u2 + ∂2 W

∂v ∂u
+ ∂2 W

∂u ∂v
+ ∂2W

∂v2

∂2w

∂t2
(x, t) = ∂

∂t

[
∂w

∂t
(x, t)

]
= c

∂

∂t
[W1(x+ ct , x− ct)]− c ∂

∂t
[W2(x+ ct , x− ct)]

= c2
∂W1

∂u
− c2

∂W1

∂v
− c2 ∂W2

∂u
+ c2

∂W2

∂v

= c2
∂2W

∂u2 − c2
∂2W

∂v∂u
− c2 ∂

2W

∂u∂v
+ c2

∂2W

∂v2

with all of the functions on the right hand sides having arguments (x+ ct , x−
ct). So, subtracting 1

c2 times the second from the first, we get

∂2w

∂x2 (x, t)− 1
c2
∂2w

∂t2
(x, t) = 4 ∂

2W

∂u∂v
(x+ ct , x− ct)

and w(x, t) obeys ∂2w
∂x2 (x, t)− 1

c2
∂2w
∂t2 (x, t) = 0 for all x and t if and only if

∂2W

∂u∂v
(u , v) = 0

for all u and v.

• This tells us that the u-derivative of ∂W∂v is zero, so that ∂W
∂v is indepen-

dent of u. That is ∂W
∂v (u, v) = Ṽ (v) for some function Ṽ . The reason

that we have called it Ṽ instead of V with become evident shortly.

• Recall that to apply ∂
∂v , you treat u as a constant and differentiate with

respect to v.

• So ∂W
∂v (u, v) = Ṽ (v) says that, when u is thought of as a constant, W is

an antiderivative of Ṽ .

• That is, W (u, v) =
∫
Ṽ (v) dv + U , with U being an arbitrary constant.

As u is being thought of as a constant, U is allowed to depend on u.

So, denoting by V any antiderivative of Ṽ , we can write our solution in a very
neat form.

W (u, v) = U(u) + V (v)
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and the function we want is6

w(x, t) = W (x+ ct , x− ct) = U(x+ ct) + V (x− ct)

As we saw above U(x + ct) represents a wave packet moving to the left with
speed c. Similarly, V (x−ct) represents a wave packet moving to the right with
speed c.

Notice that w(x, t) = U(x+ ct) + V (x− ct) is a solution regardless of what
U and V are. The differential equation cannot tell us what U and V are.
To determine them, we need more information about the system — usually
in the form of initial conditions, like w(x, 0) = · · · and ∂w

∂t (x, 0) = · · ·. Gen-
eral techniques for solving partial differential equations lie beyond this text —
but definitely require a good understanding of multivariable calculus. A good
reason to keep on reading! �

2.8.2 Really Optional — Derivation of the Wave Equation
In this section we derive the wave equation

∂2w

∂x2 (x, t)− 1
c2
∂2w

∂t2
(x, t) = 0

in one application. To be precise, we apply Newton’s law to an elastic string,
and conclude that small amplitude transverse vibrations of the string obey the
wave equation.

Here is a sketch of a tiny element of the string.

wpx, tq
∆x

∆w

x

T px ` ∆x, tq

T px, tq

θpx ` ∆x, tq

θpx, tq

The basic notation that we will use (most of which appears in the sketch)
is

w(x, t) = vertical displacement of the string from the x axis
at position x and time t

θ(x, t) = angle between the string and a horizontal line
at position x and time t

T (x, t) = tension in the string at position x and time t
ρ(x) = mass density (per unit length) of the string at position x

The forces acting on the tiny element of string at time t are

a tension pulling to the right, which has magnitude T (x+ ∆x, t) and acts
at an angle θ(x+ ∆x, t) above horizontal

6This is known as d’Alembert’s form of the solution. It is named after Jean le Rond
d’Alembert, 1717--1783, who was a French mathematician, physicist, philosopher and music
theorist.
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b tension pulling to the left, which has magnitude T (x, t) and acts at an
angle θ(x, t) below horizontal and, possibly,

c various external forces, like gravity. We shall assume that all of the
external forces act vertically and we shall denote by F (x, t)∆x the net
magnitude of the external force acting on the element of string.

The length of the element of string is essentially
√

∆x2 + ∆w2 so that the
mass of the element of string is essentially ρ(x)

√
∆x2 + ∆w2 and the vertical

component of Newton’s law F = ma says that

ρ(x)
√

∆x2 + ∆w2 ∂
2w

∂ t2
(x, t)

= T (x+ ∆x, t) sin θ(x+ ∆x, t)− T (x, t) sin θ(x, t) + F (x, t)∆x

Dividing by ∆x and taking the limit as ∆x→ 0 gives

ρ(x)

√
1 +

(
∂w

∂x

)2
∂2w

∂ t2
(x, t) = ∂

∂x

[
T (x, t) sin θ(x, t)

]
+ F (x, t)

= ∂T

∂x
(x, t) sin θ(x, t) + T (x, t) cos θ(x, t) ∂θ

∂x
(x, t) + F (x, t) (E1)

We can dispose of all the θ’s by observing from the figure above that

tan θ(x, t) = lim
∆x→0

∆w
∆x = ∂w

∂x
(x, t)

which implies, using the figure below, that

sin θ(x, t) =
∂w
∂x (x, t)√

1 +
(
∂w
∂x (x, t)

)2 cos θ(x, t) = 1√
1 +

(
∂w
∂x (x, t)

)2
θ(x, t) = arctan ∂w

∂x
(x, t) ∂θ

∂x
(x, t) =

∂2w
∂x2 (x, t)

1 +
(
∂w
∂x (x, t)

)2
θ

tan θ

1

?
1 ` tan2 θ

Substituting these formulae into (E1) give a horrendous mess. However,
we can get considerable simplification by looking only at small vibrations. By
a small vibration, we mean that |θ(x, t)| � 1 for all x and t. This implies that
| tan θ(x, t)| � 1, hence that

∣∣∂w
∂x (x, t)

∣∣� 1 and hence that√
1 +

(
∂w

∂x

)2
≈ 1 sin θ(x, t) ≈ ∂w

∂x
(x, t)

cos θ(x, t) ≈ 1 ∂θ

∂x
(x, t) ≈ ∂2w

∂x2 (x, t) (E2)

Substituting these into equation (E1) give

ρ(x)∂
2w

∂ t2
(x, t) = ∂T

∂x
(x, t)∂w

∂x
(x, t) + T (x, t) ∂

2w

∂x2 (x, t) + F (x, t) (E3)

which is indeed relatively simple, but still exhibits a problem. This is one
equation in the two unknowns w and T .
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Fortunately there is a second equation lurking in the background, that
we haven’t used yet. Namely, the horizontal component of Newton’s law of
motion. As a second simplification, we assume that there are only transverse
vibrations. That is, our tiny string element moves only vertically. Then the
net horizontal force on it must be zero. That is,

T (x+ ∆x, t) cos θ(x+ ∆x, t)− T (x, t) cos θ(x, t) = 0

Dividing by ∆x and taking the limit as ∆x tends to zero gives

∂

∂x

[
T (x, t) cos θ(x, t)

]
= 0

Thus T (x, t) cos θ(x, t) is independent of x. For small amplitude vibrations,
cos θ is very close to one, for all x. So T is a function of t only, which is
determined by how hard you are pulling on the ends of the string at time t.
So for small, transverse vibrations, (E3) simplifies further to

ρ(x)∂
2w

∂ t2
(x, t) = T (t) ∂

2w

∂x2 (x, t) + F (x, t) (E4)

In the event that the string density ρ is a constant, independent of x, the
string tension T (t) is a constant independent of t (in other words you are not
continually playing with the tuning pegs) and there are no external forces F
we end up with the wave equation

∂2w

∂ t2
(x, t) = c2

∂2w

∂x2 (x, t) where c =

√
T

ρ

as desired.
The equation that is called the wave equation has built into it a lot of

approximations. By going through the derivation, we have seen what those
approximations are, and we can get some idea as to when they are applicable.

2.8.3 Exercises

Exercises — Stage 1

1. Let u(x, t) = e−t−x
2 . Find a function g(x) so that u(x, t) obeys the

partial differential equation

uxx(x, t) + u(x, t) = g(x)ut(x, t)
2.

a Find all functions u(x, y) that obey the partial differential equa-
tion

ux = 0

b Let f(x) be a given function. Find all functions u(x, y) that
obey the partial differential equation

ux(x, y) = f(x)

Exercises — Stage 2
3. Solutions of Laplace’s equation uxx(x, y) + uyy(x, y) = 0 are called

harmonic functions. Which of the following functions are harmonic?
a x3 − 3xy2
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b x3 − y3

c sin(x) cos(y)

d e7x cos(7y)

e ln(x2 + y2)
4. ∗. Let u(x, t) = et+ax+ et−ax where a is a constant. Find a such that

5ut = uxx + u.
5. Let u(x, y, z) = e3x+4y sin(az) where a is a constant. Find all a’s such

that
uxx + uyy + uzz = 0

6. Let u(x, t) = sin(at) cos(bx) where a and b are constants. Find all a’s
and b’s such that utt = uxx.

7. Let F (u) be any differentiable function of one variable. Define z(x, y) =
F
(
x2 + y2). Is the partial differential equation

y
∂z

∂x
− x∂z

∂y
= 0

necessarily satisfied? You must justify your answer.
8. Let u(x, t) = f(t) cos(2x). Find all functions f(t) such that such that

ut = uxx.
9. Let u1(x, t) and u2(x, t) both be solutions of the wave equation utt =

uxx and let a1 and a2 be constants. Show that u(x, t) = a1u1(x, t) +
a2u2(t, x) is also a solution of utt = uxx. Because of this property, the
wave equation is said to be a linear PDE.

10. Let v(x, y) be a harmonic function. That is, v(x, y) obeys vxx+vyy =
0. Let a, b, c, d be constants. Show that if the vectors 〈a, b〉 and 〈c, d〉
have the same length and are mutually (fill in the missing
word), then u(x, y) = v(ax+ by , cx+dy) is also a harmonic function.

Exercises — Stage 3
11. The distance from the point (x, y, z) to the origin (0, 0, 0) is

r(x, y, z) =
√
x2 + y2 + z2

Find all functions u(x, y, z) = r(x, y, z)n, with n being a real constant,
that obey Laplace’s equation

uxx + uyy + uzz = 0

for all (x, y, z) 6= (0, 0, 0).
12. In this question we are going to find all solutions u(t, x) to the PDE

ut = xux for x > 0

that are of the special form u(x, t) = X(x)T (t), with, for simplicity,
X > 0 and T > 0. We will use a technique called “separation of
variables”.

a Show that u(x, t) = X(x)T (t), with X and T nonzero, obeys
the PDE ut = xux if and only if

T ′(t)
T (t) = x

X ′(x)
X(x)
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b Show that T ′(t)
T (t) = xX

′(x)
X(x) if and only if there is a constant λ

such that

T ′(t) = λT (t)

X ′(x) = λ

x
X(x)

c Find the general solutions to T ′(t) = λT (t) and X ′(x) = λ
xX(x)

with T,X > 0.
13. Suppose that u(x, y) obeys the PDE

α(x, y)ux(x, y) + β(x, y)uy(x, y) = 0

where α(x, y) and β(x, y) are given functions. Let
(
X(t), Y (t)

)
be a

curve7 in the xy-plane that obeys

dX
dt (t) = α

(
X(t), Y (t)

)
dY
dt (t) = β

(
X(t), Y (t)

)
Show that u is constant along that curve. That is, show that u

(
X(t), Y (t)

)
is independent of t.

14.
a Suppose that u(x, y) obeys the PDE

3ux(x, y) + 6uy(x, y) = u(x, y).

Define v(X,Y ) = u(X,Y + 2X). Find a PDE that v obeys.

b Suppose that u(x, y) obeys the PDE

xux(x, y) + yuy(x, y) = u(x, y).

Define v(X,Y ) = u(X,XeY ). Find a PDE that v obeys.

2.9 Maximum and Minimum Values
One of the core topics in single variable calculus courses is finding the maxima
and minima of functions of one variable. We’ll now extend that discussion to
functions of more than one variable1. Rather than leaping into the deep end,
we’ll not be too ambitious and concentrate on functions of two variables. That
being said, many of the techniques work more generally. To start, we have the
following natural extensions to some familiar definitions.

Definition 2.9.1 Let the function f(x, y) be defined for all (x, y) in some
subset R of R2. Let (a, b) be a point in R.

• (a, b) is a local maximum of f(x, y) if f(x, y) ≤ f(a, b) for all (x, y) close
to (a, b). More precisely, (a, b) is a local maximum of f(x, y) if there is
an r > 0 such that f(x, y) ≤ f(a, b) for all points (x, y) within a distance

7Such curves are called characteristics of the PDE.
1Life is not (always) one-dimensional and sometimes we have to embrace it.
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r of (a, b).

• (a, b) is a local minimum of f(x, y) if f(x, y) ≥ f(a, b) for all (x, y) close
to (a, b).

• Local maximum and minimum values are also called extremal values.

• (a, b) is an absolute maximum or global maximum of f(x, y) if f(x, y) ≤
f(a, b) for all (x, y) in R.

• (a, b) is an absolute minimum or global minimum of f(x, y) if f(x, y) ≥
f(a, b) for all (x, y) in R.

♦

2.9.1 Local Maxima and Minima
One of the first things you did when you were developing the techniques used
to find the maximum and minimum values of f(x) was ask yourself2

• Suppose that the largest value of f(x) is f(a). What does that tell us
about a?

After a little thought you answered

• If the largest value of f(x) is f(a) and f is differentiable at a, then
f ′(a) = 0.

x

y

y “ fpxq

Let’s recall why that’s true. Suppose that the largest value of f(x) is f(a).
Then for all h > 0,

f(a+h) ≤ f(a) =⇒ f(a+h)− f(a) ≤ 0 =⇒ f(a+h)− f(a)
h

≤ 0 if h > 0

Taking the limit h→ 0 tells us that f ′(a) ≤ 0. Similarly3, for all h < 0,

f(a+h) ≤ f(a) =⇒ f(a+h)− f(a) ≤ 0 =⇒ f(a+h)− f(a)
h

≥ 0 if h < 0

Taking the limit h→ 0 now tells us that f ′(a) ≥ 0. So we have both f ′(a) ≥ 0
and f ′(a) ≤ 0 which forces f ′(a) = 0.

You also observed at the time that for this argument to work, you only
need f(x) ≤ f(a) for all x’s close to a, not necessarily for all x’s in the whole
world. (In the above inequalities, we only used f(a + h) with h small.) Since
we care only about f(x) for x near a, we can refine the above statement.

2Or perhaps your instructor asked you.
3Recall that if h < 0 and A ≤ B, then hA ≥ hB. This is because the product of any two

negative numbers is positive, so that h < 0, A ≤ B =⇒ A−B ≤ 0 =⇒ h(A−B) ≥ 0 =⇒
hA ≥ hB.
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• If f(a) is a local maximum for f(x) and f is differentiable at a, then
f ′(a) = 0.

Precisely the same reasoning applies to minima.

• If f(a) is a local minimum for f(x) and f is differentiable at a, then
f ′(a) = 0.

Let’s use the ideas of the above discourse to extend the study of local
maxima and local minima to functions of more than one variable. Suppose
that the function f(x, y) is defined for all (x, y) in some subset R of R2, that
(a, b) is point of R that is not on the boundary of R, and that f has a local
maximum at (a, b). See the figure below.

z

y

x

R

pa,b , fpa,bqq

pa,bq

z “ fpx, yq

Then the function f(x, y) must decrease in value as (x, y) moves away from
(a, b) in any direction. No matter which direction d we choose, the directional
derivative of f at (a, b) in direction d must be zero or smaller. Writing this in
mathematical symbols, we get

Ddf(a, b) =∇∇∇f(a, b) · d
|d| ≤ 0

And the directional derivative of f at (a, b) in the direction −d also must be
zero or negative.

D−df(a, b) =∇∇∇f(a, b) · −d
|d| ≤ 0 which implies that ∇∇∇f(a, b) · d

|d| ≥ 0

As ∇∇∇f(a, b) · d
|d| must be both positive (or zero) and negative (or zero) at

the same time, it must be zero. In particular, choosing d = ı̂ıı forces the x
component of ∇∇∇f(a, b) to be zero, and choosing d = ̂ forces the y component
of ∇∇∇f(a, b) to be zero. We have thus shown that ∇∇∇f(a, b) = 0. The same
argument shows that ∇∇∇f(a, b) = 0 when (a, b) is a local minimum too. This is
an important and useful result, so let’s theoremise it.

Theorem 2.9.2 Let the function f(x, y) be defined for all (x, y) in some subset
R of R2. Assume that

• (a, b) is a point of R that is not on the boundary of R and

• (a, b) is a local maximum or local minimum of f and that

• the partial derivatives of f exist at (a, b).

Then
∇∇∇f(a, b) = 0.
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Definition 2.9.3 Let f(x, y) be a function and let (a, b) be a point in its
domain. Then

• if∇∇∇f(a, b) exists and is zero we call (a, b) a critical point (or a stationary
point) of the function, and

• if ∇∇∇f(a, b) does not exist then we call (a, b) a singular point of the func-
tion.

♦

Warning 2.9.4 Note that some people (and texts) combine both of these cases
and call (a, b) a critical point when either the gradient is zero or does not exist.

Warning 2.9.5 Theorem 2.9.2 tells us that every local maximum or minimum
(in the interior of the domain of a function whose partial derivatives exist) is
a critical point. Beware that it does not4 tell us that every critical point is
either a local maximum or a local minimum.

In fact, we shall see later5, in Examples 2.9.13 and 2.9.15, critical points
that are neither local maxima nor a local minima. None-the-less, Theorem
2.9.2 is very useful because often functions have only a small number of critical
points. To find local maxima and minima of such functions, we only need to
consider its critical and singular points. We’ll return later to the question of
how to tell if a critical point is a local maximum, local minimum or neither.
For now, we’ll just practice finding critical points.

Example 2.9.6 f(x, y) = x2 − 2xy + 2y2 + 2x − 6y + 12. Find all critical
points of f(x, y) = x2 − 2xy + 2y2 + 2x− 6y + 12.
Solution. To find the critical points, we need to find the gradient. To find the
gradient we need to find the first order partial derivatives. So, as a preliminary
calculation, we find the two first order partial derivatives of f(x, y).

fx(x, y) = 2x− 2y + 2
fy(x, y) = −2x+ 4y − 6

So the critical points are the solutions of the pair of equations

2x− 2y + 2 = 0 − 2x+ 4y − 6 = 0

or equivalently (dividing by two and moving the constants to the right hand
side)

x− y = −1 (E1)
−x+ 2y = 3 (E2)

This is a system of two equations in two unknowns (x and y). One strategy
for a solving system like this is to

• First use one of the equations to solve for one of the unknowns in terms
of the other unknown. For example, (E1) tells us that y = x + 1. This
expresses y in terms of x. We say that we have solved for y in terms of
x.

4A very common error of logic that people make is “Affirming the consequent”. “If P
then Q” is true, does not imply that “If Q then P” is true . The statement “If he is
Shakespeare then he is dead” is true. But concluding from “That man is dead” that “He
must be Shakespeare” is just silly.

5And you also saw, for example in Example 3.6.4 of the CLP-1 text, that critical points
that are also inflection points are neither local maxima nor local minima.
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• Then substitute the result, y = x+1 in our case, into the other equation,
(E2). In our case, this gives

−x+ 2(x+ 1) = 3 ⇐⇒ x+ 2 = 3 ⇐⇒ x = 1

• We have now found that x = 1, y = x+1 = 2 is the only solution. So the
only critical point is (1, 2). Of course it only takes a moment to verify
that ∇∇∇f(1, 2) = 〈0, 0〉. It is a good idea to do this as a simple check of
our work.

An alternative strategy for solving a system of two equations in two unknowns,
like (E1) and (E2), is to

• add equations (E1) and (E2) together. This gives

(E1) + (E2) : (1− 1)x+ (−1 + 2)y = −1 + 3 ⇐⇒ y = 2

The point here is that adding equations (E1) and (E2) together eliminates
the unknown x, leaving us with one equation in the unknown y, which is
easily solved. For other systems of equations you might have to multiply
the equations by some numbers before adding them together.

• We now know that y = 2. Substituting it into (E1) gives us

x− 2 = −1 =⇒ x = 1

• Once again (thankfully) we have found that the only critical point is
(1, 2).

�
This was pretty easy because we only had to solve linear equations, which

in turn was a consequence of the fact that f(x, y) was a polynomial of degree
two. Here is an example with some slightly more challenging algebra.

Example 2.9.7 f(x, y) = 2x3 − 6xy + y2 + 4y. Find all critical points of
f(x, y) = 2x3 − 6xy + y2 + 4y.
Solution. As in the last example, we need to find where the gradient is zero,
and to find the gradient we need the first order partial derivatives.

fx = 6x2 − 6y fy = −6x+ 2y + 4

So the critical points are the solutions of

6x2 − 6y = 0 − 6x+ 2y + 4 = 0

We can rewrite the first equation as y = x2, which expresses y as a function of
x. We can then substitute y = x2 into the second equation, giving

−6x+ 2y + 4 = 0 ⇐⇒ −6x+ 2x2 + 4 = 0 ⇐⇒ x2 − 3x+ 2 = 0
⇐⇒ (x− 1)(x− 2) = 0
⇐⇒ x = 1 or 2

When x = 1, y = 12 = 1 and when x = 2, y = 22 = 4. So, there are two
critical points: (1, 1), (2, 4).

Alternatively, we could have also used the second equation to write y =
3x− 2, and then substituted that into the first equation to get

6x2 − 6(3x− 2) = 0 ⇐⇒ x2 − 3x+ 2 = 0

just as above. �
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And here is an example for which the algebra requires a bit more thought.

Example 2.9.8 f(x, y) = xy(5x+y−15). Find all critical points of f(x, y) =
xy(5x+ y − 15).
Solution. The first order partial derivatives of f(x, y) = xy(5x+ y− 15) are

fx(x, y) = y(5x+ y − 15) + xy(5) = y(5x+ y − 15) + y(5x)
= y(10x+ y − 15)

fy(x, y) = x(5x+ y − 15) + xy(1) = x(5x+ y − 15) + x(y)
= x(5x+ 2y − 15)

The critical points are the solutions of fx(x, y) = fy(x, y) = 0. That is, we
need to find all x, y that satisfy the pair of equations

y(10x+ y − 15) = 0 (E1)
x(5x+ 2y − 15) = 0 (E2)

The first equation, y(10x + y − 15) = 0, is satisfied if at least one of the two
factors y, (10x+ y− 15) is zero. So the first equation is satisfied if at least one
of the two equations

y = 0 (E1a)
10x+ y = 15 (E1b)

is satisfied. The second equation, x(5x+2y−15) = 0, is satisfied if at least one
of the two factors x, (5x+ 2y − 15) is zero. So the second equation is satisfied
if at least one of the two equations

x = 0 (E2a)
5x+ 2y = 15 (E2b)

is satisfied.
So both critical point equations (E1) and (E2) are satisfied if and only if

at least one of (E1a), (E1b) is satisfied and in addition at least one of (E2a),
(E2b) is satisfied. So both critical point equations (E1) and (E2) are satisfied
if and only if at least one of the following four possibilities hold.

• (E1a) and (E2a) are satisfied if and only if x = y = 0

• (E1a) and (E2b) are satisfied if and only if y = 0, 5x + 2y = 15 ⇐⇒
y = 0, 5x = 15

• (E1b) and (E2a) are satisfied if and only if 10x + y = 15, x = 0 ⇐⇒
y = 15, x = 0

• (E1b) and (E2b) are satisfied if and only if 10x+ y = 15, 5x+ 2y = 15.
We can use, for example, the second of these equations to solve for x
in terms of y: x = 1

5 (15 − 2y). When we substitute this into the first
equation we get 2(15−2y) +y = 15, which we can solve for y. This gives
−3y = 15− 30 or y = 5 and then x = 1

5 (15− 2× 5) = 1.

In conclusion, the critical points are (0, 0), (3, 0), (0, 15) and (1, 5).
A more compact way to write what we have just done is

fx(x, y) = 0 and fy(x, y) = 0
⇐⇒ y(10x+ y − 15) = 0 and x(5x+ 2y − 15) = 0
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⇐⇒
{
y = 0 or 10x+ y = 15

}
and

{
x = 0 or 5x+ 2y = 15

}
⇐⇒

{
y = 0, x = 0

}
or
{
y = 0, 5x+ 2y = 15

}
or
{

10x+ y = 15, x = 0
}
or
{

10x+ y = 15, 5x+ 2y = 15
}

⇐⇒
{
x = y = 0

}
or
{
y = 0, x = 3

}
or
{
x = 0, y = 15

}
or
{
x = 1, y = 5

}
�

Let’s try a more practical example — something from the real world. Well,
a mathematician’s “real world”. The interested reader should search-engine
their way to a discussion of “idealisation”, “game theory” “Cournot models”
and “Bertrand models”. But don’t spend too long there. A discussion of
breweries is about to take place.
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Example 2.9.9 In a certain community, there are two breweries in competi-
tion6, so that sales of each negatively affect the profits of the other. If brewery
A produces x litres of beer per month and brewery B produces y litres per
month, then the profits of the two breweries are given by

P = 2x− 2x2 + y2

106 Q = 2y − 4y2 + x2

2× 106

respectively. Find the sum of the two profits if each brewery independently
sets its own production level to maximize its own profit and assumes that its
competitor does likewise. Then, assuming cartel behaviour, find the sum of
the two profits if the two breweries cooperate so as to maximize that sum7.
Solution. If A adjusts x to maximize P (for y held fixed) and B adjusts y to
maximize Q (for x held fixed) then x and y are determined by the equations

Px = 2− 4x
106 = 0 (E1)

Qy = 2− 8y
2×106 = 0 (E2)

Equation (E1) yields x = 1
2106 and equation (E2) yields y = 1

2106. Knowing x
and y we can determine P , Q and the total profit

P +Q = 2(x+ y)− 1
106

( 5
2x

2 + 3y2)
= 106(1 + 1− 5

8 −
3
4
)

= 5
8106

On the other hand if (A,B) adjust (x, y) to maximize P + Q = 2(x + y) −
1

106

( 5
2x

2 + 3y2), then x and y are determined by

(P +Q)x = 2− 5x
106 = 0 (E1)

(P +Q)y = 2− 6y
106 = 0 (E2)

Equation (E1) yields x = 2
5106 and equation (E2) yields y = 1

3106. Again
knowing x and y we can determine the total profit

P +Q = 2(x+ y)− 1
106

( 5
2x

2 + 3y2)
= 106( 4

5 + 2
3 −

2
5 −

1
3
)

= 11
15106

So cooperating really does help their profits. Unfortunately, like a very small
tea-pot, consumers will be a little poorer8. �

Moving swiftly away from the last pun, let’s do something a little more
geometric.

Example 2.9.10 Equal angle bends are made at equal distances from the two
ends of a 100 metre long fence so the resulting three segment fence can be
placed along an existing wall to make an enclosure of trapezoidal shape. What
is the largest possible area for such an enclosure?

Solution. This is a very geometric problem (fenced off from pun opportuni-
ties), and as such we should start by drawing a sketch and introducing some
variable names.

6We have both types of music here — country and western.
7This sort of thing is generally illegal.
8Sorry about the pun.
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x sin θx x

100 ´ 2x
θθ

The area enclosed by the fence is the area inside the blue rectangle (in the
figure on the right above) plus the area inside the two blue triangles.

A(x, θ) = (100− 2x)x sin θ + 2 · 1
2 · x sin θ · x cos θ

= (100x− 2x2) sin θ + x2 sin θ cos θ

To maximize the area, we need to solve

0 = ∂A

∂x
= (100− 4x) sin θ + 2x sin θ cos θ

0 = ∂A

∂θ
= (100x− 2x2) cos θ + x2{ cos2 θ − sin2 θ

}
Note that both terms in the first equation contain the factor sin θ and all terms
in the second equation contain the factor x. If either sin θ or x are zero the
area A(x, θ) will also be zero, and so will certainly not be maximal. So we may
divide the first equation by sin θ and the second equation by x, giving

(100− 4x) + 2x cos θ = 0 (E1)
(100− 2x) cos θ + x

{
cos2 θ − sin2 θ

}
= 0 (E2)

These equations might look a little scary. But there is no need to panic. They
are not as bad as they look because θ enters only through cos θ and sin2 θ,
which we can easily write in terms of cos θ. Furthermore we can eliminate
cos θ by observing that the first equation forces cos θ = − 100−4x

2x and hence
sin2 θ = 1− cos2 θ = 1− (100−4x)2

4x2 . Substituting these into the second equation
gives

−(100− 2x)100− 4x
2x + x

[
(100− 4x)2

2x2 − 1
]

= 0

=⇒ −(100− 2x)(100− 4x) + (100− 4x)2 − 2x2 = 0
=⇒ 6x2 − 200x = 0

=⇒ x = 100
3 cos θ = −−100/3

200/3 = 1
2 θ = 60◦

and the maximum area enclosed is

A =
(

100100
3 − 21002

32

)√3
2 + 1

2
1002

32

√
3

2 = 2500√
3

�
Now here is a very useful (even practical!) statistical example — finding

the line that best fits a given collection of points.

Example 2.9.11 Linear regression. An experiment yields n data points
(xi, yi), i = 1, 2, · · · , n. We wish to find the straight line y = mx + b which
“best” fits the data.
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x

y

px1,y1q
px2,y2q

px3,y3q

pxn,ynq

y “ mx ` b

The definition of “best” is “minimizes the root mean square error”, i.e.
minimizes

E(m, b) =
n∑
i=1

(mxi + b− yi)2

Note that
• term number i in E(m, b) is the square of the difference between yi,

which is the ith measured value of y, and
[
mx + b

]
x=xi

, which is the
approximation to yi given by the line y = mx+ b.

• All terms in the sum are positive, regardless of whether the points (xi, yi)
are above or below the line.

Our problem is to find the m and b that minimizes E(m, b). This technique
for drawing a line through a bunch of data points is called “linear regression”.
It is used a lot9 10. Even in the real world — and not just the real world that
you find in mathematics problems. The actual real world that involves jobs.
Solution. We wish to choose m and b so as to minimize E(m, b). So we need
to determine where the partial derivatives of E are zero.

0 = ∂E

∂m
=

n∑
i=1

2(mxi + b− yi)xi = m
[ n∑
i=1

2x2
i

]
+ b
[ n∑
i=1

2xi
]
−
[ n∑
i=1

2xiyi
]

0 = ∂E

∂b
=

n∑
i=1

2(mxi + b− yi) = m
[ n∑
i=1

2xi
]

+ b
[ n∑
i=1

2
]
−
[ n∑
i=1

2yi
]

There are a lot of symbols here. But remember that all of the xi’s and yi’s are
given constants. They come from, for example, experimental data. The only
unknowns are m and b. To emphasize this, and to save some writing, define
the constants

Sx =
n∑
i=1

xi Sy =
n∑
i=1

yi Sx2 =
n∑
i=1

x2
i Sxy =

n∑
i=1

xiyi

The equations which determine the critical points are (after dividing by two)

Sx2 m+ Sx b = Sxy (E1)
Sxm+ n b = Sy (E2)

These are two linear equations on the unknowns m and b. They may be solved
in any of the usual ways. One is to use (E2) to solve for b in terms of m

b = 1
n

(
Sy − Sxm

)
(E3)
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and then substitute this into (E1) to get the equation

Sx2 m+ 1
n
Sx
(
Sy − Sxm

)
= Sxy =⇒

(
nSx2 − S2

x

)
m = nSxy − SxSy

for m. We can then solve this equation for m and substitute back into (E3) to
get b. This gives

m = nSxy − SxSy
nSx2 − S2

x

b = Sy
n

nSx2 − S2
x

nSx2 − S2
x

− Sx
n

nSxy − SxSy
nSx2 − S2

x

= nSySx2 − nSxSxy
n(nSx2 − S2

x)

= −SxSxy − SySx
2

nSx2 − S2
x

Another way to solve the system of equations is

n(E1)− Sx(E2) :
[
nSx2 − S2

x

]
m = nSxy − SxSy

−Sx(E1) + Sx2(E2) :
[
nSx2 − S2

x

]
b = −SxSxy + SySx2

which gives the same solution.
So given a bunch of data points, it only takes a quick bit of arithmetic — no

calculus required — to apply the above formulae and so to find the best fitting
line. Of course while you don’t need any calculus to apply the formulae, you do
need calculus to understand where they came from. The same technique can
be extended to other types of curve fitting problems. For example, polynomial
regression. �

2.9.2 The Second Derivative Test
Now let’s start thinking about how to tell if a critical point is a local minimum
or maximum. Remember what happens for functions of one variable. Suppose
that x = a is a critical point of the function f(x). Any (sufficiently smooth)
function is well approximated, when x is close to a, by the first few terms of
its Taylor expansion

f(x) = f(a) + f ′(a) (x− a) + 1
2f
′′(a) (x− a)2 + 1

3!f
(3)(a) (x− a)3 + · · ·

As a is a critical point, we know that f ′(a) = 0 and

f(x) = f(a) + 1
2f
′′(a) (x− a)2 + 1

3!f
(3)(a) (x− a)3 + · · ·

If f ′′(a) 6= 0, f(x) is going to look a lot like f(a) + 1
2f
′′(a) (x− a)2 when x is

really close to a. In particular

• if f ′′(a) > 0, then we will have f(x) > f(a) when x is close to (but not
equal to) a, so that a will be a local minimum and

• if f ′′(a) < 0, then we will have f(x) < f(a) when x is close to (but not
equal to) a, so that a will be a local maximum, but

• if f ′′(a) = 0, then we cannot draw any conclusions without more work.
9Proof by search engine.

10And has been used for a long time. It was introduced by the French mathematician
Adrien-Marie Legendre, 1752--1833, in 1805, and by the German mathematician and physi-
cist Carl Friedrich Gauss, 1777--1855, in 1809.
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A similar, but messier, analysis is possible for functions of two variables. Here
are some simple quadratic examples that provide a warmup for that messier
analysis.
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Example 2.9.12 f(x, y) = x2 + 3xy+ 3y2 − 6x− 3y− 6. Consider f(x, y) =
x2 + 3xy + 3y2 − 6x− 3y − 6. The gradient of f is

∇∇∇f(x, y) =
(
2x+ 3y − 6

)
ı̂ıı+

(
3x+ 6y − 3

)
̂

So (x, y) is a critical point of f if and only if

2x+ 3y = 6 (E1)
3x+ 6y = 3 (E2)

Multiplying the first equation by 2 and subtracting the second equation gives

x = 9 (2(E1) - (E2))

Then substituting x = 9 back into the first equation gives

2× 9 + 3y = 6 =⇒ y = −4

So f(x, y) has precisely one critical point, namely (9 , −4).
Now let’s try to determine if f(x, y) has a local minimum, or a local maxi-

mum, or neither, at (9,−4). A good way to determine the behaviour of f(x, y)
for (x, y) near (9,−4) is to make the change of variables11

x = 9 + ∆x y = −4 + ∆y

and study the behaviour of f for ∆x and ∆y near zero.

f
(
9 + ∆x , −4 + ∆y

)
= (9 + ∆x)2 + 3(9 + ∆x)(−4 + ∆y) + 3(−4 + ∆y)2

− 6(9 + ∆x)− 3(−4 + ∆y)− 6
= (∆x)2 + 3∆x∆y + 3(∆y)2 − 27

And a good way to study the sign of quadratic expressions like (∆x)2 +
3∆x∆y + 3(∆y)2 is to complete the square. So far you have probably just
completed the square for quadratic expressions that involve only a single vari-
able. For example

x2 + 3x+ 3 =
(
x+ 3

2

)2
− 9

4 + 3

When there are two variables around, like ∆x and ∆y, you can just pretend
that one of them is a constant and complete the square as before. For example,
if you pretend that ∆y is a constant,

(∆x)2 + 3∆x∆y + 3(∆y)2 =
(

∆x+ 3
2∆y

)2
+
(

3− 9
4

)
(∆y)2

=
(

∆x+ 3
2∆y

)2
+ 3

4(∆y)2

To this point, we have expressed

f
(
9 + ∆x , −4 + ∆y

)
=
(

∆x+ 3
2∆y

)2
+ 3

4(∆y)2 − 27

As the smallest values of
(
∆x+ 3

2∆y
)2 and 3

4 (∆y)2 are both zero, we have
that

f(x, y) = f
(
9 + ∆x , −4 + ∆y

)
≥ −27 = f(9,−4)

for all (x, y) so that (9,−4) is both a local minimum and a global minimum
for f . �

You have already encountered single variable functions that have a critical
point which is neither a local max nor a local min. See Example 3.5.9 in the

11This is equivalent to translating the graph so that the critical point lies at (0, 0).
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CLP-1 text. Here are a couple of examples which show that this can also
happen for functions of two variables. We’ll start with the simplest possible
such example.

Example 2.9.13 f(x, y) = x2 − y2. The first partial derivatives of f(x, y) =
x2 − y2 are fx(x, y) = 2x and fy(x, y) = −2y. So the only critical point of
this function is (0, 0). Is this a local minimum or maximum? Well let’s start
with (x, y) at (0, 0) and then move (x, y) away from (0, 0) and see if f(x, y)
gets bigger or smaller. At the origin f(0, 0) = 0. Of course we can move (x, y)
away from (0, 0) in many different directions.

• First consider moving (x, y) along the x-axis. Then (x, y) = (x, 0) and
f(x, y) = f(x, 0) = x2. So when we start with x = 0 and then increase x,
the value of the function f increases — which means that (0, 0) cannot
be a local maximum for f .

• Next let’s move (x, y) away from (0, 0) along the y-axis. Then (x, y) =
(0, y) and f(x, y) = f(0, y) = −y2. So when we start with y = 0 and
then increase y, the value of the function f decreases — which means
that (0, 0) cannot be a local minimum for f .

So moving away from (0, 0) in one direction causes the value of f to increase,
while moving away from (0, 0) in a second direction causes the value of f to
decrease. Consequently (0, 0) is neither a local minimum or maximum for f .
It is called a saddle point, because the graph of f looks like a saddle. (The full
definition of “saddle point” is given immediately after this example.) Here are
some figures showing the graph of f .

The figure below show some level curves of f . Observe from the level curves
that

• f increases as you leave (0, 0) walking along the x axis

• f decreases as you leave (0, 0) walking along the y axis
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x

y

f=0
f=1f=1

f=−1

f=−1

f=4f=4

f=−4

f=−4

f=9f=9

f=−9

f=−9

�
Approximately speaking, if a critical point (a, b) is neither a local minimum

nor a local maximum, then it is a saddle point. For (a, b) to not be a local
minimum, f has to take values bigger than f(a, b) at some points nearby (a, b).
For (a, b) to not be a local maximum, f has to take values smaller than f(a, b)
at some points nearby (a, b). Writing this more mathematically we get the
following definition.

Definition 2.9.14 The critical point (a, b) is called a saddle point for the
function f(x, y) if, for each r > 0,

• there is at least one point (x, y), within a distance r of (a, b), for which
f(x, y) > f(a, b) and

• there is at least one point (x, y), within a distance r of (a, b), for which
f(x, y) < f(a, b).

♦
Here is another example of a saddle point. This time we have to work a bit

to see it.
Example 2.9.15 f(x, y) = x2 − 2xy − y2 + 4y − 2. Consider f(x, y) =
x2 − 2xy − y2 + 4y − 2. The gradient of f is

∇∇∇f(x, y) =
(
2x− 2y

)
ı̂ıı+

(
− 2x− 2y + 4

)
̂

So (x, y) is a critical point of f if and only if

2x− 2y = 0
−2x− 2y = −4

The first equation gives that x = y. Substituting y = x into the second
equation gives

−2y − 2y = −4 =⇒ x = y = 1

So f(x, y) has precisely one critical point, namely (1, 1).
To determine if f(x, y) has a local minimum, or a local maximum, or nei-

ther, at (1, 1), we proceed as in Example 2.9.12. We make the change of
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variables
x = 1 + ∆x y = 1 + ∆y

to give

f
(
1 + ∆x , 1 + ∆y

)
= (1 + ∆x)2 − 2(1 + ∆x)(1 + ∆y)− (1 + ∆y)2 + 4(1 + ∆y)− 2
= (∆x)2 − 2∆x∆y − (∆y)2

Completing the square,

f
(
1 + ∆x , 1 + ∆y

)
= (∆x)2 − 2∆x∆y − (∆y)2 = (∆x−∆y)2 − 2(∆y)2

Notice that f has now been written as the difference of two squares, much like
the f in the saddle point Example 2.9.13.

• If ∆x and ∆y are such that the first square (∆x−∆y)2 is nonzero, but
the second square (∆y)2 is zero, then f

(
1+∆x , 1+∆y

)
= (∆x−∆y)2

>

0 = f(1, 1). That is, whenever ∆y = 0 and ∆x 6= ∆y, then f
(
1+∆x , 1+

∆y
)

= (∆x−∆y)2
> 0 = f(1, 1).

• On the other hand, if ∆x and ∆y are such that the first square (∆x−∆y)2

is zero but the second square (∆y)2 is nonzero, then f
(
1+∆x , 1+∆y

)
=

−2(∆y)2 < 0 = f(1, 1). That is, whenever ∆x = ∆y 6= 0, then
f
(
1 + ∆x , 1 + ∆y

)
= −2(∆y)2 < 0 = f(1, 1).

f “ 0

f ă 0

f ă 0

f ą 0f ą 0

x

y

p1, 1q

So

• f(x, y) > f(1, 1) at all points on the blue line in the figure above, and

• f(x, y) < f(1, 1) at all point on the red line.

We conclude that (1, 1) is the only critical point for f(x, y), and furthermore
that it is a saddle point. �

The above three examples show that we can find all critical points of
quadratic functions of two variables. We can also classify each critical point
as either a minimum, a maximum or a saddle point.

Of course not every function is quadratic. But by using the quadratic ap-
proximation 2.6.12 we can apply the same ideas much more generally. Suppose
that (a, b) is a critical point of some function f(x, y). For ∆x and ∆y small,
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the quadratic approximation 2.6.12 gives

f
(
a+ ∆x , b+ ∆y

)
≈ f

(
a , b

)
+ fx

(
a , b

)
∆x+ fy

(
a , b

)
∆y

+ 1
2
{
fxx
(
a, b
)

∆x2 + 2fxy
(
a, b
)

∆x∆y + fyy
(
a, b
)

∆y2}
= f

(
a , b

)
+ 1

2
{
fxx
(
a, b
)

∆x2 + 2fxy
(
a, b
)

∆x∆y + fyy
(
a, b
)

∆y2}
(∗)

since (a, b) is a critical point so that fx(a, b) = fy(a, b) = 0. Then using the
technique of Examples 2.9.12 and 2.9.15, we get12 (details below).

Theorem 2.9.16 Second Derivative Test. Let r > 0 and assume that
all second order derivatives of the function f(x, y) are continuous at all points
(x, y) that are within a distance r of (a, b). Assume that fx(a, b) = fy(a, b) = 0.
Define

D(x, y) = fxx(x, y) fyy(x, y)− fxy(x, y)2

It is called the discriminant of f . Then
• if D(a, b) > 0 and fxx(a, b) > 0, then f(x, y) has a local minimum at

(a, b),

• if D(a, b) > 0 and fxx(a, b) < 0, then f(x, y) has a local maximum at
(a, b),

• if D(a, b) < 0, then f(x, y) has a saddle point at (a, b), but

• if D(a, b) = 0, then we cannot draw any conclusions without more work.
Proof. We are putting quotation marks around the word “Proof”, because
we are not going to justify the fact that it suffices to analyse the quadratic
approximation in equation (∗). Let’s temporarily suppress the arguments (a, b).
If fxx(a, b) 6= 0, then by completing the square we can write

fxx ∆x2 + 2fxy ∆x∆y + fyy ∆y2

= fxx

(
∆x+ fxy

fxx
∆y
)2

+
(
fyy −

f2
xy

fxx

)
∆y2

= 1
fxx

{(
fxx ∆x+ fxy ∆y

)2 +
(
fxxfyy − f2

xy

)
∆y2

}
Similarly, if fyy(a, b) 6= 0,

fxx ∆x2 + 2fxy ∆x∆y + fyy ∆y2

= 1
fyy

{(
fxy ∆x+ fyy ∆y

)2 +
(
fxxfyy − f2

xy

)
∆x2

}
Note that this algebra breaks down if fxx(a, b) = fyy(a, b) = 0. We’ll deal with
that case shortly. More importantly, note that

• if
(
fxxfyy − f2

xy

)
> 0 then both fxx and fyy must be nonzero and of the

same sign and furthermore, whenever ∆x or ∆y are nonzero,{(
fxx ∆x+ fxy ∆y

)2 +
(
fxxfyy − f2

xy

)
∆y2

}
> 0 and{(

fxy ∆x+ fyy ∆y
)2 +

(
fxxfyy − f2

xy

)
∆x2

}
> 0

12There are analogous results in higher dimensions that are accessible to people who have
learned some linear algebra. They are derived by diagonalizing the matrix of second deriva-
tives, which is called the Hessian matrix.
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so that, recalling (∗),

◦ if fxx(a, b) > 0, then (a, b) is a local minimum and
◦ if fxx(a, b) < 0, then (a, b) is a local maximum.

• If
(
fxxfyy − f2

xy

)
< 0 and fxx is nonzero then{(
fxx ∆x+ fxy ∆y

)2 +
(
fxxfyy − f2

xy

)
∆y2

}
is strictly positive whenever ∆x 6= 0, ∆y = 0 and is strictly negative
whenever fxx ∆x + fxy ∆y = 0, ∆y 6= 0, so that (a, b) is a saddle point.
Similarly, (a, b) is also a saddle point if

(
fxxfyy − f2

xy

)
< 0 and fyy is

nonzero.

• Finally, if fxy 6= 0 and fxx = fyy = 0, then

fxx ∆x2 + 2fxy ∆x∆y + fyy ∆y2 = 2fxy ∆x∆y

is strictly positive for one sign of ∆x∆y and is strictly negative for the
other sign of ∆x∆y. So (a, b) is again a saddle point.

�
You might wonder why, in the local maximum/local minimum cases of

Theorem 2.9.16, fxx(a, b) appears rather than fyy(a, b). The answer is only
that x is before y in the alphabet13. You can use fyy(a, b) just as well as
fxx(a, b). The reason is that if D(a, b) > 0 (as in the first two bullets of
the theorem), then because D(a, b) = fxx(a, b) fyy(a, b) − fxy(a, b)2 > 0, we
necessarily have fxx(a, b) fyy(a, b) > 0 so that fxx(a, b) and fyy(a, b) must have
the same sign — either both are positive or both are negative.

You might also wonder why we cannot draw any conclusions whenD(a, b) =
0 and what happens then. The second derivative test for functions of two
variables was derived in precisely the same way as the second derivative test
for functions of one variable is derived — you approximate the function by
a polynomial that is of degree two in (x − a), (y − b) and then you analyze
the behaviour of the quadratic polynomial near (a, b). For this to work, the
contributions to f(x, y) from terms that are of degree two in (x − a), (y − b)
had better be bigger than the contributions to f(x, y) from terms that are of
degree three and higher in (x−a), (y−b) when (x−a), (y−b) are really small.
If this is not the case, for example when the terms in f(x, y) that are of degree
two in (x − a), (y − b) all have coefficients that are exactly zero, the analysis
will certainly break down. That’s exactly what happens when D(a, b) = 0.
Here are some examples. The functions

f1(x, y) = x4 + y4 f2(x, y) = −x4 − y4

f3(x, y) = x3 + y3 f4(x, y) = x4 − y4

all have (0, 0) as the only critical point and all have D(0, 0) = 0. The first,
f1 has its minimum there. The second, f2, has its maximum there. The third
and fourth have a saddle point there.

Here are sketches of some level curves for each of these four functions (with
all renamed to simply f).

13The shackles of convention are not limited to mathematics. Election ballots often have
the candidates listed in alphabetic order.
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x

y

f“0

f“0.1

f“1

f“4

f“9

level curves of fpx, yq “ x4 ` y4

x

y

f“0

f“´0.1

f“´1

f“´4

f“´9

level curves of fpx, yq “ ´x4 ´ y4

x

y

f“0

f“1

f“´1

f“4

f“´4

level curves of fpx, yq “ x3 ` y3

x

y

f“0

f“0

f“1f“1

f“´1

f“´1

f“4f“4

f“´4

f“´4

level curves of fpx, yq “ x4 ´ y4

Example 2.9.17 f(x, y) = 2x3− 6xy+ y2 + 4y. Find and classify all critical
points of f(x, y) = 2x3 − 6xy + y2 + 4y.
Solution. Thinking a little way ahead, to find the critical points we will need
the gradient and to apply the second derivative test of Theorem 2.9.16 we will
need all second order partial derivatives. So we need all partial derivatives of
order up to two. Here they are.

f = 2x3 − 6xy + y2 + 4y
fx = 6x2 − 6y fxx = 12x fxy = −6
fy = −6x+ 2y + 4 fyy = 2 fyx = −6

(Of course, fxy and fyx have to be the same. It is still useful to compute both,
as a way to catch some mechanical errors.)

We have already found, in Example 2.9.7, that the critical points are
(1, 1), (2, 4). The classification is

critical
point fxxfyy − f2

xy fxx type
(1, 1) 12× 2− (−6)2 < 0 saddle point
(2, 4) 24× 2− (−6)2 > 0 24 local min

We were able to leave the fxx entry in the top row blank, because

• we knew that fxx(1, 1)fyy(1, 1)− f2
xy(1, 1) < 0, and

• we knew, from Theorem 2.9.16, that fxx(1, 1)fyy(1, 1)− f2
xy(1, 1) < 0, by

itself, was enough to ensure that (1, 1) was a saddle point.

Here is a sketch of some level curves of our f(x, y).
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x

y

p1,1q, fp1,1q“1

fp2,4q“0, p2,4q

f“0

f“0.25

f“0.5

f“0.5

f“1

f“1

f“2

f“2

f“3

f“3

They are not needed to answer this question, but can give you some idea
as to what the graph of f looks like. �

Example 2.9.18 f(x, y) = xy(5x + y − 15). Find and classify all critical
points of f(x, y) = xy(5x+ y − 15).
Solution. We have already computed the first order partial derivatives

fx(x, y) = y(10x+ y − 15) fy(x, y) = x(5x+ 2y − 15)

of f(x, y) in Example 2.9.8. Again, to classify the critical points we need the
second order partial derivatives. They are

fxx(x, y) = 10y
fyy(x, y) = 2x
fxy(x, y) = (1)(10x+ y − 15) + y(1)= 10x+ 2y − 15
fyx(x, y) = (1)(5x+ 2y − 15) + x(5)= 10x+ 2y − 15

(Once again, we have computed both fxy and fyx to guard against mechanical
errors.) We have already found, in Example 2.9.8, that the critical points are
(0, 0), (0, 15), (3, 0) and (1, 5). The classification is

critical
point fxxfyy − f2

xy fxx type
(0, 0) 0× 0− (−15)2 < 0 saddle point
(0, 15) 150× 0− 152 < 0 saddle point
(3, 0) 0× 6− 152 < 0 saddle point
(1, 5) 50× 2− 52 > 0 75 local min

Here is a sketch of some level curves of our f(x, y). f is negative in the
shaded regions and f is positive in the unshaded regions.
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x

y

p3,0q, fp3,0q“0

fp0,0q“0, p0,0q

p0,15q, fp0,15q“0

fp1,5q“´25, p1,5q

f“0

f“´10

f“´20

f“´20f“´20
f“20

f“20f“20

Again this is not needed to answer this question, but can give you some
idea as to what the graph of f looks like. �

Example 2.9.19 Find and classify all of the critical points of f(x, y) = x3 +
xy2 − 3x2 − 4y2 + 4.
Solution. We know the drill now. We start by computing all of the partial
derivatives of f up to order 2.

f = x3 + xy2 − 3x2 − 4y2 + 4
fx = 3x2 + y2 − 6x fxx = 6x− 6 fxy = 2y
fy = 2xy − 8y fyy = 2x− 8 fyx = 2y

The critical points are then the solutions of fx = 0, fy = 0. That is

fx = 3x2 + y2 − 6x = 0 (E1)
fy = 2y(x− 4) = 0 (E2)

The second equation, 2y(x − 4) = 0, is satisfied if and only if at least one of
the two equations y = 0 and x = 4 is satisfied.

• When y = 0, equation (E1) forces x to obey

0 = 3x2 + 02 − 6x = 3x(x− 2)

so that x = 0 or x = 2.

• When x = 4, equation (E1) forces y to obey

0 = 3× 42 + y2 − 6× 4 = 24 + y2

which is impossible.

So, there are two critical points: (0, 0), (2, 0). Here is a table that classifies
the critical points.
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critical
point fxxfyy − f2

xy fxx type
(0, 0) (−6)× (−8)− 02 > 0 −6 < 0 local max
(2, 0) 6× (−4)− 02 < 0 saddle point

�

Example 2.9.20 A manufacturer wishes to make an open rectangular box of
given volume V using the least possible material. Find the design specifications.
Solution. Denote by x, y and z, the length, width and height, respectively,
of the box.

y
x

z

The box has two sides of area xz, two sides of area yz and a bottom of area
xy. So the total surface area of material used is

S = 2xz + 2yz + xy

However the three dimensions x, y and z are not independent. The requirement
that the box have volume V imposes the constraint

xyz = V

We can use this constraint to eliminate one variable. Since z is at the end of
the alphabet (poor z), we eliminate z by substituting z = V

xy . So we have find
the values of x and y that minimize the function

S(x, y) = 2V
y

+ 2V
x

+ xy

Let’s start by finding the critical points of S. Since

Sx(x, y) = −2V
x2 + y

Sy(x, y) = −2V
y2 + x

(x, y) is a critical point if and only if

x2y = 2V (E1)
xy2 = 2V (E2)

Solving (E1) for y gives y = 2V
x2 . Substituting this into (E2) gives

x
4V 2

x4 = 2V =⇒ x3 = 2V =⇒ x = 3
√

2V and y = 2V
(2V )2/3 = 3

√
2V

As there is only one critical point, we would expect it to give the minimum14.
But let’s use the second derivative test to verify that at least the critical point
is a local minimum. The various second partial derivatives are

Sxx(x, y) = 4V
x3 Sxx

( 3
√

2V , 3
√

2V
)

= 2
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Sxy(x, y) = 1 Sxy
( 3
√

2V , 3
√

2V
)

= 1

Syy(x, y) = 4V
y3 Syy

( 3
√

2V , 3
√

2V
)

= 2

So

Sxx
( 3
√

2V , 3
√

2V
)
Syy
( 3
√

2V , 3
√

2V
)
− Sxy

( 3
√

2V , 3
√

2V
)2 = 3 > 0

Sxx
( 3
√

2V , 3
√

2V
)

= 2 > 0

and, by Theorem 2.9.16.b,
( 3
√

2V , 3
√

2V
)
is a local minimum and the desired

dimensions are

x = y = 3
√

2V z = 3

√
V

4
Note that our solution has x = y. That’s a good thing — the function S(x, y)
is symmetric in x and y. Because the box has no top, the symmetry does not
extend to z. �

2.9.3 Absolute Minima and Maxima
Of course a local maximum or minimum of a function need not be the absolute
maximum of minimum. We’ll now consider how to find the absolute maximum
and minimum. Let’s start by reviewing how one finds the absolute maximum
and minimum of a function of one variable on an interval.

For concreteness, let’s suppose that we want to find the extremal15 values
of a function f(x) on the interval 0 ≤ x ≤ 1. If an extremal value is attained
at some x = a which is in the interior of the interval, i.e. if 0 < a < 1, then
a is also a local maximum or minimum and so has to be a critical point of f .
But if an extremal value is attained at a boundary point a of the interval, i.e.
if a = 0 or a = 1, then a need not be a critical point of f . This happens, for
example, when f(x) = x. The largest value of f(x) on the interval 0 ≤ x ≤ 1
is 1 and is attained at x = 1, but f ′(x) = 1 is never zero, so that f has no
critical points.

x

y y = f(x) = x

1

1

So to find the maximum and minimum of the function f(x) on the interval
[0, 1], you

1. build up a list of all candidate points 0 ≤ a ≤ 1 at which the maximum
or minimum could be attained, by finding all a’s for which either

(a) 0 < a < 1 and f ′(a) = 0 or
(b) 0 < a < 1 and f ′(a) does not exist16 or
(c) a is a boundary point, i.e. a = 0 or a = 1,

14Indeed one can use the facts that 0 < x < ∞, that 0 < y < ∞, and that S → ∞ as
x → 0 and as y → 0 and as x → ∞ and as y → ∞ to prove that the single critical point
gives the global minimum.

15Recall that “extremal value” means “either maximum value or minimum value”.
16Recall that if f ′(a) does not exist, then a is called a singular point of f .
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2. and then you evaluate f(a) at each a on the list of candidates. The
biggest of these candidate values of f(a) is the absolute maximum and
the smallest of these candidate values is the absolute minimum.

The procedure for finding the maximum and minimum of a function of two
variables, f(x, y) in a set like, for example, the unit disk x2 +y2 ≤ 1, is similar.
You again

1. build up a list of all candidate points (a, b) in the set at which the max-
imum or minimum could be attained, by finding all (a, b)’s for which
either17

(a) (a, b) is in the interior of the set (for our example, a2 + b2 < 1) and
fx(a, b) = fy(a, b) = 0 or

(b) (a, b) is in the interior of the set and fx(a, b) or fy(a, b) does not
exist or

(c) (a, b) is a boundary18 point, (for our example, a2 + b2 = 1), and
could give the maximum or minimum on the boundary — more
about this shortly —

2. and then you evaluate f(a, b) at each (a, b) on the list of candidates. The
biggest of these candidate values of f(a, b) is the absolute maximum and
the smallest of these candidate values is the absolute minimum.

The boundary of a set, like x2 + y2 ≤ 1, in R2 is a curve, like x2 + y2 = 1.
This curve is a one dimensional set, meaning that it is like a deformed x-axis.
We can find the maximum and minimum of f(x, y) on this curve by converting
f(x, y) into a function of one variable (on the curve) and using the standard
function of one variable techniques. This is best explained by some examples.

Example 2.9.21 Find the maximum and minimum of T (x, y) = (x+y)e−x2−y2

on the region defined by x2 + y2 ≤ 1 (i.e. on the unit disk).
Solution. Let’s follow our checklist. First critical points, then points where
the partial derivatives don’t exist, and finally the boundary.

Interior Critical Points: If T takes its maximum or minimum value at a
point in the interior, x2 + y2 < 1, then that point must be either a critical
point of T or a singular point of T . To find the critical points we compute the
first order derivatives.

Tx(x, y) = (1− 2x2 − 2xy)e−x
2−y2

Ty(x, y) = (1− 2xy − 2y2)e−x
2−y2

Because the exponential e−x2−y2 is never zero, the critical points are the solu-
tions of

Tx = 0 ⇐⇒ 2x(x+ y) = 1
Ty = 0 ⇐⇒ 2y(x+ y) = 1

• As both 2x(x + y) and 2y(x + y) are nonzero, we may divide the two
equations, which gives x

y = 1, forcing x = y.

• Substituting this into either equation gives 2x(2x) = 1 so that x = y =
± 1

2 .
17This is probably a good time to review the statement of Theorem 2.9.2.
18It should intuitively obvious from a sketch that the boundary of the disk x2 + y2 ≤ 1 is

the circle x2 + y2 = 1. But if you really need a formal definition, here it is. A point (a, b) is
on the boundary of a set S if there is a sequence of points in S that converges to (a, b) and
there is also a sequence of points in the complement of S that converges to (a, b).
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So the only critical points are ( 1
2 ,

1
2 ) and (− 1

2 ,−
1
2 ). Both are in x2 + y2 < 1.

Singular points: In this problem, there are no singular points.
Boundary: Points on the boundary satisfy x2 + y2 = 1. That is they lie on

a circle. We may use the figure below to express x = cos t and y = sin t, in
terms of the angle t. This will make the formula for T on the boundary quite
a bit easier to deal with. On the boundary,

T = (cos t+ sin t)e− cos2 t−sin2 t = (cos t+ sin t)e−1

As all t’s are allowed, this function takes its max and min at zeroes of

x

y

(cos t, sin t)

t
1

dT

dt
=
(
− sin t+ cos t

)
e−1

That is, (cos t+ sin t)e−1 takes its max and min

• when sin t = cos t,

• that is, when x = y and x2 + y2 = 1,

• which forces x2 + x2 = 1 and hence x = y = ± 1√
2 .

All together, we have the following candidates for max and min, with the max
and min indicated.

point ( 1
2 ,

1
2 ) (− 1

2 ,−
1
2 ) ( 1√

2 ,
1√
2 ) (− 1√

2 ,−
1√
2 )

value of T 1√
e
≈ 0.61 − 1√

e

√
2
e ≈ 0.52 −

√
2
e

max min
The following sketch shows all of the critical points. It is a good idea to

make such a sketch so that you don’t accidentally include a critical point that
is outside of the allowed region.

x

y

(1
2
, 1
2
)

(−1
2
,−1

2
)

( 1√
2
, 1√

2
)

(− 1√
2
,− 1√

2
)

�
In the last example, we analyzed the behaviour of f on the boundary of the

region of interest by using the parametrization x = cos t, y = sin t of the circle
x2 +y2 = 1. Sometimes using this parametrization is not so clean. And worse,
some curves don’t have such a simple parametrization. In the next problem
we’ll look at the boundary a little differently.
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Example 2.9.22 Find the maximum and minimum values of f(x, y) = x3 +
xy2 − 3x2 − 4y2 + 4 on the disk x2 + y2 ≤ 1.
Solution. Again, we first find all critical points, then find all singular points
and, finally, analyze the boundary.

Interior Critical Points: If f takes its maximum or minimum value at a
point in the interior, x2 + y2 < 1, then that point must be either a critical
point of f or a singular point of f . To find the critical points19 we compute
the first order derivatives.

fx = 3x2 + y2 − 6x fy = 2xy − 8y

The critical points are the solutions of

fx = 3x2 + y2 − 6x = 0 (E1)
fy = 2y(x− 4) = 0 (E2)

The second equation, 2y(x − 4) = 0, is satisfied if and only if at least one of
the two equations y = 0 and x = 4 is satisfied.

• When y = 0, equation (E1) forces x to obey

0 = 3x2 + 02 − 6x = 3x(x− 2)

so that x = 0 or x = 2.

• When x = 4, equation (E1) forces y to obey

0 = 3× 42 + y2 − 6× 4 = 24 + y2

which is impossible.

So, there are only two critical points: (0, 0), (2, 0).
Singular points: In this problem, there are no singular points.
Boundary: On the boundary, x2 + y2 = 1, we could again take advantage

of having a circle and write x = cos t and y = sin t. But, for practice, we’ll
use another method20. We know that (x, y) satisfies x2 + y2 = 1, and hence
y2 = 1 − x2. Examining the formula for f(x, y), we see that it contains only
even21 powers of y, so we can eliminate y by substituting y2 = 1− x2 into the
formula.

f = x3 + x(1− x2)− 3x2 − 4(1− x2) + 4 = x+ x2

The max and min of x+ x2 for −1 ≤ x ≤ 1 must occur either

• when x = −1 (⇒ y = f = 0) or

• when x = +1 (⇒ y = 0, f = 2) or

• when 0 = d
dx (x+ x2) = 1 + 2x (⇒ x = − 1

2 , y = ±
√

3
4 , f = − 1

4 ).

Here is a sketch showing all of the points that we have identified.

x

y

(0, 0) (2, 0)(1, 0)(−1, 0)

(−1
2
,
√
3
2
)

(−1
2
,−

√
3
2
)



CHAPTER 2. PARTIAL DERIVATIVES 223

Note that the point (2, 0) is outside the allowed region22. So all together,
we have the following candidates for max and min, with the max and min
indicated.

point (0, 0) (−1, 0) (1, 0)
(
− 1

2 ,±
√

3
2
)

value of f 4 0 2 − 1
4

max min
�

Example 2.9.23 Find the maximum and minimum values of f(x, y) = xy −
x3y2 when (x, y) runs over the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
Solution. As usual, let’s examine the critical points, singular points and
boundary in turn.

Interior Critical Points: If f takes its maximum or minimum value at a
point in the interior, 0 < x < 1, 0 < y < 1, then that point must be either
a critical point of f or a singular point of f . To find the critical points we
compute the first order derivatives.

fx(x, y) = y − 3x2y2 fy(x, y) = x− 2x3y

The critical points are the solutions of

fx = 0 ⇐⇒ y(1− 3x2y) = 0 ⇐⇒ y = 0 or 3x2y = 1
fy = 0 ⇐⇒ x(1− 2x2y) = 0 ⇐⇒ x = 0 or 2x2y = 1

• If y = 0, we cannot have 2x2y = 1, so we must have x = 0.

• If 3x2y = 1, we cannot have x = 0, so we must have 2x2y = 1. Dividing
gives 1 = 3x2y

2x2y = 3
2 which is impossible.

So the only critical point in the square is (0, 0). There f = 0.
Singular points: Yet again there are no singular points in this problem.
Boundary: The region is a square, so its boundary consists of its four sides.

• First, we look at the part of the boundary with x = 0. On that entire
side f = 0.

• Next, we look at the part of the boundary with y = 0. On that entire
side f = 0.

• Next, we look at the part of the boundary with y = 1. There f =
f(x, 1) = x − x3. To find the maximum and minimum of f(x, y) on
the part of the boundary with y = 1, we must find the maximum and
minimum of x− x3 when 0 ≤ x ≤ 1.
Recall that, in general, the maximum and minimum of a function h(x)
on the interval a ≤ x ≤ b, must occur either at x = a or at x = b or
at an x for which either h′(x) = 0 or h′(x) does not exist. In this case,
d
dx (x− x3) = 1− 3x2, so the max and min of x− x3 for 0 ≤ x ≤ 1 must
occur

19We actually found the critical points in Example 2.9.19. But, for the convenience of the
reader, we’ll repeat that here.

20Even if you don’t believe that “you can’t have too many tools”, it is pretty dangerous
to have to rely on just one tool.

21If it contained odd powers too, we could consider the cases y ≥ 0 and y ≤ 0 separately
and substitute y =

√
1− x2 in the former case and y = −

√
1− x2 in the latter case.

22We found (2, 0) as a solution to the critical point equations (E1), (E2). That’s because,
in the course of solving those equations, we ignored the constraint that x2 + y2 ≤ 1.
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◦ either at x = 0, where f = 0,
◦ or at x = 1√

3 , where f = 2
3
√

3 ,

◦ or at x = 1, where f = 0.

• Finally, we look at the part of the boundary with x = 1. There f =
f(1, y) = y− y2. As d

dy (y− y2) = 1− 2y, the only critical point of y− y2

is at y = 1
2 . So the the max and min of y − y2 for 0 ≤ y ≤ 1 must occur

◦ either at y = 0, where f = 0,
◦ or at y = 1

2 , where f = 1
4 ,

◦ or at y = 1, where f = 0.

All together, we have the following candidates for max and min, with the max
and min indicated.

point (0, 0) (0,0≤y≤1) (0≤x≤1,0) (1, 0) (1, 1
2 ) (1, 1) (0, 1) ( 1√

3 , 1)
value of f 0 0 0 0 1

4 0 0 2
3
√

3 ≈ 0.385
min min min min min min max

x

y

(0, 0) (1, 0)

(1, 1)

(1, 1
2
)

(0, 1) ( 1√
3
, 1)

�

Example 2.9.24 Find the maximum and minimum values of f(x, y) = xy +
2x + y when (x, y) runs over the triangular region with vertices (0, 0), (1, 0)
and (0, 2). The triangular region is sketched in

x

y

p0, 0q p1, 0q

p0, 2q

Solution. As usual, let’s examine the critical points, singular points and
boundary in turn.

Interior Critical Points: If f takes its maximum or minimum value at a
point in the interior, then that point must be either a critical point of f or a
singular point of f . The critical points are the solutions of

fx(x, y) = y + 2 = 0 fy(x, y) = x+ 1 = 0

So there is exactly one critical point, namely (−1,−2). This is well outside the
triangle and so is not a candidate for the location of the max and min.
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Singular points: Yet again there are no singular points for this f .
Boundary: The region is a triangle, so its boundary consists of its three

sides.

• First, we look at the side that runs from (0, 0) to (0, 2). On that entire
side x = 0, so that f(0, y) = y. The smallest value of f on that side is
f = 0 at (0, 0) and the largest value of f on that side is f = 2 at (0, 2).

• Next, we look at the side that runs from (0, 0) to (1, 0). On that entire
side y = 0, so that f(x, 0) = 2x. The smallest value of f on that side is
f = 0 at (0, 0) and the largest value of f on that side is f = 2 at (1, 0).

• Finally, we look at the side that runs from (0, 2) to (1, 0). Or first job is
to find the equation of the line that contains (0, 2) and (1, 0). By way of
review, we’ll find the equation using three different methods.

◦ Method 1: You (probably) learned in high school that any line in
the xy-plane23 has equation y = mx + b where b is the y intercept
and m is the slope. In this case, the line crosses the y axis at y = 2
and so has y intercept b = 2. The line passes through (0, 2) and
(1, 0) and so, as we see in the figure below, has slope m = ∆y

∆x =
0−2
1−0 = −2. Thus the side of the triangle that runs from (0, 2) to
(1, 0) is y = 2− 2x with 0 ≤ x ≤ 1.

x

y

p1, 0q

p0, 2q

〈1,´2〉

∆x “ 1

∆y “ ´2

◦ Method 2: Every line in the xy-plane has an equation of the form
ax + by = c. In this case (0, 0) is not on the line so that c 6= 0
and we can divide the equation by c, giving a

cx + b
cy = 1. Rename

a
c = A and b

c = B. Thus, because the line does not pass through
the origin, it has an equation of the form Ax + By = 1, for some
constants A and B. In order for (0, 2) to lie on the line, x = 0, y = 2
has to be a solution of Ax+By = 1. That is, Ax

∣∣
x=0 +By

∣∣
y=2 = 1,

so that B = 1
2 . In order for (1, 0) to lie on the line, x = 1, y = 0 has

to be a solution of Ax+ By = 1. That is Ax
∣∣
x=1 + By

∣∣
y=0 = 1, so

that A = 1. Thus the line has equation x+ 1
2y = 1, or equivalently,

y = 2− 2x.
◦ Method 3: The vector from (0, 2) to (1, 0) is 〈1− 0 , 0− 2〉 = 〈1,−2〉.
As we see from the figure above, it is a direction vector for the line.
One point on the line is (0, 2). So a parametric equation for the line
(see Equation 1.3.1) is

〈x− 0 , y − 2〉 = t 〈1,−2〉 or x = t, y = 2− 2t

By any of these three methods24, we have that the side of the triangle
that runs from (0, 2) to (1, 0) is y = 2− 2x with 0 ≤ x ≤ 1. On that side
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of the triangle

f(x, 2− 2x) = x(2− 2x) + 2x+ (2− 2x) = −2x2 + 2x+ 2

Write g(x) = −2x2 + 2x + 2. The maximum and minimum of g(x) for
0 ≤ x ≤ 1, and hence the maximum and minimum values of f on the
hypotenuse of the triangle, must be achieved either at

◦ x = 0, where f(0, 2) = g(0) = 2, or at
◦ x = 1, where f(1, 0) = g(1) = 2, or when
◦ 0 = g′(x) = −4x+ 2 so that x = 1

2 , y = 2− 2
2 = 1 and

f(1
2 , 1) = g(1

2) = −2
4 + 2

2 + 2 = 5
2

All together, we have the following candidates for max and min, with the max
and min indicated.

point (0, 0) (0, 2) (1, 0) ( 1
2 , 1)

value of f 0 2 2 5
2

min max

x

y

p0, 0q p1, 0q

p0, 2q

p´1,´2q

p1
2
, 1q

�

Example 2.9.25 Find the high and low points of the surface z =
√
x2 + y2

with (x, y) varying over the square |x| ≤ 1, |y| ≤ 1 .
Solution. The function f(x, y) =

√
x2 + y2 has a particularly simple geo-

metric interpretation — it is the distance from the point (x, y) to the origin.
So

• the minimum of f(x, y) is achieved at the point in the square that is
nearest the origin — namely the origin itself. So (0, 0, 0) is the lowest
point on the surface and is at height 0.

• The maximum of f(x, y) is achieved at the points in the square that
are farthest from the origin — namely the four corners of the square(
± 1,±1

)
. At those four points z =

√
2. So the highest points on the

surface are (±1,±1,
√

2).
Even though we have already answered this question, it will be instructive to

23To be picky, any line the xy-plane that is not parallel to the y axis.
24In the third method, x has just be renamed to t.
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see what we would have found if we had followed our usual protocol. The
partial derivatives of f(x, y) =

√
x2 + y2 are defined for (x, y) 6= (0, 0) and are

fx(x, y) = x√
x2 + y2

fy(x, y) = y√
x2 + y2

• There are no critical points because

◦ fx = 0 only for x = 0, and
◦ fy = 0 only for y = 0, but
◦ (0, 0) is not a critical point because fx and fy are not defined there.

• There is one singular point — namely (0, 0). The minimum value of f is
achieved at the singular point.

• The boundary of the square consists of its four sides. One side is{
(x, y)

∣∣ x = 1, −1 ≤ y ≤ 1
}

On this side f =
√

1 + y2. As
√

1 + y2 increases with |y|, the smallest
value of f on that side is 1 (when y = 0) and the largest value of f is

√
2

(when y = ±1). The same thing happens on the other three sides. The
maximum value of f is achieved at the four corners. Note that fx and
fy are both nonzero at all four corners.

�

2.9.4 Exercises

Exercises — Stage 1
1. ∗.

a Some level curves of a function f(x, y) are plotted in the xy--
plane below.

x

y

0

0

´1

1 12 2

´2

3 3

´3

4

´4

R T U

P

Q

S

For each of the four statements below, circle the letters of all
points in the diagram where the situation applies. For example,
if the statement were “These points are on the y--axis”, you
would circle both P and U , but none of the other letters. You
may assume that a local maximum occurs at point T .

(i) ∇∇∇f is zero P R S T U
(ii) f has a saddle point P R S T U
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(iii) the partial derivative fy is positive P R S T U
(iv) the directional derivative of f in the direction 〈0,−1〉 is P R S T U

negative

b The diagram below shows three “y traces” of a graph z = F (x, y)
plotted on xz--axes. (Namely the intersections of the surface
z = F (x, y) with the three planes (y = 1.9, y = 2, y = 2.1). For
each statement below, circle the correct word.

(i) the first order partial derivative Fx(1, 2) is positive/negative/zero
(ii) F has a critical point at (2, 2) true/false
(iii) the second order partial derivative Fxy(1, 2) is positive/negative/zero

x

z

1

2

3

1 2 3 4

y “ 1.9

y “ 2.0
y “ 2.1

2. Find the high and low points of the surface z =
√
x2 + y2 with (x, y)

varying over the square |x| ≤ 1, |y| ≤ 1 . Discuss the values of zx, zy
there. Do not evaluate any derivatives in answering this question.

3. If t0 is a local minimum or maximum of the smooth function f(t)
of one variable (t runs over all real numbers) then f ′(t0) = 0. Derive
an analogous necessary condition for x0 to be a local minimum or
maximium of the smooth function g(x) restricted to points on the
line x = a + td . The test should involve the gradient of g(x).

Exercises — Stage 2

4. ∗. Let z = f(x, y) = (y2 − x2)2.
a Make a reasonably accurate sketch of the level curves in the xy-

-plane of z = f(x, y) for z = 0, 1 and 16. Be sure to show the
units on the coordinate axes.

b Verify that (0, 0) is a critical point for z = f(x, y), and determine
from part (a) or directly from the formula for f(x, y) whether
(0, 0) is a local minimum, a local maximum or a saddle point.

c Can you use the Second Derivative Test to determine whether
the critical point (0, 0) is a local minimum, a local maximum or
a saddle point? Give reasons for your answer.

5. ∗. Use the Second Derivative Test to find all values of the constant c
for which the function z = x2 + cxy + y2 has a saddle point at (0, 0).
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6. ∗. Find and classify all critical points of the function

f(x, y) = x3 − y3 − 2xy + 6.
7. ∗. Find all critical points for f(x, y) = x(x2 + xy + y2 − 9). Also

find out which of these points give local maximum values for f(x, y),
which give local minimum values, and which give saddle points.

8. ∗. Find the largest and smallest values of x2y2z in the part of the
plane 2x + y + z = 5 where x ≥ 0, y ≥ 0 and z ≥ 0. Also find all
points where those extreme values occur.

9. Find and classify all the critical points of f(x, y) = x2 + y2 + x2y+ 4.
10. ∗. Find all saddle points, local minima and local maxima of the

function
f(x, y) = x3 + x2 − 2xy + y2 − x.

11. ∗. For the surface

z = f(x, y) = x3 + xy2 − 3x2 − 4y2 + 4

Find and classify [as local maxima, local minima, or saddle points] all
critical points of f(x, y).

12. Find the maximum and minimum values of f(x, y) = xy− x3y2 when
(x, y) runs over the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

13. The temperature at all points in the disc x2 + y2 ≤ 1 is given by
T (x, y) = (x+ y)e−x2−y2 . Find the maximum and minimum temper-
atures at points of the disc.

14. ∗. The images below depict level sets f(x, y) = c of the functions in
the list at heights c = 0, 0.1, 0.2, . . . , 1.9, 2. Label the pictures with the
corresponding function and mark the critical points in each picture.
(Note that in some cases, the critical points might not be drawn on the
images already. In those cases you should add them to the picture.)
(i) f(x, y) = (x2 + y2 − 1)(x− y) + 1

(ii) f(x, y) =
√
x2 + y2

(iii) f(x, y) = y(x+ y)(x− y) + 1

(iv) f(x, y) = x2 + y2

15. ∗. Let the function

f(x, y) = x3 + 3xy + 3y2 − 6x− 3y − 6

Classify as
[
local maxima, minima or saddle points

]
all critical points

of f(x, y).
16. ∗. Let h(x, y) = y(4− x2 − y2).

a Find and classify the critical points of h(x, y) as local maxima,
local minima or saddle points.
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b Find the maximum and minimum values of h(x, y) on the disk
x2 + y2 ≤ 1.

17. ∗. Find the absolute maximum and minimum values of the function
f(x, y) = 5 + 2x− x2 − 4y2 on the rectangular region

R =
{

(x, y)
∣∣ − 1 ≤ x ≤ 3, −1 ≤ y ≤ 1

}
18. ∗. Find the minimum of the function h(x, y) = −4x − 2y + 6 on the

closed bounded domain defined by x2 + y2 ≤ 1.
19. ∗. Let f(x, y) = xy(x+ y − 3).

a Find all critical points of f , and classify each one as a local
maximum, a local minimum, or saddle point.

b Find the location and value of the absolute maximum and min-
imum of f on the triangular region x ≥ 0, y ≥ 0, x+ y ≤ 8.

20. ∗. Find and classify the critical points of f(x, y) = 3x2y+ y3− 3x2−
3y2 + 4.

21. ∗. Consider the function

f(x, y) = 2x3 − 6xy + y2 + 4y

a Find and classify all of the critical points of f(x, y).

b Find the maximum and minimum values of f(x, y) in the triangle
with vertices (1, 0), (0, 1) and (1, 1).

22. ∗. Find all critical points of the function f(x, y) = x4 + y4 − 4xy+ 2,
and for each determine whether it is a local minimum, maximum or
saddle point.

23. ∗. Let
f(x, y) = xy(x+ 2y − 6)

a Find every critical point of f(x, y) and classify each one.

b Let D be the region in the plane between the hyperbola xy = 4
and the line x+ 2y − 6 = 0. Find the maximum and minimum
values of f(x, y) on D.

24. ∗. Find all the critical points of the function

f(x, y) = x4 + y4 − 4xy

defined in the xy-plane. Classify each critical point as a local mini-
mum, maximum or saddle point.

25. ∗. A metal plate is in the form of a semi-circular disc bounded by the
x-axis and the upper half of x2+y2 = 4. The temperature at the point
(x, y) is given by T (x, y) = ln

(
1+x2 +y2)−y. Find the coldest point

on the plate, explaining your steps carefully. (Note: ln 2 ≈ 0.693,
ln 5 ≈ 1.609)

26. ∗. Find all the critical points of the function

f(x, y) = x3 + xy2 − x

defined in the xy-plane. Classify each critical point as a local mini-
mum, maximum or saddle point. Explain your reasoning.
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27. ∗. Consider the function g(x, y) = x2 − 10y − y2.

a Find and classify all critical points of g.

b Find the absolute extrema of g on the bounded region given by

x2 + 4y2 ≤ 16, y ≤ 0
28. ∗. Find and classify all critical points of

f(x, y) = x3 − 3xy2 − 3x2 − 3y2

29. ∗. Find the maximum value of

f(x, y) = xye−(x2+y2)/2

on the quarter-circle D =
{

(x, y)
∣∣ x2 + y2 ≤ 4, x ≥ 0, y ≥ 0

}
.

30. Equal angle bends are made at equal distances from the two ends of
a 100 metre long fence, so that the resulting three segment fence can
be placed along an existing wall to make an enclosure of trapezoidal
shape. What is the largest possible area for such an enclosure?

31. Find the most economical shape of a rectangular box that has a fixed
volume V and that has no top.

Exercises — Stage 3
32. ∗. The temperature T (x, y) at a point of the xy--plane is given by

T (x, y) = 20− 4x2 − y2

a Find the maximum and minimum values of T (x, y) on the disk
D defined by x2 + y2 ≤ 4.

b Suppose an ant lives on the disk D. If the ant is initially at
point (1, 1), in which direction should it move so as to increase
its temperature as quickly as possible?

c Suppose that the ant moves at a velocity v = 〈−2,−1〉. What
is its rate of increase of temperature as it passes through (1, 1)?

d Suppose the ant is constrained to stay on the curve y = 2− x2.
Where should the ant go if it wants to be as warm as possible?

33. ∗. Consider the function

f(x, y) = 3kx2y + y3 − 3x2 − 3y2 + 4

where k > 0 is a constant. Find and classify all critical points of
f(x, y) as local minima, local maxima, saddle points or points of in-
determinate type. Carefully distinguish the cases k < 1

2 , k = 1
2 and

k > 1
2 .

34. ∗.
a Show that the function f(x, y) = 2x + 4y + 1

xy has exactly one
critical point in the first quadrant x > 0, y > 0, and find its
value at that point.

b Use the second derivative test to classify the critical point in
part (a).

c Hence explain why the inequality 2x + 4y + 1
xy ≥ 6 is valid for
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all positive real numbers x and y.
35. An experiment yields data points (xi, yi), i = 1, 2, · · · , n. We wish

to find the straight line y = mx+ b which “best” fits the data. The
definition of “best” is “minimizes the root mean square error”, i.e.
minimizes

∑n
i=1(mxi + b− yi)2. Find m and b.

2.10 Lagrange Multipliers
In the last section we had to solve a number of problems of the form “What is
the maximum value of the function f on the curve C?” In those examples, the
curve C was simple enough that we could reduce the problem to finding the
maximum of a function of one variable. For more complicated problems this
reduction might not be possible. In this section, we introduce another method
for solving such problems. First some nomenclature.

Definition 2.10.1 A problem of the form
• “Find the maximum and minimum values of the function f(x, y) for (x, y)

on the curve g(x, y) = 0.”

is one type of constrained optimization problem. The function being maximized
or minimized, f(x, y), is called the objective function. The function, g(x, y),
whose zero set is the curve of interest, is called the constraint function. ♦

Such problems are quite common. As we said above, we have already en-
countered them in the last section on absolute maxima and minima, when we
were looking for the extreme values of a function on the boundary of a region.
In economics “utility functions” are used to model the relative “usefulness”
or “desirability” or “preference” of various economic choices. For example, a
utility function U(w, κ) might specify the relative level of satisfaction a con-
sumer would get from purchasing a quantity w of wine and κ of coffee. If the
consumer wants to spend $100 and wine costs $20 per unit and coffee costs
$5 per unit, then the consumer would like to maximize U(w, κ) subject to the
constraint that 20w + 5κ = 100.

To this point we have always solved such constrained optimization problems
either by

• solving g(x, y) = 0 for y as a function of x (or for x as a function of y)
or by

• parametrizing the curve g(x, y) = 0. This means writing all points of
the curve in the form

(
x(t), y(t)

)
for some functions x(t) and y(t). For

example we used x(t) = cos t, y(t) = sin t as a parametrization of the
circle x2 + y2 = 1 in Example 2.9.21.

However quite often the function g(x, y) is so complicated that one cannot
explicitly solve g(x, y) = 0 for y as a function of x or for x as a function of
y and one also cannot explicitly parametrize g(x, y) = 0. Or sometimes you
can, for example, solve g(x, y) = 0 for y as a function of x, but the resulting
solution is so complicated that it is really hard, or even virtually impossible,
to work with. Direct attacks become even harder in higher dimensions when,

25This procedure is probably not the most efficient one. But it has the advantage that it
always works, it does not require any ingenuity on the part of the solver, and it generalizes
easily to larger linear systems of equations.
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for example, we wish to optimize a function f(x, y, z) subject to a constraint
g(x, y, z) = 0.

There is another procedure called the method of “Lagrange multipliers”1

that comes to our rescue in these scenarios. Here is the three dimensional
version of the method. There are obvious analogs is other dimensions.

Theorem 2.10.2 Lagrange Multipliers. Let f(x, y, z) and g(x, y, z) have
continuous first partial derivatives in a region of R3 that contains the surface
S given by the equation g(x, y, z) = 0. Further assume that ∇∇∇g(x, y, z) 6= 0 on
S.

If f , restricted to the surface S, has a local extreme value at the point
(a, b, c) on S, then there is a real number λ such that

∇∇∇f(a, b, c) = λ∇∇∇g(a, b, c)

that is

fx(a, b, c) = λ gx(a, b, c)
fy(a, b, c) = λ gy(a, b, c)
fz(a, b, c) = λ gz(a, b, c)

The number λ is called a Lagrange multiplier.
Proof. Suppose that (a, b, c) is a point of S and that f(x, y, z) ≥ f(a, b, c) for
all points (x, y, z) on S that are close to (a, b, c). That is (a, b, c) is a local
minimum for f on S. Of course the argument for a local maximum is virtually
identical.

Imagine that we go for a walk on S, with the time t running, say, from
t = −1 to t = +1 and that at time t = 0 we happen to be exactly at (a, b, c).
Let’s say that our position is

(
x(t), y(t), z(t)

)
at time t.

Write
F (t) = f

(
x(t), y(t), z(t)

)
So F (t) is the value of f that we see on our walk at time t. Then for all t close
to 0,

(
x(t), y(t), z(t)

)
is close to

(
x(0), y(0), z(0)

)
= (a, b, c) so that

F (0) = f
(
x(0), y(0), z(0)

)
= f(a, b, c) ≤ f

(
x(t), y(t), z(t)

)
= F (t)

for all t close to zero. So F (t) has a local minimum at t = 0 and consequently
F ′(0) = 0.

By the chain rule, Theorem 2.4.1,

F ′(0) = d
dtf

(
x(t), y(t), z(t)

)∣∣∣
t=0

= fx
(
a, b, c

)
x′(0) + fy

(
a, b, c

)
y′(0) + fz

(
a, b, c

)
z′(0) = 0 (∗)

We may rewrite this as a dot product:

0 = F ′(0) =∇∇∇f(a, b, c) · 〈x′(0) , y′(0) , z′(0)〉
=⇒ ∇∇∇f(a, b, c) ⊥ 〈x′(0) , y′(0) , z′(0)〉

This is true for all paths on S that pass through (a, b, c) at time 0. In particular
it is true for all vectors 〈x′(0) , y′(0) , z′(0)〉 that are tangent to S at (a, b, c).
So ∇∇∇f(a, b, c) is perpendicular to S at (a, b, c).

1Joseph-Louis Lagrange was actually born Giuseppe Lodovico Lagrangia in Turin, Italy
in 1736. He moved to Berlin in 1766 and then to Paris in 1786. He eventually acquired
French citizenship and then the French claimed he was a French mathematician, while the
Italians continued to claim that he was an Italian mathematician.
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But we already know, by Theorem 2.5.5.a, that∇∇∇g(a, b, c) is also perpendic-
ular to S at (a, b, c). So ∇∇∇f(a, b, c) and ∇∇∇g(a, b, c) have to be parallel vectors.
That is,

∇∇∇f(a, b, c) = λ∇∇∇g(a, b, c)

for some number λ. That’s the Lagrange multiplier rule of our theorem. �
So to find the maximum and minimum values of f(x, y, z) on a surface

g(x, y, z) = 0, assuming that both the objective function f(x, y, z) and con-
straint function g(x, y, z) have continuous first partial derivatives and that
∇∇∇g(x, y, z) 6= 0, you

1. build up a list of candidate points (x, y, z) by finding all solutions to the
equations

fx(x, y, z) = λ gx(x, y, z)
fy(x, y, z) = λ gy(x, y, z)
fz(x, y, z) = λ gz(x, y, z)
g(x, y, z) = 0

Note that there are four equations and four unknowns, namely x, y, z
and λ.

2. Then you evaluate f(x, y, z) at each (x, y, z) on the list of candidates.
The biggest of these candidate values is the absolute maximum and the
smallest of these candidate values is the absolute minimum.

Another way to write the system of equations in the first step is

Lx(a, b, c, λ) = Ly(a, b, c, λ) = Lz(a, b, c, λ) = Lλ(a, b, c, λ) = 0

where L(x, y, z, λ) is the auxiliary function2 3.

L(x, y, z, λ) = f(x, y, z)− λ g(x, y, z)
Now for a bunch of examples.

Example 2.10.3 Find the maximum and minimum of the function x2−10x−y2

on the ellipse whose equation is x2 + 4y2 = 16.
Solution. For this problem the objective function is f(x, y) = x2 − 10x− y2

and the constraint function is g(x, y) = x2 + 4y2− 16. To apply the method of
Lagrange multipliers we need ∇∇∇f and ∇∇∇g. So we start by computing the first
order derivatives of these functions.

fx = 2x− 10 fy = −2y gx = 2x gy = 8y

So, according to the method of Lagrange multipliers, we need to find all solu-
tions to

2x− 10 = λ(2x)
−2y = λ(8y)

x2 + 4y2 − 16 = 0

Rearranging these equations gives

(λ− 1)x = −5 (E1)
2We call L an auxiliary function because, while we use it to help solve the problem, it

doesn’t actually appear in either the statement of the question or in the answer itself
3Some people use L(x, y, z, λ) = f(x, y, z)+λ g(x, y, z) instead. This amounts to renaming

λ to −λ. While we care that λ has a value, we don’t care what it is.
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(4λ+ 1)y = 0 (E2)
x2 + 4y2 − 16 = 0 (E3)

From (E2), we see that we must have either λ = − 1
4 or y = 0.

• If λ = − 1
4 , (E1) gives −

5
4x = −5, i.e. x = 4, and then (E3) gives y = 0.

• If y = 0, then (E3) gives x = ±4 (and while we could easily use (E1) to
solve for λ, we don’t actually need λ).

So the method of Lagrange multipliers, Theorem 2.10.2 (actually the dimension
two version of Theorem 2.10.2), gives that the only possible locations of the
maximum and minimum of the function f are (4, 0) and (−4, 0). To complete
the problem, we only have to compute f at those points.

point (4, 0) (−4, 0)
value of f −24 56

min max

Hence the maximum value of x2 − 10x − y2 on the ellipse is 56 and the
minimum value is −24.

x

y
x2 ` 4y2 “ 16

p´4,0q
p4,0q

�
In the previous example, the objective function and the constraint were

specified explicitly. That will not always be the case. In the next example, we
have to do a little geometry to extract them.

Example 2.10.4 Find the rectangle of largest area (with sides parallel to the
coordinates axes) that can be inscribed in the ellipse x2 + 2y2 = 1.
Solution. Since this question is so geometric, it is best to start by drawing
a picture.

x

y

px, yq

px,´yqp´x,´yq

x2 ` 2y2 “ 1

Call the coordinates of the upper right corner of the rectangle (x, y), as in
the figure above. The four corners of the rectangle are (±x,±y) so the rectangle
has width 2x and height 2y and the objective function is f(x, y) = 4xy. The
constraint function for this problem is g(x, y) = x2 + 2y2 − 1. Again, to use
Lagrange multipliers we need the first order partial derivatives.

fx = 4y fy = 4x gx = 2x gy = 4y
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So, according to the method of Lagrange multipliers, we need to find all solu-
tions to

4y = λ(2x) (E1)
4x = λ(4y) (E2)

x2 + 2y2 − 1 = 0 (E3)

Equation (E1) gives y = 1
2λx. Substituting this into equation (E2) gives

4x = 2λ2x or 2x
(
2− λ2) = 0

So (E2) is satisfied if either x = 0 or λ =
√

2 or λ = −
√

2.

• If x = 0, then (E1) gives y = 0 too. But (0, 0) violates the constraint
equation (E3). Note that, to have a solution, all of the equations (E1),
(E2) and (E3) must be satisfied.

• If λ =
√

2, then

◦ (E2) gives x =
√

2y and then
◦ (E3) gives 2y2 + 2y2 = 1 or y2 = 1

4 so that

◦ y = ± 1
2 and x =

√
2y = ± 1√

2 .

• If λ = −
√

2, then

◦ (E2) gives x = −
√

2y and then
◦ (E3) gives 2y2 + 2y2 = 1 or y2 = 1

4 so that

◦ y = ± 1
2 and x = −

√
2y = ∓ 1√

2 .

We now have four possible values of (x, y), namely
( 1√

2 ,
1
2
)
,
(
− 1√

2 , −
1
2
)
,( 1√

2 , −
1
2
)
and

(
− 1√

2 ,
1
2
)
. They are the four corners of a single rectangle. We

said that we wanted (x, y) to be the upper right corner, i.e. the corner in the
first quadrant. It is

( 1√
2 ,

1
2
)
. �

Example 2.10.5 Find the ends of the major and minor axes of the ellipse
3x2 − 2xy + 3y2 = 4. They are the points on the ellipse that are farthest from
and nearest to the origin.
Solution. Let (x, y) be a point on 3x2 − 2xy + 3y2 = 4. This point is at the
end of a major axis when it maximizes its distance from the centre, (0, 0) of
the ellipse. It is at the end of a minor axis when it minimizes its distance from
(0, 0). So we wish to maximize and minimize the distance

√
x2 + y2 subject

to the constraint
g(x, y) = 3x2 − 2xy + 3y2 − 4 = 0

Nowmaximizing/minimizing
√
x2 + y2 is equivalent4 to maximizing/minimizing

its square
(√

x2 + y2
)2 = x2 + y2. So we are free to choose the objective func-

tion
f(x, y) = x2 + y2

which we will do, because it makes the derivatives cleaner. Again, we use
Lagrange multipliers to solve this problem, so we start by finding the partial
derivatives.

fx(x, y) = 2x fy(x, y) = 2y gx(x, y) = 6x− 2y gy(x, y) = −2x+ 6y
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We need to find all solutions to

2x = λ(6x− 2y)
2y = λ(−2x+ 6y)

3x2 − 2xy + 3y2 − 4 = 0

Dividing the first two equations by 2, and then collecting together the x’s and
the y’s gives

(1− 3λ)x+ λy = 0 (E1)
λx+ (1− 3λ)y = 0 (E2)

3x2 − 2xy + 3y2 − 4 = 0 (E3)

To start, let’s concentrate on the first two equations. Pretend, for a couple of
minutes, that we already know the value of λ and are trying to find x and y.
Note that λ cannot be zero because if it is, (E1) forces x = 0 and (E2) forces
y = 0 and (0, 0) is not on the ellipse, i.e. violates (E3). So we may divide by
λ and (E1) gives

y = −1− 3λ
λ

x

Subbing this into (E2) gives

λx− (1− 3λ)2

λ
x = 0

Again, x cannot be zero, since then y = − 1−3λ
λ x would give y = 0 and (0, 0) is

still not on the ellipse.
So we may divide λx− (1−3λ)2

λ x = 0 by x, giving

λ− (1− 3λ)2

λ
= 0 ⇐⇒ (1− 3λ)2 − λ2 = 0

⇐⇒ 8λ2 − 6λ+ 1 = (2λ− 1)(4λ− 1) = 0

We now know that λ must be either 1
2 or 1

4 . Subbing these into either (E1) or
(E2) gives

λ = 1
2 =⇒ −1

2x+ 1
2y = 0 =⇒ x = y

(E3)=⇒ 3x2 − 2x2 + 3x2 = 4 =⇒ x = ±1

λ = 1
4 =⇒ 1

4x+ 1
4y = 0 =⇒ x = −y

(E3)=⇒ 3x2 + 2x2 + 3x2 = 4 =⇒ x = ± 1√
2

Here “ (E3)=⇒ ” indicates that we have just used (E3). We now have (x, y) =
±(1, 1), from λ = 1

2 , and (x, y) = ±
(

1√
2 ,−

1√
2

)
from λ = 1

4 . The distance
from (0, 0) to ±(1, 1), namely

√
2, is larger than the distance from (0, 0) to

±
( 1√

2 ,−
1√
2

)
, namely 1. So the ends of the minor axes are ±

( 1√
2 ,−

1√
2

)
and

the ends of the major axes are ±(1, 1). Those ends are sketched in the figure
on the left below. Once we have the ends, it is an easy matter5 to sketch the
ellipse as in the figure on the right below.
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x

y

p1,1q

p´1,´1q
p1,´1q{?

2

p´1,1q{?
2

x

y

p1,1q

p´1,´1q
p1,´1q{?

2

p´1,1q{?
2

3x2 ´ 2xy ` 3y2 “ 4

�

Example 2.10.6 Find the values of w ≥ 0 and κ ≥ 0 that maximize the utility
function

U(w, κ) = 6w 2
3κ

1
3 subject to the constraint 4w + 2κ = 12

Solution. The constraint 4w + 2κ = 12 is simple enough that we can easily
use it to express κ in terms of w, then substitute κ = 6− 2w into U(w, κ), and
then maximize U(w, 6 − 2w) = 6w 2

3 (6 − 2w) 1
3 using the techniques of §3.5 in

the CLP-1 textbook.
However, for practice purposes, we’ll use Lagrange multipliers with the

objective function U(w, κ) = 6w 2
3κ

1
3 and the constraint function g(w, κ) =

4w + 2κ− 12. The first order derivatives of these functions are

Uw = 4w− 1
3κ

1
3 Uκ = 2w 2

3κ−
2
3 gw = 4 gκ = 2

The boundary values w = 0 and κ = 0 give utility 0, which is obviously not
going to be the maximum utility. So it suffices to consider only local maxima.
According to the method of Lagrange multipliers, we need to find all solutions
to

4w− 1
3κ

1
3 = 4λ (E1)

2w 2
3κ−

2
3 = 2λ (E2)

4w + 2κ− 12 = 0 (E3)

Then

• equation (E1) gives λ = w−
1
3κ

1
3 .

• Substituting this into (E2) gives w 2
3κ−

2
3 = λ = w−

1
3κ

1
3 and hence w = κ.

• Then substituting w = κ into (E3) gives 6κ = 12.

So w = κ = 2 and the maximum utility is U(2, 2) = 12. �

Example 2.10.7 Find the point on the sphere x2 +y2 +z2 = 1 that is farthest
from (1, 2, 3).

4The function S(z) = z2 is a strictly increasing function for z ≥ 0. So, for a, b ≥ 0, the
statement “a < b” is equivalent to the statement “S(a) < S(b)”.

5if you tilt your head so that the line through (1, 1) and (−1,−1) appears horizontal
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Solution. As before, we simplify the algebra by maximizing the square of
the distance rather than the distance itself. So we are to maximize

f(x, y, z) = (x− 1)2 + (y − 2)2 + (z − 3)2

subject to the constraint

g(x, y, z) = x2 + y2 + z2 − 1 = 0

Since

fx(x, y, z) = 2(x− 1) fy(x, y, z) = 2(y − 2) fz(x, y, z) = 2(z − 3)
gx(x, y, z) = 2x gy(x, y, z) = 2y gz(x, y, z) = 2z

we need to find all solutions to

2(x− 1) = λ(2x) ⇐⇒ x = 1
1− λ (E1)

2(y − 2) = λ(2y) ⇐⇒ y = 2
1− λ (E2)

2(z − 3) = λ(2z) ⇐⇒ z = 3
1− λ (E3)

0 = x2 + y2 + z2 − 1 (E4)

Substituting (E1), (E2) and (E3) into (E4) gives

1 + 4 + 9
(1− λ)2 − 1 = 0 =⇒ (1− λ)2 = 14 =⇒ 1− λ = ±

√
14

We can then substitute these two values of λ back into the expressions for x,
y, z in terms of λ to get the two points 1√

14 (1, 2, 3) and − 1√
14 (1, 2, 3).

The vector from 1√
14 (1, 2, 3) to (1, 2, 3), namely

{
1− 1√

14

}
(1, 2, 3), is obvi-

ously shorter than the vector from− 1√
14 (1, 2, 3) to (1, 2, 3), which is

{
1 + 1√

14

}
(1, 2, 3).

So the nearest point is 1√
14 (1, 2, 3) and the farthest point is − 1√

14 (1, 2, 3) . �

2.10.1 (Optional) An Example with Two Lagrange Multi-
pliers

In this optional section, we consider an example of a problem of the form
“maximize (or minimize) f(x, y, z) subject to the two constraints g(x, y, z) = 0
and h(x, y, z) = 0”. We use the following variant of Theorem 2.10.2.

Theorem 2.10.8 Two Lagrange Multipliers. Let f(x, y, z), g(x, y, z)
and h(x, y, z) have continuous first partial derivatives in a region of R3 that
contains the curve C given by the equations

g(x, y, z) = h(x, y, z) = 0

Assume6 that ∇∇∇g(x, y, z) ×∇∇∇h(x, y, z) 6= 0 on C. If f , restricted to the curve
C, has a local extreme value at the point (a, b, c) on C, then there are real
numbers λ and µ such that

∇∇∇f(a, b, c) = λ∇∇∇g(a, b, c) + µ∇∇∇h(a, b, c)

that is
fx(a, b, c) = λ gx(a, b, c) + µhx(a, b, c)
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fy(a, b, c) = λ gy(a, b, c) + µhy(a, b, c)
fz(a, b, c) = λ gz(a, b, c) + µhz(a, b, c)

We can reformulate this theorem in terms of the auxiliary function

L(x, y, z, λ, µ) = f(x, y, z)− λ g(x, y, z)− µh(x, y, z)

It is a function of five variables — the original variables x, y and z, and two
auxiliary variables λ and µ. If there is a local extreme value at (a, b, c) then
(a, b, c) must obey

Equation 2.10.9

0 = Lx(a, b, c, λ, µ) = fx(a, b, c)− λgx(a, b, c)− µhx(a, b, c)
0 = Ly(a, b, c, λ, µ) = fy(a, b, c)− λgy(a, b, c)− µhy(a, b, c)
0 = Lz(a, b, c, λ, µ) = fz(a, b, c)− λgz(a, b, c)− µhz(a, b, c)
0 = Lλ(a, b, c, λ, µ) = g(a, b, c)
0 = Lµ(a, b, c, λ, µ) = h(a, b, c)

for some λ and µ. So solving this system of five equations in five unknowns
gives all possible candidates for the locations of local maxima and minima.
We’ll go through an example shortly.
Proof of Theorem 2.10.8. Before we get to the example itself, here is why the
above approach works. Assume that a local minimum occurs at (a, b, c), which
is the grey point in the schematic figure below. Imagine that you start walking
away from (a, b, c) along the curve g = h = 0. Your path is the grey line in the
schematic figure below.

gpx, y, zq “ 0

hpx, y, zq “ 0

∇∇∇g

∇∇∇h

λ∇∇∇g ` µ∇∇∇h

v

Call your velocity vector v. It is tangent to the curve g(x, y, z) = h(x, y, z) =
0. Because f has a local minimum at (a, b, c), f must be increasing (or con-
stant) as we leave (a, b, c). So the directional derivative

Dvf(a, b, c) =∇∇∇f(a, b, c) · v ≥ 0

Now start over. Again walk away from (a, b, c) along the curve g = h =
0, but this time moving in the opposite direction, with velocity vector −v.
Again f must be increasing (or constant) as we leave (a, b, c), so the directional
derivative

D−vf(a, b, c) =∇∇∇f(a, b, c) · (−v) ≥ 0
As both ∇∇∇f(a, b, c) · v and −∇∇∇f(a, b, c) · v are at least zero, we now have that

∇∇∇f(a, b, c) · v = 0 (∗)

for all vectors v that are tangent to the curve g = h = 0 at (a, b, c). Let’s
denote by T the set of all vectors v that are tangent to the curve g = h = 0 at
(a, b, c) and let’s denote by T ⊥ the set of all vectors that are perpendicular to
all vectors in T . So (∗) says that ∇∇∇f(a, b, c) must in T ⊥.

6This condition says that the normal vectors to g = 0 and h = 0 at (x, y, z) are not
parallel. This ensures that the surfaces g = 0 and h = 0 are not tangent to each other at
(x, y, z). They intersect in a curve.
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We now find all vectors in T ⊥. We can easily guess two such vectors. Since
the curve g = h = 0 lies inside the surface g = 0 and ∇∇∇g(a, b, c) is normal to
g = 0 at (a, b, c), we have

∇∇∇g(a, b, c) · v = 0 (E1)

Similarly, since the the curve g = h = 0 lies inside the surface h = 0 and
∇∇∇h(a, b, c) is normal to h = 0 at (a, b, c), we have

∇∇∇h(a, b, c) · v = 0 (E2)

Picking any two constants λ and µ, multiplying (E1) by λ, multiplying (E2)
by µ and adding gives that(

λ∇∇∇g(a, b, c) + µ∇∇∇h(a, b, c)
)
· v = 0

for all vectors v in T . Thus, for all λ and µ, the vector λ∇∇∇g(a, b, c)+µ∇∇∇h(a, b, c)
is in T ⊥.

Now the vectors in T form a line. (They are all tangent to the same
curve at the same point.) So, T ⊥, the set of all vectors perpendicular to T ,
forms a plane. As λ and µ run over all real numbers, the vectors λ∇∇∇g(a, b, c) +
µ∇∇∇h(a, b, c) form a plane. Thus we have found all vector in T ⊥ and we conclude
that ∇∇∇f(a, b, c) must be of the form λ∇∇∇g(a, b, c) + µ∇∇∇h(a, b, c) for some real
numbers λ and µ. The three components of the equation

∇∇∇f(a, b, c) = λ∇∇∇g(a, b, c) + µ∇∇∇h(a, b, c)

are exactly the first three equations of 2.10.9. This completes the explanation
of why Lagrange multipliers work in this setting. �

Example 2.10.10 Find the distance from the origin to the curve that is the
intersection of the two surfaces

z2 = x2 + y2 x− 2z = 3

Solution. Yet again, we simplify the algebra by maximizing the square of
the distance rather than the distance itself. So we are to maximize

f(x, y, z) = x2 + y2 + z2

subject to the constraints

0 = g(x, y, z) = x2 + y2 − z2 0 = h(x, y, z) = x− 2z − 3

Since

fx = 2x fy = 2y fz = 2z
gx = 2x gy = 2y gz = −2z
hx = 1 hy = 0 hz = −2

the method of Lagrange multipliers requires us to find all solutions to

2x = λ(2x) + µ(1) (E1)
2y = λ(2y) + µ(0) ⇐⇒ (1− λ)y = 0 (E2)
2z = λ(−2z) + µ(−2) (E3)
z2 = x2 + y2 (E4)

x− 2z = 3 (E5)
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Since equation (E2) factors so nicely we start there. It tells us that either y = 0
or λ = 1.

Case λ = 1: When λ = 1 the remaining equations reduce to

0 = µ (E1)
0 = 4z + 2µ (E3)
z2 = x2 + y2 (E4)

x− 2z = 3 (E5)

So

• equation (E1) gives µ = 0.

• Then substituting µ = 0 into (E3) gives z = 0.

• Then substituting z = 0 into (E5) gives x = 3.

• Then substituting z = 0 and x = 3 into (E4) gives 0 = 9 + y2, which is
impossible, since 9 + y2 ≥ 9 > 0 for all y.

So we can’t have λ = 1.
Case y = 0: When y = 0 the remaining equations reduce to

2(1− λ)x = µ (E1)
(1 + λ)z = −µ (E3)

z2 = x2 (E4)
x− 2z = 3 (E5)

These don’t clean up quite so nicely as in the λ = 1 case. But at least equation
(E4) tells us that z = ±x. So we have to consider those two possibilities.

Subcase y = 0, z = x: When y = 0 and z = x, the remaining equations
reduce to

2(1− λ)x = µ (E1)
(1 + λ)x = −µ (E3)

−x = 3 (E5)

So equation (E5) now tells us that x = −3 so that (x, y, z) = (−3, 0,−3).
(We don’t really care what λ and µ are. But as they obey −6(1 − λ) = µ,
−3(1 + λ) = −µ we have, adding the two equations together

−9 + 3λ = 0 =⇒ λ = 3

and then, subbing into either equation, µ = 12.)
Subcase y = 0, z = −x: When y = 0 and z = −x, the remaining equations

reduce to

2(1− λ)x = µ (E1)
(1 + λ)x = µ (E3)

3x = 3 (E5)

So equation (E5) now tells us that x = 1 so that (x, y, z) = (1, 0,−1). (Again,
we don’t really care what λ and µ are. But as they obey 2(1 − λ) = µ,
(1 + λ) = µ we have, subtracting the second equation from the first,

1− 3λ = 0 =⇒ λ = 1
3
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and then, subbing into either equation, µ = 4
3 .)

Conclusion: We have two candidates for the location of the max and min,
namely (−3, 0,−3) and (1, 0,−1). The first is a distance 3

√
2 from the origin,

giving the maximum, and the second is a distance
√

2 from the origin, giving
the minimum. In particular, the distance is

√
2. �

2.10.2 Exercises

Exercises — Stage 1
1. ∗.

a Does the function f(x, y) = x2 + y2 have a maximum or a min-
imum on the curve xy = 1? Explain.

b Find all maxima and minima of f(x, y) on the curve xy = 1.
2. The surface S is given by the equation g(x, y, z) = 0. You are walking

on S measuring the function f(x, y, z) as you go. You are currently
at the point (x0, y0, z0) where f takes its largest value on S, and are
walking in the direction d 6= 0. Because you are walking on S, the
vector d is tangent to S at (x0, y0, z0).

a What is the directional derivative of f at (x0, y0, z0) in the di-
rection d? Do not use the method of Lagrange multipliers.

b What is the directional derivative of f at (x0, y0, z0) in the di-
rection d? This time use the method of Lagrange multipliers.

Exercises — Stage 2
3. Find the maximum and minimum values of the function f(x, y, z) =

x+ y − z on the sphere x2 + y2 + z2 = 1.

4. Find a, b and c so that the volume 4π
3 abc of an ellipsoid x2

a2 + y2

b2 + z2

c2 = 1
passing through the point (1, 2, 1) is as small as possible.

5. ∗. Use the Method of Lagrange Multipliers to find the minimum value
of z = x2 + y2 subject to x2y = 1. At which point or points does the
minimum occur?

6. ∗. Use the Method of Lagrange Multipliers to find the radius of the
base and the height of a right circular cylinder of maximum volume
which can be fit inside the unit sphere x2 + y2 + z2 = 1.

7. ∗. Use the method of Lagrange Multipliers to find the maximum and
minimum values of

f(x, y) = xy

subject to the constraint

x2 + 2y2 = 1.
8. ∗. Find the maximum and minimum values of f(x, y) = x2 + y2

subject to the constraint x4 + y4 = 1.
9. ∗. Use Lagrange multipliers to find the points on the sphere z2 +x2 +

y2 − 2y − 10 = 0 closest to and farthest from the point (1,−2, 1).
10. ∗. Use Lagrange multipliers to find the maximum and minimum

values of the function f(x, y, z) = x2 + y2 − 1
20z

2 on the curve of
intersection of the plane x+2y+z = 10 and the paraboloid x2+y2−z =
0.
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11. ∗. Find the point P = (x, y, z) (with x, y and z > 0) on the surface
x3y2z = 6

√
3 that is closest to the origin.

12. ∗. Find the maximum value of f(x, y, z) = xyz on the ellipsoid

g(x, y, z) = x2 + xy + y2 + 3z2 = 9

Specify all points at which this maximum value occurs.
13. ∗. Find the radius of the largest sphere centred at the origin that can

be inscribed inside (that is, enclosed inside) the ellipsoid

2(x+ 1)2 + y2 + 2(z − 1)2 = 8
14. ∗. Let C be the intersection of the plane x+ y+ z = 2 and the sphere

x2 + y2 + z2 = 2.
a Use Lagrange multipliers to find the maximum value of f(x, y, z) =
z on C.

b What are the coordinates of the lowest point on C?
15. ∗.

a Use Lagrange multipliers to find the extreme values of

f(x, y, z) = (x− 2)2 + (y + 2)2 + (z − 4)2

on the sphere x2 + y2 + z2 = 6.

b Find the point on the sphere x2 + y2 + z2 = 6 that is farthest
from the point (2,−2, 4).

16. ∗.
a Find the minimum of the function

f(x, y, z) = (x− 2)2 + (y − 1)2 + z2

subject to the constraint x2 + y2 + z2 = 1, using the method of
Lagrange multipliers.

b Give a geometric interpretation of this problem.
17. ∗. Use Lagrange multipliers to find the minimum and maximum

values of (x+ z)ey subject to x2 + y2 + z2 = 6.
18. ∗. Find the points on the ellipse 2x2 + 4xy + 5y2 = 30 which are

closest to and farthest from the origin.
19. Find the ends of the major and minor axes of the ellipse 3x2 − 2xy +

3y2 = 4.
20. ∗. A closed rectangular box with a volume of 96 cubic meters is to

be constructed of two materials. The material for the top costs twice
as much per square meter as that for the sides and bottom. Use the
method of Lagrange multipliers to find the dimensions of the least
expensive box.

21. ∗. Consider the unit sphere

S = §et(x, y, z)x2 + y2 + z2 = 1

in R3. Assume that the temperature at a point (x, y, z) of S is

T (x, y, z) = 40xy2z

Find the hottest and coldest temperatures on S.



CHAPTER 2. PARTIAL DERIVATIVES 245

22. ∗. Find the dimensions of the box of maximum volume which has its
faces parallel to the coordinate planes and which is contained inside
the region 0 ≤ z ≤ 48− 4x2 − 3y2.

z

y

x

23. ∗. A rectangular bin is to be made of a wooden base and heavy
cardboard with no top. If wood is three times more expensive than
cardboard, find the dimensions of the cheapest bin which has a volume
of 12m3.

24. ∗. A closed rectangular box having a volume of 4 cubic metres is to
be built with material that costs $8 per square metre for the sides but
$12 per square metre for the top and bottom. Find the least expensive
dimensions for the box.

25. ∗. Suppose that a, b, c are all greater than zero and let D be the
pyramid bounded by the plane ax+ by+ cz = 1 and the 3 coordinate
planes. Use the method of Lagrange multipliers to find the largest
possible volume of D if the plane ax + by + cz = 1 is required to
pass through the point (1, 2, 3). (The volume of a pyramid is equal to
one-third of the area of its base times the height.)

Exercises — Stage 3
26. ∗. Use Lagrange multipliers to find the minimum distance from the

origin to all points on the intersection of the curves

g(x, y, z) = x− z − 4 = 0
and h(x, y, z) = x+ y + z − 3 = 0

27. ∗. Find the largest and smallest values of

f(x, y, z) = 6x+ y2 + xz

on the sphere x2 + y2 + z2 = 36. Determine all points at which these
values occur.

28. ∗. The temperature in the plane is given by T (x, y) = ey
(
x2 + y2).

a i Give the system of equations that must be solved in order
to find the warmest and coolest point on the circle x2+y2 =
100 by the method of Lagrange multipliers.

ii Find the warmest and coolest points on the circle by solving
that system.

b i Give the system of equations that must be solved in order
to find the critical points of T (x, y).

ii Find the critical points by solving that system.

c Find the coolest point on the solid disc x2 + y2 ≤ 100.
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29. ∗.
a By finding the points of tangency, determine the values of c for
which x+y+z = c is a tangent plane to the surface 4x2 +4y2 +
z2 = 96.

b Use the method of Lagrange Multipliers to determine the abso-
lute maximum and minimum values of the function f(x, y, z) =
x+ y + z along the surface g(x, y, z) = 4x2 + 4y2 + z2 = 96.

c Why do you get the same answers in (a) and (b)?
30. Let f(x, y) have continuous partial derivatives. Consider the problem

of finding local minima and maxima of f(x, y) on the curve xy = 1.
• Define g(x, y) = xy − 1. According to the method of Lagrange

multipliers, if (x, y) is a local minimum or maximum of f(x, y)
on the curve xy = 1, then there is a real number λ such that

∇∇∇f(x, y) = λ∇∇∇g(x, y), g(x, y) = 0 (E1)

• On the curve xy = 1, we have y = 1
x and f(x, y) = f

(
x, 1

x

)
.

Define F (x) = f
(
x, 1

x

)
. If x 6= 0 is a local minimum or maximum

of F (x), we have that
F ′(x) = 0 (E2)

Show that (E1) is equivalent to (E2), in the sense that

there is a λ such that (x, y, λ) obeys (E1)
if and only if

x 6= 0 obeys (E2) and y = 1
x
.



Chapter 3

Multiple Integrals

In your previous calculus courses you defined and worked with single variable
integrals, like

∫ b
a
f(x) dx. In this chapter, we define and work with multi-

variable integrals, like
∫∫
R
f(x, y) dx dy and

∫∫∫
V
f(x, y, z) dxdy dz. We start

with two variable integrals.

3.1 Double Integrals

3.1.1 Vertical Slices
Suppose that you want to compute the mass of a plate that fills the region R
in the xy-plane. Suppose further that the density of the plate, say in kilograms
per square meter, depends on position. Call the density f(x, y). For simplicity
we’ll assume that R is the region between the bottom curve y = B(x) and the
top curve y = T (x) with x running from a to b. That is,

R =
{

(x, y)
∣∣ a ≤ x ≤ b, B(x) ≤ y ≤ T (x)

}

x

y

y “ T pxq

y “ Bpxq
a b

R

We’ll shortly express that mass as a two dimensional integral. As a warmup,
recall the procedure that we used to set up a (one dimensional) integral repre-
senting the area of R in Example 1.5.1 of the CLP-2 text.

• Pick a natural number n (that we will later send to infinity), and then

• subdivide R into n narrow vertical slices, each of width ∆x = b−a
n .

Denote by xi = a+ i∆x the x-coordinate of the right hand edge of slice
number i.

247
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x

y

y “ T pxq

y “ Bpxq
x0 x1 x2 ¨ ¨ ¨ xn

• For each i = 1, 2, . . . , n, slice number i has x running from xi−1 to xi.
We approximate its area by the area of a rectangle. We pick a number
x∗i between xi−1 and xi and approximate the slice by a rectangle whose
top is at y = T (x∗i ) and whose bottom is at y = B(x∗i ). The rectangle is
outlined in blue in the figure below.

x

y

xi´1 xi

xi̊

Bpxi̊ q

T pxi̊ q

y“T pxq

y“Bpxq

• Thus the area of slice i is approximately
[
T (x∗i )−B(x∗i )

]
∆x.

• So the Riemann sum approximation of the area of R is

Area ≈
n∑
i=1

[
T (x∗i )−B(x∗i )

]
∆x

• By taking the limit as n → ∞ (i.e. taking the limit as the width of
the rectangles goes to zero), we convert the Riemann sum into a definite
integral (see Definition 1.1.9 in the CLP-2 text) and at the same time
our approximation of the area becomes the exact area:

Area = lim
n→∞

n∑
i=1

[
T (x∗i )−B(x∗i )

]
∆x =

∫ b

a

[
T (x)−B(x)

]
dx

Now we can expand that procedure to yield the mass of R rather than the
area of R. We just have to replace our approximation

[
T (x∗i ) − B(x∗i )

]
∆x of

the area of slice i by an approximation to the mass of slice i. To do so, we

• Pick a natural number m (that we will later send to infinity), and then

• subdivide slice number i into m tiny rectangles, each of width ∆x and
of height ∆y = 1

m

[
T (x∗i ) − B(x∗i )

]
. Denote by yj = B(x∗i ) + j∆y the

y-coordinate of the top of rectangle number j.
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x

y

xi´1 xi

xi̊

yj´1

yj

yj̊

• At this point we approximate the density inside each rectangle by a con-
stant. For each j = 1, 2, . . . ,m, rectangle number j has y running from
yj−1 to yj . We pick a number y∗j between yj−1 and yj and approximate
the density on rectangle number j in slice number i by the constant
f
(
x∗i , y

∗
j

)
.

• Thus the mass of rectangle number j in slice number i is approximately
f
(
x∗i , y

∗
j

)
∆x∆y.

• So the Riemann sum approximation of the mass of slice number i is

Mass of slice i ≈
m∑
j=1

f
(
x∗i , y

∗
j

)
∆x∆y

Note that the y∗j ’s depend on i and m.

• By taking the limit as m → ∞ (i.e. taking the limit as the height of
the rectangles goes to zero), we convert the Riemann sum into a definite
integral:

Mass of slice i ≈ ∆x
∫ T (x∗i )

B(x∗
i
)
f
(
x∗i , y

)
dy = F (x∗i ) ∆x

where

F (x) =
∫ T (x)

B(x)
f
(
x, y
)

dy

Notice that, while we started with the density f(x, y) being a function
of both x and y, by taking the limit of this Riemann sum, we have
“integrated out” the dependence on y. As a result, F (x) is a function of
x only, not of x and y.

• Finally taking the limit as n→∞ (i.e. taking the limit as the slice width
goes to zero), we get

Mass = lim
n→∞

n∑
i=1

∆x
∫ T (x∗i )

B(x∗
i
)
f
(
x∗i , y

)
dy = lim

n→∞

n∑
i=1

F (x∗i ) ∆x

Now we are back in familiar 1-variable territory. The sum
n∑
i=1

F (x∗i ) ∆x

is a Riemann sum approximation to the integral
∫ b
a
F (x) dx. So

Mass =
∫ b

a

F (x) dx =
∫ b

a

[∫ T (x)

B(x)
f
(
x, y
)

dy
]

dx

This is our first double integral. There are a couple of different standard
notations for this integral.
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Definition 3.1.1∫∫
R
f
(
x, y
)

dx dy =
∫ b

a

[∫ T (x)

B(x)
f
(
x, y
)

dy
]

dx

=
∫ b

a

∫ T (x)

B(x)
f
(
x, y
)

dy dx =
∫ b

a

dx
∫ T (x)

B(x)
dy f

(
x, y
)

The last three integrals here are called iterated integrals, for obvious reasons.
♦

Note that

• to evaluate the integral
∫ b

a

∫ T (x)

B(x)
f
(
x, y
)

dy dx,

◦ first evaluate the inside integral
∫ T (x)
B(x) f

(
x, y
)

dy using the inside
limits of integration, and by treating x as a constant and using
standard single variable integration techniques, such as those in the
CLP-2 text. The result of the inside integral is a function of x only.
Call it F (x).

◦ Then evaluate the outside integral
∫ b
a
F (x) dx, whose integrand is

the answer to the inside integral. Again, this integral is evaluated
using standard single variable integration techniques.

• To evaluate the integral
∫ b

a

dx
∫ T (x)

B(x)
dy f

(
x, y
)
,

◦ first evaluate the inside integral
∫ T (x)
B(x) dy f

(
x, y
)
using the limits of

integration that are directly beside the dy. Indeed the dy is written
directly beside

∫ T (x)
B(x) to make it clear that the limits of integration

B(x) and T (x) are for the y-integral. In the past you probably wrote
this integral as

∫ T (x)
B(x) f

(
x, y
)

dy. The result of the inside integral is
again a function of x only. Call it F (x).

◦ Then evaluate the outside integral
∫ b
a

dxF (x), whose integrand is
the answer to the inside integral and whose limits of integration are
directly beside the dx.

At this point you may be wondering “Do we always have to use vertical
slices?” and “Do we always have to integrate with respect to y first?” The
answer is “no”. This brings us to consider “horizontal slices”.

3.1.2 Horizontal Slices
We found, when computing areas of regions in the xy-plane, that it is often
advantageous to use horizontal slices, rather than vertical slices. See, for ex-
ample, Example 1.5.4 in the CLP-2 text. The same is true when setting up
multidimensional integrals. So we now repeat the setup procedure of the last
section, but starting with horizontal slices, rather than vertical slices. This
procedure will be useful when dealing with regions of the form

R =
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
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x

y

x “ Lpyq
x “ Rpyq

y “ d

y “ c

R

Here L(y) (“L” stands for “left”) is the smallest1 allowed value of x, when
the y-coordinate is y, and R(y) (“R” stands for “right”) is the largest allowed
value of x, when the y-coordinate is y. Suppose that we wish to evaluate the
mass of a plate that fills the region R, and that the density of the plate is
f(x, y). We follow essentially the same the procedure as we used with vertical
slices, but with the roles of x and y swapped.

• Pick a natural number n (that we will later send to infinity). Then

• subdivide the interval c ≤ y ≤ d into n narrow subintervals, each of
width ∆y = d−c

n . Each subinterval cuts a thin horizontal slice from the
region (see the figure below).

• We approximate slice number i by a thin horizontal rectangle (indicated
by the long darker gray rectangle in the figure below). On this slice,
the y-coordinate runs over a very narrow range. We pick a number y∗i ,
somewhere in that range. We approximate slice i by a rectangle whose
left side is at x = L(y∗i ) and whose right side is at x = R(y∗i ).

• If we were computing the area of R, we would now approximate the area
of slice i by

[
R(x∗i )− L(x∗i )

]
∆y, which is the area of the rectangle with

width
[
R(x∗i )− L(x∗i )

]
and height ∆y.

• To get the mass, just as we did above with vertical slices, we

◦ pick another natural number m (that we will later send to infinity),
and then

◦ subdivide slice number i into m tiny rectangles, each of height ∆y
and of width ∆x = 1

m

[
R(y∗i )− L(y∗i )

]
.

◦ For each j = 1, 2, . . . ,m, rectangle number j has x running over a
very narrow range. We pick a number x∗j somewhere in that range.
See the small black rectangle in the figure below.

1By the “smallest” x we mean the x farthest to the left along the number line, not the x
closest to 0.
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x

y

x “ Lpyq
x “ Rpyq

x “ xj̊

y “ yi̊

y “ d

y “ c

Lpy˚
i q Rpy˚

i q

Here is a magnified sketch of slice number i

x

y

xj̊
xj´1 xj

y “ yi̊

y “ yi´1

y “ yi

Lpyi̊ q Rpyi̊ q

◦ On rectangle number j in slice number i, we approximate the density
by f

(
x∗j , y

∗
i

)
, giving us that the mass of rectangle number j in slice

number i is approximately f
(
x∗j , y

∗
i

)
∆x∆y.

◦ So the Riemann sum approximation of the mass of (horizontal) slice
number i is

Mass of slice i ≈
m∑
j=1

f
(
x∗j , y

∗
i

)
∆x∆y

◦ By taking the limit as m → ∞ (i.e. taking the limit as the width
of the rectangles goes to zero), we convert the Riemann sum into a
definite integral:

Mass of slice i ≈ ∆y
∫ R(y∗i )

L(y∗
i
)
f
(
x, y∗i

)
dx = F (y∗i ) ∆y

where

F (y) =
∫ R(y)

L(y)
f
(
x, y
)

dx

Observe that, as x has been integrated out, F (y) is a function of y
only, not of x and y.

• Finally taking the limit as n→∞ (i.e. taking the limit as the slice width
goes to zero), we get

Mass = lim
n→∞

n∑
i=1

∆y
∫ R(y∗i )

L(y∗
i
)
f
(
x, y∗i

)
dx = lim

n→∞

n∑
i=1

F (y∗i ) ∆y
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Now
n∑
i=1

F (y∗i ) ∆y is a Riemann sum approximation to the integral
∫ d
c
F (y) dy.

So

Mass =
∫ d

c

F (y) dy =
∫ d

c

[∫ R(y)

L(y)
f
(
x, y
)

dx
]

dy

The standard notations of Notation 3.1.1 also apply to this integral.

Definition 3.1.2∫∫
R
f
(
x, y
)

dx dy =
∫ d

c

[∫ R(y)

L(y)
f
(
x, y
)

dx
]

dy

=
∫ d

c

∫ R(y)

L(y)
f
(
x, y
)

dxdy =
∫ d

c

dy
∫ R(y)

L(y)
dx f

(
x, y
)
♦

Note that

• to evaluate the integral
∫ d

c

∫ R(y)

L(y)
f
(
x, y
)

dx dy,

◦ first evaluate the inside integral
∫ R(y)
L(y) f

(
x, y
)

dx using the inside
limits of integration. The result of the inside integral is a function
of y only. Call it F (y).

◦ Then evaluate the outside integral
∫ d
c
F (y) dy, whose integrand is

the answer to the inside integral.

• To evaluate the integral
∫ d

c

dy
∫ R(y)

L(y)
dx f

(
x, y
)
,

◦ first evaluate the inside integral
∫ R(y)
L(y) dx f

(
x, y
)
using the limits of

integration that are directly beside the dx. Again, the dx is written
directly beside

∫ R(y)
L(y) to make it clear that the limits of integration

L(y) and R(y) are for the x-integral. In the past you probably wrote
this integral as

∫ R(y)
L(y) f

(
x, y
)

dx. The result of the inside integral is
again a function of y only. Call it F (y).

◦ Then evaluate the outside integral
∫ d
c

dy F (y), whose integrand is
the answer to the inside integral and whose limits of integration are
directly beside the dy.

By way of summary, we now have two integral representations for the mass
of regions in the xy-plane.

Theorem 3.1.3 Let R be a region in the xy-plane and let the function f(x, y)
be defined and continuous on R.

a If

R =
{

(x, y)
∣∣ a ≤ x ≤ b, B(x) ≤ y ≤ T (x)

}
with B(x) and T (x) being continuous, and if the mass density in R is
f(x, y), then the mass of R is∫ b

a

[∫ T (x)

B(x)
f
(
x, y
)

dy
]

dx =
∫ b

a

∫ T (x)

B(x)
f
(
x, y
)

dy dx
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=
∫ b

a

dx
∫ T (x)

B(x)
dy f

(
x, y
)

b If
R =

{
(x, y)

∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)
}

with L(y) and R(y) being continuous, and if the mass density in R is
f(x, y), then the mass of R is∫ d

c

[∫ R(y)

L(y)
f
(
x, y
)

dx
]

dy =
∫ d

c

∫ R(y)

L(y)
f
(
x, y
)

dxdy

=
∫ d

c

dy
∫ R(y)

L(y)
dx f

(
x, y
)

Implicit in Theorem 3.1.3 is the statement that, if{
(x, y)

∣∣ a ≤ x ≤ b, B(x) ≤ y ≤ T (x)
}

=
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
and if f(x, y) is continuous, then∫ b

a

∫ T (x)

B(x)
f
(
x, y
)

dy dx =
∫ d

c

∫ R(y)

L(y)
f
(
x, y
)

dx dy

This is called Fubini’s theorem2. It will be discussed more in the optional
§3.1.5.

Definition 3.1.4 The integrals of Theorem 3.1.3 are often denoted∫∫
R
f(x, y) dxdy or

∫∫
R
f(x, y) dA

The symbol dA represents the area of an “infinitesimal” piece of R. ♦
Here is a simple example. We’ll do some more complicated examples in

§3.1.4.

Example 3.1.5 Let R be the triangular region above the x-axis, to the right
of the y-axis and to the left of the line x+ y = 1. Find the mass of R if it has
density f(x, y) = y.
Solution. We’ll do this problem twice — once using vertical strips and once
using horizontal strips. First, here is a sketch of R.

x

y

x ` y “ 1

R

p1,0q

p0,1q

Solution using vertical strips. We’ll now set up a double integral for the
mass using vertical strips. Note, from the figure

2This theorem is named after the Italian mathematician Guido Fubini (1879--1943).
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x

y

y “ T pxq “ 1 ´ x

p1,0q

p0,1q

that

• the leftmost points in R have x = 0 and the rightmost point in R has
x = 1 and

• for each fixed x between 0 and 1, the point (x, y) in R with the smallest
y has y = 0 and the point (x, y) in R with the largest y has y = 1− x.

Thus

R =
{

(x, y)
∣∣ 0 = a ≤ x ≤ b = 1, 0 = B(x) ≤ y ≤ T (x) = 1− x

}
and, by part (a) of Theorem 3.1.3

Mass =
∫ b

a

dx
∫ T (x)

B(x)
dy f

(
x, y
)

=
∫ 1

0
dx
∫ 1−x

0
dy y

Now the inside integral is∫ 1−x

0
y dy =

[
y2

2

]1−x

0
= 1

2(1− x)2

so that the

Mass =
∫ 1

0
dx (1− x)2

2 =
[
− (1− x)3

6

]1

0
= 1

6

Solution using horizontal strips. This time we’ll set up a double integral
for the mass using horizontal strips. Note, from the figure

x

y

x “ Rpyq “ 1 ´ y

p1,0q

p0,1q

that

• the lowest points in R have y = 0 and the topmost point in R has y = 1
and

• for each fixed y between 0 and 1, the point (x, y) in R with the smallest
x has x = 0 and the point (x, y) in R with the largest x has x = 1− y.
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Thus

R =
{

(x, y)
∣∣ 0 = c ≤ y ≤ d = 1, 0 = L(y) ≤ x ≤ R(y) = 1− y

}
and, by part (b) of Theorem 3.1.3

Mass =
∫ d

c

dy
∫ R(y)

L(y)
dx f

(
x, y
)

=
∫ 1

0
dy
∫ 1−y

0
dx y

Now the inside integral is∫ 1−y

0
y dx = [xy]1−y0 = y − y2

since the y integral treats x as a constant. So the

Mass =
∫ 1

0
dy
[
y − y2] =

[
y2

2 −
y3

3

]1

0
= 1

2 −
1
3 = 1

6

�
Double integrals share the usual basic properties that we are used to from

integrals of functions of one variable. See, for example, Theorem 1.2.1 and
Theorem 1.2.12 in the CLP-2 text. Indeed the following theorems follow from
them.
Theorem 3.1.6 Arithmetic of Integration. Let A,B,C be real numbers.
Under the hypotheses of Theorem 3.1.3,∫∫

R
(f(x, y) + g(x, y)) dxdy =

∫∫
R
f(x, y) dxdy +

∫∫
R
g(x, y) dxdy (a)∫∫

R
(f(x, y)− g(x, y)) dxdy =

∫∫
R
f(x, y) dxdy −

∫∫
R
g(x, y) dxdy (b)∫∫

R
Cf(x, y) dxdy = C

∫∫
R
f(x, y) dxdy (c)

Combining these three rules we have∫∫
R

(Af(x, y) +Bg(x, y)) dxdy = A

∫∫
R
f(x, y) dxdy

+B

∫∫
R
g(x, y) dxdy (d)

That is, integrals depend linearly on the integrand.∫∫
R

dxdy = Area(R) (e)

If the region R in the xy-plane is the union of regions R1 and R2 that do not
overlap (except possibly on their boundaries), then∫∫

R
f(x, y) dxdy =

∫∫
R1

f(x, y) dxdy +
∫∫
R2

f(x, y) dxdy (f)
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R1 R2

R

R1 R2

R R

In the very special (but not that uncommon) case that R is the rectangle

R =
{

(x, y)
∣∣ a ≤ x ≤ b, c ≤ y ≤ d }

and the integrand is the product f(x, y) = g(x)h(y),∫∫
R
f(x, y) dxdy =

∫ b

a

dx
∫ d

c

dy g(x)h(y)

=
∫ b

a

dx g(x)
∫ d

c

dy h(y)

since g(x) is a constant as far as the y-integral is concerned

=
[∫ b

a

dx g(x)
] [∫ d

c

dy h(y)
]

since
∫ d
c

dy h(y) is a constant as far as the $x$-integral is concerned.
This is worth stating as a theorem

Theorem 3.1.7 If the domain of integration

R =
{

(x, y)
∣∣ a ≤ x ≤ b, c ≤ y ≤ d }

is a rectangle and the integrand is the product f(x, y) = g(x)h(y), then∫∫
R
f(x, y) dxdy =

[∫ b

a

dx g(x)
] [∫ d

c

dy h(y)
]

Just as was the case for single variable integrals, sometimes we don’t ac-
tually need to know the value of a double integral exactly. We are instead
interested in bounds on its value. The following theorem provides some simple
tools for generating such bounds. They are the multivariable analogs of the
single variable tools in Theorem 1.2.12 of the CLP-2 text.

Theorem 3.1.8 Inequalities for Integrals. Under the hypotheses of The-
orem 3.1.3,

a If f(x, y) ≥ 0 for all (x, y) in R, then∫∫
R
f(x, y) dxdy ≥ 0

b If there are constants m and M such that m ≤ f(x, y) ≤M for all (x, y)
in R, then

mArea(R) ≤
∫∫
R
f(x, y) dxdy ≤M Area(R)

c If f(x, y) ≤ g(x, y) for all (x, y) in R, then∫∫
R
f(x, y) dxdy ≤

∫∫
R
g(x, y) dxdy
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d We have ∣∣∣∣∫∫
R
f(x, y) dxdy

∣∣∣∣ ≤ ∫∫
R
|f(x, y)|dxdy

3.1.3 Volumes
Now that we have defined double integrals, we should start putting them to
use. One of the most immediate applications arises from interpreting f(x, y),
not as a density, but rather as the height of the part of a solid above the
point (x, y) in the xy-plane. Then Theorem 3.1.3 gives the volume between
the xy-plane and the surface z = f(x, y).

We’ll now see how this goes in the case of part (b) of Theorem 3.1.3. The
case of part (a) works in the same way. So we assume that the solid V lies
above the base region

R =
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
and that

V =
{

(x, y, z)
∣∣ (x, y) ∈ R, 0 ≤ z ≤ f(x, y)

}
The base region R (which is also the top view of V) is sketched in the figure
on the left below and the part of V in the first octant is sketched in the figure
on the right below.

y

x

top view

x “ Lpyq

x “ Rpyq

dx

dy

y “ dy “ c

R

z

y

x

z “ fpx, yq

To find the volume of V we shall

• Pick a natural number n and slice R into strips of width ∆y = d−c
n .

• Subdivide slice number i into m tiny rectangles, each of height ∆y and
of width ∆x = 1

m · · ·.

• Compute, approximately, the volume of the part of V that is above each
rectangle.

• Take the limit m→∞ and then the limit n→∞.

We have just been through this type of argument twice. So we’ll abbreviate
the argument and just say

• slice the base region R into long “infinitesimally” thin strips of width dy.

• Subdivide each strip into “infinitesimal” rectangles each of height dy and
of width dx. See the figure on the left above.
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• The volume of the part of V that is above the rectangle centred on (x, y)
is essentially f(x, y) dxdy. See the figure on the right above.

• So the volume of the part of V that is above the strip centred on y is
essentially3 dy

∫ R(y)
L(y) dx f(x, y) and

• we arrive at the following conclusion.

Equation 3.1.9 If

V =
{

(x, y, z)
∣∣ (x, y) ∈ R, 0 ≤ z ≤ f(x, y)

}
where

R =
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
then

Volume(V) =
∫ d

c

dy
∫ R(y)

L(y)
dx f(x, y)

Similarly

Equation 3.1.10 If

V =
{

(x, y, z)
∣∣ (x, y) ∈ R, 0 ≤ z ≤ f(x, y)

}
where

R =
{

(x, y)
∣∣ a ≤ x ≤ b, B(x) ≤ y ≤ T (x)

}
then

Volume(V) =
∫ b

a

dx
∫ T (x)

B(x)
dy f(x, y)

3.1.4 Examples
Oof — we have had lots of equations and theory. It’s time to put all of this
to work. Let’s start with a mass example and then move on to a volume
example. You will notice that the mathematics is really very similar. Just the
interpretation changes.

Example 3.1.11 Mass. Let ν > 0 be a constant and let R be the region
above the curve x2 = 4νy and to the right of the curve y2 = 1

2νx. Find the
mass of R if it has density f(x, y) = xy.
Solution. For practice, we’ll do this problem twice — once using vertical
strips and once using horizontal strips. We’ll start by sketching R. First note
that, since y ≥ x2

4ν and x ≥ 2y2

ν , both x and y are positive throughout R. The
two curves intersect at points (x, y) that satisfy both

x = 2y2

ν
and y = x2

4ν =⇒ x = 2y2

ν
= 2
ν

(
x2

4ν

)2

= x4

8ν3

⇐⇒
(
x3

8ν3 − 1
)
x = 0

This equation has only two real4 solutions — x = 0 and x = 2ν. So the upward
3Think of the part of V that is above the strip as being a thin slice of bread. Then the fac-

tor dy in dy
∫ R(y)
L(y) dx f(x, y) is the thickness of the slice of bread. The factor

∫ R(y)
L(y) dx f(x, y)

is the surface area of the constant y cross-section
{

(x, z)
∣∣ L(y) ≤ x ≤ R(y), 0 ≤ z ≤

f(x, y)
}
, i.e. the surface area of the slice of bread.
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opening parabola y = x2

4ν and the rightward opening parabola x = 2y2

ν intersect
at (0, 0) and (2ν, ν).

x

y y “ x2

4ν

x “ 2y2

ν

p2ν, νq

R

Solution using vertical strips. We’ll now set up a double integral for the
mass using vertical strips and using the abbreviated argument of the end of
the last section (on volumes). Note, from the figure above, that

R =
{

(x, y)
∣∣∣∣ 0 = a ≤ x ≤ b = 2ν, x

2

4ν = B(x) ≤ y ≤ T (x) =
√
νx

2

}
• Slice R into long “infinitesimally” thin vertical strips of width dx.

• Subdivide each strip into “infinitesimal” rectangles each of height dy and
of width dx. See the figure below.

dx

dy

x

y y “ Bpxq “ x2

4ν

y “ T pxq “ a
νx
2

x “ b “ 2ν

• The mass of the rectangle centred on (x, y) is essentially f(x, y) dxdy =
xy dxdy.

• So the mass of the strip centred on x is essentially dx
∫ T (x)
B(x) dy f(x, y)

(the integral over y adds up the masses of all of the different rectangles
on the single vertical strip in question) and

• we conclude that the

Mass(R) =
∫ b

a

dx
∫ T (x)

B(x)
dy f(x, y) =

∫ 2ν

0
dx
∫ √νx/2
x2/(4ν)

dy xy

Here the integral over x adds up the masses of all of the different strips.
Recall that, when integrating y, x is held constant, so we may factor the
constant x out of the inner y integral.∫ √νx/2

x2/(4ν)
dy xy = x

∫ √νx/2
x2/(4ν)

dy y
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= x

[
y2

2

]√νx/2
x2/(4ν)

= νx2

4 − x5

32ν2

and the

Mass(R) =
∫ 2ν

0
dx

[
νx2

4 − x5

32ν2

]
= ν(2ν)3

3× 4 −
(2ν)6

6× 32ν2 = ν4

3

Solution using horizontal strips. We’ll now set up a double integral for
the mass using horizontal strips, again using the abbreviated argument of the
end of the last section (on volumes). Note, from the figure at the beginning of
this example, that

R =
{

(x, y)
∣∣∣∣ 0 = c ≤ y ≤ d = ν,

2y2

ν
= L(y) ≤ x ≤ R(y) =

√
4νy

}
• Slice R into long “infinitesimally” thin horizontal strips of width dy.

• Subdivide each strip into “infinitesimal” rectangles each of height dy and
of width dx. See the figure below.

dx

dy

x

y x “ Rpyq “ ?
4νy

x “ Lpyq “ 2y2

ν

y “ d “ ν

• The mass of the rectangle centred on (x, y) is essentially f(x, y) dxdy =
xy dxdy.

• So the mass of the strip centred on y is essentially dy
∫ R(y)
L(y) dx f(x, y)

(the integral over x adds up the masses of all of the different rectangles
on the single horizontal strip in question) and

• we conclude that the

Mass(R) =
∫ d

c

dy
∫ R(y)

L(y)
dx f(x, y) =

∫ ν

0
dy
∫ √4νy

2y2/ν

dx xy

Here the integral over y adds up the masses of all of the different strips.
Recalling that, when integrating x, y is held constant

Mass(R) =
∫ ν

0
dy y

[∫ √4νy

2y2/ν

dx x
]
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=
∫ ν

0
dy y

[
x2

2

]√4νy

2y2/ν

=
∫ ν

0
dy
[
2νy2 − 2y5

ν2

]
= 2ν(ν)3

3 − 2ν6

6ν2 = ν4

3

�

Example 3.1.12 Volume. Let R be the part of the xy-plane above the
x-axis and below the parabola y = 1 − x2. Find the volume between R and
the surface z = x2√1− y.
Solution. Yet again, for practice, we’ll do this problem twice — once using
vertical strips and once using horizontal strips. First, here is a sketch of R.

x

y

y “ 1 ´ x2

R

p´1,0q p1,0q

p0,1q

Solution using vertical strips. We’ll now set up a double integral for the
volume using vertical strips. Note, from the figure

x

y

y “ T pxq “ 1 ´ x2

p´1,0q p1,0q

p0,1q

that

• the leftmost point in R has x = −1 and the rightmost point in R has
x = 1 and

• for each fixed x between −1 and 1, the point (x, y) in R with the smallest
y has y = 0 and the point (x, y) in R with the largest y has y = 1− x2.

Thus

R =
{

(x, y)
∣∣ − 1 = a ≤ x ≤ b = 1, 0 = B(x) ≤ y ≤ T (x) = 1− x2 }

and, by 3.1.10

Volume =
∫ b

a

dx
∫ T (x)

B(x)
dy f

(
x, y
)

=
∫ 1

−1
dx
∫ 1−x2

0
dy x2√1− y

4It also has two complex solutions that play no role here.



CHAPTER 3. MULTIPLE INTEGRALS 263

= 2
∫ 1

0
dx
∫ 1−x2

0
dy x2√1− y

since the inside integral F (x) =
∫ 1−x2

0 dy x2√1− y is an even function of x.
Now, for x ≥ 0, the inside integral is∫ 1−x2

0
x2√1− y dy = x2

∫ 1−x2

0

√
1− y dy = x2

[
−2

3(1− y)3/2
]1−x2

0

= 2
3x

2(1− x3)
so that the

Volume = 2
∫ 1

0
dx 2

3x
2(1− x3) = 4

3

[
x3

3 −
x6

6

]1

0
= 2

9

Solution using horizontal strips. This time we’ll set up a double integral
for the volume using horizontal strips. Note, from the figure

x

y

x “ Lpyq “ ´?
1 ´ y x “ Rpyq “ ?

1 ´ y

p´1,0q p1,0q

p0,1q

that

• the lowest points in R have y = 0 and the topmost point in R has y = 1
and

• for each fixed y between 0 and 1, the point (x, y) in R with the leftmost
x has x = −

√
1− y and the point (x, y) in R with the rightmost x has

x =
√

1− y.

Thus

R =
{

(x, y)
∣∣ 0 = c ≤ y ≤ d = 1, −

√
1− y = L(y) ≤ x ≤ R(y) =

√
1− y

}
and, by 3.1.9

Volume =
∫ d

c

dy
∫ R(y)

L(y)
dx f

(
x, y
)

=
∫ 1

0
dy
∫ √1−y

−
√

1−y
dxx2√1− y

Now the inside integral has an even integrand (in x) and so is∫ √1−y

−
√

1−y
dxx2√1− y = 2

√
1− y

∫ √1−y

0
x2 dx = 2

√
1− y

[
x3

3

]√1−y

0

= 2
3(1− y)2

So the

Volume = 2
3

∫ 1

0
dy (1− y)2 = 2

3

[
− (1− y)3

3

]1

0
= 2

9

�
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Example 3.1.13 Volume. Find the volume common to the two cylinders
x2 + y2 = a2 and x2 + z2 = a2.
Solution. Our first job is figure out what the specified solid looks like. Note
that

• The variable z does not appear in the equation x2 + y2 = a2. So, for
every value of the constant z0, the part of the cylinder x2 + y2 = a2 in
the plane z = z0, is the circle x2 + y2 = a2, z = z0. So the cylinder
x2 + y2 = a2 consists of many circles stacked vertically, one on top of the
other. The part of the cylinder x2 + y2 = a2 that lies above the xy-plane
is sketched in the figure on the left below.

• The variable y does not appear in the equation x2 + z2 = a2. So, for
every value of the constant y0, the part of the cylinder x2 + z2 = a2 in
the plane y = y0, is the circle x2 + z2 = a2, y = y0. So the cylinder
x2 + z2 = a2 consists of many circles stacked horizontally, one beside the
other. The part of the cylinder x2 + z2 = a2 that lies to the right of the
xz-plane is sketched in the figure on the right below.

y

z

x

y

z

x

We have to compute the volume common to these two intersecting cylinders.

• The equations x2 + y2 = a2 and x2 + z2 = a2 do not change at all if x
is replaced by −x. Consequently both cylinders, and hence our solid, is
symmetric about the yz-plane. In particular the volume of the part of
the solid in the octant x ≤ 0, y ≥ 0, z ≥ 0 is the same as the volume
in the first octant x ≥ 0, y ≥ 0, z ≥ 0. Similarly, the equations do not
change at all if y is replaced by −y or if z is replaced by −z. Our solid
is also symmetric about both the xz-plane and the xy-plane. Hence the
volume of the part of our solid in each of the eight octants is the same.

• So we will compute the volume of the part of the solid in the first octant,
i.e. with x ≥ 0, y ≥ 0, z ≥ 0. The total volume of the solid is eight times
that.

The part of the solid in the first octant is sketched in the figure on the left
below. A point (x, y, z) lies in the first cylinder if and only if x2 + y2 ≤ a2.
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y

z

x

y

x
top view

x “ a

R x2 ` y2 “ a2

or y “ ?
a2 ´ x2

It lies in the second cylinder if and only if x2 + z2 ≤ a2. So the part of the
solid in the first octant is

V1 =
{

(x, y, z)
∣∣ x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 ≤ a2, x2 + z2 ≤ a2 }

Notice that, in V1, z2 ≤ a2 − x2 so that z ≤
√
a2 − x2 and

V1 =
{

(x, y, z)
∣∣ x ≥ 0, y ≥ 0, x2 + y2 ≤ a2, 0 ≤ z ≤

√
a2 − x2

}
The top view of the part of the solid in the first octant is sketched in the figure
on the right above. In that top view, x runs from 0 to a. For each fixed x, y
runs from 0 to

√
a2 − x2. So we may rewrite

V1 =
{

(x, y, z)
∣∣ (x, y) ∈ R, 0 ≤ z ≤ f(x, y)

}
where

R =
{

(x, y)
∣∣∣ 0 ≤ x ≤ a, 0 ≤ y ≤

√
a2 − x2

}
and f(x, y) =

√
a2 − x2

and “(x, y) ∈ R” is read “(x, y) is an element of R.”. Note that f(x, y) is
actually independent of y. This will make things a bit easier below.

We can now compute the volume of V1 using our usual abbreviated protocol.

• Slice R into long “infinitesimally” thin horizontal strips of height dx.

• Subdivide each strip into “infinitesimal” rectangles each of width dy and
of height dx. See the figure below.

y

x
top view

dx

dy

x “ a

y “ ?
a2 ´ x2

• The volume of the part of V1 above rectangle centred on (x, y) is essen-
tially

f(x, y) dxdy =
√
a2 − x2 dxdy
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• So the volume of the part of V1 above the strip centred on x is essentially

dx
∫ √a2−x2

0

√
a2 − x2 dy

(the integral over y adds up the volumes over all of the different rectangles
on the single horizontal strip in question) and

• we conclude that the

Volume(V1) =
∫ a

0
dx
∫ √a2−x2

0
dy
√
a2 − x2

Here the integral over x adds up the volumes over all of the different
strips. Recalling that, when integrating y, x is held constant

Volume(V1) =
∫ a

0
dx
√
a2 − x2

[∫ √a2−x2

0
dy
]

=
∫ a

0
dx
(
a2 − x2)

=
[
a2x− x3

3

]a
0

= 2a3

3

and the total volume of the solid in question is

Volume(V) = 8Volume(V1) = 16a3

3

�

Example 3.1.14 Geometric Interpretation. Evaluate
∫ 2

0

∫ a

0

√
a2 − x2 dxdy.

Solution. This integral represents the volume of a simple geometric figure
and so can be evaluated without using any calculus at all. The domain of
integration is

R =
{

(x, y)
∣∣ 0 ≤ y ≤ 2, 0 ≤ x ≤ a

}
and the integrand is f(x, y) =

√
a2 − x2, so the integral represents the volume

between the xy-plane and the surface z =
√
a2 − x2, with (x, y) running over

R. We can rewrite the equation of the surface as x2 + z2 = a2, which, as in
Example 3.1.13, we recognize as the equation of a cylinder of radius a centred
on the y-axis. We want the volume of the part of this cylinder that lies above
R. It is sketched in the figure below.

y

z

x

x “ 0, z “ a

x “ a, z “ 0

y “ 2
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The constant y cross-sections of this volume are quarter circles of radius a
and hence of area 1

4πa
2. The inside integral,

∫ a
0
√
a2 − x2 dx, is exactly this

area. So, as y runs from 0 to 2,∫ 2

0

∫ a

0

√
a2 − x2 dxdy = 1

4πa
2 × 2 = πa2

2

�

Example 3.1.15 Example 3.1.14, the hard way. It is possible, but very
tedious, to evaluate the integral

∫ 2
0
∫ a

0
√
a2 − x2 dxdy of Example 3.1.14, using

single variable calculus techniques. We do so now as a review of a couple of
those techniques.

The inside integral is
∫ a

0
√
a2 − x2 dx. The standard procedure for eliminat-

ing square roots like
√
a2 − x2 from integrands is the method of trigonometric

substitution, that was covered in §1.9 of the CLP-2 text. In this case, the
appropriate substitution is

x = a sin θ dx = a cos θ dθ

The lower limit of integration x = 0, i.e. a sin θ = 0, corresponds to θ = 0, and
the upper limit x = a, i.e. a sin θ = a, corresponds to θ = π

2 , so that∫ a

0

√
a2 − x2 dx =

∫ π/2

0

√
a2 − a2 sin2 θ︸ ︷︷ ︸

a2 cos2 θ

a cos θ dθ = a2
∫ π/2

0
cos2 θ dθ

The orthodox procedure for evaluating the resulting trigonometric integral∫ π/2
0 cos2 θ dθ, covered in §1.8 of the CLP-2 text, uses the trigonometric double
angle formula

cos(2θ) = 2 cos2 θ − 1 to write cos2 θ = 1 + cos(2θ)
2

and then∫ a

0

√
a2 − x2 dx = a2

∫ π/2

0
cos2 θ dθ = a2

2

∫ π/2

0

[
1 + cos(2θ)

]
dθ

= a2

2

[
θ + sin(2θ)

2

]π/2
0

= πa2

4

However we remark that there is also an efficient, sneaky, way to evaluate
definite integrals like

∫ π/2
0 cos2 θ dθ. Looking at the figures

y

x
´π ´π{2 ππ{2

1
y “ cos2 x

y

θ´π ´π{2 ππ{2

1
y “ sin2 θ

we see that ∫ π/2

0
cos2 θ dθ =

∫ π/2

0
sin2 θ dθ
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Thus ∫ π/2

0
cos2 θ dθ =

∫ π/2

0
sin2 θ dθ =

∫ π/2

0

1
2
[

sin2 θ + cos2 θ
]

dθ

= 1
2

∫ π/2

0
dθ = π

4

In any event, the inside integral∫ a

0

√
a2 − x2 dx = πa2

4

and the full integral∫ 2

0

∫ a

0

√
a2 − x2 dxdy = πa2

4

∫ 2

0
dy = πa2

2

just as we saw in Example 3.1.14. �

Example 3.1.16 Order of Integration. The integral
∫ 2

−1

∫ x+2

x2
dy dx rep-

resents the area of a region in the xy-plane. Express the same area as a double
integral with the order of integration reversed.

\soln The critical step in reversing the order of integration is to sketch the
region in the xy-plane. Rewrite the given integral as∫ 2

−1

∫ x+2

x2
dy dx =

∫ 2

−1

[∫ x+2

x2
dy
]

dx

From this we see that, on the domain of integration,

• x runs from −1 to 2 and

• for each fixed x, y runs from the parabola y = x2 to the straight line
y = x+ 2.

The given iterated integral corresponds to the (vertical) slicing in the figure on
the left below.

p2, 4q

p´1, 1q

dx

dy

x

y

y “ x2

y “ x ` 2

p2, 4q

p´1, 1q

dx

dy

dy

x

y

x “ ?
y

x “ y ´ 2

x “ ´?
y

To reverse the order of integration we have to switch to horizontal slices as
in the figure on the right above.

There we see a new wrinkle: the formula giving the value of x at the left
hand end of a slice depends on whether the y coordinate of the slice is bigger
than, or smaller than y = 1. Looking at the figure on the right, we see that,
on the domain of integration,

• y runs from 0 to 4 and

• for each fixed 0 ≤ y ≤ 1, x runs from x = −√y to x = +√y.
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• for each fixed 1 ≤ y ≤ 4, x runs from x = y − 2 to x = +√y.

So ∫ 2

−1
dx
∫ x+2

x2
dy =

∫ 1

0
dy
∫ √y
−√y

dx+
∫ 4

1
dy
∫ √y
y−2

dx

�
There was a moral to the last example. Just because both orders of inte-

gration have to give the same answer doesn’t mean that they are equally easy
to evaluate. Here is an extreme example illustrating that moral.

Example 3.1.17 Evaluate the integral of sin x
x over the region in the xy-plane

that is above the x-axis, to the right of the line y = x and to the left of the
line x = 1.
Solution. Here is a sketch of the specified domain.

p1, 1q

x

y y “ xx “ 1

We’ll try to evaluate the specified integral twice — once using horizontal
strips (the impossibly hard way) and once using vertical strips (the easy way).

Solution using horizontal strips. To set up the integral using horizontal
strips, as in the figure on the left below, we observe that, on the domain of
integration,

• y runs from 0 to 1 and

• for each fixed y, x runs from x = y to 1.

So the iterated integral is ∫ 1

0
dy
∫ 1

y

dx sin x
x

And we have a problem. The integrand sin x
x does not have an antiderivative

that can be expressed in terms of elementary functions5. It is impossible to
evaluate

∫ 1
y

dx sin x
x without resorting to, for example, numerical methods or

infinite series6.

p1, 1q

dx

dy

x

y x “ yx “ 1

p1, 1q

dx

dy

x

y y “ xx “ 1

Solution using vertical strips. To set up the integral using vertical strips, as
in the figure on the right above, we observe that, on the domain of integration,

• x runs from 0 to 1 and
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• for each fixed x, y runs from 0 to y = x.

So the iterated integral is ∫ 1

0
dx
∫ x

0
dy sin x

x

This time, because x is treated as a constant in the inner integral, it is trivial
to evaluate the iterated integral.∫ 1

0
dx
∫ x

0
dy sin x

x
=
∫ 1

0
dx sin x

x

∫ x

0
dy =

∫ 1

0
dx sin x = 1− cos 1

�
Here is an example which is included as an excuse to review some integration

technique from CLP-2.

Example 3.1.18 Find the volume under the surface z = 1 − 3x2 − 2y2 and
above the xy-plane.
Solution. Before leaping into integration, we should try to understand what
the surface and volume look like. For each constant z0, the part of the surface
z = 1−3x2−2y2 that lies in the horizontal plane z = z0 is the ellipse 3x2+2y2 =
1− z0. The biggest of these ellipses is that in the xy-plane, where z0 = 0. It is
the ellipse 3x2 + 2y2 = 1. As z0 increases the ellipse shrinks, degenerating to
a single point, namely (0, 0, 1), when z0 = 1. So the surface consists of a stack
of ellipses and our solid is

V =
{

(x, y, z)
∣∣ 3x2 + 2y2 ≤ 1, 0 ≤ z ≤ 1− 3x2 − 2y2 }

This is sketched in the figure below

z

y

x

z “ 1 ´ 3x2 ´ 2y2

3x2 ` 2y2 “ 1

R

The top view of the base region

R =
{

(x, y)
∣∣ 3x2 + 2y2 ≤ 1

}
is sketched in the figure below.

5Perhaps the best known function whose antiderivative cannot be expressed in terms of
elementary functions is e−x2 . It is the integrand of the error function erf(x) = 2√

π

∫ x
0 e−t

2
dt

that is used in computing “bell curve” probabilities. See Example 3.6.10 in the CLP-2 text.
6See, for example, Example 3.6.10 in the CLP-2 text.
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y

x

top view

x “ ´
b

1´2y2

3

x “
b

1´2y2

3

dx

dy

y “ 1{?
2y “ ´1{?

2

R

Considering that the x-dependence in z = 1− 3x2− 2y2 is almost identical
to the y-dependence in z = 1 − 3x2 − 2y2 (only the coefficients 2 and 3 are
interchanged), using vertical slices is likely to lead to exactly the same level of
difficulty as using horizontal slices. So we’ll just pick one — say vertical slices.

The fattest part of R is on the y-axis. The intersection points of the ellipse
with the y-axis have x = 0 and y obeying 3(0)2 +2y2 = 1 or y = ± 1√

2 . So in R,

− 1√
2 ≤ y ≤

1√
2 and, for each such y, 3x2 ≤ 1−2y2 or −

√
1−2y2

3 ≤ x ≤
√

1−2y2

3 .
So using vertical strips as in the figure above

Volume(V) =
∫∫
R

(
1− 3x2 − 2y2)dxdy

=
∫ 1√

2

− 1√
2

dy
∫ √ 1−2y2

3

−
√

1−2y2
3

dx
(
1− 3x2 − 2y2)

= 4
∫ 1√

2

0
dy
∫ √ 1−2y2

3

0
dx
(
1− 3x2 − 2y2)

= 4
∫ 1√

2

0
dy
[
(1− 2y2)x− x3

]√ 1−2y2
3

0

= 4
∫ 1√

2

0
dy
√

1− 2y2

3

[
(1− 2y2)− 1− 2y2

3

]
= 8

∫ 1√
2

0
dy
[

1− 2y2

3

]3/2

To evaluate this integral, we use the trig substitution7 2y2 = sin2 θ, or

y = sin θ√
2

dy = cos θ√
2

dθ

to give

Volume(V) = 8
∫ π

2

0

dy︷ ︸︸ ︷
dθ cos θ√

2

[
cos2 θ

3

]3/2

= 8√
54

∫ π
2

0
dθ cos4 θ

Then to integrate cos4 θ, we use the double angle formula8

cos2 θ = cos(2θ) + 1
2
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=⇒ cos4 θ =
(

cos(2θ) + 1
)2

4 = cos2(2θ) + 2 cos(2θ) + 1
4

=
cos(4θ)+1

2 + 2 cos(2θ) + 1
4

= 3
8 + 1

2 cos(2θ) + 1
8 cos(4θ)

Finally, since
∫ π

2
0 cos(4θ) dθ =

∫ π
2

0 cos(2θ) dθ = 0,

Volume(V) = 8√
54

3
8
π

2 = π

2
√

6

�

3.1.5 Optional —More about the Definition of ∫∫R f(x, y) dxdy

Technically, the integral
∫∫
R f(x, y) dxdy, where R is a bounded region in R2,

is defined as follows.

• Subdivide R by drawing lines parallel to the x and y axes.

x

y

px1̊3, y1̊3q
• Number the resulting rectangles contained in R, 1 through n. Notice

that we are numbering all of the rectangles in R, not just those in one
particular row or column.

• Denote by ∆Ai the area of rectangle #i.

• Select an arbitrary point (x∗i , y∗i ) in rectangle #i.

• Form the sum
n∑
i=1

f(x∗i , y∗i )∆Ai. Again note that the sum runs over all

of the rectangles in R, not just those in one particular row or column.

Now repeat this construction over and over again, using finer and finer grids.
If, as the size9 of the rectangles approaches zero, this sum approaches a unique
limit (independent of the choice of parallel lines and of points (x∗i , y∗i )), then
we define ∫∫

R
f(x, y) dx dy = lim

n∑
i=1

f(x∗i , y∗i ) ∆Ai

7See §1.9 in the CLP-2 text for a general discussion of trigonometric substitution.
8We weren’t joking about his being a good review of single variable integration techniques.

See Example 1.8.8 in the CLP-2 text.
9For example, let pi be the perimeter of rectangle number i and require that max1≤i≤n pi

tends to zero. This way both the heights and widths of all rectangles also tend to zero.
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Theorem 3.1.19 If f(x, y) is continuous in a region R described by

a ≤ x ≤ b
B(x) ≤ y ≤ T (x)

for continuous functions B(x), T (x), then∫∫
R
f(x, y) dxdy and

∫ b

a

dx
[ ∫ T (x)

B(x)
dy f(x, y)

]
both exist and are equal. Similarly, if R is described by

c ≤ y ≤ d
L(y) ≤ x ≤ R(y)

for continuous functions L(y), R(y), then∫∫
R

f(x, y) dxdy and
∫ d

c

dy
[ ∫ R(y)

L(y)
dx f(x, y)

]
both exist and are equal.

The proof of this theorem is not particularly difficult, but is still beyond
the scope of this text. The main ideas in the proof can already be seen in
§1.1.6 of the CLP-2 text. An important consequence of this theorem is

Theorem 3.1.20 Fubini. If f(x, y) is continuous in a region R described by
both {

a ≤ x ≤ b
B(x) ≤ y ≤ T (x)

}
and

{
c ≤ y ≤ d

L(y) ≤ x ≤ R(y)

}
for continuous functions B(x), T (x), L(y), R(y), then both∫ b

a

dx
[ ∫ T (x)

B(x)
dy f(x, y)

]
and

∫ d

c

dy
[ ∫ R(y)

L(y)
dx f(x, y)

]
exist and are equal.

The hypotheses of both of these theorems can be relaxed a bit, but not too
much. For example, if

R =
{

(x, y)
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
f(x, y) =

{
1 if x, y are both rational numbers
0 otherwise

then the integral
∫∫
R f(x, y) dxdy does not exist. This is easy to see. If all of

the x∗i ’s and y∗i ’s are chosen to be rational numbers, then
n∑
i=1

f(x∗i , y∗i ) ∆Ai =
n∑
i=1

∆Ai = Area(R)

But if we choose all the x∗i ’s and y∗i ’s to be irrational numbers, then
n∑
i=1

f(x∗i , y∗i ) ∆Ai =
n∑
i=1

0 ∆Ai = 0

So the limit of
n∑
i=1

f(x∗i , y∗i ) ∆Ai, as the maximum diagonal of the rectangles
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approaches zero, depends on the choice of points (x∗i , y∗i ). So the integral∫∫
R f(x, y) dx dy does not exist.
Here is an even more pathological10 example.

Example 3.1.21 In this example, we relax exactly one of the hypotheses of
Fubini’s Theorem, namely the continuity of f , and construct an example in
which both of the integrals in Fubini’s Theorem exist, but are not equal. In
fact, we choose R =

{
(x, y)

∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}
and we use a function

f(x, y) that is continuous on R, except at exactly one point — the origin.
First, let δ1, δ2, δ3, · · · be any sequence of real numbers obeying

1 = δ1 > δ2 > δ3 > · · · > δn → 0

For example δn = 1
n or δn = 1

2n−1 are both acceptable. For each positive
integer n, let In = (δn+1, δn] =

{
t
∣∣ δn+1 < t ≤ δn

}
and let gn(t) be any

nonnegative continuous function obeying

• gn(t) = 0 if t is not in In and

•
∫
In

g(t) dt = 1

There are many such functions. For example

gn(t) =
(

2
δn − δn+1

)2

δn − t if 1

2 (δn+1 + δn) ≤ t ≤ δn
t− δn+1 if δn+1 ≤ t ≤ 1

2 (δn+1 + δn)
0 otherwise

t

y

δn`1 δn

2
δn´δn`1

y “ gnptq

Here is a summary of what we have done so far.

• We subdivided the interval 0 < x ≤ 1 into infinitely many subintervals
In. As n increases, the subinterval In gets smaller and smaller and also
gets closer and closer to zero.

• We defined, for each n, a nonnegative continuous function gn that is zero
everywhere outside of In and whose integral over In is one.

Now we define the integrand f(x, y) in terms of these subintervals In and
functions gn.

f(x, y) =



0 if x = 0
0 if y = 0
gm(x)gn(y) if x ∈ Im, y ∈ In with m = n

−gm(x)gn(y) if x ∈ Im, y ∈ In with m = n+ 1
0 otherwise

10For mathematicians, “pathological” is a synonym for “cool”.
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You should think of (0, 1] × (0, 1] as a union of a bunch of small rectangles
Im × In, as in the figure below. On most of these rectangles, f(x, y) is just
zero. The exceptions are the darkly shaded rectangles In×In on the “diagonal”
of the figure and the lightly shaded rectangles In+1 × In just to the left of the
“diagonal”.

On each darkly shaded rectangle, f(x, y) ≥ 0 and the graph of f(x, y) is
the graph of gn(x)gn(y) which looks like a pyramid. On each lightly shaded
rectangle, f(x, y) ≤ 0 and the graph of f(x, y) is the graph of −gn+1(x)gn(y)
which looks like a pyramidal hole in the ground.

δ1

δ1

δ2

δ2

δ3

δ3

δ4

δ4

δ5

δ5

I1

I1

I2

I2

I3

I3

I4

I4

`´

`´

`´
`´

`́

x

y

Now fix any 0 ≤ y ≤ 1 and let’s compute
∫ 1

0 f(x, y) dx. That is, we are
integrating f along a line that is parallel to the x-axis. If y = 0, then f(x, y) = 0
for all x, so

∫ 1
0 f(x, y) dx = 0. If 0 < y ≤ 1, then there is exactly one positive

integer n with y ∈ In and f(x, y) is zero, except for x in In or In+1. So for
y ∈ In ∫ 1

0
f(x, y) dx =

∑
m=n,n+1

∫
Im

f(x, y) dx

=
∫
In

gn(x)gn(y) dx−
∫
In+1

gn+1(x)gn(y) dx

= gn(y)
∫
In

gn(x) dx− gn(y)
∫
In+1

gn+1(x) dx

= gn(y)− gn(y) = 0

Here we have twice used that
∫
Im
g(t) dt = 1 for all m. Thus

∫ 1
0 f(x, y) dx = 0

for all y and hence
∫ 1

0 dy
[ ∫ 1

0 dx f(x, y)
]

= 0.
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Finally, fix any 0 ≤ x ≤ 1 and let’s compute
∫ 1

0 f(x, y) dy. That is, we
are integrating f along a line that is parallel to the y-axis. If x = 0, then
f(x, y) = 0 for all y, so

∫ 1
0 f(x, y) dy = 0. If 0 < x ≤ 1, then there is exactly

one positive integer m with x ∈ Im. If m ≥ 2, then f(x, y) is zero, except for y
in Im and Im−1. But, if m = 1, then f(x, y) is zero, except for y in I1. (Take
another look at the figure above.) So for x ∈ Im, with m ≥ 2,∫ 1

0
f(x, y) dy =

∑
n=m,m−1

∫
In

f(x, y) dy

=
∫
Im

gm(x)gm(y) dy −
∫
Im−1

gm(x)gm−1(y) dy

= gm(x)
∫
Im

gm(y) dy − gm(x)
∫
Im−1

gm−1(y) dy

= gm(x)− gm(x) = 0

But for x ∈ I1,∫ 1

0
f(x, y) dy =

∫
I1

f(x, y) dy =
∫
I1

g1(x)g1(y) dy = g1(x)
∫
I1

g1(y) dy

= g1(x)

Thus ∫ 1

0
f(x, y) dy =

{
0 if x ≤ δ2
g1(x) if x ∈ I1

and hence ∫ 1

0
dx
[ ∫ 1

0
dy f(x, y)

]
=
∫
I1

g1(x) dx = 1

The conclusion is that for the f(x, y) above, which is defined for all 0 ≤ x ≤ 1,
0 ≤ y ≤ 1 and is continuous except at (0, 0),∫ 1

0
dy
[ ∫ 1

0
dx f(x, y)

]
= 0

∫ 1

0
dx
[ ∫ 1

0
dy f(x, y)

]
= 1

�

3.1.6 Even and Odd Functions
During the course of our study of integrals of functions of one variable, we found
that the evaluation of certain integrals could be substantially simplified by
exploiting symmetry properties of the integrand. Concretely, in Section 1.2.1
of the CLP-2 text, we gave the

Definition 3.1.22 (Definition 1.2.8 in the CLP-2 text). Let f(x) be a
function of one variable. Then,

• we say that f(x) is even when f(x) = f(−x) for all x, and

• we say that f(x) is odd when f(x) = −f(−x) for all x.

♦
We also saw that

• f(x) = |x|, f(x) = cosx and f(x) = x2 are even functions and

• f(x) = sin x, f(x) = tan x and f(x) = x3 are odd functions.
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• In fact, if f(x) is any even power of x, then f(x) is an even function and
if f(x) is any odd power of x, then f(x) is an odd function.

We also learned how to exploit evenness and oddness to simplify integration.

Theorem 3.1.23 (Theorem 1.2.11 in the CLP-2 text). Let a > 0.
a If f(x) is an even function, then∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx

b If f(x) is an odd function, then∫ a

−a
f(x)dx = 0

We will now see that we can similarly exploit evenness and oddness of func-
tions of more than one variable. But for functions of more than one variable
there is also more than one kind of oddness and evenness. In the Defini-
tion 3.1.22 (Definition 1.2.8 in the CLP-2 text) of evenness and oddness of the
function f(x), we compared the value of f at x with the value of f at −x. The
points x and −x are the same distance from the origin, 0, and are on opposite
sides of 0. The point −x is called the reflection of x across the origin. To pre-
pare for our definitions of evenness and oddness of functions of two variables,
we now define three different reflections in the two dimensional world of the
xy-plane.

Definition 3.1.24 Let x and y be two real numbers.
• The reflection of (x, y) across the y-axis is (−x, y).

• The reflection of (x, y) across the x-axis is (x,−y).

• The reflection of (x, y) across the origin is (−x,−y).

x

y

px, yqp´x, yq

px,´yqp´x,´yq

♦

• To get from the point (x, y) to its image reflected across the y-axis, you

◦ start from (x, y), and
◦ walk horizontally straight to the y-axis, and
◦ cross the y-axis, and
◦ continue horizontally the same distance as you have already trav-
elled to (−x, y).

Here are four examples.
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p5, 6qp´5, 6q

p5, 2qp´5, 2q

p5,´2qp´5,´2q

p5,´6qp´5,´6q

x

y

reflection across the y-axis

• To get from the point (x, y) to its image reflected across the x-axis, you

◦ start from (x, y), and
◦ walk vertically straight to the x-axis, and
◦ cross the x-axis, and
◦ continue vertically the same distance as you have already travelled
to the reflected image (x,−y).

Here are four examples.

p6, 4q

p6,´4q

p2, 4q

p2,´4q

p´2, 4q

p´2,´4q

p´6, 4q

p´6,´4q

x

y

reflection across the x-axis

• To get from the point (x, y) to its image reflected across the origin, you

◦ start from (x, y), and
◦ walk radially straight to the origin, and
◦ cross the origin, and
◦ continue radially in the same direction the same distance as you
have already travelled to the reflected image (−x,−y).

Here are three examples.
p3,6q

p´3,´6q

p6,6q

p´6,´6q

p7,2q

p´7,´2q
x

y

reflection across the origin

For each of these three types of reflection, there is a corresponding kind of
oddness and evenness.
Definition 3.1.25 Let f(x, y) be a function of two variables. Then,

• we say that f(x, y) is even (under reflection across the origin) when
f(−x,−y) = f(x, y) for all x and y, and
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• we say that f(x, y) is odd (under reflection across the origin) when
f(−x,−y) = −f(x, y) for all x and y

and

• we say that f(x, y) is even under x → −x (i.e. under reflection across
the y-axis) when f(−x, y) = f(x, y) for all x and y, and

• we say that f(x, y) is odd under x→ −x (i.e. under reflection across the
y-axis) when f(−x, y) = −f(x, y) for all x and y

and

• we say that f(x, y) is even under y → −y (i.e. under reflection across the
x-axis) when f(x,−y) = f(x, y) for all x and y, and

• we say that f(x, y) is odd under y → −y (i.e. under reflection across the
x-axis) when f(x,−y) = −f(x, y) for all x and y.

♦

Example 3.1.26 Let m and n be two integers and set f(x, y) = xmyn. Then

f(−x, y) = (−x)myn = (−1)mxmyn = (−1)mf(x, y)
f(x,−y) = xm(−y)n = (−1)nxmyn = (−1)nf(x, y)

f(−x,−y) = (−x)m(−y)n = (−1)m+nxmyn = (−1)m+nf(x, y)

Consequently
• if m is even, then f(x, y) is even under x→ −x and

• if m is odd, then f(x, y) is odd under x→ −x and

• if n is even, then f(x, y) is even under y → −y and

• if n is odd, then f(x, y) is odd under y → −y and

• if m+ n is even, then f(x, y) is even (under reflection across the origin)
and

• if m+ n is odd, then f(x, y) is odd (under reflection across the origin).

�
Recall from Theorem 3.1.23 (or Theorem 1.2.11 in the CLP-2 text) that

we can exploit the evenness or oddness of the integrand, f(x), of the inte-
gral

∫ a
b
f(x) dx to simplify the evaluation of the integral when b = −a, i.e.

when the domain of integration is invariant under reflection across the ori-
gin. Similarly, we will be able to simplify the evaluation of the double integral∫∫
R f
(
x, y
)

dx dy when the integrand is even or odd and the domain of inte-
gration R is invariant under the corresponding reflection — meaning that the
reflected R is identical to the original R. Here are some details for “reflection
across the y-axis”. The details for the other reflections are similar.

• If R is any subset of the xy-plane,

the reflection of R across the y-axis =
{

(−x, y)
∣∣ (x, y) ∈ R

}
The set notation on the right hand side means “the set of all points
(−x, y) with (x, y) a point of R”.
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• In the special case11 that

R =
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
(see §3.1.2 on horizontal slices) then

the reflection of R across the y-axis =
{

(x, y)
∣∣ c ≤ y ≤ d,−R(y) ≤ x ≤ −L(y)

}
In the sketch below Ry is the reflection of R across the y-axis.

x

y

x “ Lpyq
x “ Rpyq

y “ d

y “ c

R
x

y

x “ ´Lpyq
x “ ´Rpyq

y “ d

y “ c

Ry

• A subset R of the xy-plane is invariant under reflection across the y-axis
(or is also known as “symmetric about the y-axis”) when

(−x, y) is in R ⇐⇒ (x, y) is in R

Recall that the symbol ⇐⇒ is read “if and only if”. In the special case
that

R =
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
R is is invariant under reflection across the y-axis when L(y) = −R(y).

Here are some more sketches. The first sketch is of a rectangle that is
invariant under reflection across the y-axis, but is not invariant under reflec-
tion across the x-axis. The remaining three sketches show a triangle and its
reflections across the y-axis, across the x-axis and across the origin.

p5, 5q

p5,´1q

p´5, 5q

p´5,´1q
x

y

symmetric about the y-axis

RRy

p1, 6qp´1, 6q
p6, 5qp´6, 5q

x

y

Ry “reflection of R across the y-axis

R

Rx

p1, 6q

p1,´6q

p6, 5q

p6,´5q

x

y

Rx “reflection of R across the x-axis

R

Ro

p1, 6q

p´1,´6q

p6, 5q

p´6,´5q

x

y

Ro “reflection of R across the origin

11Here L(y) (“L” stands for “left”) is the leftmost allowed value of x when the y-coordinate
is y, and R(y) (“R” stands for “right”) is the rightmost allowed value of x, when the y-
coordinate is y.
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We are finally ready for the analog of Theorem 3.1.23 (Theorem 1.2.11 in
the CLP-2 text) for functions of two variables. By way of motivation for that
theorem, consider the integral

∫∫
R f(x, y) dxdy, with the integrand, f(x, y),

odd under x→ −x, and the domain of integration, R, symmetric about the y-
axis. Slice up R into tiny (think “infinitesmal”) squares, either by subdividing
vertical slices into tiny squares, as in §3.1.1, or by subdividing horizontal slices
into tiny squares, as in §3.1.2. Concentrate on any point (x0, y0) in R.

x

y

px0, y0qp´x0, y0q
The contribution to the integral coming from the square that contains

(x0, y0) is (essentially12) f(x0, y0) ∆x∆y. That contribution is cancelled by the
contribution coming from the square containing (the reflected point) (−x0, y0),
which is

f(−x0, y0) ∆x∆y = −f(x0, y0) ∆x∆y

This is the case for all points (x0, y0) in R. Consequently∫∫
R
f(x, y) dxdy = 0

Here is the analog of Theorem 3.1.23 for functions of two variables.

Theorem 3.1.27 2d Even and Odd.
a Let R be a subset of the xy-plane that is symmetric about the y-axis. If
f(x, y) is odd under x→ −x, then∫∫

R
f(x, y) dxdy = 0

Denote by R+ the set of all points in R that have x ≥ 0. If f(x, y) is
even under x→ −x, then∫∫

R
f(x, y) dxdy = 2

∫∫
R+

f(x, y) dxdy

b Let R be a subset of the xy-plane that is symmetric about the x-axis. If
f(x, y) is odd under y → −y, then∫∫

R
f(x, y) dxdy = 0

Denote by R+ the set of all points in R that have y ≥ 0. If f(x, y) is
even under y → −y, then∫∫

R
f(x, y) dxdy = 2

∫∫
R+

f(x, y) dxdy

12In this motivation, we suppress the ∆x→ 0 and ∆y → 0 limits.
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c Let R be a subset of the xy-plane that is invariant under reflection across
the origin. If f(x, y) is odd (under reflection across the origin), then∫∫

R
f(x, y) dxdy = 0

Denote by R+ either the set of all points in R that have x ≥ 0 or the set
of all points in R that have y ≥ 0. If f(x, y) is even (under reflection
across the origin), then∫∫

R
f(x, y) dxdy = 2

∫∫
R+

f(x, y) dxdy

Proof. We will give only the proof for part (a) in the special case that

R =
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
In part (a), we are assuming that R is symmetric about the y-axis, so that
L(y) = −R(y). So, using horizontal strips, as described in §3.1.2,∫∫

R
f(x, y) dxdy =

∫ d

c

dy
∫ R(y)

−R(y)
dx f(x, y)

Fix any c ≤ y ≤ d.
• If f(x, y) is odd under x→ −x, then f(−x, y) = −f(x, y) for all −R(y) ≤
x ≤ R(y) and ∫ R(y)

−R(y)
dx f(x, y) = 0

by part (b) of Theorem 3.1.23 (Theorem 1.2.11 in the CLP-2 text).

• If f(x, y) is even under x→ −x, then f(−x, y) = f(x, y) for all −R(y) ≤
x ≤ R(y) and ∫ R(y)

−R(y)
dx f(x, y) = 2

∫ R(y)

0
dx f(x, y)

by part (a) of Theorem 3.1.23.

As the statements of the two bullets are true for each fixed c ≤ y ≤ d, we have
that

• if f(x, y) is odd under x→ −x, then∫∫
R
f(x, y) dxdy =

∫ d

c

dy
∫ R(y)

−R(y)
dx f(x, y) =

∫ d

c

dy 0

= 0

• and if f(x, y) is even under x→ −x, then∫∫
R
f(x, y) dxdy =

∫ d

c

dy
∫ R(y)

−R(y)
dx f(x, y) =

∫ d

c

dy 2
∫ R(y)

0
dx f(x, y)

= 2
∫∫
R+

f(x, y) dxdy

The proof of part (a) when R is not of the form

R =
{

(x, y)
∣∣ c ≤ y ≤ d, L(y) ≤ x ≤ R(y)

}
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(for example if R has holes in it) is most easily done using the change of
variables x = −u, y = v in Theorem 3.8.3, which is part of the optional §3.8.

The proof of part (b) is similar to the proof of part (a).
The proof of part (c) is most easily done using the change of variables

x = −u, y = −v in Theorem 3.8.3, which is part of the optional §3.8. �

Example 3.1.28
∫∫
R e

x sin(y + y3) dxdy. Evaluate the integral∫∫
R
ex sin(y + y3) dxdy

over the triangular region R in the sketch

x

y

R
p5, 3q

p5,´3q

p´5, 0q

Solution. Start by checking the evenness and oddness properties of the in-
tegrand f(x, y) = ex sin(y + y3). Since

f(−x, y) = e−x sin(y + y3)
f(x,−y) = ex sin

(
− y + (−y)3) = ex sin(−y − y3) = −ex sin(y + y3)

= −f(x, y)
f(−x,−y) = −e−x sin(y + y3)

the integrand is odd under y → −y but is neither even nor odd under x→ −x
and (x, y) → −(x, y). Fortunately (or by rigging), the domain of integration
R is invariant under y → −y (i.e. is symmetric about the x-axis) and so∫∫

R
ex sin(y + y3) dxdy = 0

by part (b) of Theorem 3.1.27 (Theorem 1.2.11 in the CLP-2 text). �

Example 3.1.29
∫∫
R(xey + yex + xexy + 7) dxdy. Evaluate the integral∫∫

R
(xey + yex + xexy + 7) dxdy

over the region R whose outer boundary is the ellipse x2 + 4y2 = 1.
Solution. First, let’s sketch the ellipse x2 + 4y2 = 1. Notice that its x
intercepts are the points (x, 0) that obey x2+4(0)2 = 1. So the x-intercepts are
(±1, 0). Similarly its y intercepts are the points (0, y) that obey 02 + 4y2 = 1.
So the y-intercepts are (0,±1/2). Here is a sketch of R.

x

y

R p1, 0q
p0, 1{2q

From the sketch, it looks likeR is invariant under x→ −x (i.e. is symmetric
about the y-axis) and is also invariant under y → −y (i.e. is symmetric about
the x-axis) and is also invariant under (x, y) → −(x, y). It is easy to check
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analytically that this is indeed the case. The point (x, y) is in R if and only if
it is inside x2 + 4y2 = 1. That is the case if and only if x2 + 4y2 ≤ 1. Since

(−x)2 + 4y2 = x2 + (−4y)2 = (−x)2 + 4(−y)2 = x2 + 4y2

we have

(x, y) is in R ⇐⇒ (−x, y) is in R
⇐⇒ (x,−y) is in R
⇐⇒ (−x,−y) is in R

Now let’s check the evenness and oddness properties of the integrand.

f(x, y) = xey + yex + xexy + 7
f(−x, y) = −xey + ye−x − xe−xy + 7
f(x,−y) = xe−y − yex + xe−xy + 7

f(−x,−y) = −xe−y − ye−x − xexy + 7

So f(x, y) is neither even nor odd under any of x→ −x, y → −y, and (x, y)→
−(x, y). BUT, look at the four terms of f(x, y) separately.

• The first term of f(x, y), namely xey, is odd under x→ −x.

• The second term of f(x, y), namely yex, is odd under y → −y.

• The third term of f(x, y), namely xexy, is odd under (x, y)→ −(x, y).

• The fourth term of f(x, y), namely 7, is even under all of x → −x,
y → −y, and (x, y)→ −(x, y).

So, by parts (a), (b) and (c) of Theorem 3.1.27, in order,∫∫
R

(xey + yex + xexy + 7) dxdy

=
∫∫
R
xey dxdy +

∫∫
R
yex dxdy +

∫∫
R
xexy dxdy + 7

∫∫
R

dxdy

= 0 + 0 + 0 + 7Area(R)

Since R is an ellipse with semi-major axis a = 1 and semi-minor axis b = 1
2 , it

has area πab = 1
2π and∫∫

R
(xey + yex + xexy + 7) dxdy = 7

2π

�

3.1.7 Exercises

Exercises — Stage 1
1. For each of the following, evaluate the given double integral without

using iteration. Instead, interpret the integral as, for example, an area
or a volume.

a
∫ 3

−1

∫ 1

−4
dy dx
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b
∫ 2

0

∫ √4−y2

0
dxdy

c
∫ 3

−3

∫ √9−y2

0

√
9− x2 − y2 dxdy

2. Let f(x, y) = 12x2y3. Evaluate

a
∫ 3

0
f(x, y) dx

b
∫ 2

0
f(x, y) dy

c
∫ 2

0

∫ 3

0
f(x, y) dxdy

d
∫ 3

0

∫ 2

0
f(x, y) dy dx

e
∫ 3

0

∫ 2

0
f(x, y) dxdy

Exercises — Stage 2
Questions 3.1.7.3 through 3.1.7.8 provide practice with limits of integration

for double integrals in Cartesian coordinates.
3. For each of the following, evaluate the given double integral using

iteration.

a
∫∫

R

(x2 +y2) dxdy where R is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤
b where a > 0 and b > 0.

b
∫∫

T

(x−3y) dx dy where T is the triangle with vertices (0, 0), (a, 0), (0, b).

c
∫∫

R

xy2 dx dy where R is the finite region in the first quadrant

bounded by the curves y = x2 and x = y2.

d
∫∫

D

x cos y dx dy where D is the finite region in the first quad-

rant bounded by the coordinate axes and the curve y = 1− x2.

e
∫∫

R

x

y
ey dxdy where R is the region 0 ≤ x ≤ 1, x2 ≤ y ≤ x.

f
∫∫

T

xy

1 + x4 dxdy where T is the triangle with vertices (0, 0), (0, 1), (1, 1).

4. For each of the following integrals (i) sketch the region of integration,
(ii) write an equivalent double integral with the order of integration
reversed and (iii) evaluate both double integrals.

a
∫ 2

0
dx
∫ ex

1
dy

b
∫ √2

0
dy
∫ √4−2y2

−
√

4−2y2
dx y
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c
∫ 1

−2
dx
∫ 3x+2

x2+4x
dy

5. ∗. Combine the sum of the two iterated double integrals∫ y=1

y=0

∫ x=y

x=0
f(x, y) dxdy +

∫ y=2

y=1

∫ x=2−y

x=0
f(x, y) dxdy

into a single iterated double integral with the order of integration
reversed.

6. ∗. Consider the integral ∫ 1

0

∫ 1

x

ex/y dy dx

a Sketch the domain of integration.

b Evaluate the integral by reversing the order of integration.
7. ∗. The integral I is defined as

I =
∫∫

R

f(x, y) dA =
∫ √2

1

∫ √y
1/y

f(x, y) dxdy+
∫ 4

√
2

∫ √y
y/2

f(x, y) dxdy

a Sketch the region R.

b Re--write the integral I by reversing the order of integration.

c Compute the integral I when f(x, y) = x/y.
8. ∗. A region E in the xy--plane has the property that for all continuous

functions f∫∫
E

f(x, y) dA =
∫ x=3

x=−1

[∫ y=2x+3

y=x2
f(x, y)dy

]
dx

a Compute
∫∫
E
x dA.

b Sketch the region E.

c Set up
∫∫
E
xdA as an integral or sum of integrals in the opposite

order.
9. ∗. Calculate the integral: ∫∫

D

sin(y2) dA

where D is the region bounded by x+ y = 0, 2x− y = 0, and y = 4.
10. ∗. Consider the integral

I =
∫ 1

0

∫ 1

√
y

sin(πx2)
x

dxdy

a Sketch the region of integration.

b Evaluate I.
11. ∗. Let I be the double integral of the function f(x, y) = y2 sin xy over
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the triangle with vertices (0, 0), (0, 1) and (1, 1) in the xy--plane.
a Write I as an iterated integral in two different ways.

b Evaluate I.
12. ∗. Find the volume (V ) of the solid bounded above by the surface

z = f(x, y) = e−x
2
,

below by the plane z = 0 and over the triangle in the xy--plane formed
by the lines x = 1, y = 0 and y = x.

13. ∗. Consider the integral I =
∫ 1

0

∫ 2−y

y

y

x
dxdy.

a Sketch the region of integration.

b Interchange the order of integration.

c Evaluate I.
14. ∗. For the integral

I =
∫ 1

0

∫ 1

√
x

√
1 + y3 dy dx

a Sketch the region of integration.

b Evaluate I.
15. ∗.

a D is the region bounded by the parabola y2 = x and the line
y = x− 2. Sketch D and evaluate J where

J =
∫∫

D

3y dA

b Sketch the region of integration and then evaluate the integral
I :

I =
∫ 4

0

∫ 1

1
2
√
x

ey
3

dy dx

16. ∗. Consider the iterated integral∫ 0

−4

∫ 2

√
−y

cos(x3) dxdy

a Draw the region of integration.

b Evaluate the integral.
17. ∗.

a Combine the sum of the iterated integrals

I =
∫ 1

0

∫ √y
−√y

f(x, y) dxdy +
∫ 4

1

∫ √y
y−2

f(x, y) dxdy

into a single iterated integral with the order of integration re-
versed.

b Evaluate I if f(x, y) = ex

2−x .
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18. ∗. Let

I =
∫ 4

0

∫ √8−y

√
y

f(x, y) dxdy

a Sketch the domain of integration.

b Reverse the order of integration.

c Evaluate the integral for f(x, y) = 1
(1+y)2 .

19. ∗. Evaluate ∫ 0

−1

∫ 2x

−2
ey

2
dy dx

20. ∗. Let

I =
∫ 2

0

∫ x

0
f(x, y) dy dx+

∫ 6

2

∫ √6−x

0
f(x, y) dy dx

Express I as an integral where we integrate first with respect to x.
21. ∗. Consider the domain D above the x--axis and below parabola

y = 1− x2 in the xy--plane.
a Sketch D.

b Express ∫∫
D

f(x, y) dA

as an iterated integral corresponding to the order dx dy. Then
express this integral as an iterated integral corresponding to the
order dy dx.

c Compute the integral in the case f(x, y) = ex−(x3/3).

22. ∗. Let I =
∫ 1

0
∫ 1
x2 x

3 sin(y3) dy dx.
a Sketch the region of integration in the xy--plane. Label your

sketch sufficiently well that one could use it to determine the
limits of double integration.

b Evaluate I.
23. ∗. Consider the solid under the surface z = 6 − xy, bounded by the

five planes x = 0, x = 3, y = 0, y = 3, z = 0. Note that no part of
the solid lies below the x--y plane.

a Sketch the base of the solid in the xy--plane. Note that it is not
a square!

b Compute the volume of the solid.
24. ∗. Evaluate the following integral:∫ 2

−2

∫ 4

x2
cos
(
y3/2) dy dx

25. ∗. Consider the volume above the xy-plane that is inside the circular
cylinder x2 + y2 = 2y and underneath the surface z = 8 + 2xy.

a Express this volume as a double integral I, stating clearly the
domain over which I is to be taken.

b Express in Cartesian coordinates, the double integral I as an
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iterated intergal in two different ways, indicating clearly the
limits of integration in each case.

c How much is this volume?
26. ∗. Evaluate the following integral:∫ 9

0

∫ 3

√
y

sin(πx3) dxdy

27. ∗. The iterated integral

I =
∫ 1

0

[ ∫ √x
−
√
x

sin
(
y3 − 3y

)
dy
]

dx

is equal to
∫∫
R

sin
(
y3−3y) dA for a suitable region R in the xy-plane.

a Sketch the region R.

b Write the integral I with the orders of integration reversed, and
with suitable limits of integration.

c Find I.
28. ∗. Find the double integral of the function f(x, y) = xy over the

region bounded by y = x− 1 and y2 = 2x+ 6.

Exercises — Stage 3
29. Find the volume of the solid inside the cylinder x2 + 2y2 = 8, above

the plane z = y − 4 and below the plane z = 8− x.

3.2 Double Integrals in Polar Coordinates
So far, in setting up integrals, we have always cut up the domain of integration
into tiny rectangles by drawing in many lines of constant x and many lines of
constant y.

x

y

There is no law that says that we must cut up our domains of integration
into tiny pieces in that way. Indeed, when the objects of interest are sort
of round and centered on the origin, it is often advantageous1 to use polar
coordinates, rather than Cartesian coordinates.

1The “golden hammer” (also known as Maslow’s hammer and as the law of the instrument)
refers to a tendency to always use the same tool, even when it isn’t the best tool for the job.
It is just as bad in mathematics as it is in carpentry.
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3.2.1 Polar Coordinates
It may have been a while since you did anything in polar coordinates. So let’s
review before we resume integrating.

Definition 3.2.1 The polar coordinates2 of any point (x, y) in the xy-plane
are

r = the distance from (0, 0) to (x, y)
θ = the (counter-clockwise) angle between the x-axis

and the line joining (x, y) to (0, 0)

r

px, yq

x

y

θ

♦
Cartesian and polar coordinates are related, via a quick bit of trigonometry,

by

Equation 3.2.2

x = r cos θ y = r sin θ

r =
√
x2 + y2 θ = arctan y

x
The following two figures show a number of lines of constant θ, on the left,

and curves of constant r, on the right.

x

y

lines of constant θ

x

y

curves of constant r

Note that the polar angle θ is only defined up to integer multiples of 2π.
For example, the point (1, 0) on the x-axis could have θ = 0, but could also
have θ = 2π or θ = 4π. It is sometimes convenient to assign θ negative values.
When θ < 0, the counter-clockwise3 angle θ refers to the clockwise angle |θ|.
For example, the point (0,−1) on the negative y-axis can have θ = −π2 and
can also have θ = 3π

2 .
2In the mathematical literature, the angular coordinate is usually denoted θ, as we do

here. The symbol φ is also often used for the angular coordinate. In fact there is an ISO
standard (#80000 – 2) which specifies that φ should be used in the natural sciences and in
technology. See Appendix A.7.

3or anti-clockwise or widdershins. Yes, widdershins is a real word, though the Oxford
English Dictionary lists its frequency of usage as between 0.01 and 0.1 times per million
words. Of course both “counter-clockwise” and “anti-clockwise” assume that your clock is
not a sundial in the southern hemisphere.
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x

y

r “ 1, θ “ ´π{2, θ “ 3π{2

3π{2
π{2

It is also sometimes convenient to extend the above definitions by saying
that x = r cos θ and y = r sin θ even when r is negative. For example, the
following figure shows (x, y) for r = 1, θ = π

4 and for r = −1, θ = π
4 .

r “ 1, θ “ π{4

r “ ´1, θ “ π{4

x

y

π{4

Both points lie on the line through the origin that makes an angle of 45◦
with the x-axis and both are a distance one from the origin. But they are on
opposite sides of the the origin.

3.2.2 Polar Curves
Here are a couple of examples in which we sketch curves specified by equations
in terms of polar coordinates.

Example 3.2.3 The Cardioid. Let’s sketch the curve

r = 1 + cos θ

Our starting point will be to understand how 1 + cos θ varies with θ. So it will
be helpful to remember what the graph of cos θ looks like for 0 ≤ θ ≤ 2π.

y

θ
π
2

3π
2

π 2π

1

´1

y “ cos θ

From this we see that the graph of y = 1 + cos θ is
y

θ
π
2

3π
2

π 2π

1

2 y “ 1 ` cos θ
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Now let’s pick some easy θ values, find the corresponding r’s and sketch
them.

• When θ = 0, we have r = 1 + cos 0 = 1 + 1 = 2. To sketch the point with
θ = 0 and r = 2, we first draw in the half-line consisting of all points
with θ = 0, r > 0. That’s the positive x-axis, sketched in gray in the
leftmost figure below. Then we put in a dot on that line a distance 2
from the origin. That’s the red dot in the first figure below.

• Now increase θ a bit (to another easy place to evaluate), say to θ = π
6 .

As we do so r = 1 + cos θ decreases to r = 1 + cos π6 = 1 +
√

3
2 ≈ 1.87. To

sketch the point with θ = π
6 and r ≈ 1.87, we first draw in the half-line

consisting of all points with θ = π
6 , r > 0. That’s the upper gray line in

the second figure below. Then we put in a dot on that line a distance
1.87 from the origin. That’s the upper red dot in the second figure below.

x

y

θ “ 0

x

y

θ “ 0, π{6

x

y

θ “ 0, π{6, π{3, ¨ ¨ ¨
• Now increase θ still more, say to

◦ θ = 2π
6 = π

3 ,
◦ followed by θ = 3π

6 = π
2 ,

◦ followed by θ = 4π
6 = 2π

3 ,
◦ followed by θ = 5π

6 ,
◦ followed by θ = 6π

6 = π.

As θ increases, r = 1 + cos θ decreases, hitting r = 1 when θ = π
2 and

ending at r = 0 when θ = π. For each of these θ’s, we first draw in the
half-line consisting of all points with that θ and r ≥ 0. Those are the five
gray lines in the figure on the right above. Then we put in a dot on each
θ-line a distance r = 1 + cos θ from the origin. Those are the red dots on
the gray lines in the figure on the right above.

• We could continue the above procedure for π ≤ θ ≤ 2π. Or we can
look at the graph of cos θ above and notice that the graph of cos θ for
π ≤ θ ≤ 2π is exactly the mirror image, about θ = π, of the graph of
cos θ for 0 ≤ θ ≤ π.
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y

θ
π
2

3π
2

π 2π

1

´1

θ “ π
y “ cos θ

That is, cos(π + θ) = cos(π − θ) so that r(π + θ) = r(π − θ). So we get
the figure.

x

y

• Finally, we fill in a smooth curve through the dots and we get the graph
below. This curve is called a cardioid because it looks like a heart4.

x

y

r “ 1 ` cospθq
�

Example 3.2.4 The Three Petal Rose. Now we’ll use the same procedure
as in the last example to sketch the graph of

r = sin(3θ)

Again it will be useful to remember what the graph of sin(3θ) looks like for
0 ≤ θ ≤ 2π.

y

θ
π
6

π
3

π
2

2π
3

π 4π
3

5π
3

2π

1

´1

y “ sinp3θq

• We’ll first consider 0 ≤ θ ≤ π
3 , so that 0 ≤ 3θ ≤ π. On this interval

r(θ) = sin(3θ)
4Well, a mathematician’s heart. The name “cardioid” comes from the Greek word καρδια

(which anglicizes to kardia) for heart.



CHAPTER 3. MULTIPLE INTEGRALS 294

◦ starts with r(0) = 0, and then
◦ increases as θ increases until
◦ 3θ = π

2 , i.e. θ = π
6 , where r

(
π
6
)

= 1, and then
◦ decreases as θ increases until
◦ 3θ = π, i.e. θ = π

3 , where r
(
π
3
)

= 0, again.

Here is a table giving a few values of r(θ) for 0 ≤ θ ≤ π
3 . Notice that we

have chosen values of θ for which sin(3θ) is easy to compute.

θ 3θ r(θ)
0 0 0
π
12

π
4

1√
2 ≈ 0.71

2π
12

π
2 1

3π
12

3π
4

1√
2 ≈ 0.71

4π
12 π 0

and here is a sketch exhibiting those values and another sketch of the
part of the curve with 0 ≤ θ ≤ π

3 .

x

y θ“π{3

θ“π{6

x

y θ“π{3

• Next consider π
3 ≤ θ ≤ 2π

3 , so that π ≤ 3θ ≤ 2π. On this interval
r(θ) = sin(3θ)

◦ starts with r
(
π
3
)

= 0, and then
◦ decreases as θ increases until
◦ 3θ = 3π

2 , i.e. θ = π
2 , where r

(
π
2
)

= −1, and then
◦ increases as θ increases until
◦ 3θ = 2π, i.e. θ = 2π

3 , where r
( 2π

3
)

= 0, again.

We are now encountering, for the first time, r(θ)’s that are negative. The
figure on the left below contains, for each of θ = 4π

12 = π
3 ,

5π
12 ,

6π
12 = π

2 ,7π
12 and 8π

12 = 2π
3

◦ the (dashed) half-line consisting of all points with that θ and r < 0
and

◦ the dot with that θ and r(θ) = sin(3θ).

The figure on the right below provides a sketch of the part of the curve
r = sin(3θ) with π

3 ≤ θ ≤
2π
3 .
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x

y θ“π{3θ“2π{3

x

y θ“π{3θ“2π{3

• Finally consider 2π
3 ≤ θ ≤ π (because r(θ + π) = sin(3θ + 3π) =

− sin(3θ) = −r(θ), the part of the curve with π ≤ θ ≤ 2π just re-
traces the part with 0 ≤ θ ≤ π), so that 2π ≤ 3θ ≤ 3π. On this interval
r(θ) = sin(3θ)

◦ starts with r
( 2π

3
)

= 0, and then
◦ increases as θ increases until
◦ 3θ = 5π

2 , i.e. θ = 10π
12 , where r

( 5π
2
)

= 1, and then
◦ decreases as θ increases until
◦ 3θ = 3π, i.e. θ = 12π

12 = π, where r
(
π
)

= 0, again.

The figure on the left below contains, for each of θ = 8π
12 = 2π

3 , 9π
12 ,

10π
12 ,

11π
12 and 12π

12 = π

◦ the (solid) half-line consisting of all points with that θ and r ≥ 0
and

◦ the dot with that θ and r(θ) = sin(3θ).

The figure on the right below provides a sketch of the part of the curve
r = sin(3θ) with 2π

3 ≤ θ ≤ π.

x

yθ“2π{3

x

yθ“2π{3

Putting the three lobes together gives the full curve, which is called the “three
petal rose”.
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x

y

r “ sinp3θq

θ“2π{3 θ“π{3

There is an infinite family of similar rose curves (also called rhodonea5

curves). �

3.2.3 Integrals in Polar Coordinates
We now return to the problem of using polar coordinates to set up double
integrals. So far, we have used Cartesian coordinates, in the sense that we
have cut up our domains of integration into tiny rectangles (on which the
integrand is essentially constant) by drawing in many lines of constant x and
many lines of constant y. To use polar coordinates, we instead draw in both
lines of constant θ and curves of constant r. This cuts the xy-plane up into
approximate rectangles.

x

y

Here is an enlarged sketch of one such approximate rectangle.

dθ dr

r
r dθ

One side has length dr, the spacing between the curves of constant r. The
other side is a portion of a circle of radius r that subtends, at the origin, an
angle dθ, the angle between the lines of constant θ. As the circumference of
the full circle is 2πr and as dθ is the fraction dθ

2π of a full circle6, the other side
5The name rhodenea first appeared in the 1728 publication Flores geometrici of the

Italian monk, theologian, mathematician and engineer, Guido Grandi (1671– 1742).
6Recall that θ has to be measured in radians for this to be true.
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of the approximate rectangle has length dθ
2π2πr = rdθ. So the shaded region

has area approximately

Equation 3.2.5
dA = r dr dθ

By way of comparison, using Cartesian coordinates we had dA = dxdy.
This intuitive computation has been somewhat handwavy7. But using it

in the usual integral setup procedure, in which we choose dr and dθ to be
constants times 1

n and then take the limit n → 0, gives, in the limit, error
exactly zero. A sample argument, in which we see the error going to zero in
the limit n→∞, is provided in the (optional) section §3.2.4.

Example 3.2.6 Mass. Let 0 ≤ a < b ≤ 2π be constants and let R be the
region

R =
{

(r cos θ, r sin θ)
∣∣ a ≤ θ ≤ b, B(θ) ≤ r ≤ T (θ)

}
where the functions T (θ) and B(θ) are continuous and obey B(θ) ≤ T (θ) for
all a ≤ θ ≤ b. Find the mass of R if it has density f(x, y).
Solution. The figure on the left below is a sketch of R. Notice that r = T (θ)
is the outer curve while r = B(θ) is the inner curve.

x

y

θ “ a

θ “ b

r “ T pθq

r “ Bpθq
R

x

y

θ “ a

θ “ b

θ

θ`dθr “ T pθq

r “ Bpθq

Divide R into wedges (as in wedges of pie8 or wedges of cheese) by drawing
in many lines of constant θ, with the various values of θ differing by a tiny
amount dθ. The figure on the right above shows one such wedge, outlined in
blue.

Concentrate on any one wedge. Subdivide the wedge further into approx-
imate rectangles by drawing in many circles of constant r, with the various
values of r differing by a tiny amount dr. The figure below shows one such
approximate rectangle, in black.

x

y

θ “ a

θ “ b

θ

θ`dθr “ T pθq

r “ Bpθq

dr

Now concentrate on one such rectangle. Let’s say that it contains the point
with polar coordinates r and θ. As we saw in 3.2.5 above,

7“Handwaving” is sometimes used as a pejorative to refer to an argument that lacks sub-
stance. Here we are just using it to indicate that we have left out a bunch of technical details.
In mathematics, “nose-following” is sometimes used as the polar opposite of handwaving. It
refers to a very narrow, mechanical, line of reasoning.
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• the area of that rectangle is essentially dA = r dr dθ.

• As the mass density on the rectangle is essentially f
(
r cos θ , r sin θ

)
, the

mass of the rectangle is essentially f
(
r cos θ , r sin θ

)
r dr dθ.

• To get the mass of any one wedge, say the wedge whose polar angle
runs from θ to θ + dθ, we just add up the masses of the approximate
rectangles in that wedge, by integrating r from its smallest value on the
wedge, namely B(θ), to its largest value on the wedge, namely T (θ). The
mass of the wedge is thus

dθ
∫ T (θ)

B(θ)
dr r f

(
r cos θ , r sin θ

)
• Finally, to get the mass of R, we just add up the masses of all of the

different wedges, by integrating θ from its smallest value on R, namely
a, to its largest value on R, namely b.

In conclusion,

Mass(R) =
∫ b

a

dθ
∫ T (θ)

B(θ)
dr r f

(
r cos θ , r sin θ

)
We have repeatedly used the word “essentially” above to avoid getting into the
nitty-gritty details required to prove things rigorously. The mathematically
correct proof of 3.2.7 follows the same intuition, but requires some more careful
error bounds, as in the optional §3.2.4 below. �

In the last example, we derived the important formula that the mass of the
region

R =
{

(r cos θ, r sin θ)
∣∣ a ≤ θ ≤ b, B(θ) ≤ r ≤ T (θ)

}
with mass density f(x, y) is

Equation 3.2.7

Mass(R) =
∫ b

a

dθ
∫ T (θ)

B(θ)
dr r f

(
r cos θ , r sin θ

)
We can immediately adapt that example to calculate areas and derive the

formula that the area of the region

R =
{

(r cos θ, r sin θ)
∣∣ a ≤ θ ≤ b, 0 ≤ r ≤ R(θ)

}
is
Equation 3.2.8

Area(R) = 1
2

∫ b

a

R(θ)2 dθ

We just have set the density to 1. We do so in the next example.

Example 3.2.9 Polar Area. Let 0 ≤ a < b ≤ 2π be constants. Find the
area of the region

R =
{

(r cos θ, r sin θ)
∣∣ a ≤ θ ≤ b, 0 ≤ r ≤ B(θ)

}
where the function R(θ) ≥ 0 is continuous.
Solution. To get the area ofR we just need to assign it a density one and find

8There is a pie/pi/pye pun in there somewhere.
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the resulting mass. So, by 3.2.7, with f(x, y) = 1, B(θ) = 0 and T (θ) = R(θ),

Area(R) =
∫ b

a

dθ
∫ R(θ)

0
dr r

In this case we can easily do the inner r integral, giving

Area(R) = 1
2

∫ b

a

R(θ)2 dθ

The expression 1
2R(θ)2 dθ in 3.2.8 has a geometric interpretation. It is just

the area of a wedge of a circular disk of radius R(θ) (with R(θ) treated as a
constant) that subtends the angle dθ.

x

y

Rpθq

Rpθq

dθ

To see this, note that area of the wedge is the fraction dθ
2π of the area of

the entire disk, which is πR(θ)2. So 3.2.8 just says that the area of R can be
computed by cutting R up into tiny wedges and adding up the areas of all of
the tiny wedges. �

Example 3.2.10 Polar Area. Find the area of one petal of the three petal
rose r = sin(3θ).
Solution. Looking at the last figure in Example 3.2.4, we see that we want
the area of

R =
{

(r cos θ, r sin θ)
∣∣ 0 ≤ θ ≤ π

3 , 0 ≤ r ≤ sin(3θ)
}

So, by 3.2.8 with a = 0, b = π
3 , and R(θ) = sin(3θ),

area(R) = 1
2

∫ π
3

0
sin2(3θ) dθ

= 1
4

∫ π
3

0

(
1− cos(6θ)

)
dθ

= 1
4

[
θ − 1

6 sin(6θ)
]π

3

0

= π

12

In the first step we used the double angle formula cos(2φ) = 1 − 2 sin2(φ).
Unsurprisingly, trig identities show up a lot when polar coordinates are used.

�

Example 3.2.11 Volumes Using Polar Coordinates. A cylindrical hole
of radius b is drilled symmetrically (i.e. along a diameter) through a metal
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sphere of radius a ≥ b. Find the volume of metal removed.
Solution. Let’s use a coordinate system with the sphere centred on (0, 0, 0)
and with the centre of the drill hole following the z-axis. In particular, the
sphere is x2 + y2 + z2 ≤ a2.

Here is a sketch of the part of the sphere in the first octant. The hole in
the sphere made by the drill is outlined in red. By symmetry the total amount
of metal removed will be eight times the amount from the first octant.

z

y

x

b

R1

x2 ` y2 ` z2 “ a2

That is, the volume of metal removed will be eight times the volume of the
solid

V1 =
{

(x, y, z)
∣∣ (x, y) ∈ R1, 0 ≤ z ≤

√
a2 − x2 − y2

}
where the base region

R1 =
{

(x, y)
∣∣ x2 + y2 ≤ b2, x ≥ 0, y ≥ 0

}
In polar coordinates

V1 =
{

(r cos θ, r sin θ, z)
∣∣ (r cos θ, r sin θ) ∈ R1, 0 ≤ z ≤

√
a2 − r2

}
R1 =

{
(r cos θ, r sin θ)

∣∣ 0 ≤ r ≤ b, 0 ≤ θ ≤ π

2
}

We follow our standard divide and sum up strategy. We will cut the base region
R1 into small pieces and sum up the volumes that lie above each small piece.

• Divide R1 into wedges by drawing in many lines of constant θ, with the
various values of θ differing by a tiny amount dθ. The figure on the left
below shows one such wedge, outlined in blue.

z

y

x

z

y

x
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• Concentrate on any one wedge. Subdivide the wedge further into ap-
proximate rectangles by drawing in many circles of constant r, with the
various values of r differing by a tiny amount dr. The figure on the right
above shows one such approximate rectangle, in black.

• Concentrate on one such rectangle. Let’s say that it contains the point
with polar coordinates r and θ. As we saw in 3.2.5 above,

◦ the area of that rectangle is essentially dA = r dr dθ.
◦ The part of V1 that is above that rectangle is like an office tower
whose height is essentially

√
a2 − r2, and whose base has area dA =

r dr dθ. It is outlined in black in the figure below. So the vol-
ume of the part of V1 that is above the rectangle is essentially√
a2 − r2 r dr dθ.

z

y

x

r2 ` z2 “ a2

• To get the volume of the part of V1 above any one wedge (outlined in
blue in the figure below), say the wedge whose polar angle runs from θ
to θ + dθ, we just add up the volumes above the approximate rectangles
in that wedge, by integrating r from its smallest value on the wedge,
namely 0, to its largest value on the wedge, namely b. The volume above
the wedge is thus

dθ
∫ b

0
dr r

√
a2 − r2 = dθ

∫ a2−b2

a2

du
−2
√
u

where u = a2 − r2, du = −2r dr

= dθ
[
u3/2

−3

]a2−b2

a2

= 1
3dθ

[
a3 −

(
a2 − b2

)3/2]
Notice that this quantity is independent of θ. If you think about this for
a moment, you can see that this is a consequence of the fact that our
solid is invariant under rotations about the z-axis.
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z

y

x

• Finally, to get the volume of V1, we just add up the volumes over all
of the different wedges, by integrating θ from its smallest value on R1,
namely 0, to its largest value on R1, namely π

2 .

Volume(V1) = 1
3

∫ π/2

0
dθ
[
a3 −

(
a2 − b2

)3/2]
= π

6

[
a3 −

(
a2 − b2

)3/2]
• In conclusion, the total volume of metal removed is

Volume(V) = 8Volume(V1)

= 4π
3

[
a3 −

(
a2 − b2

)3/2]
Note that we can easily apply a couple of sanity checks to our answer.

• If the radius of the drill bit b = 0, no metal is removed at all. So the
total volume removed should be zero. Our answer does indeed give 0 in
this case.

• If the radius of the drill bit b = a, the radius of the sphere, then the entire
sphere disappears. So the total volume removed should be the volume of
a sphere of radius a. Our answer does indeed give 4

3πa
3 in this case.

• If the radius, a, of the sphere and the radius, b, of the drill bit are mea-
sured in units of meters, then the remaining volume 4π

3

[
a3 −

(
a2 − b2

)3/2],
has units meters3, as it should.

�
The previous two problems were given to us (or nearly given to us) in polar

coordinates. We’ll now get a little practice converting integrals into polar
coordinates, and recognising when it is helpful to do so.

Example 3.2.12 Changing to Polar Coordinates. Convert the integral∫ 1
0
∫ x

0 y
√
x2 + y2 dy dx to polar coordinates and evaluate the result.

Solution. First recall that in polar coordinates x = r cos θ, y = r sin θ and
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dxdy = dA = r dr dθ so that the integrand (and dA)

y
√
x2 + y2 dy dx = (r sin θ) r r dr dθ = r3 sin θ dr dθ

is very simple. So whether or not this integral will be easy to evaluate using
polar coordinates will be largely determined by the domain of integration.

So our main task is to sketch the domain of integration. To prepare for the
sketch, note that in the integral∫ 1

0

∫ x

0
y
√
x2 + y2 dy dx =

∫ 1

0
dx
[∫ x

0
dy y

√
x2 + y2

]
• the variable x runs from 0 to 1 and

• for each fixed 0 ≤ x ≤ 1, y runs from 0 to x.

So the domain of integration is

D =
{

(x, y)
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ x

}
which is sketched in the figure on the left below. It is a right angled triangle.

x

y y “ x

D
x “ 1

x

y θ “ π{4

r “ 1
cos θ

Next we express the domain of integration in terms of polar coordinates,
by expressing the equations of each of the boundary lines in terms of polar
coordinates.

• The x-axis, i.e. y = r sin θ = 0, is θ = 0.

• The line x = 1 is r cos θ = 1 or r = 1
cos θ .

• Finally, (in the first quadrant) the line

y = x ⇐⇒ r sin θ = r cos θ ⇐⇒ tan θ = sin θ
cos θ = 1 ⇐⇒ θ = π

4

So, in polar coordinates, we can write the domain of integration as

R =
{

(r, θ)
∣∣∣ 0 ≤ θ ≤ π

4 , 0 ≤ r ≤ 1
cos θ

}
We can now slice up R using polar coordinates.

• Divide R into wedges by drawing in many lines of constant θ, with the
various values of θ differing by a tiny amount dθ. The figure on the right
above shows one such wedge.

◦ The first wedge has θ = 0.
◦ The last wedge has θ = π

4 .
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• Concentrate on any one wedge. Subdivide the wedge further into ap-
proximate rectangles by drawing in many circles of constant r, with the
various values of r differing by a tiny amount dr. The figure on the right
above shows one such approximate rectangle, in black.

◦ The rectangle that contains the point with polar coordinates r and
θ has area (essentially) r dr dθ.

◦ The first rectangle has r = 0.
◦ The last rectangle has r = 1

cos θ .

So our integral is

∫ 1

0

∫ x

0
y
√
x2 + y2 dy dx =

∫ π/4

0
dθ
∫ 1

cos θ

0
dr r

y
√
x2+y2︷ ︸︸ ︷

(r2 sin θ)

Because the r-integral treats θ as a constant, we can pull the sin θ out of the
inner r-integral.∫ 1

0

∫ x

0
y
√
x2 + y2 dy dx =

∫ π/4

0
dθ sin θ

∫ 1
cos θ

0
dr r3

= 1
4

∫ π/4

0
dθ sin θ 1

cos4 θ

Make the substitution

u = cos θ, du = − sin θ dθ

When θ = 0, u = cos θ = 1 and when θ = π
4 , u = cos θ = 1√

2 . So∫ 1

0

∫ x

0
y
√
x2 + y2 dy dx = 1

4

∫ 1/
√

2

1
(−du) 1

u4

= −1
4

[
u−3

−3

]1/
√

2

1
= 1

12

[
2
√

2− 1
]

�

Example 3.2.13 Changing to Polar Coordinates. Evaluate
∫ ∞

0
e−x

2
dx.

Solution. This is actually a trick question. In fact it is a famous trick ques-
tion9.

The integrand e−x2 does not have an antiderivative that can be expressed
in terms of elementary functions10. So we cannot evaluate this integral using
the usual Calculus II methods. However we can evaluate it’s square[∫ ∞

0
e−x

2
dx
]2

=
∫ ∞

0
e−x

2
dx

∫ ∞
0

e−y
2

dy =
∫ ∞

0
dx
∫ ∞

0
dy e−x

2−y2

precisely because this double integral can be easily evaluated just by chang-
ing to polar coordinates! The domain of integration is the first quadrant{

(x, y)
∣∣ x ≥ 0, y ≥ 0

}
. In polar coordinates, dxdy = r drdθ and the

first quadrant is {
(r cos θ , r sin θ)

∣∣ r ≥ 0, 0 ≤ θ ≤ π

2
}
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So [∫ ∞
0

e−x
2

dx
]2

=
∫ ∞

0
dx
∫ ∞

0
dy e−x

2−y2
=
∫ π/2

0
dθ
∫ ∞

0
dr r e−r

2

As r runs all the way to +∞, this is an improper integral, so we should be a
little bit careful.[∫ ∞

0
e−x

2
dx
]2

= lim
R→∞

∫ π/2

0
dθ
∫ R

0
dr r e−r

2

= lim
R→∞

∫ π/2

0
dθ
∫ R2

0

du
2 e−u where u = r2, du = 2r dr

= lim
R→∞

∫ π/2

0
dθ
[
−e
−u

2

]R2

0

= lim
R→∞

π

2

[
1
2 −

e−R
2

2

]
= π

4

and so we get the famous result∫ ∞
0

e−x
2

dx =
√
π

2

�

Example 3.2.14 Find the area of the region that is inside the circle r = 4 cos θ
and to the left of the line x = 1.
Solution. First, let’s check that r = 4 cos θ really is a circle and figure out
what circle it is. To do so, we’ll convert the equation r = 4 cos θ into Cartesian
coordinates. Multiplying both sides by r gives

r2 = 4r cos θ ⇐⇒ x2 + y2 = 4x ⇐⇒ (x− 2)2 + y2 = 4

So r = 4 cos θ is the circle of radius 2 centred on (2, 0). We’ll also need the
intersection point(s) of x = r cos θ = 1 and r = 4 cos θ. At such an intersection
point

r cos θ = 1, r = 4 cos θ =⇒ 1
cos θ = 4 cos θ

=⇒ cos2 θ = 1
4

=⇒ cos θ = 1
2 since r cos θ = 1 > 0

=⇒ θ = ±π3

Here is a sketch of the region of interest, which we’ll call R.
9The solution is attributed to the French Mathematician Sim\’eon Denis Poisson (1781 –

840) and was published in the textbook Cours d’Analyse de l’\’ecole polytechnique by Jacob
Karl Franz Sturm (1803 – 1855).

10On the other hand it is the core of the function erf(z) = 2√
π

∫ z
0 e−t

2 dt, which gives
Gaussian (i.e. bell curve) probabilities. “erf” stands for “error function”.
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x

y

r “ 4 cos θ

R

x “ 1

θ “ π{3

We could figure out the area of R by using some high school geometry,
because R is a circular wedge with a triangle removed. (See Example 3.2.15,
below.)

x

y

Instead, we’ll treat its computation as an exercise in integration using polar
coordinates.

As R is symmetric about the x-axis, the area of R is twice the area of the
part that is above the x-axis. We’ll denote by R1 the upper half of R. Note
that we can write the equation x = 1 in polar coordinates as r = 1

cos θ . Here is
a sketch of R1.

x

y

θ ą π{3

θ ă π{3

r “ 4 cos θ

R1

r “ 1
cos θ

θ “ π{3

Observe that, on R1, for any fixed θ between 0 and π
2 ,

• if θ < π
3 , then r runs from 0 to 1

cos θ , while

• if θ > π
3 , then r runs from 0 to 4 cos θ.
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This naturally leads us to split the domain of integration at θ = π
3 :

Area(R1) =
∫ π/3

0
dθ
∫ 1/ cos θ

0
dr r +

∫ π/2

π/3
dθ
∫ 4 cos θ

0
dr r

As
∫
r dr = r2

2 + C,

Area(R1) =
∫ π/3

0
dθ sec2 θ

2 +
∫ π/2

π/3
dθ 8 cos2 θ

= 1
2 tan θ

∣∣∣π/3
0

+ 4
∫ π/2

π/3
dθ
[
1 + cos(2θ)

]
=
√

3
2 + 4

[
θ + sin(2θ)

2

]π/2
π/3

=
√

3
2 + 4

[
π

6 −
√

3
4

]
= 2π

3 −
√

3
2

and

Area(R) = 2Area(R1) = 4π
3 −

√
3

�

Example 3.2.15 Optional — Example 3.2.14 by high school geometry.
We’ll now again compute the area of the region R that is inside the circle
r = 4 cos θ and to the left of the line x = 1. That was the region of interest in
Example 3.2.14. This time we’ll just use some geometry. Think of R as being
the wedge W, of the figure on the left below, with the triangle T , of the figure
on the right below, removed.

W
x

y

π{3

x “ 1

A

C1
1

2
T

x

y
x “ 1

B

D

C
1 1

2?
3

• First we’ll get the area of W. The cosine of the angle between the x
axis and the radius vector from C to A is 1

2 . So that angle is π
3 and W

subtends an angle of 2π
3 . The entire circle has area π22, so thatW, which

is the fraction 2π/3
2π = 1

3 of the full circle, has area 4π
3 .

• Now we’ll get the area of the triangle T . Think of T as having base BD.
Then the length of the base of T is 2

√
3 and the height of T is 1. So T

has area 1
2 (2
√

3)(1) =
√

3.
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All together

Area(R) = Area(W)−Area(T ) = 4π
3 −

√
3

�
We used some hand waving in deriving the area formula 3.2.8: the word

“essentially” appeared quite a few times. Here is how do that derivation more
rigorously.

3.2.4 Optional— Error Control for the Polar Area For-
mula>

Let 0 ≤ a < b ≤ 2π. In Examples 3.2.6 and 3.2.9 we derived the formula

A = 1
2

∫ b

a

R(θ)2 dθ

for the area of the region

R =
{ (

r cos θ, r sin θ
) ∣∣ a ≤ θ ≤ b, 0 ≤ r ≤ R(θ)

}
In the course of that derivation we approximated the area of the shaded region
in

dθ dr

r
r dθ

by dA = r dr dθ.
We will now justify that approximation, under the assumption that

0 ≤ R(θ) ≤M |R′(θ)| ≤ L

for all a ≤ θ ≤ b. That is, R(θ) is bounded and its derivative exists and is
bounded too.

Divide the interval a ≤ θ ≤ b into n equal subintervals, each of length
∆θ = b−a

n . Let θ∗i be the midpoint of the ith interval. On the ith interval, θ
runs from θ∗i − 1

2∆θ to θ∗i + 1
2∆θ.

By the mean value theorem

R(θ)−R(θ∗i ) = R′(c)(θ − θ∗i )

for some c between θ and θ∗i . Because |R′(θ)| ≤ L∣∣R(θ)−R(θ∗i )
∣∣ ≤ L∣∣θ − θ∗i ∣∣ (∗)

This tells us that the difference between R(θ) and R(θ∗i ) can’t be too big
compared to

∣∣θ − θ∗i ∣∣.
On the ith interval, the radius r = R(θ) runs over all values of R(θ) with

θ satisfying
∣∣θ − θ∗i ∣∣ ≤ 1

2∆θ. By (∗), all of these values of R(θ) lie between
ri = R(θ∗i ) − 1

2L∆θ and Ri = R(θ∗i ) + 1
2L∆θ. Consequently the part of R

having θ in the ith subinterval, namely,

Ri =
{ (

r cos θ, r sin θ
) ∣∣ θ∗i − 1

2∆θ ≤ θ ≤ θ∗i + 1
2∆θ, 0 ≤ r ≤ R(θ)

}
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must contain all of the circular sector{ (
r cos θ, r sin θ

) ∣∣ θ∗i − 1
2∆θ ≤ θ ≤ θ∗i + 1

2∆θ, 0 ≤ r ≤ ri
}

and must be completely contained inside the circular sector{ (
r cos θ, r sin θ

) ∣∣ θ∗i − 1
2∆θ ≤ θ ≤ θ∗i + 1

2∆θ, 0 ≤ r ≤ Ri
}

x

y

θ “ a

θ “ b

r “ fpθq

x

y

ri

Ri

That is, we have found one circular sector that is bigger than the one we are
approximating, and one circular sector that is smaller. The area of a circular
disk of radius ρ is πρ2. A circular sector of radius ρ that subtends an angle
∆θ is the fraction ∆θ

2π of the full disk and so has the area ∆θ
2π πρ

2 = ∆θ
2 ρ

2.

x

y

ρ

∆θ

So the area of Ri must lie between

1
2∆θ r2

i = 1
2∆θ

[
R(θ∗i )− 1

2L∆θ
]2

and 1
2∆θ R2

i = 1
2∆θ

[
R(θ∗i ) + 1

2L∆θ
]2

Observe that[
R(θ∗i )± 1

2L∆θ
]2

= R(θ∗i )2 ± LR(θ∗i )∆θ + 1
4L

2∆θ2

implies that, since 0 ≤ R(θ) ≤M ,

R(θ∗i )2 − LM∆θ + 1
4L

2∆θ2

≤
[
R(θ∗i )± 1

2L∆θ
]2
≤

R(θ∗i )2 + LM∆θ + 1
4L

2∆θ2

Hence (multiplying by ∆θ
2 to turn them into areas)

1
2R(θ∗i )2∆θ − 1

2LM∆θ2 + 1
8L

2∆θ3

≤ Area(Ri) ≤
1
2R(θ∗i )2∆θ + 1

2LM∆θ2 + 1
8L

2∆θ3
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and the total area A obeys the bounds
n∑
i=1

[
1
2R(θ∗i )2∆θ − 1

2LM∆θ2 + 1
8L

2∆θ3
]

≤ A ≤
n∑
i=1

[
1
2R(θ∗i )2∆θ + 1

2LM∆θ2 + 1
8L

2∆θ3
]

and

1
2

n∑
i=1

R(θ∗i )2∆θ − 1
2nLM∆θ2 + 1

8nL
2∆θ3

≤ A ≤
n∑
i=1

1
2R(θ∗i )2∆θ + 1

2nLM∆θ2 + 1
8nL

2∆θ3

Since ∆θ = b−a
n ,

1
2

n∑
i=1

R(θ∗i )2∆θ−LM2
(b−a)2

n
+L2

8
(b−a)3

n2

≤ A ≤

1
2

n∑
i=1

R(θ∗i )2∆θ+LM

2
(b−a)2

n
+L2

8
(b−a)3

n2

Now take the limit as n→∞. Since

lim
n→∞

[
1
2

n∑
i=1

R(θ∗i )2∆θ ± LM

2
(b− a)2

n
+ L2

8
(b− a)3

n2

]

= 1
2

∫ b

a

R(θ)2 dθ ± lim
n→∞

LM

2
(b− a)2

n
+ lim
n→∞

L2

8
(b− a)3

n2

= 1
2

∫ b

a

R(θ)2 dθ (since L,M, a and b are all constants)

we have that
A = 1

2

∫ b

a

R(θ)2 dθ

exactly, as desired.

3.2.5 Exercises

Exercises — Stage 1
1. Consider the points

(x1, y1) = (3, 0) (x2, y2) = (1, 1) (x3, y3) = (0, 1)
(x4, y4) = (−1, 1) (x5, y5) = (−2, 0)

For each 1 ≤ i ≤ 5,
• sketch, in the xy-plane, the point (xi, yi) and

• find polar coordinates ri and θi, with ri > 0 and 0 ≤ θi < 2π,
for the point (xi, yi).
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2. For each of the following points (xi, yi),
• find all pairs (ri, θi) such that (xi, yi) =

(
ri cos θi , ri sin θi

)
, and

• in particular, find a pair (ri, θi) with ri < 0 and 0 ≤ θi < 2π
such that (xi, yi) =

(
ri cos θi , ri sin θi

)
a (x1, y1) = (−2, 0)

b (x2, y2) = (1, 1)

c (x3, y3) = (−1,−1)

d (x4, y4) = (3, 0)

e (x5, y5) = (0, 1)
3. Consider the points

(x1, y1) = (3, 0) (x2, y2) = (1, 1) (x3, y3) = (0, 1)
(x4, y4) = (−1, 1) (x5, y5) = (−2, 0)

Also define, for each angle θ, the vectors

er(θ) = cos θ ı̂ıı+ sin θ ̂ eθ(θ) = − sin θ ı̂ıı+ cos θ ̂

a Determine, for each angle θ, the lengths of the vectors er(θ)
and eθ(θ) and the angle between the vectors er(θ) and eθ(θ).
Compute er(θ) × eθ(θ) (viewing er(θ) and eθ(θ) as vectors in
three dimensions with zero k̂ components).

b For each 1 ≤ i ≤ 5, sketch, in the xy-plane, the point (xi, yi)
and the vectors er(θi) and eθ(θi). In your sketch of the vectors,
place the tails of the vectors er(θi) and eθ(θi) at (xi, yi).

4. Let 〈a, b〉 be a vector. Let r be the length of 〈a, b〉 and θ be the angle
between 〈a, b〉 and the x-axis.

a Express a and b in terms of r and θ.

b Let 〈A,B〉 be the vector gotten by rotating 〈a, b〉 by an angle ϕ
about its tail. Express A and B in terms of a, b and ϕ.

5. For each of the regions R sketched below, express
∫∫
R f(x, y) dxdy as

an iterated integral in polar coordinates in two different ways.
(a)

x

y

x2`y2“4

y “ x

R

(b)

x

y
x2`y2“4

x2`y2“1

R
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(c)

x

y

px´1q2`y2“1

R

(d)

x

y y “ x

y “ 2

R

6. Sketch the domain of integration in the xy-plane for each of the fol-
lowing polar coordinate integrals.

a
∫ 2

1
dr
∫ π

4

−π4
dθ r f(r cos θ, r sin θ)

b
∫ π

4

0
dθ
∫ 2

sin θ+cos θ

0
dr r f(r cos θ, r sin θ)

c
∫ 2π

0
dθ
∫ 3√

cos2 θ+9 sin2 θ

0
dr r f(r cos θ, r sin θ)

Exercises — Stage 2
7. Use polar coordinates to evaluate each of the following integrals.

a
∫∫

S

(x+y)dx dy where S is the region in the first quadrant lying

inside the disc x2 + y2 ≤ a2 and under the line y =
√

3x.

b
∫∫

S

x dxdy, where S is the disc segment x2 + y2 ≤ 2, x ≥ 1.

c
∫∫

T

(x2+y2)dx dy where T is the triangle with vertices (0, 0), (1, 0)

and (1, 1).

d
∫∫

x2+y2≤1
ln(x2 + y2) dxdy

8. Find the volume lying inside the sphere x2 + y2 + z2 = 2 and above
the paraboloid z = x2 + y2.

9. Let a > 0. Find the volume lying inside the cylinder x2 +(y−a)2 = a2

and between the upper and lower halves of the cone z2 = x2 + y2.
10. Let a > 0. Find the volume common to the cylinders x2 + y2 ≤ 2ax

and z2 ≤ 2ax.
11. ∗. Consider the region E in 3--dimensions specified by the inequalities

x2 + y2 ≤ 2y and 0 ≤ z ≤
√
x2 + y2.

a Draw a reasonably accurate picture of E in 3--dimensions. Be
sure to show the units on the coordinate axes.

b Use polar coordinates to find the volume of E. Note that you
will be “using polar coordinates” if you solve this problem by
means of cylindrical coordinates.
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12. ∗. Evaluate the iterated double integral∫ x=2

x=0

∫ y=
√

4−x2

y=0
(x2 + y2)

3
2 dy dx

13. ∗.
a Sketch the region L (in the first quadrant of the xy--plane) with

boundary curves

x2 + y2 = 2, x2 + y2 = 4, y = x, y = 0.

The mass of a thin lamina with a density function ρ(x, y) over
the region L is given by

M =
∫∫
L
ρ(x, y) dA

b Find an expression for M as an integral in polar coordinates.

c Find M when
ρ(x, y) = 2xy

x2 + y2

14. ∗. Evaluate
∫∫

R2

1
(1 + x2 + y2)2 dA.

15. ∗. Evaluate the double integral∫∫
D

y
√
x2 + y2 dA

over the region D =
{

(x, y)
∣∣ x2 + y2 ≤ 2, 0 ≤ y ≤ x

}
.

16. ∗. This question is about the integral∫ 1

0

∫ √4−y2

√
3y

ln
(
1 + x2 + y2) dx dy

a Sketch the domain of integration.

b Evaluate the integral by transforming to polar coordinates.
17. ∗. Let D be the region in the xy--plane bounded on the left by the

line x = 2 and on the right by the circle x2 + y2 = 16. Evaluate∫∫
D

(
x2 + y2)−3/2 dA

18. ∗. In the xy--plane, the disk x2 + y2 ≤ 2x is cut into 2 pieces by the
line y = x. Let D be the larger piece.

a Sketch D including an accurate description of the center and
radius of the given disk. Then describe D in polar coordinates
(r, θ).

b Find the volume of the solid below z =
√
x2 + y2 and above D.

19. ∗. Let D be the shaded region in the diagram. Find the average dis-
tance of points in D from the origin. You may use that

∫
cosn(x) dx =

cosn−1(x) sin(x)
n + n−1

n

∫
cosn−2(x) dx for all natural numbers n ≥ 2.
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x

y

r “ 1 ` cospθq
r “ 1

Exercises — Stage 3
20. ∗. Let G be the region in R2 given by

x2 + y2 ≤ 1
0 ≤ x ≤ 2y
y ≤ 2x

a Sketch the region G.

b Express the integral
∫∫
G
f(x, y) dA a sum of iterated integrals∫∫

f(x, y) dxdy.

c Express the integral
∫∫
G
f(x, y) dA as an iterated integral in

polar coordinates (r, θ) where x = r cos(θ) and y = r sin(θ).
21. ∗. Consider

J =
∫ √2

0

∫ √4−y2

y

y

x
ex

2+y2
dxdy

a Sketch the region of integration.

b Reverse the order of integration.

c Evaluate J by using polar coordinates.
22. Find the volume of the region in the first octant below the paraboloid

z = 1− x2

a2 −
y2

b2

23. A symmetrical coffee percolator holds 24 cups when full. The interior
has a circular cross-section which tapers from a radius of 3’ at the
centre to 2’ at the base and top, which are 12’ apart. The bounding
surface is parabolic. Where should the mark indicating the 6 cup level
be placed?

12”

2”

3”

24. ∗. Consider the surface S given by z = ex
2+y2 .

a Compute the volume under S and above the disk x2 + y2 ≤ 9 in
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the xy-plane.

b The volume under S and above a certain region R in the xy-
plane is∫ 1

0

(∫ y

0
ex

2+y2
dx
)

dy +
∫ 2

1

(∫ 2−y

0
ex

2+y2
dx
)

dy

Sketch R and express the volume as a single iterated integral
with the order of integration reversed. Do not compute either
integral in part (b).

3.3 Applications of Double Integrals
Double integrals are useful for more than just computing areas and volumes.
Here are a few other applications that lead to double integrals.

3.3.1 Averages
In Section 2.2 of the CLP-2 text, we defined the average value of a function of
one variable. We’ll now extend that discussion to functions of two variables.
First, we recall the definition of the average of a finite set of numbers.

Definition 3.3.1 The average (mean) of a set of n numbers f1, f2, · · ·, fn is

f̄ = 〈f〉 = f1 + f2 + · · ·+ fn
n

The notations f̄ and 〈f〉 are both commonly used to represent the average. ♦
Now suppose that we want to take the average of a function f(x, y) with

(x, y) running continuously over some region R in the xy-plane. A natural
approach to defining what we mean by the average value of f over R is to

• First fix any natural number n.

• Subdivide the region R into tiny (approximate) squares each of width
∆x = 1

n and height ∆y = 1
n . This can be done by, for example, subdi-

viding vertical strips into tiny squares, like in Example 3.1.11.

• Name the squares (in any fixed order) R1, R2, · · ·, RN , where N is the
total number of squares.

• Select, for each 1 ≤ i ≤ N , one point in square number i and call it
(x∗i , y∗i ). So (x∗i , y∗i ) ∈ Ri.

• The average value of f at the selected points is

1
N

N∑
i=1

f(x∗i , y∗i ) =
∑N
i=1 f(x∗i , y∗i )∑N

i=1 1
=
∑N
i=1 f(x∗i , y∗i ) ∆x∆y∑N

i=1 ∆x∆y

We have transformed the average into a ratio of Riemann sums.

Once we have the Riemann sums it is clear what to do next. Taking the limit

n→∞, we get exactly
∫∫
R
f(x,y) dx dy∫∫
R

dx dy
. That’s why we define
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Definition 3.3.2 Let f(x, y) be an integrable function defined on region R in
the xy-plane. The average value of f on R is

f̄ = 〈f〉 =

∫∫
R
f(x, y) dxdy∫∫
R

dxdy

♦

Example 3.3.3 Average. Let a > 0. A mountain, call it Half Dome1,
has height z(x, y) =

√
a2 − x2 − y2 above each point (x, y) in the base region

R =
{

(x, y)
∣∣ x2 + y2 ≤ a2, x ≤ 0

}
. Find its average height.

z

y

x

x2 ` y2 ` z2 “ a2

R

Solution. By Definition 3.3.2 the average height is

z̄ =
∫∫
R z(x, y) dx dy∫∫
R dx dy

=
∫∫
R

√
a2 − x2 − y2 dxdy∫∫
R dxdy

The integrals in both the numerator and denominator are easily evaluated by
interpreting them geometrically.

• The numerator
∫∫
R z(x, y) dx dy =

∫∫
R

√
a2 − x2 − y2 dxdy can be in-

terpreted as the volume of{
(x, y, z)

∣∣∣ x2 + y2 ≤ a2, x ≤ 0, 0 ≤ z ≤
√
a2 − x2 − y2

}
=
{

(x, y, z)
∣∣ x2 + y2 + z2 ≤ a2, x ≤ 0, z ≥ 0

}
which is one quarter of the interior of a sphere of radius a. So the
numerator is 1

3πa
3.

• The denominator
∫∫
R dx dy is the area of one half of a circular disk of

radius a. So the denominator is 1
2πa

2.

All together, the average height is

z̄ =
1
3πa

3

1
2πa

2 = 2
3 a

Notice this this number is bigger than zero and less than the maximum height,
which is a. That makes sense. �

Example 3.3.4 Example 3.3.3, the hard way. This last example was rel-
atively easy because we could reinterpret the integrals as geometric quantities.
For practice, let’s go back and evaluate the numerator

∫∫
R

√
a2 − x2 − y2 dxdy

of Example 3.3.3 as an iterated integral.
Here is a sketch of the top view of the base region R.

1There is a real Half-Dome mountain in Yosemite National Park. It has a = 1445m.
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y

x

top view

x “ ´a
a2 ´ y2

dx

dy

y “ ay “ ´a

R

Using the slicing in the figure∫∫
R

√
a2 − x2 − y2 dxdy =

∫ a

−a
dy
∫ 0

−
√
a2−y2

dx
√
a2 − x2 − y2

Note that, in the inside integral
∫ 0

−
√
a2−y2

dx
√
a2 − x2 − y2, the variable y is

treated as a constant, so that the integrand
√
a2 − y2 − x2 =

√
C2 − x2 with

C being the constant
√
a2 − y2. The standard protocol for evaluating this

integral uses the trigonometric substitution

x = C sin θ with − π

2 ≤ θ ≤
π

2
dx = C cos θ dθ

Trigonometric substitution was discussed in detail in Section 1.9 in the CLP-2
text. Since

x = 0 =⇒ C sin θ = 0 =⇒ θ = 0

x = −
√
a2 − y2 = −C =⇒ C sin θ = −C =⇒ θ = −π2

and √
a2 − x2 − y2 =

√
C2 − C2 sin2 θ = C cos θ

the inner integral∫ 0

−
√
a2−y2

dx
√
a2 − x2 − y2 =

∫ 0

−π/2
C2 cos2 θ dθ

= C2
∫ 0

−π/2

1 + cos(2θ)
2 dθ = C2

[
θ + sin(2θ)

2
2

]0

−π/2

= πC2

4 = π

4
(
a2 − y2)

and the full integral∫∫
R

√
a2 − x2 − y2 dxdy = π

4

∫ a

−a

(
a2 − y2) dy = π

2

∫ a

0

(
a2 − y2) dy

= π

2

[
a3 − a3

3

]
= 1

3πa
3

just as we saw in Example 3.3.3. �

Remark 3.3.5 We remark that there is an efficient, sneaky, way to evaluate
definite integrals like

∫ 0
−π/2 cos2 θ dθ. Looking at the figures
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y

x
´π ´π{2 ππ{2

1
y “ cos2 x

y

x
´π ´π{2 ππ{2

1
y “ sin2 x

we see that ∫ 0

−π/2
cos2 θ dθ =

∫ 0

−π/2
sin2 θ dθ

Thus∫ 0

−π/2
cos2 θ dθ =

∫ 0

−π/2
sin2 θ dθ =

∫ 0

−π/2

1
2
[

sin2 θ + cos2 θ
]

dθ = 1
2

∫ 0

−π/2
dθ

= π

4
It is not at all unusual to want to find the average value of some function

f(x, y) with (x, y) running over some regionR, but to also want some (x, y)’s to
play a greater role in determining the average than other (x, y)’s. One common
way to do so is to create a “weight function” w(x, y) > 0 with w(x1,y1)

w(x2,y2) giving
the relative importance of (x1, y1) and (x2, y2). That is, (x1, y1) is w(x1,y1)

w(x2,y2)
times as important as (x2, y2). This leads to the definition

Definition 3.3.6 ∫∫
R f(x, y)w(x, y) dxdy∫∫
R w(x, y) dxdy

is called the weighted average of f over R with weight w(x, y). ♦

Note that if f(x, y) = F , a constant, then the weighted average of f is just
F , just as you would want.

3.3.2 Centre of Mass
One important example of a weighted average is the centre of mass. If you
support a body at its centre of mass (in a uniform gravitational field) it balances
perfectly. That’s the definition of the centre of mass of the body. In Section 2.3
of the CLP-2 text, we found that the centre of mass of a body that consists of
mass distributed continuously along a straight line, with mass density ρ(x)kg/
m and with x running from a to b, is at

x̄ =
∫ b
a
x ρ(x) dx∫ b
a
ρ(x) dx

That is, the centre of mass is at the average of the x-coordinate weighted by
the mass density.

In two dimensions, the centre of mass of a plate that covers the region R
in the xy-plane and that has mass density ρ(x, y) is the point (x̄, ȳ) where

Equation 3.3.7 Centre of Mass.

x̄ = the weighted average of x over R

=
∫∫
R x ρ(x, y) dx dy∫∫
R ρ(x, y) dx dy

=
∫∫
R x ρ(x, y) dxdy

Mass(R)
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ȳ = the weighted average of y over R

=
∫∫
R y ρ(x, y) dx dy∫∫
R ρ(x, y) dx dy

=
∫∫
R y ρ(x, y) dxdy

Mass(R)
If the mass density is a constant, the centre of mass is also called the

centroid, and is the geometric centre of R. In this case

Equation 3.3.8 Centroid.

x̄ =
∫∫
R x dx dy∫∫
R dx dy

=
∫∫
R x dxdy
Area(R)

ȳ =
∫∫
R y dx dy∫∫
R dx dy

=
∫∫
R y dxdy
Area(R)

Example 3.3.9 Centre of Mass. In Section 2.3 of the CLP-2 text, we did
not have access to multivariable integrals, so we used some physical intuition
to derive that the centroid of a body that fills the region

R =
{

(x, y)
∣∣ a ≤ x ≤ b, B(x) ≤ y ≤ T (x)

}
in the xy-plane is (x̄, ȳ) where

x̄ =
∫ b
a
x[T (x)−B(x)] dx

A

ȳ =
∫ b
a

[T (x)2 −B(x)2] dx
2A

and A =
∫ b
a

[T (x)− B(x)] dx is the area of R. Now that we do have access to
multivariable integrals, we can derive these formulae directly from 3.3.8. Using
vertical slices, as in this figure,

x b

T pxq

Bpxq

x

y

y “ T pxq

y “ Bpxq

a

R

we see that the area of R is

A =
∫∫
R

dxdy =
∫ b

a

dx
∫ T (x)

B(x)
dy =

∫ b

a

dx
[
T (x)−B(x)

]
and that 3.3.8 gives

x̄ = 1
A

∫∫
R
x dxdy = 1

A

∫ b

a

dx
∫ T (x)

B(x)
dy x = 1

A

∫ b

a

dx x
[
T (x)−B(x)

]
ȳ = 1

A

∫∫
R
y dxdy = 1

A

∫ b

a

dx
∫ T (x)

B(x)
dy y = 1

A

∫ b

a

dx
[
T (x)2

2 − B(x)2

2

]
just as desired. �

We’ll start with a simple mechanical example.
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Example 3.3.10 Quarter Circle. In Example 2.3.4 of the CLP-2 text, we
found the centroid of the quarter circular disk

D =
{

(x, y)
∣∣ x ≥ 0, y ≥ 0, x2 + y2 ≤ r2 }

by using the formulae of the last example. We’ll now find it again using 3.3.8.
Since the area of D is 1

4πr
2, we have

x̄ =
∫∫
D
x dxdy

1
4πr

2 ȳ =
∫∫
D
y dx dy

1
4πr

2

We’ll evaluate
∫∫
D
x dxdy by using horizontal slices, as in the figure on the

left below.

x

y

x “ a
r2 ´ y2p0, rq

x

y

y “ ?
r2 ´ x2

pr, 0q
Looking at that figure, we see that

• y runs from 0 to r and

• for each y in that range, x runs from 0 to
√
r2 − y2.

So ∫∫
D

x dxdy =
∫ r

0
dy
∫ √r2−y2

0
dx x =

∫ r

0
dy
[
x2

2

]√r2−y2

0

= 1
2

∫ r

0
dy
[
r2 − y2] = 1

2

[
r3 − r3

3

]
= r3

3

and
x̄ = 4

πr2

[
r3

3

]
= 4r

3π
This is the same answer as we got in Example 2.3.4 of the CLP-2 text. But
because we were able to use horizontal slices, the integral in this example was
a little easier to evaluate than the integral in CLP-2. Had we used vertical
slices, we would have ended up with exactly the integral of CLP-2.

By symmetry, we should have ȳ = x̄. We’ll check that by evaluating∫∫
D
y dxdy by using vertical slices slices, as in the figure on the right above.

From that figure, we see that

• x runs from 0 to r and

• for each x in that range, y runs from 0 to
√
r2 − x2.

So ∫∫
D

y dxdy =
∫ r

0
dx
∫ √r2−x2

0
dy y = 1

2

∫ r

0
dx
[
r2 − x2]
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This is exactly the integral 1
2
∫ r

0 dy
[
r2 − y2] that we evaluated above, with y

renamed to x. So
∫∫
D
y dxdy = r3

3 too and

ȳ = 4
πr2

[
r3

3

]
= 4r

3π = x̄

as expected. �

Example 3.3.11 Example 3.2.14, continued. Find the centroid of the
region that is inside the circle r = 4 cos θ and to the left of the line x = 1.
Solution. Recall that we saw in Example 3.2.14 that r = 4 cos θ was indeed
a circle, and in fact is the circle (x − 2)2 + y2 = 4. Here is a sketch of that
circle and of the region of interest, R.

x

y

r “ 4 cos θ

R

x “ 1

θ “ π{3

From the sketch, we see that R is symmetric about the x-axis. So we expect
that its centroid, (x̄, ȳ), has ȳ = 0. To see this from the integral definition,
note that the integral

∫∫
R y dxdy

• has domain of integration, namely R, invariant under y → −y (i.e. under
reflection in the x-axis), and

• has integrand, namely y, that is odd under y → −y.

So
∫∫
R y dxdy = 0 and consequently ȳ = 0.

We now just have to find x̄:

x̄ =
∫∫
R x dxdy∫∫
R dxdy

We have already found, in Example 3.2.14, that∫∫
R

dxdy = 4π
3 −

√
3

So we just have to compute
∫∫
R x dx dy. Using R1 to denote the top half of

R, and using polar coordinates, like we did in Example 3.2.14,∫∫
R1

x dxdy =
∫ π/3

0
dθ
∫ 1/ cos θ

0
dr r

x︷ ︸︸ ︷
(r cos θ) +

∫ π/2

π/3
dθ
∫ 4 cos θ

0
dr r

x︷ ︸︸ ︷
(r cos θ)

=
∫ π/3

0
dθ cos θ

∫ 1/ cos θ

0
dr r2 +

∫ π/2

π/3
dθ cos θ

∫ 4 cos θ

0
dr r2

=
∫ π/3

0
dθ sec2 θ

3 +
∫ π/2

π/3
dθ 64

3 cos4 θ



CHAPTER 3. MULTIPLE INTEGRALS 322

The first integral is easy, provided we remember that tan θ is an antiderivative
for sec2 θ. For the second integral, we’ll need the double angle formula cos2 θ =
1+cos(2θ)

2 :

cos4 θ =
(

cos2 θ
)2 =

[
1 + cos(2θ)

2

]2
= 1

4
[
1 + 2 cos(2θ) + cos2(2θ)

]
= 1

4

[
1 + 2 cos(2θ) + 1 + cos(4θ)

2

]
= 3

8 + cos(2θ)
2 + cos(4θ)

8
so ∫∫

R1

x dxdy = 1
3 tan θ

∣∣∣π/3
0

+ 64
3

[
3θ
8 + sin(2θ)

4 + sin(4θ)
32

]π/2
π/3

= 1
3 ×
√

3 + 64
3

[
3
8 ×

π

6 −
√

3
4× 2 +

√
3

32× 2

]
= 4π

3 − 2
√

3

The integral we want, namely
∫∫
R x dxdy,

• has domain of integration, namely R, invariant under y → −y (i.e. under
reflection in the x-axis), and

• has integrand, namely x, that is even under y → −y.

So
∫∫
R x dxdy = 2

∫∫
R1
x dxdy and, all together,

x̄ =
2
( 4π

3 − 2
√

3
)

4π
3 −
√

3
=

8π
3 − 4

√
3

4π
3 −
√

3
≈ 0.59

As a check, note that 0 ≤ x ≤ 1 on R and more of R is closer to x = 1 than
to x = 0. So it makes sense that x̄ is between 1

2 and 1. �

Example 3.3.12 Reverse Centre of Mass. Evaluate
∫ 2

0

∫ √2x−x2

−
√

2x−x2

(
2x+

3y
)
dy dx.

Solution. This is another integral that can be evaluated without using any
calculus at all. This time by relating it to a centre of mass. By 3.3.8,∫∫

R
x dxdy = x̄ Area(R)∫∫

R
y dxdy = ȳ Area(R)

so that we can easily evaluate
∫∫
R x dxdy and

∫∫
R y dxdy provided R is

sufficiently simple and symmetric that we can easily determine its area and its
centroid.

That is the case for the integral in this example. Rewrite∫ 2

0

∫ √2x−x2

−
√

2x−x2

(
2x+ 3y

)
dy dx = 2

∫ 2

0
dx
[∫ √2x−x2

−
√

2x−x2
dy x

]
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+ 3
∫ 2

0
dx
[∫ √2x−x2

−
√

2x−x2
dy y

]

On the domain of integration

• x runs from 0 to 2 and

• for each fixed 0 ≤ x ≤ 2, y runs from −
√

2x− x2 to +
√

2x− x2

Observe that y = ±
√

2x− x2 is equivalent to

y2 = 2x− x2 = 1− (x− 1)2 ⇐⇒ (x− 1)2 + y2 = 1

Our domain of integration is exactly the disk

R =
{

(x, y)
∣∣ (x− 1)2 + y2 ≤ 1

}
of radius 1 centred on (1, 0).

p1, 0q p2, 0q

dx

dy

x “ 1

x

y

px ´ 1q2 ` y2 “ 1

So R has area π and centre of mass (x̄, ȳ) = (1, 0) and∫ 2

0

∫ √2x−x2

−
√

2x−x2

(
2x+ 3y

)
dy dx = 2

∫∫
R
x dx dy + 3

∫∫
R
y dxdy

= 2 x̄Area(R) + 3 ȳArea(R) = 2π

�

3.3.3 Moment of Inertia
Consider a plate that fills the region R in the xy-plane, that has mass density
ρ(x, y) kg/m2, and that is rotating at ω rad/s about some axis. Let’s call the
axis of rotation A. We are now going to determine the kinetic energy of that
plate. Recall2 that, by definition, the kinetic energy of a point particle of mass
m that is moving with speed v is 1

2mv
2.

To get the kinetic energy of the entire plate, cut it up into tiny rectangles3,
say of size dx × dy. Think of each rectangle as being (essentially) a point
particle. If the point (x, y) on the plate is a distance D(x, y) from the axis of
rotation A, then as the plate rotates, the point (x, y) sweeps out a circle of

2If you don’t recall, don’t worry. We wouldn’t lie to you. Or check it on Wikipedia. They
wouldn’t lie to you either.

3The relatively small number of “rectangles” around the boundary of R won’t actually
be rectangles. But, as we have seen in the optional §3.2.4, one can still make things rigorous
despite the rectangles being a bit squishy around the edges.
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radius D(x, y). The figure on the right below shows that circle as seen from
high up on the axis of rotation.

dx

dy

D

A

ω D

The circular arc that the point (x, y) sweeps out in one second subtends
the angle ω radians, which is the fraction ω

2π of a full circle and so has length
ω
2π
(
2πD(x, y)

)
= ωD(x, y). Consequently the rectangle that contains the point

(x, y)

• has speed ωD(x, y), and

• has area dxdy, and so

• has mass ρ(x, y) dxdy, and

• has kinetic energy

1
2

m︷ ︸︸ ︷(
ρ(x, y) dxdy

) v2︷ ︸︸ ︷
(ωD(x, y))2 = 1

2ω
2 D(x, y) 2ρ(x, y) dx dy

So (via our usual Riemann sum limit procedure) the kinetic energy of R is∫∫
R

1
2ω

2 D(x, y)2 ρ(x, y) dxdy = 1
2ω

2
∫∫
R
D(x, y)2 ρ(x, y) dx dy = 1

2IA ω
2

where
Definition 3.3.13 Moment of Inertia.

IA =
∫∫
R
D(x, y)2ρ(x, y) dxdy

is called the moment of inertial of R about the axis A. In particular the
moment of inertia of R about the y-axis is

Iy =
∫∫
R
x2 ρ(x, y) dxdy

and the moment of inertia of R about the x-axis is

Ix =
∫∫
R
y2 ρ(x, y) dxdy

♦
Notice that the expression 1

2IA ω
2 for the kinetic energy has a very similar

form to 1
2mv

2, just with the velocity v replaced by the angular velocity ω, and
with the mass m replaced by IA, which can be thought of as being a bit like a
mass.
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So far, we have been assuming that the rotation was taking place in the
xy-plane — a two dimensional world. Our analysis extends naturally to three
dimensions, though the resulting integral formulae for the moment of inertia
will then be triple integrals, which we have not yet dealt with. We shall soon
do so, but let’s first do an example in two dimensions.

Example 3.3.14 Disk. Find the moment of inertia of the interior, R, of the
circle x2 + y2 = a2 about the x-axis. Assume that it has density one.
Solution. The distance from any point (x, y) inside the disk to the axis of

R

y

|y|
x

rotation (i.e. the x-axis) is |y|. So the moment of inertia of the interior of
the disk about the x-axis is

Ix =
∫∫
R
y2 dxdy

Switching to polar coordinates4,

Ix =
∫ 2π

0
dθ
∫ a

0
dr r

y2︷ ︸︸ ︷
(r sin θ)2 =

∫ 2π

0
dθ sin2 θ

∫ a

0
dr r3

= a4

4

∫ 2π

0
dθ sin2 θ = a4

4

∫ 2π

0
dθ 1− cos(2θ)

2

= a4

8

[
θ − sin(2θ)

2

]2π

0

= 1
4πa

4

For an efficient, sneaky, way to evaluate
∫ 2π

0 sin2 θ dθ, see Remark 3.3.5. �

Example 3.3.15 Cardioid. Find the moment of inertia of the interior, R,
of the cardiod r = a(1 + cos θ) about the z-axis. Assume that the cardiod lies
in the xy-plane and has density one.
Solution. We sketched the cardiod (with a = 1) in Example 3.2.3.

4See how handy they are!
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R
x

y

?
x2`y2

r “ ap1 ` cos θq
As we said above, the formula for IA in Definition 3.3.13 is valid even when

the axis of rotation is not contained in the xy-plane. We just have to be sure
that our D(x, y) really is the distance from (x, y) to the axis of rotation. In
this example the axis of rotation is the z-axis so that D(x, y) =

√
x2 + y2 and

that the moment of inertia is

IA =
∫∫
R

(x2 + y2) dxdy

Switching to polar coordinates, using dxdy = r drdθ and x2 + y2 = r2,

IA =
∫ 2π

0
dθ
∫ a(1+cos θ)

0
dr r × r2 =

∫ 2π

0
dθ
∫ a(1+cos θ)

0
dr r3

= a4

4

∫ 2π

0
dθ
(
1 + cos θ

)4
= a4

4

∫ 2π

0
dθ
(
1 + 4 cos θ + 6 cos2 θ + 4 cos3 θ + cos4 θ

)
Now ∫ 2π

0
dθ cos θ = sin θ

∣∣∣2π
0

= 0∫ 2π

0
dθ cos2 θ =

∫ 2π

0
dθ 1 + cos(2θ)

2 = 1
2

[
θ + sin(2θ)

2

]2π

0
= π∫ 2π

0
dθ cos3 θ =

∫ 2π

0
dθ cos θ

[
1− sin2 θ

] u=sin θ=
∫ 0

0
du (1− u2) = 0

To integrate cos4 θ, we use the double angle formula

cos2 θ = cos(2θ) + 1
2

=⇒ cos4 θ =
(

cos(2θ) + 1
)2

4 = cos2(2θ) + 2 cos(2θ) + 1
4

=
cos(4θ)+1

2 + 2 cos(2θ) + 1
4

= 3
8 + 1

2 cos(2θ) + 1
8 cos(4θ)

to give ∫ 2π

0
dθ cos4 θ =

∫ 2π

0
dθ
[

3
8 + 1

2 cos(2θ) + 1
8 cos(4θ)

]
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= 3
8 × 2π + 1

2 × 0 + 1
8 × 0 = 3

4π

All together

IA = a4

4

[
2π + 4× 0 + 6× π + 4× 0 + 3

4π
]

= 35
16πa

4

�

3.3.4 Exercises

Exercises — Stage 1
1. For each of the following, evaluate the given double integral without

using iteration. Instead, interpret the integral in terms of, for example,
areas or average values.

a
∫∫
D

(x+ 3) dxdy, where D is the half disc 0 ≤ y ≤
√

4− x2

b
∫∫
R

(x+ y) dxdy where R is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b

Exercises — Stage 2
2. ∗. Find the centre of mass of the region D in the xy--plane defined by

the inequalities x2 ≤ y ≤ 1, assuming that the mass density function
is given by ρ(x, y) = y.

3. ∗. Let R be the region bounded on the left by x = 1 and on the right
by x2 + y2 = 4. The density in R is

ρ(x, y) = 1√
x2 + y2

a Sketch the region R.

b Find the mass of R.

c Find the centre-of-mass of R.

Note: You may use the result
∫

sec(θ) dθ = ln | sec θ + tan θ|+ C.
4. ∗. A thin plate of uniform density 1 is bounded by the positive x and

y axes and the cardioid
√
x2 + y2 = r = 1 + sin θ, which is given in

polar coordinates. Find the x--coordinate of its centre of mass.
5. ∗. A thin plate of uniform density k is bounded by the positive x and

y axes and the circle x2 + y2 = 1. Find its centre of mass.
6. ∗. Let R be the triangle with vertices (0, 2), (1, 0), and (2, 0). Let R

have density ρ(x, y) = y2. Find ȳ, the y--coordinate of the center of
mass of R. You do not need to find x̄.

7. ∗. The average distance of a point in a plane region D to a point
(a, b) is defined by

1
A(D)

∫∫
D

√
(x− a)2 + (y − b)2 dxdy

where A(D) is the area of the plane region D. Let D be the unit disk
1 ≥ x2 + y2. Find the average distance of a point in D to the center
of D.
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8. ∗. A metal crescent is obtained by removing the interior of the circle
defined by the equation x2 + y2 = x from the metal plate of constant
density 1 occupying the unit disc x2 + y2 ≤ 1.

a Find the total mass of the crescent.

b Find the x-coordinate of its center of mass.

You may use the fact that
∫ π/2
−π/2 cos4(θ) dθ = 3π

8 .

9. ∗. Let D be the region in the xy--plane which is inside the circle
x2 + (y − 1)2 = 1 but outside the circle x2 + y2 = 2. Determine the
mass of this region if the density is given by

ρ(x, y) = 2√
x2 + y2

Exercises — Stage 3
10. ∗. Let a, b and c be positive numbers, and let T be the triangle whose

vertices are (−a, 0), (b, 0) and (0, c).
a Assuming that the density is constant on T , find the center of
mass of T .

b The medians of T are the line segments which join a vertex of
T to the midpoint of the opposite side. It is a well known fact
that the three medians of any triangle meet at a point, which is
known as the centroid of T . Show that the centroid of T is its
centre of mass.

3.4 Surface Area
Suppose that we wish to find the area of part, S, of the surface z = f(x, y).
We start by cutting S up into tiny pieces. To do so,

• we draw a bunch of curves of constant x (the blue curves in the figure
below). Each such curve is the intersection of S with the plane x = x0
for some constant x0. And we also

• draw a bunch of curves of constant y (the red curves in the figure below).
Each such curve is the intersection of S with the plane y = y0 for some
constant y0.

z

y

x

z “ fpx, yq

Concentrate on any one the tiny pieces. Here is a greatly magnified sketch
of it, looking at it from above.
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P2

P3

P1P0

x“x0`dx
y varying

x“x0
y varying

x varying
y“y0`dy

x varying
y“y0

We wish to compute its area, which we’ll call dS. Now this little piece of
surface need not be parallel to the xy-plane, and indeed need not even be flat.
But if the piece is really tiny, it’s almost flat. We’ll now approximate it by
something that is flat, and whose area we know. To start, we’ll determine the
corners of the piece. To do so, we first determine the bounding curves of the
piece. Look at the figure above, and recall that, on the surface z = f(x, y).

• The upper blue curve was constructed by holding x fixed at the value x0,
and sketching the curve swept out by x0 ı̂ıı + y ̂ + f(x0, y) k̂ as y varied,
and

• the lower blue curve was constructed by holding x fixed at the slightly
larger value x0 + dx, and sketching the curve swept out by (x0 + dx) ı̂ıı+
y ̂+ f(x0 + dx, y) k̂ as y varied.

• The red curves were constructed similarly, by holding y fixed and varying
x.

So the four intersection points in the figure are

P0 = x0 ı̂ıı+ y0 ̂+ f(x0, y0) k̂
P1 = x0 ı̂ıı+ (y0 + dy) ̂+ f(x0, y0 + dy) k̂
P2 = (x0 + dx) ı̂ıı+ y0 ̂+ f(x0 + dx, y0) k̂
P3 = (x0 + dx) ı̂ıı+ (y0 + dy) ̂+ f(x0 + dx, y0 + dy) k̂

Now, for any small constants dX and dY , we have the linear approximation1

f(x0 + dX, y0 + dY ) ≈ f(x0 , y0) + ∂f

∂x
(x0 , y0) dX + ∂f

∂y
(x0 , y0) dY

Applying this three times, once with dX = 0, dY = dy (to approximate P1),
once with dX = dx, dY = 0 (to approximate P2), and once with dX = dx,
dY = dy (to approximate P3),

P1 ≈ P0 + dy ̂ + ∂f

∂y
(x0 , y0) dy k̂

P2 ≈ P0 + dx ı̂ıı + ∂f

∂x
(x0 , y0) dx k̂

P3 ≈ P0 + dx ı̂ıı + dy ̂ +
[∂f
∂x

(x0 , y0) dx+ ∂f

∂y
(x0 , y0) dy

]
k̂

Of course we have only approximated the positions of the corners and so have
introduced errors. However, with more work, one can bound those errors (like

1Recall 2.6.1.
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we in the optional §3.2.4) and show that in the limit dx, dy → 0, all of the
error terms that we dropped contribute exactly 0 to the integral.

The small piece of our surface with corners P0, P1, P2, P3 is approximately
a parallelogram with sides

−−−→
P0P1 ≈

−−−→
P2P3 ≈ dy ̂ + ∂f

∂y
(x0 , y0) dy k̂

−−−→
P0P2 ≈

−−−→
P1P3 ≈ dx ı̂ıı + ∂f

∂x
(x0 , y0) dx k̂ P2

P3

P1P0

θ

ÝÝÝÑ
P0P1

ÝÝÝÑ
P0P2

Denote by θ the angle between the vectors −−−→P0P1 and −−−→P0P2. The base of the
parallelogram, −−−→P0P1, has length

∣∣−−−→P0P1
∣∣, and the height of the parallelogram is∣∣−−−→P0P2

∣∣ sin θ. So the area of the parallelogram is2, by Theorem 1.2.23,

dS = |−−−→P0P1| |
−−−→
P0P2| sin θ =

∣∣−−−→P0P1 ×
−−−→
P0P2

∣∣
≈
∣∣∣∣ (̂ + ∂f

∂y
(x0 , y0) k̂

)
×
(
ı̂ıı + ∂f

∂x
(x0 , y0) k̂

) ∣∣∣∣dxdy

The cross product is easily evaluated:

(
̂ + ∂f

∂y
(x0 , y0) k̂

)
×
(
ı̂ıı + ∂f

∂x
(x0 , y0) k̂

)
= det

ı̂ıı ̂ k̂
0 1 ∂f

∂y (x0, y0)
1 0 ∂f

∂x (x0, y0)


= fx(x0, y0) ı̂ıı+ fy(x0, y0) ̂− k̂

as is its length:∣∣∣∣(̂ + ∂f

∂y
(x0 , y0) k̂

)
×
(
ı̂ıı + ∂f

∂x
(x0 , y0) k̂

)∣∣∣∣
=
√

1 + fx(x0, y0)2 + fy(x0, y0)2

Throughout this computation, x0 and y0 were arbitrary. So we have found the
area of each tiny piece of the surface S.

Equation 3.4.1 For the surface z = f(x, y),

dS =
√

1 + fx(x, y)2 + fy(x, y)2 dxdy

Similarly, for the surface x = g(y, z),

dS =
√

1 + gy(y, z)2 + gz(y, z)2 dydz

and for the surface y = h(x, z),

dS =
√

1 + hx(x, z)2 + hz(x, z)2 dxdz
Consequently, we have

Theorem 3.4.2
a The area of the part of the surface z = f(x, y) with (x, y) running over

2As we mentioned above, the approximation below becomes exact when the limit dx, dy →
0 is taken in the definition of the integral. See §3.3.5 in the CLP-4 text.
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the region D in the xy-plane is∫∫
D

√
1 + fx(x, y)2 + fy(x, y)2 dxdy

b The area of the part of the surface x = g(y, z) with (y, z) running over
the region D in the yz-plane is∫∫

D

√
1 + gy(y, z)2 + gz(y, z)2 dydz

c The area of the part of the surface y = h(x, z) with (x, z) running over
the region D in the xz-plane is∫∫

D

√
1 + hx(x, z)2 + hz(x, z)2 dxdz

Example 3.4.3 Area of a cone. As a first example, we compute the area
of the part of the cone

z =
√
x2 + y2

with 0 ≤ z ≤ a or, equivalently, with x2 + y2 ≤ a2.

h

a

Note that z =
√
x2 + y2 is the side of the cone. It does not include the top.

To find its area, we will apply 3.4.1 to

z = f(x, y) =
√
x2 + y2 with (x, y) running over x2 + y2 ≤ a2

That forces us to compute the first order partial derivatives

fx(x, y) = x√
x2 + y2

fy(x, y) = y√
x2 + y2

Substituting them into the first formula in 3.4.1 yields

dS =
√

1 + fx(x, y)2 + fy(x, y)2 dxdy

=
√

1 +
( x√

x2 + y2

)2
+
( y√

x2 + y2

)2
dx dy

=

√
1 + x2 + y2

x2 + y2 dx dy

=
√

2 dx dy

So

Area =
∫∫

x2+y2≤a2

√
2 dx dy =

√
2
∫∫

x2+y2≤a2
dxdy =

√
2πa2

because
∫∫
x2+y2≤a2 dxdy is exactly the area of a circular disk of radius a. �
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Example 3.4.4 Area of a cylinder. Let a, b > 0. Find the surface area of

S =
{

(x, y, z)
∣∣ x2 + z2 = a2, 0 ≤ y ≤ b

}
Solution. The intersection of x2 + z2 = a2 with any plane of constant y is
the circle of radius a centred on x = z = 0. So S is a bunch of circles stacked
sideways. It is a cylinder on its side (with both ends open). By symmetry, the
area of S is four times the area of the part of S that is in the first octanct,
which is

S1 =
{

(x, y, z)
∣∣∣ z = f(x, y) =

√
a2 − x2, 0 ≤ x ≤ a, 0 ≤ y ≤ b

}

y

z

x

S

y

z

x

S1

pa, b, 0q

Since
fx(x, y) = − x√

a2 − x2
fy(x, y) = 0

the first formula in 3.4.1 yields

dS =
√

1 + fx(x, y)2 + fy(x, y)2 dxdy

=

√
1 +

(
− x√

a2 − x2

)2
dxdy

=
√

1 + x2

a2 − x2 dxdy

= a√
a2 − x2

dxdy

So

Area(S1) =
∫ a

0
dx
∫ b

0
dy a√

a2 − x2
= ab

∫ a

0
dx 1√

a2 − x2

The indefinite integral of 1√
a2−x2 is arcsin x

a +C. (See the table of integrals in
Appendix A.4. Alternatively, use the trig substitution x = a sin θ.) So

Area(S1) = ab
[
arcsin x

a

]a
0

= ab
[

arcsin 1− arcsin 0
]

= π

2 ab

and

Area(S) = 4Area(S1) = 2πab

We could have also come to this conclusion by using a little geometry, rather
than using calculus. Cut open the cylinder by cutting along a line parallel to
the y-axis, and then flatten out the cylinder. This gives a rectangle. One side
of the rectangle is just a circle of radius a, straightened out. So the rectangle
has sides of lengths 2πa and b and has area 2πab. �
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Example 3.4.5 Area of a hemisphere. This time we compute the surface
area of the hemisphere

x2 + y2 + z2 = a2 z ≥ 0

(with a > 0). You probably know, from high school, that the answer is 1
2 ×

4πa2 = 2πa2. But you have probably not seen a derivation3 of this answer.
Note that, since x2+y2 = a2−z2 on the hemisphere, the set of (x, y)’s for which
there is a z with (x, y, z) on the hemisphere is exactly

{
(x, y) ∈ R2

∣∣ x2 +y2 ≤
a2 }. So the hemisphere is

S =
{

(x, y, z)
∣∣∣ z =

√
a2 − x2 − y2, x2 + y2 ≤ a2

}
We will compute the area of S by applying 3.4.1 to

z = f(x, y) =
√
a2 − x2 − y2 with (x, y) running over x2 + y2 ≤ a2

The first formula in 3.4.1 yields

dS =
√

1 + fx(x, y)2 + fy(x, y)2 dxdy

=
√

1 +
( −x√

a2 − x2 − y2

)2
+
( −y√

a2 − x2 − y2

)2
dxdy

=

√
1 + x2 + y2

a2 − x2 − y2 dxdy

=

√
a2

a2 − x2 − y2 dxdy

So the area is
∫∫
x2+y2≤a2

a√
a2−x2−y2

dxdy. To evaluate this integral, we switch
to polar coordinates, substituting x = r cos θ, y = r sin θ. This gives

area =
∫∫

x2+y2≤a2

a√
a2 − x2 − y2

dxdy =
∫ a

0
dr r

∫ 2π

0
dθ a√

a2 − r2

= 2πa
∫ a

0
dr r√

a2 − r2

= 2πa
∫ 0

a2

−du/2√
u

with u = a2 − r2, du = −2r dr

= 2πa
[
−
√
u
]0
a2

= 2πa2

as it should be. �

Example 3.4.6 Find the surface area of the part of the paraboloid z = 2 −
x2 − y2 lying above the xy-plane.
Solution. The equation of the surface is of the form z = f(x, y) with f(x, y) =
2− x2 − y2. So

fx(x, y) = −2x fy(x, y) = −2y
3There is a pun hidden here, because you can (with a little thought) also get the surface

area by differentiating the volume with respect to the radius.
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and, by the first part of 3.4.1,

dS =
√

1 + fx(x, y)2 + fy(x, y)2 dxdy

=
√

1 + 4x2 + 4y2 dxdy

The point (x, y, z), with z = 2 − x2 − y2, lies above the xy-plane if and only
if z ≥ 0, or, equivalently, 2 − x2 − y2 ≥ 0. So the domain of integration is{

(x, y)
∣∣ x2 + y2 ≤ 2

}
and

Surface Area =
∫∫

x2+y2≤2

√
1 + 4x2 + 4y2 dxdy

Switching to polar coordinates,

Surface Area =
∫ 2π

0

∫ √2

0

√
1 + 4r2 r dr dθ

= 2π
[

1
12
(
1 + 4r2)3/2]√2

0
= π

6 [27− 1]

= 13
3 π

�

3.4.1 Exercises

Exercises — Stage 1
1. Let 0 < θ < π

2 , and a, b > 0. Denote by S the part of the surface
z = y tan θ with 0 ≤ x ≤ a, 0 ≤ y ≤ b.

a Find the surface area of S without using any calculus.

b Find the surface area of S by using Theorem 3.4.2.
2. Let c > 0. Denote by S the part of the surface ax+ by + cz = d with

(x, y) running over the region D in the xy-plane. Find the surface
area of S, in terms of a, b, c, d and A(D), the area of the region D.

3. Let a, b, c > 0. Denote by S the triangle with vertices (a, 0, 0), (0, b, 0)
and (0, 0, c).

a Find the surface area of S in three different ways, each using
Theorem 3.4.2.

b Denote by Txy the projection of S onto the xy-plane. (It is the
triangle with vertices (0, 0, 0) (a, 0, 0) and (0, b, 0).) Similarly
use Txz to denote the projection of S onto the xz-plane and Tyz
to denote the projection of S onto the yz-plane. Show that

Area(S) =
√
Area(Txy)2 + Area(Txz)2 + Area(Tyz)2

Exercises — Stage 2
4. ∗. Find the area of the part of the surface z = y3/2 that lies above

0 ≤ x, y ≤ 1.
5. ∗. Find the surface area of the part of the paraboloid z = a2−x2−y2

which lies above the xy--plane.
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6. ∗. Find the area of the portion of the cone z2 = x2 +y2 lying between
the planes z = 2 and z = 3.

7. ∗. Determine the surface area of the surface given by z = 2
3
(
x3/2 +

y3/2), over the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
8. ∗.

a To find the surface area of the surface z = f(x, y) above the
region D, we integrate

∫∫
D
F (x, y) dA. What is F (x, y)?

b Consider a “Death Star”, a ball of radius 2 centred at the origin
with another ball of radius 2 centred at (0, 0, 2

√
3) cut out of it.

The diagram below shows the slice where y = 0.

x

z

p1, 0,?
3q

2
?
3

2

π
6

(i) The Rebels want to paint part of the surface of Death Star
hot pink; specifically, the concave part (indicated with a
thick line in the diagram). To help them determine how
much paint is needed, carefully fill in the missing parts of
this integral:

surface area =
∫ ∫

dr dθ

(ii) What is the total surface area of the Death Star?
9. ∗. Find the area of the cone z2 = x2 + y2 between z = 1 and z = 16.

10. ∗. Find the surface area of that part of the hemisphere z =
√
a2 − x2 − y2

which lies within the cylinder
(
x− a

2
)2 + y2 =

(
a
2
)2.

3.5 Triple Integrals
Triple integrals, that is integrals over three dimensional regions, are just like
double integrals, only more so. We decompose the domain of integration into
tiny cubes, for example, compute the contribution from each cube and then
use integrals to add up all of the different pieces. We’ll go through the details
now by means of a number of examples.
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Example 3.5.1 Find the mass inside the sphere x2 +y2 +z2 = 1 if the density
is ρ(x, y, z) = |xyz|.
Solution. The absolute values can complicate the computations. We can
avoid those complications by exploiting the fact that, by symmetry, the total
mass of the sphere will be eight times the mass in the first octant. We shall cut
the first octant part of the sphere into tiny pieces using Cartesian coordinates.
That is, we shall cut it up using planes of constant z, planes of constant y, and
planes of constant x, which we recall look like

y

z

x

p0, 0, zq

surface of constant z
(a plane)

y

z

x

p0, y, 0q

surface of constant y
(a plane)

y

z

x

px, 0, 0q

surface of constant x
(a plane)

• First slice the (the first octant part of the) sphere into horizontal plates by
inserting many planes of constant z, with the various values of z differing
by dz. The figure on the left below shows the part of one plate in the
first octant outlined in red. Each plate

◦ has thickness dz,
◦ has z almost constant throughout the plate (it only varies by dz),

and
◦ has (x, y) running over x ≥ 0, y ≥ 0, x2 + y2 ≤ 1− z2.
◦ The bottom plate starts at z = 0 and the top plate ends at z = 1.

See the figure on the right below.
z

y

x

x2 ` y2 ` z2 “ 1

z

y

x

p0, 0, 1q

• Concentrate on any one plate. Subdivide it into long thin “square” beams
by inserting many planes of constant y, with the various values of y
differing by dy. The figure on the left below shows the part of one beam
in the first octant outlined in blue. Each beam

◦ has cross-sectional area dy dz,
◦ has z and y essentially constant throughout the beam, and
◦ has x running over 0 ≤ x ≤

√
1− y2 − z2.

◦ The leftmost beam has, essentially, y = 0 and the rightmost beam
has, essentially, y =

√
1− z2. See the figure on the right below.
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z

y

x

x “ a
1 ´ y2 ´ z2

z

y

x

p0,?1´z2,zq

p?
1´z2,0,zq

• Concentrate on any one beam. Subdivide it into tiny approximate cubes
by inserting many planes of constant x, with the various values of x differ-
ing by dx. The figure on the left below shows the top of one approximate
cube in black. Each cube

◦ has volume dxdy dz, and
◦ has x, y and z all essentially constant throughout the cube.
◦ The first cube has, essentially, x = 0 and the last cube has, essen-
tially, x =

√
1− y2 − z2. See the figure on the right below.

z

y

x

x “ a
1 ´ y2 ´ z2

z

y

x

p0, y, zq

p
?

1´y2´z2 , y , zq

Now we can build up the mass.

• Concentrate on one approximate cube. Let’s say that it contains the
point (x, y, z).

◦ The cube has volume essentially dV = dx dy dz and
◦ essentially has density ρ(x, y, z) = xyz and so
◦ essentially has mass xyz dxdy dz.

• To get the mass of any one beam, say the beam whose y coordinate runs
from y to y+ dy, we just add up the masses of the approximate cubes in
that beam, by integrating x from its smallest value on the beam, namely
0, to its largest value on the beam, namely

√
1− y2 − z2. The mass of

the beam is thus

dy dz
∫ √1−y2−z2

0
dxxyz

• To get the mass of any one plate, say the plate whose z coordinate runs
from z to z+dz, we just add up the masses of the beams in that plate, by
integrating y from its smallest value on the plate, namely 0, to its largest
value on the plate, namely

√
1− z2. The mass of the plate is thus

dz
∫ √1−z2

0
dy
∫ √1−y2−z2

0
dxxyz
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• To get the mass of the part of the sphere in the first octant, we just add
up the masses of the plates that it contains, by integrating z from its
smallest value in the octant, namely 0, to its largest value on the sphere,
namely 1. The mass in the first octant is thus∫ 1

0
dz
∫ √1−z2

0
dy
∫ √1−y2−z2

0
dxxyz

=
∫ 1

0
dz
∫ √1−z2

0
dy yz

[∫ √1−y2−z2

0
dxx

]

=
∫ 1

0
dz
∫ √1−z2

0
dy 1

2yz
(
1− y2 − z2)

=
∫ 1

0
dz
∫ √1−z2

0
dy
[
z(1− z2)

2 y − z

2y
3
]

=
∫ 1

0
dz
[
z(1− z2)2

4 − z(1− z2)2

8

]

=
∫ 1

0
dz z (1− z2)2

8

=
∫ 0

1

du
−2

u2

8 with u = 1− z2, du = −2z dz

= 1
48

• So the mass of the total (eight octant) sphere is 8× 1
48 = 1

6 .

�
Consider, for example, the limits of integration for the integral∫ 1

0
dz
∫ √1−z2

0
dy
∫ √1−y2−z2

0
dxxyz

=
∫ 1

0

(∫ √1−z2

0

(∫ √1−y2−z2

0
xyz dx

)
dy
)

dz

that we have just evaluated in Example 3.5.1.

• When we are integrating over the innermost integral, with respect to x,
the quantities y and z are treated as constants. In particular, y and z
may appear in the limits of integration for the x-integral, but x may not
appear in those limits.

• When we are integrating over y, we have already integrated out x; x no
longer exists. The quantity z is treated as a constant. In particular,
z, but neither x nor y, may appear in the limits of integration for the
y-integral.

• Finally, when we are integrating over z, we have already integrated out x
and y; they no longer exist. None of x, y or z, may appear in the limits
of integration for the z-integral.

Example 3.5.2 In practice, often the hardest part of dealing with a triple
integral is setting up the limits of integration. In this example, we’ll concentrate
on exactly that.

Let V be the solid region in R3 bounded by the planes x = 0, y = 0,
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z = 0, y = 4 − x, and the surface z = 4 − x2. We are now going to write∫∫∫
V f(x, y, z) dV as an iterated integral (i.e. find the limits of integration) in

two different ways. Here f is just some general, unspecified, function.
First, we’ll figure out what V looks like. The following three figures show
• the part of the first octant with y ≤ 4 − x (except that it continues

vertically upward)

• the part of the first octant with z ≤ 4 − x2 (except that it continues to
the right)

• the part of the first octant with both y ≤ 4− x and z ≤ 4− x2. That’s

V =
{

(x, y, z)
∣∣ x ≥ 0, y ≥ 0, z ≥ 0, x+ y ≤ 4, z ≤ 4− x2 }

z

y

x

z

y

x

z

y

x

The iterated integral
∫∫∫
V f(x, y, z) dz dy dx =

∫ (∫ (∫
f(x, y, z) dz

)
dy
)

dx:
For this iterated integral, the outside integral is with respect to x, so we first
slice up V using planes of constant x, as in the figure below.

z

y

x
p2, 2, 0q

px, 4 ´ x, 4 ´ x2q

y “ 4 ´ x

z “ 4 ´ x2

Observe from that figure that, on V,

• x runs from 0 to 2, and

• for each fixed x in that range, y runs from 0 to 4− x and

• for each fixed (x, y) as above, z runs from 0 to 4− x2.

So ∫∫∫
V
f(x, y, z) dz dy dx =

∫ 2

0
dx
∫ 4−x

0
dy
∫ 4−x2

0
dz f(x, y, z)

=
∫ 2

0

∫ 4−x

0

∫ 4−x2

0
f(x, y, z) dz dy dx
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The iterated integral
∫∫∫
V f(x, y, z) dy dx dz =

∫ (∫ (∫
f(x, y, z) dy

)
dx
)

dz:
For this iterated integral, the outside integral is with respect to z, so we first
slice up V using planes of constant z, as in the figure below.

z

y

x

p0, 4, 4q

p?
4 ´ z, 0, zq

y “ 4 ´ x

x “ ?
4 ´ z

Observe from that figure that, on V,

• z runs from 0 to 4, and

• for each fixed z in that range, x runs from 0 to
√

4− z and

• for each fixed (x, z) as above, y runs from 0 to 4− x.

So ∫∫∫
V
f(x, y, z) dy dxdz =

∫ 4

0
dz
∫ √4−z

0
dx
∫ 4−x

0
dy f(x, y, z)

=
∫ 4

0

∫ √4−z

0

∫ 4−x

0
f(x, y, z) dy dx dz

�

Example 3.5.3 As was said in the last example, in practice, often the hardest
parts of dealing with a triple integral concern the limits of integration. In this
example, we’ll again concentrate on exactly that. This time, we will consider
the integral

I =
∫ 2

0
dy
∫ 2−y

0
dz
∫ 2−y

2

0
dx f(x, y, z)

and we will re-express I with the outside integral being over z. We will figure
out the limits of integration for both the order

∫
dz
∫

dx
∫

dy f(x, y, z) and for
the order

∫
dz
∫

dy
∫

dx f(x, y, z).
Our first task is to get a good idea as to what the domain of integration

looks like. We start by reading off of the given integral that
• the outside integral says that y runs from 0 to 2, and

• the middle integral says that, for each fixed y in that range, z runs from
0 to 2− y and

• the inside integral says that, for each fixed (y, z) as above, x runs from 0
to 2−y

2 .
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So the domain of integration is

V =
{

(x, y, z)
∣∣ 0 ≤ y ≤ 2, 0 ≤ z ≤ 2− y, 0 ≤ x ≤ 2−y

2
}

(∗)

We’ll sketch V shortly. Because it is generally easier to make 2d sketches than
it is to make 3d sketches, we’ll first make a 2d sketch of the part of V that lies
in the vertical plane y = Y . Here Y is any constant between 0 and 2. Looking
at the definition of V , we see that the point (x, Y, z) lies in V if and only if

0 ≤ z ≤ 2− Y 0 ≤ x ≤ 2− Y
2

Here, on the left, is a (2d) sketch of all (x, z)’s that obey those inequalities,
and, on the right, is a (3d) sketch of all (x, Y, z)’s that obey those inequalities.

x

z

z “ 2 ´ Y

x “ p2 ´ Y q{2

`
2´Y
2

, Y, 0
˘

`
0, Y, 2 ´ Y

˘

z

y

x

So our solid V consists of a bunch of vertical rectangles stacked sideways
along the y-axis. The rectangle in the plane y = Y has side lengths 2−Y

2 and
2− Y . As we move from the plane y = Y = 0, i.e. the xz-plane, to the plane
y = Y = 2, the rectangle decreases in size linearly from a one by two rectangle,
when Y = 0, to a zero by zero rectangle, i.e. a point, when Y = 2. Here is a
sketch of V together with a typical y = Y rectangle.

p1, 0, 0q

p0, 0, 2q

p0, 2, 0q

z

y

x

To re-express the given integral with the outside integral being with respect
to z, we have to slice up V into horizontal plates by inserting planes of constant
z. So we have to figure out what the part of V that lies in the horizontal plane
z = Z looks like. From the figure above, we see that, in V , the smallest value
of z is 0 and the biggest value of z is 2. So Z is any constant between 0 and
2. Again looking at the definition of V in (∗) above, we see that the point
(x, y, Z) lies in V if and only if

y ≥ 0 y ≤ 2 y ≤ 2− Z x ≥ 0 2x+ y ≤ 2
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Here, on the top, is a (2d) sketch showing the top view of all (x, y)’s that obey
those inequalities, and, on the bottom, is a (3d) sketch of all (x, y, Z)’s that
obey those inequalities.

y

x y “ 2

2x ` y “ 2

y “ 2 ´ Z

p1, 0q

pZ{2, 2 ´ Zq

p0, 2 ´ Zq

p1, 0, Zq

p0, 2 ´ Z,Zq

pZ{2, 2 ´ Z,Zq

z

y

x

To express I as an integral with the order of integration
∫

dz
∫

dy
∫

dx f(x, y, z),
we subdivide the plate at height z into vertical strips as in the figure

y

x y “ 2

x “ 2´y
2

y “ 2 ´ z

p1, 0q

pz{2, 2 ´ zq

p0, 2 ´ zq

Since

• y is essentially constant on each strip with the leftmost strip having y = 0
and the rightmost strip having y = 2− z and

• for each fixed y in that range, x runs from 0 to 2−y
2
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we have

I =
∫ 2

0
dz
∫ 2−z

0
dy
∫ 2−y

2

0
dx f(x, y, z)

Alternatively, to express I as an integral with the order of integration
∫

dz
∫

dx
∫

dy f(x, y, z),
we subdivide the plate at height z into horizontal strips as in the figure

y

x y “ 2

y “ 2 ´ 2x

y “ 2 ´ z

p1, 0q

pz{2, 2 ´ zq

p0, 2 ´ zq

Since

• x is essentially constant on each strip with the first strip having x = 0
and the last strip having x = 1 and

• for each fixed x between 0 and z/2, y runs from 0 to 2− z and

• for each fixed x between z/2 and 1, y runs from 0 to 2− 2x

we have

I =
∫ 2

0
dz
∫ z/2

0
dx
∫ 2−z

0
dy f(x, y, z) +

∫ 2

0
dz
∫ 1

z/2
dx
∫ 2−2x

0
dy f(x, y, z)

�

3.5.1 Exercises

Exercises — Stage 1
1. Evaluate the integral∫∫

R

√
b2 − y2 dx dywhere R is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b

without using iteration. Instead, interpret the integral geometrically.
2. ∗. Find the total mass of the rectangular box [0, 1] × [0, 2] × [0, 3]

(that is, the box defined by the inequalities 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,
0 ≤ z ≤ 3), with density function h(x, y, z) = x.

Exercises — Stage 2

3. Evaluate
∫∫∫

R

x dV where R is the tetrahedron bounded by the co-

ordinate planes and the plane x
a + y

b + z
c = 1.

4. Evaluate
∫∫∫

R

y dV where R is the portion of the cube 0 ≤ x, y, z ≤ 1
lying above the plane y + z = 1 and below the plane x+ y + z = 2.



CHAPTER 3. MULTIPLE INTEGRALS 344

5. For each of the following, express the given iterated integral as an
iterated integral in which the integrations are performed in the order:
first z, then y, then x.

a
∫ 1

0
dz
∫ 1−z

0
dy
∫ 1−z

0
dx f(x, y, z)

b
∫ 1

0
dz
∫ 1

√
z

dy
∫ y

0
dx f(x, y, z)

6. ∗. A triple integral
∫∫∫

E

f dV is given in iterated form by

∫ y=1

y=−1

∫ z=1−y2

z=0

∫ 2−y−z

x=0
f(x, y, z) dx dz dy

a Draw a reasonably accurate picture of E in 3--dimensions. Be
sure to show the units on the coordinate axes.

b Rewrite the triple integral
∫∫∫

E
f dV as one or more iterated

triple integrals in the order∫ y=

y=

∫ x=

x=

∫ z=

z=
f(x, y, z) dz dxdy

7. ∗. A triple integral
∫∫∫

E
f(x, y, z) dV is given in the iterated form

J =
∫ 1

0

∫ 1− x2

0

∫ 4−2x−4z

0
f(x, y, z) dy dz dx

a Sketch the domain E in 3--dimensions. Be sure to show the
units.

b Rewrite the integral as one or more iterated integrals in the form

J =
∫ y=

y=

∫ x=

x=

∫ z=

z=
f(x, y, z) dz dxdy

8. ∗. Write the integral given below 5 other ways, each with a different
order of integration.

I =
∫ 1

0

∫ 1

√
x

∫ 1−y

0
f(x, y, z) dz dy dx

9. ∗. Let I =
∫∫∫

E

f(x, y, z) dV where E is the tetrahedron with

vertices (−1, 0, 0), (0, 0, 0), (0, 0, 3) and (0,−2, 0).
a Rewrite the integral I in the form

I =
∫ x=

x=

∫ y=

y=

∫ z=

z=
f(x, y, z) dz dy dx

b Rewrite the integral I in the form

I =
∫ z=

z=

∫ x=

x=

∫ y=

y=
f(x, y, z) dy dxdz
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10. ∗. Let T denote the tetrahedron bounded by the coordinate planes
x = 0, y = 0, z = 0 and the plane x+ y + z = 1. Compute

K =
∫∫∫

T

1
(1 + x+ y + z)4 dV

11. ∗. Let E be the portion of the first octant which is above the plane
z = x+y and below the plane z = 2. The density in E is ρ(x, y, z) = z.
Find the mass of E.

12. ∗. Evaluate the triple integral
∫∫∫

E
x dV , where E is the region in the

first octant bounded by the parabolic cylinder y = x2 and the planes
y + z = 1, x = 0, and z = 0.

13. ∗. Let E be the region in the first octant bounded by the coordi-
nate planes, the plane x + y = 1 and the surface z = y2 . Evaluate∫∫∫

E
z dV .

14. ∗. Evaluate
∫∫∫

R
yz2e−xyz dV over the rectangular box

R =
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3

}
15. ∗.

a Sketch the surface given by the equation z = 1− x2.

b Let E be the solid bounded by the plane y = 0, the cylinder
z = 1− x2, and the plane y = z. Set up the integral∫∫∫

E

f(x, y, z) dV

as an iterated integral.
16. ∗. Let

J =
∫ 1

0

∫ x

0

∫ y

0
f(x, y, z) dz dy dx

Express J as an integral where the integrations are to be performed
in the order x first, then y, then z.

17. ∗. Let E be the region bounded by z = 2x, z = y2, and x = 3.
The triple integral

∫∫∫
f(x, y, z) dV can be expressed as an iterated

integral in the following three orders of integration. Fill in the limits
of integration in each case. No explanation required.∫ y=

y=

∫ x=

x=

∫ z=

z=
f(x, y, z) dz dxdy∫ y=

y=

∫ z=

z=

∫ x=

x=
f(x, y, z) dx dz dy∫ z=

z=

∫ x=

x=

∫ y=

y=
f(x, y, z) dy dx dz

18. ∗. Let E be the region inside the cylinder x2 + y2 = 1, below the
plane z = y and above the plane z = −1. Express the integral∫∫∫

E

f(x, y, z) dV

as three different iterated integrals corresponding to the orders of
integration: (a) dz dxdy, (b) dxdy dz, and (c) dy dz dx.

1The question doesn’t specify on which side of the three surfaces E lies. When in doubt
take the finite region bounded by the given surfaces. That’s what we have done.
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19. ∗. Let E be the region bounded by the planes y = 0, y = 2, y+ z = 3
and the surface z = x2. Consider the intergal

I =
∫∫∫

E

f(x, y, z) dV

Fill in the blanks below. In each part below, you may need only one
integral to express your answer. In that case, leave the other blank.

a I =
∫ ∫ ∫

f(x, y, z) dz dxdy+
∫ ∫ ∫

f(x, y, z) dz dxdy

b I =
∫ ∫ ∫

f(x, y, z) dx dy dz+
∫ ∫ ∫

f(x, y, z) dxdy dz

c I =
∫ ∫ ∫

f(x, y, z) dy dx dz+
∫ ∫ ∫

f(x, y, z) dy dxdz

20. ∗. Evaluate
∫∫∫

E
z dV , where E is the region bounded by the planes

y = 0, z = 0 x+y = 2 and the cylinder y2 +z2 = 1 in the first octant.

21. ∗. Find
∫∫∫

D

xdV whereD is the tetrahedron bounded by the planes
x = 1, y = 1, z = 1, and x+ y + z = 2.

22. ∗. The solid region T is bounded by the planes x = 0, y = 0, z = 0,
and x+ y + z = 2 and the surface x2 + z = 1.

a Draw the region indicating coordinates of all corners.

b Calculate
∫∫∫

T
xdV .

3.6 Triple Integrals in Cylindrical Coordinates
Many problems possess natural symmetries. We can make our work easier
by using coordinate systems, like polar coordinates, that are tailored to those
symmetries. We will look at two more such coordinate systems — cylindrical
and spherical coordinates.

3.6.1 Cylindrical Coordinates
In the event that we wish to compute, for example, the mass of an object that is
invariant under rotations about the z-axis1, it is advantageous to use a natural
generalization of polar coordinates to three dimensions. The coordinate system
is called cylindrical coordinates.

Definition 3.6.1 Cylindrical coordinates are denoted2 r, θ and z and are
defined by

r = the distance from (x, y, 0) to (0, 0, 0)
= the distance from (x, y, z) to the z-axis

θ = the angle between the positive x axis and
the line joining (x, y, 0) to (0, 0, 0)

z = the signed distance from (x, y, z) to the xy-plane
1like a pipe or a can of tuna fish
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px, y, zq

px, y, 0q

y

z

x

z

rθ

That is, r and θ are the usual polar coordinates and z is the usual z. ♦
The Cartesian and cylindrical coordinates are related by3

Equation 3.6.2

x = r cos θ y = r sin θ z = z

r =
√
x2 + y2 θ = arctan y

x
z = z

Here are sketches of surfaces of constant r, constant θ, and constant z.

y

z

x

r

surface of constant r
(a cylindrical shell)

y

z

x

θ

surface of constant θ
(a plane)

y

z

x

p0, 0, zq

surface of constant z
(a plane)

3.6.2 The Volume Element in Cylindrical Coordinates
Before we can start integrating using these coordinates we need to determine
the volume element. Recall that before integrating in polar coordinates, we
had to establish that dA = r dr dθ. In the arguments that follow we establish
that dV = r dr dθ dz.

If we cut up a solid by

• first slicing it into horizontal plates of thickness dz by using planes of
constant z,

z

y

x

dz

• and then subdividing the plates into wedges using surfaces of constant θ,
say with the difference between successive θ’s being dθ,

2We are using the standard mathematics conventions for the cylindrical coordinates.
Under the ISO conventions they are (ρ, φ, z). See Appendix A.7.

3As was the case for polar coordinates, it is sometimes convenient to extend these defi-
nitions by saying that x = r cos θ and y = r sin θ even when r is negative. See the end of
Section 3.2.1.
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z

y

x

dθ

• and then subdividing the wedges into approximate cubes using surfaces
of constant r, say with the difference between successive r’s being dr,

z

y

x

dr

we end up with approximate cubes that look like

r dr

dz

r dθ

• When we introduced slices using surfaces of constant r, the difference
between the successive r’s was dr, so the indicated edge of the cube has
length dr.

• When we introduced slices using surfaces of constant z, the difference
between the successive z’s was dz, so the vertical edges of the cube have
length dz.

• When we introduced slices using surfaces of constant θ, the difference
between the successive θ’s was dθ, so the remaining edges of the cube
are circular arcs of radius essentially4 r that subtend an angle θ, and so
have length r dθ. See the derivation of equation 3.2.5.

So the volume of the approximate cube in cylindrical coordinates is (essen-
tially5)

Equation 3.6.3
dV = r dr dθ dz

3.6.3 Sample Integrals in Cylindrical Coordinates
Now we can use 3.6.3 to handle a variant of Example 3.5.1 in which the den-
sity is invariant under rotations around the z-axis. Cylindrical coordinates

4The inner edge has radius r, but the outer edge has radius r + dr. However the error
that this generates goes to zero in the limit dr, dθ, dz → 0.

5By “essentially”, we mean that the formula for dV works perfectly when we take the
limit dr, dθ,dz → 0 of Riemann sums.
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are tuned to provide easier integrals to evaluate when the integrand is invari-
ant under rotations about the z-axis, or when the domain of integration is
cylindrical.

Example 3.6.4 Find the mass of the solid body consisting of the inside of the
sphere x2 + y2 + z2 = 1 if the density is ρ(x, y, z) = x2 + y2.
Solution. Before we get started, note that x2+y2 is the square of the distance
from (x, y, z) to the z-axis. Consequently both the integrand, x2 + y2, and the
domain of integration, x2 + y2 + z2 ≤ 1, and hence our solid, are invariant
under rotations about the z-axis6. That makes this integral a good candidate
for cylindrical coordinates.

Again, by symmetry the total mass of the sphere will be eight times the
mass in the first octant. We shall cut the first octant part of the sphere into
tiny pieces using cylindrical coordinates. That is, we shall cut it up using
planes of constant z, planes of constant θ, and surfaces of constant r.

• First slice the (the first octant part of the) sphere into horizontal plates by
inserting many planes of constant z, with the various values of z differing
by dz. The figure on the left below shows the part of one plate in the
first octant outlined in red. Each plate

◦ has thickness dz,
◦ has z essentially constant on the plate, and
◦ has (x, y) running over x ≥ 0, y ≥ 0, x2 +y2 ≤ 1−z2. In cylindrical
coordinates, r runs from 0 to

√
1− z2 and θ runs from 0 to π

2 .
◦ The bottom plate has, essentially, z = 0 and the top plate has,
essentially, z = 1. See the figure on the right below.

z

y

x

r2 ` z2 “ 1
θ “ π{2

θ “ 0

z

y

x

p0, 0, 1q

So far, this looks just like what we did in Example 3.5.1.

• Concentrate on any one plate. Subdivide it into wedges by inserting
many planes of constant θ, with the various values of θ differing by dθ.
The figure on the left below shows one such wedge outlined in blue. Each
wedge

◦ has z and θ essentially constant on the wedge, and
◦ has r running over 0 ≤ r ≤

√
1− z2.

◦ The leftmost wedge has, essentially, θ = 0 and the rightmost wedge
has, essentially, θ = π

2 . See the figure on the right below.
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z

y

x

r2 ` z2 “ 1

r “ ?
1 ´ z2

z

y

x

θ “ π{2

θ “ 0

• Concentrate on any one wedge. Subdivide it into tiny approximate cubes
by inserting many surfaces of constant r, with the various values of r
differing by dr. The figure on the left below shows the top of one ap-
proximate cube in black. Each cube

◦ has volume r dr dθ dz, by 3.6.3, and
◦ has r, θ and z all essentially constant on the cube.
◦ The first cube has, essentially, r = 0 and the last cube has, essen-

tially, r =
√

1− z2. See the figure on the right below.
z

y

x

z

y

x
r “ ?

1 ´ z2

r “ 0

Now we can build up the mass.
• Concentrate on one approximate cube. Let’s say that it contains the

point with cylindrical coordinates r, θ and z.

◦ The cube has volume essentially dV = r dr dθ dz and
◦ essentially has density ρ(x, y, z) = ρ(r cos θ, r sin θ, z) = r2 and so
◦ essentially has mass r3 dr dθ dz. (See how nice the right coordinate

system can be!)

• To get the mass any one wedge, say the wedge whose θ coordinate runs
from θ to θ+ dθ, we just add up the masses of the approximate cubes in
that wedge, by integrating r from its smallest value on the wedge, namely
0, to its largest value on the wedge, namely

√
1− z2. The mass of the

wedge is thus

dθ dz
∫ √1−z2

0
dr r3

• To get the mass of any one plate, say the plate whose z coordinate runs
from z to z + dz, we just add up the masses of the wedges in that plate,
by integrating θ from its smallest value on the plate, namely 0, to its
largest value on the plate, namely π

2 . The mass of the plate is thus

dz
∫ π/2

0
dθ
∫ √1−z2

0
dr r3
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• To get the mass of the part of the sphere in the first octant, we just add
up the masses of the plates that it contains, by integrating z from its
smallest value in the octant, namely 0, to its largest value on the sphere,
namely 1. The mass in the first octant is thus∫ 1

0
dz
∫ π/2

0
dθ
∫ √1−z2

0
dr r3 = 1

4

∫ 1

0
dz
∫ π/2

0
dθ (1− z2)2

= π

8

∫ 1

0
dz (1− z2)2

= π

8

∫ 1

0
dz (1− 2z2 + z4)

= π

8

8/15︷ ︸︸ ︷[
1− 2

3 + 1
5

]
= 1

15π

• So the mass of the total (eight octant) sphere is 8× 1
15π = 8

15π.

Just by way of comparison, here is the integral in Cartesian coordinates
that gives the mass in the first octant. (We found the limits of integration in
Example 3.5.1.)

∫ 1

0
dz
∫ √1−z2

0
dy
∫ √1−y2−z2

0
dx
(
x2 + y2)

�
In the next example, we compute the moment of inertia of a right circular

cone. The Definition 3.3.13 of the moment of inertia was restricted to two
dimensions. However, as was pointed out at the time, the same analysis extends
naturally to the definition

Equation 3.6.5

IA =
∫∫∫

V
D(x, y, z)2 ρ(x, y, z) dxdy dz

of the moment of inertia of a solid V in three dimensions. Here

• ρ(x, y, z) is the mass density of the solid at the point (x, y, z) and

• D(x, y, z) is the distance from (x, y, z) to the axis of rotation.

Example 3.6.6 Find the moment of inertia of a right circular cone
• of radius a,

• of height h, and

• of constant density with mass M

about an axis through the vertex (i.e. the tip of the cone) and parallel to the
base.
Solution. Here is a sketch of the cone.

6Imagine that you are looking that the solid from, for example, far out on the x-axis.
You close your eyes for a minute. Your evil twin then sneaks in, rotates the solid about the
z-axis, and sneaks out. You open your eyes. You will not be able to tell that the solid has
been rotated.
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h

a

Let’s pick a coordinate system with

• the vertex at the origin,

• the cone symmetric about the z-axis and

• the axis of rotation being the y-axis.

and call the cone V.

h

a

z

y

x
We shall use 3.6.5 to find the moment of inertia. In the current problem,

the axis of rotation is the y-axis. The point on the y-axis that is closest to
(x, y, z) is (0, y, 0) so that the distance from (x, y, z) to the axis is just

D(x, y, z) =
√
x2 + z2

y

z

x

px, y, zq
p0, y, 0q

x
y

z

Our solid has constant density and mass M , so

ρ(x, y, z) = M

Volume(V)

The formula
Volume(V) = 1

3πa
2h

for the volume of a cone was derived in Example 1.6.1 of the CLP-2 text and in
Appendix B.5.2 of the CLP-1 text. However because of the similarity between
the integral Volume(V) =

∫∫∫
V dxdy dz and the integral

∫∫∫
V(x2+z2) dxdy dz,

that we need for our computation of IA, it is easy to rederive the volume
formula and we shall do so.

We’ll evaluate both of the integrals above using cylindrical coordinates.
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• Start by slicing the cone into horizontal plates by inserting many planes
of constant z, with the various values of z differing by dz.

z

y

x
Each plate

◦ is a circular disk of thickness dz.
◦ By similar triangles, as in the figure on the right below, the disk at
height z has radius R obeying

R

z
= a

h
=⇒ R = a

h
z

dz

z
h

a

z
h
a

z
h

a

R

◦ So the disk at height z has the cylindrical coordinates r running
from 0 to a

hz and θ running from 0 to 2π.
◦ The bottom plate has, essentially, z = 0 and the top plate has,
essentially, z = h.

• Now concentrate on any one plate. Subdivide it into wedges by inserting
many planes of constant θ, with the various values of θ differing by dθ.

◦ The first wedge has, essentially θ = 0 and the last wedge has, essen-
tially, θ = 2π.

• Concentrate on any one wedge. Subdivide it into tiny approximate cubes7

by inserting many surfaces of constant r, with the various values of r
differing by dr. Each cube

◦ has volume r dr dθ dz, by 3.6.3.
◦ The first cube has, essentially, r = 0 and the last cube has, essen-

tially, r = a
hz.

So the two integrals of interest are∫∫∫
V

dx dy dz =
∫ h

0
dz
∫ 2π

0
dθ
∫ a

h z

0
dr r
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=
∫ h

0
dz
∫ 2π

0
dθ 1

2

(a
h
z
)2

= a2π

h2

∫ h

0
dz z2

= 1
3πa

2h

as expected, and

∫∫∫
V

(x2 + z2) dxdy dz =
∫ h

0
dz
∫ 2π

0
dθ
∫ a

h z

0
dr r

x2+z2︷ ︸︸ ︷(
r2 cos2 θ + z2)

=
∫ h

0
dz
∫ 2π

0
dθ
[

1
4

(a
h
z
)4

cos2 θ + 1
2

(a
h
z
)2
z2
]

=
∫ h

0
dz
[

1
4
a4

h4 + a2

h2

]
πz4

since
∫ 2π

0
cos2 θ dθ = π by Remark 3.3.5

= 1
5

[
1
4
a4

h4 + a2

h2

]
πh5

Putting everything together, the moment of inertia is

IA =
∫∫∫

V

D(x,y,z)2︷ ︸︸ ︷
(x2 + z2)

ρ(x,y,z)︷ ︸︸ ︷
M

1
3πa

2h
dxdy dz

= 3 M

πa2h

1
5

[
1
4
a4

h4 + a2

h2

]
πh5

= 3
20M

(
a2 + 4h2)

�

3.6.4 Exercises

Exercises — Stage 1
1. Use (r, θ, z) to denote cylindrical coordinates.

a Draw r = 0.

b Draw r = 1.

c Draw θ = 0.

d Draw θ = π
4 .

2. Sketch the points with the specified cylindrical coordinates.
a r = 1, θ = 0, z = 0

b r = 1, θ = π
4 , z = 0

c r = 1, θ = π
2 , z = 0

d r = 0, θ = π, z = 1

e r = 1, θ = π
4 , z = 1

7Again they are wonky cubes, but we can bound the error and show that it goes to zero
in the limit dr,dθ, dz → 0.
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3. Convert from cylindrical to Cartesian coordinates.
a r = 1, θ = 0, z = 0

b r = 1, θ = π
4 , z = 0

c r = 1, θ = π
2 , z = 0

d r = 0, θ = π, z = 1

e r = 1, θ = π
4 , z = 1

4. Convert from Cartesian to cylindrical coordinates.
a (1, 1, 2)

b (−1,−1, 2)

c (−1,
√

3, 0)

d (0, 0, 1)
5. Rewrite the following equations in cylindrical coordinates.

a z = 2xy

b x2 + y2 + z2 = 1

c (x− 1)2 + y2 = 1

Exercises — Stage 2
6. Use cylindrical coordinates to evaluate the volumes of each of the

following regions.
a Above the xy--plane, inside the cone z = 2a −

√
x2 + y2 and

inside the cylinder x2 + y2 = 2ay.

b Above the xy--plane, under the paraboloid z = 1− x2 − y2 and
in the wedge −x ≤ y ≤

√
3x.

c Above the paraboloid z = x2 +y2 and below the plane z = 2y.
7. ∗. Let E be the region bounded between the parabolic surfaces z =

x2 + y2 and z = 2 − x2 − y2 and within the cylinder x2 + y2 ≤ 1.
Calculate the integral of f(x, y, z) = (x2 + y2)3/2 over the region E.

8. ∗. Let E be the region bounded above by the sphere x2 + y2 + z2 = 2
and below by the paraboloid z = x2 + y2. Find the centroid of E.

9. ∗. Let E be the smaller of the two solid regions bounded by the
surfaces z = x2 +y2 and x2 +y2 + z2 = 6. Evaluate

∫∫∫
E

(x2 +y2) dV
.

10. ∗. Let a > 0 be a fixed positive real number. Consider the solid inside
both the cylinder x2 + y2 = ax and the sphere x2 + y2 + z2 = a2.
Compute its volume.

You may use that
∫

sin3(θ) = 1
12 cos(3θ)− 3

4 cos(θ) + C

11. ∗. Let E be the solid lying above the surface z = y2 and below the
surface z = 4− x2. Evaluate∫∫∫

E

y2 dV

8For a general discussion of trigonometric integrals see §1.8 in the CLP-2 text. In partic-
ular the integral

∫
cos4 x dx is evaluated in Example 1.8.8 in the CLP-2 text.
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You may use the half angle formulas:

sin2 θ = 1− cos(2θ)
2 , cos2 θ = 1 + cos(2θ)

2
12. The centre of mass (x̄, ȳ, z̄) of a body B having density ρ(x, y, z) (units

of mass per unit volume) at (x, y, z) is defined to be

x̄ = 1
M

∫∫∫
B

xρ(x, y, z) dV ȳ = 1
M

∫∫∫
B

yρ(x, y, z) dV

z̄ = 1
M

∫∫∫
B

zρ(x, y, z) dV

where
M =

∫∫∫
B

ρ(x, y, z) dV

is the mass of the body. So, for example, x̄ is the weighted average of
x over the body. Find the centre of mass of the part of the solid ball
x2 + y2 + z2 ≤ a2 with x ≥ 0, y ≥ 0 and z ≥ 0, assuming that the
density ρ is constant.

13. ∗. A sphere of radius 2m centred on the origin has variable density
5√
3 (z2 +1)kg/m3. A hole of diameter 1m is drilled through the sphere

along the z--axis.
a Set up a triple integral in cylindrical coordinates giving the mass
of the sphere after the hole has been drilled.

b Evaluate this integral.
14. ∗. Consider the finite solid bounded by the three surfaces: z =

e−x
2−y2 , z = 0 and x2 + y2 = 4.
a Set up (but do not evaluate) a triple integral in rectangular
coordinates that describes the volume of the solid.

b Calculate the volume of the solid using any method.
15. ∗. Find the volume of the solid which is inside x2 + y2 = 4, above

z = 0 and below 2z = y.

Exercises — Stage 3
16. ∗. The density of hydrogen gas in a region of space is given by the

formula
ρ(x, y, z) = z + 2x2

1 + x2 + y2

a At (1, 0,−1), in which direction is the density of hydrogen in-
creasing most rapidly?

b You are in a spacecraft at the origin. Suppose the spacecraft
flies in the direction of 〈0, 0, 1〉. It has a disc of radius 1, centred
on the spacecraft and deployed perpendicular to the direction
of travel, to catch hydrogen. How much hydrogen has been
collected by the time that the spacecraft has traveled a distance
2?
You may use the fact that

∫ 2π
0 cos2 θ dθ = π.

17. A torus of mass M is generated by rotating a circle of radius a about
an axis in its plane at distance b from the centre (b > a). The torus
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has constant density. Find the moment of inertia about the axis of
rotation. By definition the moment of intertia is

∫∫∫
r2dm where dm

is the mass of an infinitesmal piece of the solid and r is its distance
from the axis.

3.7 Triple Integrals in Spherical Coordinates

3.7.1 Spherical Coordinates
In the event that we wish to compute, for example, the mass of an object that
is invariant under rotations about the origin, it is advantageous to use another
generalization of polar coordinates to three dimensions. The coordinate system
is called spherical coordinates.

Definition 3.7.1 Spherical coordinates are denoted1 ρ, θ and ϕ and are defined
by

ρ = the distance from (0, 0, 0) to (x, y, z)
ϕ = the angle between the z axis and the line joining (x, y, z) to (0, 0, 0)
θ = the angle between the x axis and the line joining (x, y, 0) to (0, 0, 0)

z

y

x

p0, 0, zq

px, y, 0qpx, 0, 0q θ

ϕ

px, y, zq

ρ

ρ sinϕ

ρ cosϕ

ρ sinϕ sin θ

♦
Here are two more figures giving the side and top views of the previous

figure.
z

p0, 0, zq

ρ cosϕ

px, y, 0q
side view

ρ sinϕ

ϕ
ρ

px, y, zq y

x

px, 0, 0q

top view

ρ sinϕ sin θ

ρ sinϕ cos θ
ρ sinϕθ

px, y, 0q

9For a general discussion of trigonometric integrals see §1.8 in the CLP-2 text. In par-
ticular the integral

∫
cos4 x dx is evaluated in Example 1.8.8 in the CLP-2 text. For an

efficient, sneaky, way to evaluate
∫ π

2
0 cos2 t dt see Remark 3.3.5.

1We are using the standard mathematics conventions for the spherical coordinates. Under
the ISO conventions they are (r, φ, θ). See Appendix A.7.
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The spherical coordinate θ is the same as the cylindrical coordinate θ. The
spherical coordinate ϕ is new. It runs from 0 (on the positive z-axis) to π (on
the negative z-axis). The Cartesian and spherical coordinates are related by

Equation 3.7.2

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ

ρ =
√
x2 + y2 + z2 θ = arctan y

x
ϕ = arctan

√
x2 + y2

z
Here are three figures showing

• a surface of constant ρ, i.e. a surface x2 + y2 + z2 = ρ2 with ρ a constant
(which looks like an onion skin),

• a surface of constant θ, i.e. a surface y = x tan θ with2 θ a constant
(which looks like the page of a book), and

• a surface of constant ϕ, i.e. a surface z =
√
x2 + y2 tanϕ with ϕ a

constant (which looks a conical funnel).

z

y
x

ρ

surface of constant ρ

(a sphere)

z

y

x
θ

surface of constant θ

(a plane)

z

y

x

ϕ

surface of constant ϕ

(a cone)

3.7.2 The Volume Element in Spherical Coordinates
If we cut up a solid3 by

• first slicing it into segments (like segments of an orange) by using planes
of constant θ, say with the difference between successive θ’s being dθ,

z

y

x

dθ

• and then subdividing the segments into “searchlights” (like the search-
light outlined in blue in the figure below) using surfaces of constant ϕ,
say with the difference between successive ϕ’s being dϕ,

2and with the sign of x being the same as the sign of cos θ
3You know the drill.
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z

y

x

dϕ

• and then subdividing the searchlights into approximate cubes using sur-
faces of constant ρ, say with the difference between successive ρ’s being
dρ,

z

y

x

dρ

we end up with approximate cubes that look like

z

y

x

dρ

ρ dϕ

ρ sinϕ dθ
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The dimensions of the approximate “cube” in spherical coordinates are
(essentially) dρ by ρdϕ by ρ sinϕdθ. (These dimensions are derived in more
detail in the next section.) So the approximate cube has volume (essentially)

Equation 3.7.3
dV = ρ2 sinϕdρ dθ dϕ

3.7.3 The Details
Here is an explanation of the edge lengths given in the above figure. Each of
the 12 edges of the cube is formed by holding two of the three coordinates ρ,
θ, ϕ fixed and varying the third.

• Four of the cube edges are formed by holding θ and ϕ fixed and varying ρ.
The intersection of a plane of fixed θ with a cone of fixed ϕ is a straight
line emanating from the origin. When we introduced slices using spheres
of constant ρ, the difference between the successive ρ’s was dρ, so those
edges of the cube each have length dρ.

z

y

x
θ

plane of fixed θ

z

y

x

ϕ

cone of fixed ϕ

z

y

x
θ

ϕ

line of intersection

• Four of the cube edges are formed by holding θ and ρ fixed and varying
ϕ. The intersection of a plane of fixed θ (which contains the origin) with
a sphere of fixed ρ (which is centred on the origin) is a circle of radius ρ
centred on the origin. It is a line of longitude4.

z

y
x

ρ

sphere of fixed ρ

z

y

x
θ

plane of fixed θ

z

y
x

ρ

θ

circle of intersection

When we introduced searchlights using surfaces of constant ϕ, the dif-
ference between the successive ϕ’s was dϕ. Thus those four edges of the
cube are circular arcs of radius essentially ρ that subtend an angle dϕ,
and so have length ρdϕ.

4The problem of finding a practical, reliable method for determining the longitude of
a ship at sea was a very big deal for a period of several centuries. Among the scientists
who worked in this were Galileo, Edmund Halley (of Halley’s comet) and Robert Hooke (of
Hooke’s law).
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z

y

x

ρ ρ dϕ

ϕ dϕ

• Four of the cube edges are formed by holding ϕ and ρ fixed and varying
θ. The intersection of a cone of fixed ϕ with a sphere of fixed ρ is a
circle. As both ρ and ϕ are fixed, the circle of intersection lies in the
plane z = ρ cosϕ. It is a line of latitude. The circle has radius ρ sinϕ
and is centred on

(
0, 0, ρ cosϕ

)
.

z

y
x

ρ

sphere of fixed ρ

z

y

x

ϕ

cone of fixed ϕ

z

y
x

ϕ ρ

circle of intersection

When we introduced segments using surfaces of constant θ, the difference
between the successive θ’s was dθ. Thus these four edge of the cube are
circular arcs of radius essentially ρ sinϕ that subtend an angle dθ, and
so have length ρ sinϕdθ.

z

y

x

ρ sinϕ

ϕ ρ

dθ

ρ sinϕ dθ
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3.7.4 Sample Integrals in Spherical Coordinates
Example 3.7.4 Ice Cream Cone. Find the volume of the ice cream5 cone
that consists of the part of the interior of the sphere x2 + y2 + z2 = a2 that is
above the xy-plane and that is inside the cone x2 + y2 = b2z2. Here a and b
are any two strictly positive constants.
Solution. Note that, in spherical coordinates

x2 + y2 = ρ2 sin2 ϕ z2 = ρ2 cos2 ϕ x2 + y2 + z2 = ρ2

Consequently, in spherical coordinates, the equation of the sphere is ρ = a,
and the equation of the cone is tan2 ϕ = b2. Let’s write β = arctan b, with
0 < β < π

2 . Here is a sketch of the part of the ice cream cone in the first
octant. The volume of the full ice cream cone will be four times the volume of
the part in the first octant.

z

y
x

β ϕ “ β

ρ “ a

We shall cut the first octant part of the ice cream cone into tiny pieces using
spherical coordinates. That is, we shall cut it up using planes of constant θ,
cones of constant ϕ, and spheres of constant ρ.

• First slice the (the first octant part of the) ice cream cone into segments
by inserting many planes of constant θ, with the various values of θ
differing by dθ. The figure on the left below shows one segment outlined
in red. Each segment

◦ has θ essentially constant on the segment, and
◦ has ϕ running from 0 to β and ρ running from 0 to a.
◦ The leftmost segment has, essentially, θ = 0 and the rightmost seg-

ment has, essentially, θ = π
2 . See the figure on the right below.
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z

y
x

z

y
x

• Concentrate on any one segment. A side view of the segment is sketched
in the figure on the left below. Subdivide it into long thin searchlights by
inserting many cones of constant ϕ, with the various values of ϕ differing
by dϕ. The figure on the left below shows one searchlight outlined in
blue. Each searchlight

◦ has θ and ϕ essentially constant on the searchlight, and
◦ has ρ running over 0 ≤ ρ ≤ a.
◦ The leftmost searchlight has, essentially, ϕ = 0 and the rightmost
searchlight has, essentially, ϕ = β. See the figure on the right below.

z

ϕ “ β

ϕ
ϕ`dϕρ “ a

z

ϕ “ βρ “ a

• Concentrate on any one searchlight. Subdivide it into tiny approximate
cubes by inserting many spheres of constant ρ, with the various values
of ρ differing by dρ. The figure on the left below shows the side view of
one approximate cube in black. Each cube

◦ has ρ, θ and ϕ all essentially constant on the cube and
◦ has volume ρ2 sinϕdρdθ dϕ, by 3.7.3.
◦ The first cube has, essentially, ρ = 0 and the last cube has, essen-
tially, ρ = a. See the figure on the right below.

z

ϕ “ βρ “ a
z

ϕ “ βρ “ a

Now we can build up the volume.
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• Concentrate on one approximate cube. Let’s say that it contains the
point with spherical coordinates ρ, θ, ϕ. The cube has volume essentially
dV = ρ2 sinϕdρdθ dϕ, by 3.7.3.

• To get the volume any one searchlight, say the searchlight whose ϕ co-
ordinate runs from ϕ to ϕ + dϕ, we just add up the volumes of the
approximate cubes in that searchlight, by integrating ρ from its smallest
value on the searchlight, namely 0, to its largest value on the searchlight,
namely a. The volume of the searchlight is thus

dθ dϕ
∫ a

0
dρ ρ2 sinϕ

• To get the volume of any one segment, say the segment whose θ coordi-
nate runs from θ to θ+dθ, we just add up the volumes of the searchlights
in that segment, by integrating ϕ from its smallest value on the segment,
namely 0, to its largest value on the segment, namely β. The volume of
the segment is thus

dθ
∫ β

0
dϕ sinϕ

∫ a

0
dρ ρ2

• To get the volume of V1, the part of the ice cream cone in the first
octant, we just add up the volumes of the segments that it contains, by
integrating θ from its smallest value in the octant, namely 0, to its largest
value on the octant, namely π

2 .

• The volume in the first octant is thus

Volume(V1) =
∫ π/2

0
dθ
∫ β

0
dϕ sinϕ

∫ a

0
dρ ρ2

= a3

3

∫ π/2

0
dθ
∫ β

0
dϕ sinϕ

= a3

3
[
1− cosβ

] ∫ π/2

0
dθ

= πa3

6
[
1− cosβ

]
• So the volume of V, the total (four octant) ice cream cone, is

Volume(V) = 4Volume(V1) = 4πa3

6
[
1− cosβ

]
We can express β (which was not given in the statement of the original problem)
in terms of b (which was in the statement of the original problem), just by
looking at the triangle

β

1

b

?
1 ` b2

The right hand and bottom sides of the triangle have been chosen so that
tan β = b, which was the definition of β. So cosβ = 1√

1+b2 and the volume of
the ice cream cone is

Volume(V) = 2πa3

3

[
1− 1√

1 + b2

]
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Note that, as in Example 3.2.11, we can easily apply a couple of sanity checks
to our answer.

• If b = 0, so that the cone is just x2 + y2 = 0, which is the line x = y = 0,
the total volume should be zero. Our answer does indeed give 0 in this
case.

• In the limit b → ∞, the angle β → π
2 and the ice cream cone opens up

into a hemisphere of radius a. Our answer does indeed give the volume
of the hemisphere, which is 1

2 ×
4
3πa

3.

�

Example 3.7.5 Cored Apple. A cylindrical hole of radius b is drilled
symmetrically through a perfectly spherical apple of radius a ≥ b. Find the
volume of apple that remains.
Solution. In Example 3.2.11 we computed the volume removed, basically
using cylindrical coordinates. So we could get the answer to this question
just by subtracting the answer of Example 3.2.11 from 4

3πa
3. Instead, we will

evaluate the volume remaining as an exercise in setting up limits of integration
when using spherical coordinates.

As in Example 3.2.11, let’s use a coordinate system with the sphere centred
on (0, 0, 0) and with the centre of the drill hole following the z-axis. Here is a
sketch of the apple that remains in the first octant. It is outlined in red. By
symmetry the total amount of apple remaining will be eight times the amount
from the first octant.

z

y

x

b

x2 ` y2 ` z2 “ a2

• First slice the first octant part of the remaining apple into segments by
inserting many planes of constant θ, with the various values of θ differing
by dθ. The leftmost segment has, essentially, θ = 0 and the rightmost
segment has, essentially, θ = π

2 .

• Each segment, viewed from the side, looks like
5A very mathematical ice cream. Rocky-rho’d? Choculus?
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z ϕ “ arcsin b
a

a

b

ϕ

Subdivide it into long thin searchlights by inserting many cones of con-
stant ϕ, with the various values of ϕ differing by dϕ. The figure on below
shows one searchlight outlined in blue. Each searchlight

◦ has θ and ϕ essentially constant on the searchlight.
◦ The top searchlight has, essentially, ϕ = arcsin b

a and the bottom
searchlight has, essentially, ϕ = π

2 .

z ϕ “ arcsin b
a

ϕ

ϕ`dϕ

a

b

• Concentrate on any one searchlight. Subdivide it into tiny approximate
cubes by inserting many spheres of constant ρ, with the various values
of ρ differing by dρ. The figure on the left below shows the side view of
one approximate cube in black. Each cube

◦ has ρ, θ and ϕ all essentially constant on the cube and
◦ has volume dV = ρ2 sinϕdρdθ dϕ, by 3.7.3.
◦ The figure on the right below gives an expanded view of the search-
light. From it, we see (after a little trig) that the first cube has,
essentially, ρ = b

sinϕ and the last cube has, essentially, ρ = a (the
radius of the apple).

z ϕ “ arcsin b
a

ϕ

ϕ`dϕ

a

b
z

ϕ

b

ρ

b

Now we can build up the volume.
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• Concentrate on one approximate cube. Let’s say that it contains the
point with spherical coordinates ρ, θ, ϕ. The cube has volume essentially
dV = ρ2 sinϕdρdθ dϕ, by 3.7.3.

• To get the volume any one searchlight, say the searchlight whose ϕ coor-
dinate runs from ϕ to ϕ+ dϕ, we just add up the volumes of the approx-
imate cubes in that searchlight, by integrating ρ from its smallest value
on the searchlight, namely b

sinϕ , to its largest value on the searchlight,
namely a. The volume of the searchlight is thus

dθ dϕ
∫ a

b
sinϕ

dρ ρ2 sinϕ

• To get the volume of any one segment, say the segment whose θ coordi-
nate runs from θ to θ+dθ, we just add up the volumes of the searchlights
in that segment, by integrating ϕ from its smallest value on the segment,
namely arcsin b

a , to its largest value on the segment, namely π
2 . The

volume of the searchlight is thus

dθ
∫ π

2

arcsin b
a

∫ a

b
sinϕ

dρ ρ2 sinϕ

• To get the volume of the remaining part of the apple in the first octant, we
just add up the volumes of the segments that it contains, by integrating
θ from its smallest value in the octant, namely 0, to its largest value on
the octant, namely π

2 . The volume in the first octant is thus

Volume(V1) =
∫ π/2

0
dθ
∫ π

2

arcsin b
a

dϕ
∫ a

b
sinϕ

dρ ρ2 sinϕ

• Now we just have to integrate

Volume(V1) = 1
3

∫ π/2

0
dθ
∫ π

2

arcsin b
a

dϕ sinϕ
[
a3 − b3

sin3 ϕ

]
= 1

3

∫ π/2

0
dθ
∫ π

2

arcsin b
a

dϕ
[
a3 sinϕ− b3 csc2 ϕ

]
= 1

3

∫ π/2

0
dθ
[
−a3 cosϕ+ b3 cotϕ

]π
2
arcsin b

a

since
∫

csc2 ϕ dϕ = − cotϕ+ C

= π

6
[
−a3 cosϕ+ b3 cotϕ

]π
2
arcsin b

a

Now cos π2 = cot π2 = 0 and, if we write α = arcsin b
a ,

Volume(V1) = π

6
[
a3 cosα− b3 cotα

]
From the triangle below, we have cosα =

√
a2−b2

a and cotα =
√
a2−b2

b .

α?
a2 ´ b2

b
a
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So

Volume(V1) = π

6

[
a2
√
a2 − b2 − b2

√
a2 − b2

]
= π

6
[
a2 − b2

]3/2
The full (eight octant) volume of the remaining apple is thus

Volume(V) = 8Volume(V1) = 4
3π
[
a2 − b2

]3/2
We can, yet again, apply the sanity checks of Example 3.2.11 to our answer.

• If the radius of the drill bit b = 0, no apple is removed at all. So the total
volume remaining should be 4

3πa
3. Our answer does indeed give this.

• If the radius of the drill bit b = a, the radius of the apple, then the entire
apple disappears. So the remaining apple should have volume 0. Again,
our answer gives this.

As a final check note that the sum of the answer to Example 3.2.11 and the
answer to this Example is 4

3πa
3, as it should be. �

3.7.5 Exercises

Exercises — Stage 1
1. Use (ρ, θ, ϕ) to denote spherical coordinates.

a Draw ϕ = 0.

b Draw ϕ = π
4 .

c Draw ϕ = π
2 .

d Draw ϕ = 3π
4 .

e Draw ϕ = π.
2. Sketch the point with the specified spherical coordinates.

a ρ = 0, θ = 0.1π, ϕ = 0.7π

b ρ = 1, θ = 0.3π, ϕ = 0

c ρ = 1, θ = 0, ϕ = π
2

d ρ = 1, θ = π
3 , ϕ = π

2

e ρ = 1, θ = π
2 , ϕ = π

2

f ρ = 1, θ = π
3 , ϕ = π

6

3. Convert from Cartesian to spherical coordinates.
a (−2, 0, 0)

b (0, 3, 0)

c (0, 0,−4)

d
(
− 1√

2
,

1√
2
,
√

3
)
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4. Convert from spherical to Cartesian coordinates.
a ρ = 1, θ = π

3 , ϕ = π
6

b ρ = 2, θ = π
2 , ϕ = π

2

5. Rewrite the following equations in spherical coordinates.
a z2 = 3x2 + 3y2

b x2 + y2 + (z − 1)2 = 1

c x2 + y2 = 4
6. ∗. Using spherical coordinates and integration, show that the volume

of the sphere of radius 1 centred at the origin is 4π/3.

Exercises — Stage 2
7. ∗. Consider the region E in 3-dimensions specified by the spherical

inequalities
1 ≤ ρ ≤ 1 + cosϕ

a Draw a reasonably accurate picture of E in 3-dimensions. Be
sure to show the units on the coordinates axes.

b Find the volume of E.
8. ∗. Use spherical coordinates to evaluate the integral

I =
∫∫∫

D

z dV

whereD is the solid enclosed by the cone z =
√
x2 + y2 and the sphere

x2 + y2 + z2 = 4. That is, (x, y, z) is in D if and only if
√
x2 + y2 ≤ z

and x2 + y2 + z2 ≤ 4.
9. Use spherical coordinates to find

a The volume inside the cone z =
√
x2 + y2 and inside the sphere

x2 + y2 + z2 = a2.

b
∫∫∫

R
xdV and

∫∫∫
R
z dV over the part of the sphere of radius a

that lies in the first octant.

c The mass of a spherical planet of radius a whose density at
distance ρ from the center is δ = A/(B + ρ2).

d The volume enclosed by ρ = a(1− cosϕ). Here ρ and ϕ refer to
the usual spherical coordinates.

10. ∗. Consider the hemispherical shell bounded by the spherical surfaces

x2 + y2 + z2 = 9 and x2 + y2 + z2 = 4

and above the plane z = 0. Let the shell have constant density D.
a Find the mass of the shell.

b Find the location of the center of mass of the shell.
11. ∗. Let

I =
∫∫∫

T

xz dV

where T is the eighth of the sphere x2 + y2 + z2 ≤ 1 with x, y, z ≥ 0.
a Sketch the volume T .
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b Express I as a triple integral in spherical coordinates.

c Evaluate I by any method.
12. ∗. Evaluate W =

∫∫∫
Q
xz dV , where Q is an eighth of the sphere

x2 + y2 + z2 ≤ 9 with x, y, z ≥ 0.

13. ∗. Evaluate
∫∫∫

R3

[
1 + (x2 + y2 + z2)3]−1

dV .
14. ∗. Evaluate∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 1+
√

1−x2−y2

1−
√

1−x2−y2
(x2 + y2 + z2)5/2 dz dy dx

by changing to spherical coordinates.
15. Evaluate the volume of a circular cylinder of radius a and height h by

means of an integral in spherical coordinates.
16. ∗. Let B denote the region inside the sphere x2 + y2 + z2 = 4 and

above the cone x2 + y2 = z2. Compute the moment of inertia∫∫∫
B

z2 dV

17. ∗.

a Evaluate
∫∫∫

Ω
z dV where Ω is the three dimensional region in

the first octant x ≥ 0, y ≥ 0, z ≥ 0, occupying the inside of the
sphere x2 + y2 + z2 = 1.

b Use the result in part (a) to quickly determine the centroid of a
hemispherical ball given by z ≥ 0, x2 + y2 + z2 ≤ 1.

18. ∗. Consider the top half of a ball of radius 2 centred at the origin.
Suppose that the ball has variable density equal to 9z units of mass
per unit volume.

a Set up a triple integral giving the mass of this half-ball.

b Find out what fraction of that mass lies inside the cone

z =
√
x2 + y2

Exercises — Stage 3
19. ∗. Find the limit or show that it does not exist

lim
(x,y,z)→(0,0,0)

xy + yz2 + xz2

x2 + y2 + z4

20. ∗. A certain solid V is a right-circular cylinder. Its base is the disk
of radius 2 centred at the origin in the xy-plane. It has height 2 and
density

√
x2 + y2.

A smaller solid U is obtained by removing the inverted cone, whose
base is the top surface of V and whose vertex is the point (0, 0, 0).

a Use cylindrical coordinates to set up an integral giving the mass
of U .

b Use spherical coordinates to set up an integral giving the mass
of U .

c Find that mass.
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21. ∗. A solid is bounded below by the cone z=
√
x2+y2 and above by

the sphere x2 + y2 + z2 = 2. It has density δ(x, y, z) = x2 + y2.
a Express the mass M of the solid as a triple integral, with limits,
in cylindrical coordinates.

b Same as (a) but in spherical coordinates.

c Evaluate M .
22. ∗. Let

I =
∫∫∫

E

xz dV

where E is the eighth of the sphere x2 + y2 + z2 ≤ 1 with x, y, z ≥ 0.
a Express I as a triple integral in spherical coordinates.

b Express I as a triple integral in cylindrical coordinates.

c Evaluate I by any method.
23. ∗. Let

I =
∫∫∫

T

(x2 + y2) dV

where T is the solid region bounded below by the cone z =
√

3x2 + 3y2

and above by the sphere x2 + y2 + z2 = 9.
a Express I as a triple integral in spherical coordinates.

b Express I as a triple integral in cylindrical coordinates.

c Evaluate I by any method.
24. ∗. Let E be the “ice cream cone” x2 + y2 + z2 ≤ 1, x2 + y2 ≤ z2 ,

z ≥ 0. Consider

J =
∫∫∫

E

√
x2 + y2 + z2 dV

a Write J as an iterated integral, with limits, in cylindrical coor-
dinates.

b Write J as an iterated integral, with limits, in spherical coordi-
nates.

c Evaluate J .
25. ∗. The body of a snowman is formed by the snowballs x2+y2+z2 = 12

(this is its body) and x2 + y2 + (z − 4)2 = 4 (this is its head).
a Find the volume of the snowman by subtracting the intersection
of the two snow balls from the sum of the volumes of the snow
balls. [Recall that the volume of a sphere of radius r is 4π

3 r
3.]

b We can also calculate the volume of the snowman as a sum of
the following triple integrals:

i. ∫ 2π
3

0

∫ 2π

0

∫ 2

0
ρ2 sinϕ dρ dθ dϕ
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ii. ∫ 2π

0

∫ √3

0

∫ 4− r√
3

√
3 r

r dz dr dθ

iii. ∫ π

π
6

∫ 2π

0

∫ 2
√

3

0
ρ2 sin(ϕ) dρdθ dϕ

Circle the right answer from the underlined choices and fill in the
blanks in the following descriptions of the region of integration
for each integral. [Note: We have translated the axes in order
to write down some of the integrals above. The equations you
specify should be those before the translation is performed.]

i The region of integration in (1) is a part of the snowman’s

body / head / body and head

It is the solid enclosed by the

sphere / cone

defined by the equation

and the
sphere / cone

defined by the equation

ii The region of integration in (2) is a part of the snowman’s

body / head / body and head

It is the solid enclosed by the

sphere / cone

defined by the equation

and the
sphere / cone

defined by the equation

iii The region of integration in (3) is a part of the snowman’s

body / head / body and head

It is the solid enclosed by the

sphere / cone

defined by the equation

and the
sphere / cone

defined by the equation

26. ∗.
a Find the volume of the solid inside the surface defined by the
equation ρ = 8 sin(ϕ) in spherical coordinates.
You may use that∫

sin4(ϕ) = 1
32
(
12ϕ− 8 sin(2ϕ) + sin(4ϕ)

)
+ C

b Sketch this solid or describe what it looks like.
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27. ∗. Let E be the solid

0 ≤ z ≤
√
x2 + y2, x2 + y2 ≤ 1,

and consider the integral

I =
∫∫∫

E

z
√
x2 + y2 + z2 dV.

a Write the integral I in cylindrical coordinates.

b Write the integral I in spherical coordinates.

c Evaluate the integral I using either form.
28. ∗. Consider the iterated integral

I =
∫ 0

−a

∫ 0

−
√
a2−x2

∫ √a2−x2−y2

0

(
x2 + y2 + z2)2014 dz dy dx

where a is a positive constant.
a Write I as an iterated integral in cylindrical coordinates.

b Write I as an iterated integral in spherical coordinates.

c Evaluate I using whatever method you prefer.
29. ∗. The solid E is bounded below by the paraboloid z = x2 + y2 and

above by the cone z =
√
x2 + y2. Let

I =
∫∫∫

E

z
(
x2 + y2 + z2) dV

a Write I in terms of cylindrical coordinates. Do not evaluate.

b Write I in terms of spherical coordinates. Do not evaluate.

c Calculate I.
30. ∗. Let S be the region on the first octant (so that x, y, z ≥ 0) which lies

above the cone z =
√
x2 + y2 and below the sphere (z−1)2+x2+y2 =

1. Let V be its volume.
a Express V as a triple integral in cylindrical coordinates.

b Express V as an triple integral in spherical coordinates.

c Calculate V using either of the integrals above.

31. ∗. A solid is bounded below by the cone z =
√

3x2 + 3y2 and above
by the sphere x2 + y2 + z2 = 9. It has density δ(x, y, z) = x2 + y2.

a Express the mass m of the solid as a triple integral in cylindrical
coordinates.

b Express the mass m of the solid as a triple integral in spherical
coordinates.

c Evaluate m.
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3.8 Optional— Integrals in General Coordinates
One of the most important tools used in dealing with single variable integrals
is the change of variable (substitution) rule

Equation 3.8.1
x = f(u) dx = f ′(u) du

See Theorems 1.4.2 and 1.4.6 in the CLP-2 text. Expressing multivariable
integrals using polar or cylindrical or spherical coordinates are really multivari-
able substitutions. For example, switching to spherical coordinates amounts
replacing the coordinates x, y, z with the coordinates ρ, θ, ϕ by using the sub-
stitution

X = r(ρ, θ, ϕ) dxdy dz = ρ2 sinϕdρdθ dϕ

where

X = 〈x , y , z〉 and r(ρ, θ, ϕ) = 〈ρ cos θ sinϕ , ρ sin θ sinϕ , ρ cosϕ〉

We’ll now derive a generalization of the substitution rule 3.8.1 to two dimen-
sions. It will include polar coordinates as a special case. Later, we’ll state
(without proof) its generalization to three dimensions. It will include cylindri-
cal and spherical coordinates as special cases.

Suppose that we wish to integrate over a region, R, in R2 and that we also
wish1 to use two new coordinates, that we’ll call u and v, in place of x and
y. The new coordinates u, v are related to the old coordinates x, y, by the
functions2

x = x(u, v)
y = y(u, v)

To make formulae more compact, we’ll define the vector valued function r(u, v)
by

r(u, v) = 〈x(u, v) , y(u, v)〉

As an example, if the new coordinates are polar coordinates, with r renamed
to u and θ renamed to v, then x(u, v) = u cos v and y = u sin v.

Note that if we hold v fixed and vary u, then r(u, v) sweeps out a curve. For
example, if x(u, v) = u cos v and y = u sin v, then, if we hold v fixed and vary
u, r(u, v) sweeps out a straight line (that makes the angle v with the x-axis),
while, if we hold u > 0 fixed and vary v, r(u, v) sweeps out a circle (of radius
u centred on the origin).

rpu, vq

v fixed
u varying

x

y

v

rpu, vqu fixed
v varying

x

y

u

We start by cutting R (the shaded region in the figure below) up into small
pieces by drawing a bunch of curves of constant u (the blue curves in the figure
below) and a bunch of curves of constant v (the red curves in the figure below).

1We’ll keep our third wish in reserve.
2We are abusing notation a little here by using x and y both as coordinates and as

functions. We could write x = f(u, v) and y = g(u, v), but it is easier to remember x = x(u, v)
and y = y(u, v).
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Concentrate on any one of the small pieces. Here is a greatly magnified
sketch.

P0

P1

P3P2

u varying
v“v0

u varying
v“v0`dv

u“u0`du
v varying

u“u0
v varying

For example, the lower red curve was constructed by holding v fixed at
the value v0, varying u and sketching r(u, v0), and the upper red curve was
constructed by holding v fixed at the slightly larger value v0 + dv, varying u
and sketching r(u, v0 + dv). So the four intersection points in the figure are

P2 = r(u0, v0 + dv) P3 = r(u0 + du, v0 + dv)
P0 = r(u0, v0) P1 = r(u0 + du, v0)

Now, for any small constants dU and dV , we have the linear approximation3

r(u0 + dU, v0 + dV ) ≈ r(u0 , v0) + ∂r
∂u

(u0 , v0) dU + ∂r
∂v

(u0 , v0) dV

Applying this three times, once with dU = du, dV = 0 (to approximate P1),
once with dU = 0, dV = dv (to approximate P2), and once with dU = du,
dV = dv (to approximate P3),

P0 = r(u0 , v0)

P1 = r(u0 + du, v0) ≈ r(u0 , v0) + ∂r
∂u

(u0 , v0) du

P2 = r(u0, v0 + dv) ≈ r(u0 , v0) + ∂r
∂v

(u0 , v0) dv

P3 = r(u0 + du, v0 + dv) ≈ r(u0 , v0) + ∂r
∂u

(u0 , v0) du+ ∂r
∂v

(u0 , v0) dv

We have dropped all Taylor expansion terms that are of degree two or higher
in du, dv. The reason is that, in defining the integral, we take the limit
du,dv → 0. Because of that limit, all of the dropped terms contribute exactly
0 to the integral. We shall not prove this. But we shall show, in the optional
§3.8.1, why this is the case.

3Recall 2.6.1.
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The small piece of R surface with corners P0, P1, P2, P3 is approximately
a parallelogram with sides

−−−→
P0P1 ≈

−−−→
P2P3 ≈

∂r
∂u

(u0 , v0) du =
〈
∂x

∂u
(u0, v0) , ∂y

∂u
(u0, v0)

〉
du

−−−→
P0P2 ≈

−−−→
P1P3 ≈

∂r
∂v

(u0 , v0) dv =
〈
∂x

∂v
(u0, v0) , ∂y

∂v
(u0, v0)

〉
dv

P0

P1

P3P2

θ
ÝÝÝÑ
P0P1

ÝÝÝÑ
P0P2

Here the notation, for example, −−−→P0P1 refers to the vector whose tail is at
the point P0 and whose head is at the point P1. Recall, from 1.2.17 that

area of parallelogram with sides 〈a, b〉 and 〈c, d〉 =
∣∣∣∣det

[
a b

c d

]∣∣∣∣ =
∣∣ad− bc∣∣

So the area of our small piece of R is essentially

Equation 3.8.2

dA =
∣∣∣∣det

[
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

]∣∣∣∣dudv

Recall that detM denotes the determinant of the matrix M . Also recall
that we don’t really need determinants for this text, though it does make for
nice compact notation.

The formula (3.8.2) is the heart of the following theorem, which tells us how
to translate an integral in one coordinate system into an integral in another
coordinate system.

Theorem 3.8.3 Let the functions x(u, v) and y(u, v) have continuous first
partial derivatives and let the function f(x, y) be continuous. Assume that
x = x(u, v), y = y(u, v) provides a one-to-one correspondence between the
points (u, v) of the region U in the uv-plane and the points (x, y) of the region
R in the xy-plane. Then∫∫

R
f(x, y) dx dy =

∫∫
U
f
(
x(u, v) , y(u, v)

) ∣∣∣∣det
[
∂x
∂u (u, v) ∂y

∂u (u, v)
∂x
∂v (u, v) ∂y

∂v (u, v)

]∣∣∣∣dudv

The determinant

det
[
∂x
∂u (u, v) ∂y

∂u (u, v)
∂x
∂v (u, v) ∂y

∂v (u, v)

]
that appears in (3.8.2) and Theorem 3.8.3 is known as the Jacobian4.

Example 3.8.4 dA for x ↔ y. We’ll start with a pretty trivial example in
which we simply rename x to Y and y to X. That is

x(X,Y ) = Y

4It is not named after the Jacobin Club, a political movement of the French revolution.
It is not named after the Jacobite rebellions that took place in Great Britain and Ireland
between 1688 and 1746. It is not named after the Jacobean era of English and Scottish
history. It is named after the German mathematician Carl Gustav Jacob Jacobi (1804 –
1851). He died from smallpox.
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y(X,Y ) = X

Since

∂x

∂X
= 0 ∂y

∂X
= 1

∂x

∂Y
= 1 ∂y

∂Y
= 0

(3.8.2), but with u renamed to X and v renamed to Y , gives

dA =
∣∣∣∣det

[
0 1
1 0

]∣∣∣∣ dX dY = dX dY

which should really not be a shock. �

Example 3.8.5 dA for Polar Coordinates. Polar coordinates have

x(r, θ) = r cos θ
y(r, θ) = r sin θ

Since

∂x

∂r
= cos θ ∂y

∂r
= sin θ

∂x

∂θ
= −r sin θ ∂y

∂θ
= r cos θ

(3.8.2), but with u renamed to r and v renamed to θ, gives

dA =
∣∣∣∣det

[
cos θ sin θ
−r sin θ r cos θ

]∣∣∣∣drdθ =
(
r cos2 θ + r sin2 θ

)
drdθ

= r dr dθ

which is exactly what we found in 3.2.5. �

Example 3.8.6 dA for Parabolic Coordinates. Parabolic5 coordinates
are defined by

x(u, v) = u2 − v2

2
y(u, v) = uv

Since

∂x

∂u
= u

∂y

∂u
= v

∂x

∂v
= −v ∂y

∂v
= u

(3.8.2) gives

dA =
∣∣∣∣det

[
u v

−v u

]∣∣∣∣dudv = (u2 + v2) dudv

�
5The name comes from the fact that both the curves of constant u and the curves of

constant v are parabolas.
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In practice applying the change of variables Theorem 3.8.3 can be quite
tricky. Here is just one simple (and rigged) example.

Example 3.8.7 Evaluate∫∫
R

y

1 + x
dxdy where R =

{
(x, y)

∣∣ 0 ≤ x ≤ 1, 1 + x ≤ y ≤ 2 + 2x
}

Solution. We can simplify the integrand considerably by making the change
of variables

s = x x = s

t = y

1 + x
y = t(1 + x) = t(1 + s)

Of course to evaluate the given integral by applying Theorem 3.8.3 we also
need to know

• [◦] the domain of integration in terms of s and t and

• [◦] dxdy in terms of dsdt.

By (3.8.2), recalling that x(s, t) = s and y(s, t) = t(1 + s),

dxdy =
∣∣∣∣det

[
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

]∣∣∣∣dsdt =
∣∣∣∣det

[
1 t

0 1 + s

]∣∣∣∣dsdt = (1 + s) dsdt

To determine what the change of variables does to the domain of integration,
we’ll sketch R and then reexpress the boundary of R in terms of the new
coordinates s and t. Here is the sketch of R in the original coordinates (x, y).

x

y

y“2p1`xq

y“1`x

x “ 1

x “ 0

R

The region R is a quadrilateral. It has four sides.

• The left side is part of the line x = 0. Recall that x = s. So, in terms of
s and t, this line is s = 0.

• The right side is part of the line x = 1. In terms of s and t, this line is
s = 1.

• The bottom side is part of the line y = 1 + x, or y
1+x = 1. Recall that

t = y
1+x . So, in terms of s and t, this line is t = 1.

• The top side is part of the line y = 2(1 + x), or y
1+x = 2. In terms of s

and t, this line is t = 2.
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Here is another copy of the sketch of R. But this time the equations of its four
sides are expressed in terms of s and t.

x

y

t “ 2

t “ 1

s “ 1

s “ 0

R

So, expressed in terms of s and t, the domain of integration R is much
simpler: {

(s, t)
∣∣ 0 ≤ s ≤ 1, 1 ≤ t ≤ 2

}
As dx dy = (1+s) dsdt and the integrand y

1+x = t, the integral is, by Theorem
3.8.3, ∫∫

R

y

1 + x
dxdy =

∫ 1

0
ds
∫ 2

1
dt (1 + s)t =

∫ 1

0
ds (1 + s)

[
t2

2

]2

1

= 3
2

[
s+ s2

2

]1

0

= 3
2 ×

3
2

= 9
4

�
There are natural generalizations of (3.8.2) and Theorem 3.8.3 to three

(and also to higher) dimensions, that are derived in precisely the same way
as (3.8.2) was derived. The derivation is based on the fact, discussed in the
optional Section 1.2.4, that the volume of the parallelepiped (three dimensional
parallelogram)

a

b

c

determined by the three vectors a = 〈a1, a2, a3〉 , b = 〈b1, b2, b3〉 and c =
〈c1, c2, c3〉 is given by the formula

volume of parallelepiped with edges a,b, c =

∣∣∣∣∣∣det

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
where the determinant of a 3× 3 matrix can be defined in terms of some 2× 2
determinants by
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det



a1 a2 a3
b1 b2 b3
c1 c2 c3


= a1 det



a1 a2 a3
b1 b2 b3
c1 c2 c3


− a2 det



a1 a2 a3
b1 b2 b3
c1 c2 c3


+ a3 det



a1 a2 a3
b1 b2 b3
c1 c2 c3




= a1 (b2c3 − b3c2) − a2 (b1c3 − b3c1) + a3 (b1c2 − b2c1)

If we use

x = x(u, v, w)
y = y(u, v, w)
z = z(u, v, w)

to change from old coordinates x, y, z to new coordinates u, v, w, then

Equation 3.8.8

dV =

∣∣∣∣∣∣det

 ∂x∂u ∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∣∣∣∣∣∣dudv dw

Example 3.8.9 dV for Cylindrical Coordinates. Cylindrical coordinates
have

x(r, θ, z) = r cos θ
y(r, θ, z) = r sin θ
z(r, θ, z) = z

Since

∂x

∂r
= cos θ ∂y

∂r
= sin θ ∂z

∂r
= 0

∂x

∂θ
= −r sin θ ∂y

∂θ
= r cos θ ∂z

∂θ
= 0

∂x

∂z
= 0 ∂y

∂z
= 0 ∂z

∂z
= 1

(3.8.8), but with u renamed to r and v renamed to θ, gives

dV =

∣∣∣∣∣∣det

 cos θ sin θ 0
−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ dr dθ dz

=
∣∣∣∣cos θ det

[
r cos θ 0

0 1

]
− sin θ det

[
−r sin θ 0

0 1

]
+ 0 det

[
−r sin θ r cos θ

0 0

]∣∣∣∣ dr dθ dz

=
(
r cos2 θ + r sin2 θ

)
dr dθ dz

= r dr dθ dz

which is exactly what we found in (3.6.3). �

Example 3.8.10 dV for Spherical Coordinates. Spherical coordinates
have

x(ρ, θ, ϕ) = ρ cos θ sinϕ
y(ρ, θ, ϕ) = ρ sin θ sinϕ
z(ρ, θ, ϕ) = ρ cosϕ
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Since

∂x

∂ρ
= cos θ sinϕ ∂y

∂ρ
= sin θ sinϕ ∂z

∂ρ
= cosϕ

∂x

∂θ
= −ρ sin θ sinϕ ∂y

∂θ
= ρ cos θ sinϕ ∂z

∂θ
= 0

∂x

∂ϕ
= ρ cos θ cosϕ ∂y

∂ϕ
= ρ sin θ cosϕ ∂z

∂ϕ
= −ρ sinϕ

(3.8.8), but with u renamed to ρ, v renamed to θ and w renamed to ϕ, gives

dV =

∣∣∣∣∣∣det

 cos θ sinϕ sin θ sinϕ cosϕ
−ρ sin θ sinϕ ρ cos θ sinϕ 0
ρ cos θ cosϕ ρ sin θ cosϕ −ρ sinϕ

∣∣∣∣∣∣dρdθ dϕ

=
∣∣∣∣cos θ sinϕdet

[
ρ cos θ sinϕ 0
ρ sin θ cosϕ −ρ sinϕ

]
− sin θ sinϕdet

[
−ρ sin θ sinϕ 0
ρ cos θ cosϕ −ρ sinϕ

]
+ cosϕdet

[
−ρ sin θ sinϕ ρ cos θ sinϕ
ρ cos θ cosϕ ρ sin θ cosϕ

]∣∣∣∣dρdθ dϕ

= ρ2∣∣− cos2 θ sin3 ϕ− sin2 θ sin3 ϕ− sinϕ cos2 ϕ
∣∣dρdθ dϕ

= ρ2∣∣− sinϕ sin2 ϕ− sinϕ cos2 ϕ
∣∣dρdθ dϕ

= ρ2 sinϕdρdθ dϕ

which is exactly what we found in (3.7.3). �

3.8.1 Optional — Dropping Higher Order Terms in du, dv

In the course of deriving (3.8.2), that is, the dA formula for

P0

P1

P3P2

u varying
v“v0

u varying
v“v0`dv

u“u0`du
v varying

u“u0
v varying

we approximated, for example, the vectors
−−−→
P0P1 = r(u0 + du, v0)− r(u0 , v0)= ∂r

∂u
(u0 , v0) du+ E1 ≈

∂r
∂u

(u0 , v0) du

−−−→
P0P2 = r(u0, v0 + dv)− r(u0 , v0) = ∂r

∂v
(u0 , v0) dv + E2 ≈

∂r
∂v

(u0 , v0) dv

where E1 is bounded6 by a constant times (du)2 and E2 is bounded by a
constant times (dv)2. That is, we assumed that we could just ignore the errors
and drop E1 and E2 by setting them to zero.

So we approximated∣∣∣−−−→P0P1 ×
−−−→
P0P2

∣∣∣ =
∣∣∣∣[ ∂r
∂u

(u0 , v0) du+ E1

]
×
[∂r
∂v

(u0 , v0) dv + E2

]∣∣∣∣
6Remember the error in the Taylor polynomial approximations. See 2.6.13 and 2.6.14.
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=
∣∣∣∣ ∂r
∂u

(u0 , v0) du× ∂r
∂v

(u0 , v0) dv + E3

∣∣∣∣
≈
∣∣∣∣ ∂r
∂u

(u0 , v0) du× ∂r
∂v

(u0 , v0) dv
∣∣∣∣

where the length of the vector E3 is bounded by a constant times (du)2 dv +
du (dv)2. We’ll now see why dropping terms like E3 does not change the value
of the integral at all7. Suppose that our domain of integration consists of all
(u, v)’s in a rectangle of width W and height H, as in the figure below.

u

v

du

W

dv

H

Subdivide the rectangle into a grid of n×n small subrectangles by drawing
lines of constant v (the red lines in the figure) and lines of constant u (the blue
lines in the figure). Each subrectangle has width du = W

n and height dv = H
n .

Now suppose that in setting up the integral we make, for each subrectangle,
an error that is bounded by some constant times

(du)2 dv + du (dv)2 =
(W
n

)2H

n
+ W

n

(H
n

)2
= WH(W +H)

n3

Because there are a total of n2 subrectangles, the total error that we have
introduced, for all of these subrectangles, is no larger than a constant times

n2 × WH(W +H)
n3 = WH(W +H)

n

When we define our integral by taking the limit n→ 0 of the Riemann sums,
this error converges to exactly 0. As a consequence, it was safe for us to ignore
the error terms when we established the change of variables formulae.

7See the optional § 1.1.6 of the CLP-2 text for an analogous argument concerning Riemann
sums.
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Appendices

A.1 Trigonometry

A.1.1 Trigonometry — Graphs

sin θ cos θ tan θ

−π −π2
π
2

π 3π
2

2π

−1

1

−π −π2
π
2

π 3π
2

2π

−1

1

−π −π2
π
2

π 3π
2

2π

A.1.2 Trigonometry — Special Triangles

From the above pair of special triangles we have

sin π4 = 1√
2

sin π6 = 1
2 sin π3 =

√
3

2

cos π4 = 1√
2

cos π6 =
√

3
2 cos π3 = 1

2

tan π4 = 1 tan π6 = 1√
3

tan π3 =
√

3

383



APPENDIX A. APPENDICES 384

A.1.3 Trigonometry — Simple Identities
• Periodicity

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ)

• Reflection

sin(−θ) = − sin(θ) cos(−θ) = cos(θ)

• Reflection around π/4

sin
(
π
2 − θ

)
= cos θ cos

(
π
2 − θ

)
= sin θ

• Reflection around π/2

sin (π − θ) = sin θ cos (π − θ) = − cos θ

• Rotation by π

sin (θ + π) = − sin θ cos (θ + π) = − cos θ

• Pythagoras

sin2 θ + cos2 θ = 1
tan2 θ + 1 = sec2 θ

1 + cot2 θ = csc2 θ

• sin and cos building blocks

tan θ = sin θ
cos θ csc θ = 1

sin θ sec θ = 1
cos θ cot θ = cos θ

sin θ = 1
tan θ

A.1.4 Trigonometry — Add and Subtract Angles
• Sine

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

• Cosine

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

• Tangent

tan(α+ β) = tanα+ tan β
1− tanα tan β

tan(α− β) = tanα− tan β
1 + tanα tan β

• Double angle

sin(2θ) = 2 sin(θ) cos(θ)
cos(2θ) = cos2(θ)− sin2(θ)

= 2 cos2(θ)− 1
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= 1− 2 sin2(θ)

tan(2θ) = 2 tan(θ)
1− tan2 θ

cos2 θ = 1 + cos(2θ)
2

sin2 θ = 1− cos(2θ)
2

tan2 θ = 1− cos(2θ)
1 + cos(2θ)

• Products to sums

sin(α) cos(β) = sin(α+ β) + sin(α− β)
2

sin(α) sin(β) = cos(α− β)− cos(α+ β)
2

cos(α) cos(β) = cos(α− β) + cos(α+ β)
2

• Sums to products

sinα+ sin β = 2 sin α+ β

2 cos α− β2

sinα− sin β = 2 cos α+ β

2 sin α− β2

cosα+ cosβ = 2 cos α+ β

2 cos α− β2

cosα− cosβ = −2 sin α+ β

2 sin α− β2

A.1.5 Inverse Trigonometric Functions

arcsin x arccosx arctan x

Domain: −1 ≤ x ≤ 1 Domain: −1 ≤ x ≤ 1 Domain: all real num-
bers

Range: −π2 ≤
arcsin x ≤ π

2

Range: 0 ≤ arccosx ≤ π Range: −π2 <
arctan x < π

2

−1 1

−π2

π
2

−1 1

π
2

π

−π2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ −π2 ≤ θ ≤
π

2
arccos(cos θ) = θ 0 ≤ θ ≤ π

arctan(tan θ) = θ −π2 ≤ θ ≤
π

2
and also

sin(arcsin x) = x −1 ≤ x ≤ 1
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cos(arccosx) = x −1 ≤ x ≤ 1
tan(arctan x) = x any real x

arccscx arcsecx arccotx
Domain: |x| ≥ 1 Domain: |x| ≥ 1 Domain: all real num-

bers
Range: −π2 ≤
arccscx ≤ π

2

Range: 0 ≤ arcsecx ≤ π Range: 0 < arccotx < π

−1 1

−π2

π
2

−1 1

π
2

π

π
2

π

arccscx 6= 0 arcsecx 6= π

2
Again

arccsc(csc θ) = θ −π2 ≤ θ ≤
π

2 , θ 6= 0

arcsec(sec θ) = θ 0 ≤ θ ≤ π, θ 6= π

2
arccot(cot θ) = θ 0 < θ < π

and

csc(arccscx) = x |x| ≥ 1
sec(arcsecx) = x |x| ≥ 1
cot(arccotx) = x any real x

A.2 Powers and Logarithms

A.2.1 Powers
In the following, x and y are arbitrary real numbers, q is an arbitrary constant
that is strictly bigger than zero and e is 2.7182818284, to ten decimal places.

• e0 = 1, q0 = 1

• ex+y = exey, ex−y = ex

ey
, qx+y = qxqy, qx−y = qx

qy

• e−x = 1
ex
, q−x = 1

qx

•
(
ex
)y = exy,

(
qx
)y = qxy

• d
dxe

x = ex,
d

dxe
g(x) = g′(x)eg(x),

d
dxq

x = (ln q) qx

•
∫
ex dx = ex + C,

∫
eax dx = 1

ae
ax + C if a 6= 0
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• ex =
∞∑
n=0

xn

n!

• lim
x→∞

ex =∞, lim
x→−∞

ex = 0

lim
x→∞

qx =∞, lim
x→−∞

qx = 0 if q > 1

lim
x→∞

qx = 0, lim
x→−∞

qx =∞ if 0 < q < 1

• The graph of 2x is given below. The graph of qx, for any q > 1, is similar.

x

y

1 2 3−1−2−3

1
2

4

6

y = 2x

A.2.2 Logarithms
In the following, x and y are arbitrary real numbers that are strictly bigger
than 0 (except where otherwise specified), p and q are arbitrary constants that
are strictly bigger than one, and e is 2.7182818284, to ten decimal places. The
notation ln x means loge x. Some people use log x to mean log10 x, others use
it to mean loge x and still others use it to mean log2 x.

• eln x = x, qlogq x = x

• ln
(
ex
)

= x, logq
(
qx
)

= x for all −∞ < x <∞

• logq x = ln x
ln q , ln x =

logp x
logp e

, logq x =
logp x
logp q

• ln 1 = 0, ln e = 1
logq 1 = 0, logq q = 1

• ln(xy) = ln x+ ln y, logq(xy) = logq x+ logq y

• ln
(x
y

)
= ln x− ln y, logq

(x
y

)
= logq x− logq y

• ln
(1
y

)
= − ln y, logq

(1
y

)
= − logq y

• ln(xy) = y ln x, logq(xy) = y logq x

• d
dx ln x = 1

x
,

d
dx logq x = 1

x ln q

•
∫

ln x dx = x ln x− x+ C,

∫
logq x dx = x logq x−

x

ln q + C
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• lim
x→∞

ln x =∞, lim
x→0+

ln x = −∞

lim
x→∞

logq x =∞, lim
x→0+

logq x = −∞

• The graph of log10 x is given below. The graph of logq x, for any q > 1,
is similar.

x

y

1 5 10 15

0.5

1.0

−0.5

−1.0

y = log10 x

A.3 Table of Derivatives
Throughout this table, a and b are constants, independent of x.

F (x) F ′(x) = dF
dx

af(x) + bg(x) af ′(x) + bg′(x)
f(x) + g(x) f ′(x) + g′(x)
f(x)− g(x) f ′(x)− g′(x)
af(x) af ′(x)
f(x)g(x) f ′(x)g(x) + f(x)g′(x)
f(x)g(x)h(x) f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x)
f(x)
g(x)

f ′(x)g(x)−f(x)g′(x)
g(x)2

1
g(x) − g′(x)

g(x)2

f
(
g(x)

)
f ′
(
g(x)

)
g′(x)

F (x) F ′(x) = dF
dx

a 0
xa axa−1

g(x)a ag(x)a−1g′(x)
sin x cosx
sin g(x) g′(x) cos g(x)
cosx − sin x
cos g(x) −g′(x) sin g(x)
tan x sec2 x

cscx − cscx cotx
secx secx tan x
cotx − csc2 x

ex ex

eg(x) g′(x)eg(x)

ax (ln a) ax
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F (x) F ′(x) = dF
dx

ln x 1
x

ln g(x) g′(x)
g(x)

loga x 1
x ln a

arcsin x 1√
1−x2

arcsin g(x) g′(x)√
1−g(x)2

arccosx − 1√
1−x2

arctan x 1
1+x2

arctan g(x) g′(x)
1+g(x)2

arccscx − 1
|x|
√
x2−1

arcsecx 1
|x|
√
x2−1

arccotx − 1
1+x2

A.4 Table of Integrals
Throughout this table, a and b are given constants, independent of x and C is
an arbitrary constant.

f(x) F (x) =
∫
f(x) dx

af(x) + bg(x) a
∫
f(x) dx+ b

∫
g(x) dx + C

f(x) + g(x)
∫
f(x) dx+

∫
g(x) dx + C

f(x)− g(x)
∫
f(x) dx−

∫
g(x) dx + C

af(x) a
∫
f(x) dx + C

u(x)v′(x) u(x)v(x)−
∫
u′(x)v(x) dx + C

f
(
y(x)

)
y′(x) F

(
y(x)

)
where F (y) =

∫
f(y) dy

a ax+ C

xa xa+1

a+1 + C if a 6= −1
1
x ln |x|+ C

g(x)ag′(x) g(x)a+1

a+1 + C if a 6= −1

f(x) F (x) =
∫
f(x) dx

sin x − cosx+ C

g′(x) sin g(x) − cos g(x) + C

cosx sin x+ C

tan x ln | secx|+ C

cscx ln | cscx− cotx|+ C

secx ln | secx+ tan x|+ C

cotx ln | sin x|+ C

sec2 x tan x+ C

csc2 x − cotx+ C

secx tan x secx+ C

cscx cotx − cscx+ C
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f(x) F (x) =
∫
f(x) dx

ex ex + C

eg(x)g′(x) eg(x) + C

eax 1
a e

ax + C

ax 1
ln a a

x + C

ln x x ln x− x+ C
1√

1−x2 arcsin x+ C
g′(x)√
1−g(x)2

arcsin g(x) + C

1√
a2−x2 arcsin x

a + C
1

1+x2 arctan x+ C
g′(x)

1+g(x)2 arctan g(x) + C
1

a2+x2
1
a arctan x

a + C
1

x
√
x2−1 arcsecx+ C \quad(x > 1)

A.5 Table of Taylor Expansions
Let n ≥ be an integer. Then if the function f has n + 1 derivatives on an
interval that contains both x0 and x, we have the Taylor expansion

f(x) = f(x0) + f ′(x0) (x− x0) + 1
2!f
′′(x0) (x− x0)2 + · · ·+ 1

n!f
(n)(x0) (x− x0)n

+ 1
(n+ 1)!f

(n+1)(c) (x− x0)n+1 for some c between x0 and x

The limit as n→∞ gives the Taylor series

f(x) =
∞∑
n=0

f (n)(x0)
n! (x− x0)n

for f . When x0 = 0 this is also called the Maclaurin series for f . Here are
Taylor series expansions of some important functions.

ex =
∞∑
n=0

1
n!x

n for −∞ < x <∞

= 1 + x+ 1
2x

2 + 1
3!x

3 + · · ·+ 1
n!x

n + · · ·

sin x =
∞∑
n=0

(−1)n

(2n+ 1)!x
2n+1 for −∞ < x <∞

= x− 1
3!x

3 + 1
5!x

5 − · · ·+ (−1)n

(2n+ 1)!x
2n+1 + · · ·

cosx =
∞∑
n=0

(−1)n

(2n)! x
2n for −∞ < x <∞

= 1− 1
2!x

2 + 1
4!x

4 − · · ·+ (−1)n

(2n)! x
2n + · · ·

1
1− x =

∞∑
n=0

xn for − 1 ≤ x < 1

= 1 + x+ x2 + x3 + · · ·+ xn + · · ·

1
1 + x

=
∞∑
n=0

(−1)nxn for − 1 < x ≤ 1
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= 1− x+ x2 − x3 + · · ·+ (−1)nxn + · · ·

ln(1− x) = −
∞∑
n=1

1
n
xn for − 1 ≤ x < 1

= −x− 1
2x

2 − 1
3x

3 − · · · − 1
n
xn − · · ·

ln(1 + x) = −
∞∑
n=1

(−1)n

n
xn for − 1 < x ≤ 1

= x− 1
2x

2 + 1
3x

3 − · · · − (−1)n

n
xn − · · ·

(1 + x)p = 1 + px+ p(p− 1)
2 x2 + p(p− 1)(p− 2)

3! x3 + · · ·

+ p(p− 1)(p− 2) · · · (p− n+ 1)
n! xn + · · ·

A.6 3d Coordinate Systems

A.6.1 Cartesian Coordinates
Here is a figure showing the definitions of the three Cartesian coordinates
(x, y, z)

y

z

x

px, y, zq

px, y, 0q
x

y

z

and here are three figures showing a surface of constant x, a surface of
constant x, and a surface of constant z.

y

z

x

px, 0, 0q

surface of constant x
(a plane)

y

z

x

p0, y, 0q

surface of constant y
(a plane)

y

z

x

p0, 0, zq

surface of constant z
(a plane)

Finally here is a figure showing the volume element dV in cartesian coor-
dinates.

dx
dy

dz

volume element dV “ dx dy dz



APPENDIX A. APPENDICES 392

A.6.2 Cylindrical Coordinates
Here is a figure showing the definitions of the three cylindrical coordinates

r = distance from (0, 0, 0) to (x, y, 0)
θ = angle between the the x axis and the line joining (x, y, 0) to (0, 0, 0)
z = signed distance from (x, y, z) to the xy-plane

px, y, zq

px, y, 0q

y

z

x

z

rθ

The cartesian and cylindrical coordinates are related by

x = r cos θ y = r sin θ z = z

r =
√
x2 + y2 θ = arctan y

x
z = z

Here are three figures showing a surface of constant r, a surface of constant θ,
and a surface of constant z.

y

z

x

r

surface of constant r
(a cylindrical shell)

y

z

x

θ

surface of constant θ
(a plane)

y

z

x

p0, 0, zq

surface of constant z
(a plane)

Finally here is a figure showing the volume element dV in cylindrical coor-
dinates.

r dr

dz

r dθ

volume element dV “ r dr dθ dz

A.6.3 Spherical Coordinates
Here is a figure showing the definitions of the three spherical coordinates

ρ = distance from (0, 0, 0) to (x, y, z)
ϕ = angle between the z axis and the line joining (x, y, z) to (0, 0, 0)
θ = angle between the x axis and the line joining (x, y, 0) to (0, 0, 0)
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z

y

x

p0, 0, zq

px, y, 0qpx, 0, 0q θ

ϕ

px, y, zq

ρ

ρ sinϕ

ρ cosϕ

ρ sinϕ sin θ

and here are two more figures giving the side and top views of the previous
figure.

z

p0, 0, zq

ρ cosϕ

px, y, 0q
side view

ρ sinϕ

ϕ
ρ

px, y, zq y

x

px, 0, 0q

top view

ρ sinϕ sin θ

ρ sinϕ cos θ
ρ sinϕθ

px, y, 0q

The cartesian and spherical coordinates are related by

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ

ρ =
√
x2 + y2 + z2 θ = arctan y

x
ϕ = arctan

√
x2 + y2

z

Here are three figures showing a surface of constant ρ, a surface of constant θ,
and a surface of constant ϕ.

z

y
x

ρ

surface of constant ρ

(a sphere)

z

y

x
θ

surface of constant θ

(a plane)

z

y

x

ϕ

surface of constant ϕ

(a cone)

Finally, here is a figure showing the volume element dV in spherical coor-
dinates
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z

y

x

dρ

ρ dϕ

ρ sinϕ dθ

volume element dV “ ρ2 sinϕ dρ dθ dϕ

and two extracts of the above figure to make it easier to see how the factors
ρ dϕ and ρ sinϕ dθ arise.

z

y

x

ρ dϕ

ϕ dϕ dρ

z

y

x

ρ sinϕ

ϕ
ρ

dθ

ρ sinϕ dθ

A.7 ISO Coordinate System Notation
In this text we have chosen symbols for the various polar, cylindrical and spher-
ical coordinates that are standard for mathematics. There is another, different,
set of symbols that are commonly used in the physical sciences and engineering.
Indeed, there is an international convention, called ISO 80000-2, that specifies
those symbols1. In this appendix, we summarize the definitions and standard
properties of the polar, cylindrical and spherical coordinate systems using the
ISO symbols.

1It specifies more than just those symbols. See https://en.wikipedia.org/wiki/ISO_31-
11 and https://en.wikipedia.org/wiki/ISO/IEC_80000 The full ISO 80000-2 is available at
https://www.iso.org/standard/64973.html — for $$.

https://en.wikipedia.org/wiki/ISO_31-11
https://en.wikipedia.org/wiki/ISO_31-11
https://en.wikipedia.org/wiki/ISO/IEC_80000
https://www.iso.org/standard/64973.html
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A.7.1 Polar Coordinates
In the ISO convention the symbols ρ and φ are used (instead of r and θ) for
polar coordinates.

ρ = the distance from (0, 0) to (x, y)
φ = the (counter-clockwise) angle between the x-axis

and the line joining (x, y) to (0, 0)

ρ

px, yq

x

y

φ

Cartesian and polar coordinates are related by

x = ρ cosφ y = ρ sinφ

ρ =
√
x2 + y2 φ = arctan y

x

The following two figures show a number of lines of constant φ, on the left,
and curves of constant ρ, on the right.

x

y

lines of constant φ

x

y

curves of constant ρ

Note that the polar angle φ is only defined up to integer multiples of 2π.
For example, the point (1, 0) on the x-axis could have φ = 0, but could also
have φ = 2π or φ = 4π. It is sometimes convenient to assign φ negative values.
When φ < 0, the counter-clockwise angle φ refers to the clockwise angle |φ|.
For example, the point (0,−1) on the negative y-axis can have φ = −π2 and
can also have φ = 3π

2 .

x

y

ρ “ 1, φ “ ´π{2, φ “ 3π{2

3π{2
π{2

It is also sometimes convenient to extend the above definitions by saying
that x = ρ cosφ and y = ρ sinφ even when ρ is negative. For example, the
following figure shows (x, y) for ρ = 1, φ = π

4 and for ρ = −1, φ = π
4 .
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ρ “ 1, φ “ π{4

ρ “ ´1, φ “ π{4

x

y

π{4

Both points lie on the line through the origin that makes an angle of 45◦
with the x-axis and both are a distance one from the origin. But they are on
opposite sides of the the origin.

The area element in polar coordinates is

dA = ρdρdφ

dφ dρ

ρ ρ dφ

A.7.2 Cylindrical Coordinates
In the ISO convention the symbols ρ, φ and z are used (instead of r, θ and z)
for cylindrical coordinates.

ρ = distance from (0, 0, 0) to (x, y, 0)
φ = angle between the the x axis and the line joining (x, y, 0) to (0, 0, 0)
z = signed distance from (x, y, z) to the xy-plane

px, y, zq

px, y, 0q

y

z

x

z

ρ
φ

The cartesian and cylindrical coordinates are related by

x = ρ cosφ y = ρ sinφ z = z

ρ =
√
x2 + y2 φ = arctan y

x
z = z

Here are three figures showing a surface of constant ρ, a surface of constant φ,
and a surface of constant z.
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y

z

x

ρ

surface of constant ρ
(a cylindrical shell)

y

z

x

φ

surface of constant φ
(half a plane)

y

z

x

p0, 0, zq

surface of constant z
(a plane)

Finally here is a figure showing the volume element dV in cylindrical coor-
dinates.

ρ dρ

dz

ρ dφ

volume element dV “ ρ dρ dφ dz

A.7.3 Spherical Coordinates
In the ISO convention the symbols r (instead of ρ), φ (instead of θ) and θ
(instead of φ) are used for spherical coordinates.

r = distance from (0, 0, 0) to (x, y, z)
θ = angle between the z axis and the line joining (x, y, z) to (0, 0, 0)
φ = angle between the x axis and the line joining (x, y, 0) to (0, 0, 0)

z

y

x

p0, 0, zq

px, y, 0qpx, 0, 0q φ

θ

px, y, zq

r

r sin θ

r cos θ

r sin θ sinφ

Here are two more figures giving the side and top views of the previous
figure.

z

p0, 0, zq

r cos θ

px, y, 0q
side view

r sin θ

θ
r

px, y, zq y

x

px, 0, 0q

top view

r sin θ sin φ

r sin θ cosφ
r sin θφ

px, y, 0q
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The cartesian and spherical coordinates are related by

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ

r =
√
x2 + y2 + z2 φ = arctan y

x
θ = arctan

√
x2 + y2

z

Here are three figures showing a surface of constant r, a surface of constant φ,
and a surface of constant θ.

z

y
x

r

surface of constant r

(a sphere)

z

y

x
φ

surface of constant φ

(half a plane)

z

y

x

θ

surface of constant θ

(a cone)

Finally, here is a figure showing the volume element dV in spherical coor-
dinates

z

y

x

dr

r dθ

r sin θ dφ

volume element dV “ r2 sin θ dr dθ dφ

and two extracts of the above figure to make it easier to see how the factors
r dθ and r sin θ dφ arise.
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z

y

x

r dθ

θ dθ dr

z

y

x

r sin θ

θ
r

dφ

r sin θ dφ

A.8 Conic Sections and Quadric Surfaces
A conic section is the curve of intersection of a cone and a plane that does not
pass through the vertex of the cone. This is illustrated in the figures below.

circle ellipse parabola

hyperbola

An equivalent1 (and often used) definition is that a conic section is the set
of all points in the xy-plane that obey Q(x, y) = 0 with

Q(x, y) = Ax2 +By2 + Cxy +Dx+ Ey + F = 0

being a polynomial of degree two2. By rotating and translating our coordinate
system the equation of the conic section can be brought into one of the forms3

• αx2 + βy2 = γ with α, β, γ > 0, which is an ellipse (or a circle),

• αx2 − βy2 = γ with α, β > 0, γ 6= 0, which is a hyperbola,

• x2 = δy, with δ 6= 0 which is a parabola.

The three dimensional analogs of conic sections, surfaces in three dimen-
sions given by quadratic equations, are called quadrics. An example is the
sphere x2 + y2 + z2 = 1.

1It is outside our scope to prove this equivalence.
2Technically, we should also require that the constants A, B, C, D, E, F , are real numbers,

that A, B, C are not all zero, that Q(x, y) = 0 has more than one real solution, and that
the polynomial can’t be factored into the product of two polynomials of degree one.

3This statement can be justified using a linear algebra eigenvalue/eigenvector analysis. It
is beyond what we can cover here, but is not too difficult for a standard linear algeba course.
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Here are some tables giving all of the quadric surfaces.

name elliptic cylin-
der

parabolic
cylinder

hyperbolic
cylinder sphere

equation in
standard form

x2

a2 + y2

b2 = 1 y = ax2 x2

a2 − y2

b2 = 1 x2+y2+z2 = r2

x =constant
cross-section two lines one line two lines circle

y =constant
cross-section two lines two lines two lines circle

z =constant
cross-section ellipse parabola hyperbola circle

sketch

Figure A.8.1 Table of conic sections

name ellipsoid elliptic
paraboloid elliptic cone

equation in stan-
dard form

x2

a2 + y2

b2 + z2

c2 = 1 x2

a2 + y2

b2 = z
c

x2

a2 + y2

b2 = z2

c2

x = constant
cross-section ellipse parabola

two lines if x = 0,
hyperbola if x 6=
0

y = constant
cross-section ellipse parabola

two lines if
y = 0,hyperbola
if y 6= 0

z = constant
cross-section ellipse ellipse ellipse

sketch h

a

Figure A.8.2 Table of quadric surfaces-1
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name hyperboloid of
one sheet

hyperboloid of
two sheets

hyperbolic
paraboloid

equation in stan-
dard form

x2

a2 + y2

b2 − z2

c2 = 1 x2

a2 + y2

b2 − z2

c2 = −1 y2

b2 − x2

a2 = z
c

x = constant
cross-section hyperbola hyperbola parabola

y = constant
cross-section hyperbola hyperbola parabola

z = constant
cross-section ellipse ellipse

two lines if z = 0,
hyperbola if z 6=
0

sketch

Figure A.8.3 Table of quadric surfaces-2



Appendix B

Hints for Exercises

1 · Vectors and Geometry in Two and Three
Dimensions
1.1 · Points
1.1.1 · Exercises

1.1.1.2. Hint. In part (d), complete a square.

1.1.1.4. Hint. In part (d) you are being asked to find the value of x that
minimizes the distance from (x, 0, 0) to A. You found a formula for that
distance in part (c).

1.1.1.8. Hint. It is not necessary to solve the equation x2 − 2px+ y2 =
3p2 for p(x, y). For example, a point (x, y) is on the isobar p(x, y) = 1 if
and only if x2− 2x+ y2 = 3. This curve can be easily identified if one first
completes a square.

1.2 · Vectors
1.2.9 · Exercises

1.2.9.2. Hint. If three points are collinear, then the vector from the first
point to the second point, and the vector from the first point to the third
point must both be parallel to the line, and hence must be parallel to each
other (i.e. must be multiples of each other).

x

y

1.2.9.3. Hint. Review Theorem 1.2.11.
1.2.9.4. Hint. Review Definition 1.2.5 and Theorem 1.2.11.
1.2.9.5. Hint. Review Definition 1.2.5 and Theorem 1.2.11.

402
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1.2.9.15. Hint. (a) The three line segments from C to O, from C to A
and from C to B all have exactly the same length, namely the radius of
the circumscribing circle.

(b) Let (x̄, ȳ) be the coordinates of C. Write down the equations that
say that (x̄, ȳ) is equidistant from the three vertices O, A and B.

1.2.9.16. Hint. The centre of the sphere is the midpoint of the diameter.
1.2.9.17. Hint. Draw a sketch. Call the vertices of the triangle A, B
and C with C being the vertex that joins the two sides. Let a be the vector
from C to A and b be the vector from C to B. Determine, in terms of a
and b,

• the vector from A to B,

• the two vectors from C to the two midpoints and finally

• the vector joining the two midpoints.
1.2.9.18. Hint. Review § 1.2.4.
1.2.9.19. ∗. Hint. Determine the four corners of the parallelogram.
1.2.9.20. Hint. Review §1.2.4.

1.2.9.30. ∗. Hint. Evaluate dL
dt by differentiating r(t)× r′(t).

1.2.9.40. Hint. Choose coordinate axes so that the vertex opposite the
face of area D is at the origin. Denote by a, b and c the vertices opposite
the sides of area A, B and C respectively. Express A, B, C and D, which
are areas of triangles, as one half times cross products of vectors built from
a, b and c.
1.2.9.41. Hint. Do problem 1.2.9.40 first.

1.3 · Equations of Lines in 2d
1.3.1 · Exercises

1.3.1.1. Hint. What, exactly, is t?
1.3.1.2. Hint. What, exactly, is c?
1.3.1.3. Hint. Set t = 0 in both equation to get two different points
with integer coordinates; show that these two points are on both lines.
1.3.1.4. Hint. A line is specified by two things: one point on the line,
and a vector parallel to the direction of the line.

1.3.1.5. Hint. Remember that the parametric equation of a line with
direction d, passing through point c, is 〈x, y〉 = c + td.

1.3.1.6. Hint. Review Equation 1.3.3.
1.3.1.7. Hint. Review Example 1.3.5.
1.3.1.9. Hint. The radius of the circle will serve as a normal vector to
the line.

1.4 · Equations of Planes in 3d
1.4.1 · Exercises
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1.4.1.1. Hint. You are looking for a vector that is perpendicular to
z = 0 and hence is parallel to k̂.

1.4.1.2. Hint. A point (x, y, z) is on the y-axis if and only if x = z = 0.
Similarly, a point (x, y, z) is on the z-axis if and only if x = y = 0.

1.4.1.4. ∗. Hint. Guess.
1.4.1.5. Hint. a. See Question 1.4.1.4 — or just have a guess!

1.4.1.6. Hint. Three points don’t always determine a plane — why?

1.5 · Equations of Lines in 3d
1.5.1 · Exercises

1.5.1.1. Hint. What’s fishy about those normal vectors?

1.5.1.2. Hint. The two lines 〈x− x0 , y − y0 , z − z0〉 = td and 〈x− x′0 , y − y′0 , z − z′0〉 =
td′ are not parallel if d× d′ 6= 0.

1.5.1.3. Hint. Review Example 1.5.2.

1.5.1.4. Hint. Review Example 1.5.2.

1.5.1.7. ∗. Hint. Review Example 1.5.2.

1.5.1.8. Hint. Review Example 1.5.4.

1.5.1.9. Hint. Review Example 1.4.4.

1.5.1.12. ∗. Hint. Review the properties of the dot product in Theorem
1.2.11.

1.5.1.15. ∗. Hint. All three of the points A, B, C lie in the plane y = 2.

1.5.1.17. Hint. Review Example 1.5.7.

1.6 · Curves and their Tangent Vectors
1.6.2 · Exercises

1.6.2.1. Hint. Find the value of t at which the three points occur on
the curve.
1.6.2.2. Hint. The curve “crosses itself” when (sin t, t2) gives the same
coordinate for different values of t. When these crossings occur will depend
on which crossing you’re referring to, so your answers should all depend on
t.
1.6.2.3. Hint. Draw sketches. Don’t forget the range that the parameter
runs over.
1.6.2.4. Hint. For part (b), find the position of P relative to the centre
of the circle. Then combine your answer with part (a).

1.6.2.5. Hint. We aren’t concerned with x, so we can eliminate it by
solving one equation for x as a function of y and z and plugging the result
into the other equation.

1.6.2.6. Hint. To determine whether the particle is rising or falling, we
only need to consider its z-coordinate.
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1.6.2.7. Hint. This is the setup from Lemma 1.6.12. The two quantities
you’re labelling are related, but different.

1.6.2.8. Hint. See the note just before Example 1.6.14.

1.6.2.9. ∗. Hint. To simplify your answer, remember: the cross product
of a and b is a vector orthogonal to both a and b; the cross product of a
vector with itself is zero; and two orthogonal vectors have dot product 0.

1.6.2.10. ∗. Hint. Just compute |v(t)|. Note that
(
eat + e−at

)2 =
e2at + 2 + e−2at.
1.6.2.11. Hint. To figure out what the curves look like, first detemine
what curve

(
x(t), y(t)

)
traces out. For part (b) this will be easier if trig

identities are first used to express x(t) and y(t) in terms of sin(2t) and
cos(2t).

1.6.2.12. ∗. Hint. Review Lemma 1.6.12. The arc length should be
positive.

1.6.2.13. Hint. From Lemma 1.6.12, we know the arclength from t = 0
to t = 1 will be ∫ 1

0

∣∣∣∣dr
dt (t)

∣∣∣∣ dt
The notation looks a little confusing at first, but we can break it down

piece by piece: dr
dt (t) is a vector, whose components are functions of t. If

we take its magnitude, we’ll get one big function of t. That function is
what we integrate. Before integrating it, however, we should simplify as
much as possible.

1.6.2.14. Hint. r(t) is the position of the particle, so its acceleration is
r′′(t).

1.6.2.15. ∗. Hint. Review §1.5 and Lemma 1.6.12.

1.6.2.16. ∗. Hint. Review Lemma 1.6.12.
1.6.2.17. ∗. Hint. If you got the answer 0 in part (b), you dropped
some absolute value signs.

1.6.2.19. ∗. Hint. The integral you get can be evaluated with a simple
substitution. You may want to factor the integrand first.

1.6.2.20. Hint. Given the position of a particle, you can find its velocity.

1.6.2.23. ∗. Hint. If r(u) is the parametrization of C by u, then the
position of the particle at time t is R(t) = r

(
u(t)

)
.

1.6.2.24. ∗. Hint. By Newton’s law, F = ma.

1.6.2.25. ∗. Hint. Denote by r(x) the parametrization of C by x. If
the x--coordinate of the particle at time t is x(t), then the position of the
particle at time t is R(t) = r

(
x(t)

)
. Also, though the particle is moving at

a constant speed, it doesn’t necessarily have a constant value of dx
dt .

1.6.2.26. Hint. The question is already set up as an xy--plane, with the
camera at the origin, so the vector in the direction the camera is pointing is
(x(t), y(t)). Let θ be the angle the camera makes with the positive x-axis
(due east). The tangent function gives a clean-looking relation between
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θ(t), x(t), and y(t).

1.7 · Sketching Surfaces in 3d
1.7.2 · Exercises

1.7.2.2. Hint. For each C, redraw the level curve f(x, y) = C in the
plane z = C.

1.7.2.3. Hint. Draw in the plane z = C for several values of C.

1.7.2.12. Hint. Since the level curves are circles centred at the origin
(in the xy-plane), the equation will have the form x2 + y2 = g(z), where
g(z) is a function depending only on z.

2 · Partial Derivatives
2.1 · Limits
2.1.2 · Exercises

2.1.2.1. Hint. How does the behaviour of a function far away from (0, 0)
affect its limit at (0, 0)?

2.1.2.2. Hint. In this analogy, f(x, y) is the diameter of a particle taken
from the position (x, y) in the basin.

2.1.2.3. Hint. You can probably solve (a) and (b) by just staring at
f(x, y).

2.1.2.4. Hint. Recall cos2 θ − sin2 θ = cos(2θ)

2.1.2.5. Hint. Theorem 2.1.6

2.1.2.6. Hint. For parts (b), (c), (d), (e), switch to polar coordinates.
For part (f),

lim
(x,y)→(0,0)

(sin x) (ey − 1)
xy

=
[

lim
x→0

sin x
x

] [
lim
y→0

ey − 1
y

]
2.1.2.7. ∗. Hint. Switch to polar coordinates.

2.1.2.8. ∗. Hint. (a) Switch to polar coordinates.
(b) What are the limits when (i) x = 0 and y → 0 and when (ii) y = 0

and x→ 0?

2.1.2.9. ∗. Hint. For part (a) switch to polar coordinates. For part (b),
switch to polar coordinates centred on (0, 1). That is, make the change of
variables x = r cos θ, y = 1 + r sin θ.

2.1.2.10. Hint. For part (c), does there exist a single number, L, with
the property that f(x, y) is really close to L for all (x, y) that are really
close to (0, 0)?

2.1.2.11. ∗. Hint. For part (b), consider the ratio of sin(xy)
x2+y2 (from part

(b)) and xy
x2+y2 (from part (a)), and recall that lim

t→0
sin t
t = 1.

For part (d) consider the limits along the positive x- and y-axes.



APPENDIX B. HINTS FOR EXERCISES 407

2.1.2.12. Hint. For part (a), determine what happens as (x, y) tends to
(0, 0) along the curve y = x+ x2

a , where a is any nonzero constant.

2.2 · Partial Derivatives
2.2.2 · Exercises

2.2.2.1. Hint. Review Definition 2.2.1.
2.2.2.2. Hint. What happens if you move “backwards,” in the negative
y direction?

2.2.2.3. ∗. Hint. For (a) and (b), remember ∂f∂x (x, y) = lim
h→0

f(x+h,y)−f(x,y)
h

and ∂f
∂y (x, y) = lim

h→0
f(x,y+h)−f(x,y)

h . For (c), you’re finding the derivative
of a function of one variable, say g(t), where

g(t) = f(t, t) =
{

t2t
t2+t2 if t 6= 0
0 if t = 0

2.2.2.5. Hint. Just evaluate x ∂z∂x (x, y) + y ∂z∂y (x, y).

2.2.2.10. Hint. Just evaluate y ∂z∂x (x, y) and x ∂z∂y (x, y).

2.2.2.12. Hint. You can find an equation for the surface, or just look at
the diagram.

2.3 · Higher Order Derivatives
2.3.3 · Exercises

2.3.3.1. Hint. Repeatedly use (Clairaut’s) Theorem 2.3.4.

2.3.3.2. Hint. If f(x, y) obeying the specified conditions exists, then it
is necessary that fxy(x, y) = fyx(x, y).

2.3.3.5. Hint. (a) This higher order partial derivative can be evaluated
extremely efficiently by carefully choosing the order of evaluation of the
derivatives.

(b) This higher order partial derivative can be evaluated extremely ef-
ficiently by carefully choosing a different order of evaluation of the deriva-
tives for each of the three terms.

(c) Set g(x) = f(x, 0, 0). Then fxx(1, 0, 0) = g′′(1).

2.4 · The Chain Rule
2.4.5 · Exercises

2.4.5.1. Hint. Review §2.4.1.

2.4.5.2. Hint. This is a visualization, in a simplified setting, of Exam-
ple 2.4.10.

2.4.5.3. ∗. Hint. Pay attention to which variables change, and which
are held fixed, in each context.
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2.4.5.4. Hint. The basic assumption is that the three quantites x, y
and z are not independent. Given any two of them, the third is uniquely
determined. They are assumed to satisfy a relationship F (x, y, z) = 0,
which can be solved to

• determine x as a function of y and z (say x = f(y, z)) and can
alternatively be solved to

• determine y as a function of x and z (say y = g(x, z)) and can
alternatively be solved to

• determine z as a function of x and y (say z = h(x, y)).

For example, saying that F (x, y, z) = 0 determines x = f(y, z) means that

F
(
f(y, z), y, z

)
= 0 (∗)

for all y and z. The equation(
∂y

∂x

)(
∂z

∂y

)(
∂x

∂z

)
= −1

really means (
∂g

∂x

)(
∂h

∂y

)(
∂f

∂z

)
= −1

So use (∗) to compute ∂f
∂z . Use other equations similar to (∗) to compute

∂g
∂x and ∂h

∂y .

2.4.5.5. Hint. Is the ∂w
∂x on the left hand side really the same as the ∂w

∂x
on the right hand side?

2.4.5.6. Hint. To avoid the chain rule, write w explicitly as a function
of s and t.
2.4.5.7. Hint. Start by setting F (x, y) = f(2x + 3y, xy). It might also
help to define g(x, y) = 2x+ 3y and h(x, y) = xy.

2.4.5.9. ∗. Hint. Start by showing that, because ∂2f
∂x2 + ∂2f

∂y2 = 0, the
second derivative ∂2g

∂s2 = 2 ∂2f
∂x∂y .

2.4.5.10. ∗. Hint. The notation in the statement of this question is
horrendous — the symbol z is used with two different meanings in one
equation. On the left hand side, it is a function of x and y, and on the
right hand side, it is a function of s and t. Unfortunately that abuse of
notation is also very common. Until you get used to it, undo this notation
conflict by renaming the function of s and t to F (s, t). That is, F (s, t) =
f
(
2s+ t , s− t

)
.

Then, evaluate each term on the right-hand side of the equation.

2.4.5.11. ∗. Hint. Let u(x, y) = x2 − y2 , and v(x, y) = 2xy. Then
F (x2 − y2, 2xy) = F

(
u(x, y), v(x, y)

)
.

2.4.5.12. ∗. Hint. (b) Since F is a function of only one variable, the
chain rule for (say) ∂

∂xF
(
xe−y

2) has only one term.

2.4.5.13. ∗. Hint. At some point, you’ll be using the chain rule you
learned in first-semester calculus.
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2.4.5.14. ∗. Hint. Just compute the first order partial derivatives of
w(x, y, z).

2.4.5.15. ∗. Hint. The function ∂f
∂x depends on both x and y, so don’t

forget to account for both of these when you take its partial derivative.

2.4.5.17. ∗. Hint. Just compute ∂G
∂t ,

∂2G
∂γ2 and ∂2G

∂s2 .

2.4.5.19. ∗. Hint. Use implicit differentiation to find ∂z
∂x (x, y) and

∂z
∂y (x, y).

2.4.5.21. ∗. Hint. This question uses bad (but standard) notation, in
that the one symbol f is used for two different functions, namely f(x, y)
and f(r, θ) = f(x, y)

∣∣
x=r cos θ, y=r sin θ. Until you get used to it, undo this

notation conflict by renaming the function of r and θ to F (r, θ). That is,
F (r, θ) = f

(
r cos θ , r sin θ

)
. Similarly, rename g, viewed as a function of r

and θ, to G(r, θ). That is, G(r, θ) = g
(
r cos θ , r sin θ

)
.

2.4.5.23. ∗. Hint. (b) Think of x = u3 − 3uv2, y = 3u2v − v3 as two
equations in the two unknowns u, v with x, y just being given parameters.
The question implicitly tells us that those two equations can be solved for
u, v in terms of x, y, at least near (u, v) = (2, 1), (x, y) = (2, 11). That
is, the question implicitly tells us that the functions u(x, y) and v(x, y)
are determined by x = u(x, y)3 − 3u(x, y) v(x, y)2, y = 3u(x, y)2v(x, y) −
v(x, y)3. Then z(x, y) is determined by z(x, y) = u(x, y)2 − v(x, y)2.

2.4.5.24. ∗. Hint. The question tells us that x(u, v) and y = y(u, v) ar
eimplicitly determined by

x(u, v)2 − y(u, v) cos(uv) = v x(u, v)2 + y(u, v)2 − sin(uv) = 4
π
u

at least near (x, y) = (1, 1), (u, v) =
(
π
2 , 0
)
. Then, in part (b), z = x4 + y4

really means z(u, v) = x(u, v)4 + y(u, v)4.

2.4.5.25. ∗. Hint. This question uses bad (but standard) notation, in
that the one symbol f is used for two different functions, namely f(u, v)
and f(x, y) = f(u, v)

∣∣
u=x+y,v=x−y. A better wording is

• Let f(u, v) and F (x, y) be differentiable functions such that F (x, y) =
f(x+ y, x− y). Find a constant, α, such that

Fx(x, y)2 + Fy(x, y)2 = α
{
fu(x+ y, x− y)2 + fv(x+ y, x− y)2}

2.4.5.26. Hint. Use the chain rule to show that ∂
2u
∂x2 (x, t)− 1

c2
∂2u
∂t2 (x, t) =

4 ∂2v
∂ξ∂η

(
ξ(x, t), η(x, t)

)
.

2.4.5.27. Hint. For each part, first determine which variables y is a
function of.

2.5 · Tangent Planes and Normal Lines
2.5.3 · Exercises

2.5.3.1. Hint. What are the tangent planes to the two surfaces at
(0, 0, 0)?

2.5.3.2. Hint. Apply the chain rule to G
(
r(t)

)
= 0.
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2.5.3.3. Hint. To find a tangent vector to the curve of intersection of
the surfaces F (x, y, z) = 0 and G(x, y, z) = 0 at (x0, y0, z0), use Q[2.5.3.2]
twice, once for the surface F (x, y, z) = 0 and once for the surfaceG(x, y, z) =
0.
2.5.3.4. Hint. To find a tangent vector to the curve of intersection of
the surfaces z = f(x, y) and z = g(x, y) at (x0, y0, z0), use Q[2.5.3.2] twice,
once for the surface z = f(x, y) and once for the surface z = g(x, y).

2.5.3.11. ∗. Hint. Let (x, y, z) be a desired point. Then
• (x, y, z) must be on the surface and

• the normal vector to the surface at (x, y, z) must be parallel to the
plane’s normal vector.

2.5.3.12. ∗. Hint. First find a parametric equation for the normal
line to S at (x0, y0, z0). Then the requirement that (0, 0, 0) lies on that
normal line gives three equations in the four unknowns x0, y0, z0 and t.
The requirement that (x0, y0, z0) lies on S gives a fourth equation. Solve
this system of four equations.

2.5.3.13. ∗. Hint. Two (nonzero) vectors v and w are parallel if and
only if there is a t such that v = tw. Don’t forget that the point has to
be on the hyperboloid.

2.5.3.14. Hint. The curve lies in the surface z2 = 4x2 + 9y2. So the
tangent vector to the curve is perpendicular to the normal vector to z2 =
4x2 + 9y2 at (2, 1,−5).

The curve also lies in the surface 6x+3y+2z = 5. So the tangent vector
to the curve is also perpendicular to the normal vector to 6x+ 3y+ 2z = 5
at (2, 1,−5).

2.5.3.15. Hint. At the highest and lowest points of the surface, the
tangent plane is horizontal.

2.5.3.17. ∗. Hint. (b) If v is tangent, at a point P , to the curve of
intersection of the surfaces S1 and S2, then v

• has to be tangent to S1 at P , and so must be perpendicular to the
normal vector to S1 at P and

• has to be tangent to S2 at P , and so must be perpendicular to the
normal vector to S2 at P .

2.5.3.18. ∗. Hint. The angle between the curve and the surface at P
is 90◦ minus the angle between the curve and the normal vector to the
surface at P .
2.5.3.19. Hint. Let D(x, y) be the distance (or the square of the dis-
tance) from (1, 1, 0) to the point

(
x, y, x2 + y2) on the paraboloid. We

wish to minimize D(x, y). That is, to find the lowest point on the graph
z = D(x, y). At this lowest point, the tangent plane to z = D(x, y) is
horizontal.

2.6 · Linear Approximations and Error
2.6.3 · Exercises
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2.6.3.1. Hint. Review Example 2.6.11. Be careful when taking absolute
values.
2.6.3.2. Hint. Units!

2.6.3.5. Hint. Let the four numbers be x1, x2, x3 and x4. Let the
four rounded numbers be x1 + ε1, x2 + ε2, x3 + ε3 and x4 + ε4. If
P (x1, x2, x3, x4) = x1x2x3x4, then the error in the product introduced
by rounding is

∣∣P (x1 + ε1, x2 + ε2, x3 + ε3, x4 + ε4)− P (x1, x2, x3, x4)
∣∣.

2.6.3.6. ∗. Hint. Use Pythagoras to express the length of the hy-
potenuse in terms of the lengths of the other two sides.

2.6.3.8. Hint. Review the relationship between absolute error and per-
centage error given in Definition 2.6.6.

2.6.3.9. Hint. Be very careful about signs. There is a trap hidden in
this question. As an example of the trap, suppose you know that |ε1| ≤ 0.2
and |ε2| ≤ 0.1. It does not follow from this that

∣∣ε1− ε2| ≤ 0.2−0.1 = 0.1.
The reason is that it is possible to have ε1 = 0.2 and ε2 = −0.1 and then
ε1 − ε2 = 0.3. The correct way to bound

∣∣ε1 − ε2| is∣∣ε1 − ε2| ≤ |ε1|+ |ε2| ≤ 0.2 + 0.1 ≤ 0.3

2.6.3.11. Hint. Determine, approximately, the change in sag when the
height changes by a small amount ε and also when the width changes by a
small amount ε. Which is bigger?

2.6.3.15. ∗. Hint. 1◦ = π
180 radians

2.7 · Directional Derivatives and the Gradient
2.7.2 · Exercises

2.7.2.4. Hint. The rate of change in the direction that makes an-
gle θ with respect to the x-axis, that is, in the direction 〈cos θ, sin θ〉 is
〈cos θ, sin θ〉 · ∇∇∇f(2, 0).

2.7.2.5. Hint. Denote ∇∇∇f(a, b) = 〈α, β〉.

2.7.2.6. ∗. Hint. Use a coordinate system with the positive y-axis
pointing north, with the positive x-axis pointing east and with our current
location being x = y = 0. Denote by z(x, y) the elevation of the earth’s
surface at (x, y). Express the various slopes in terms of ∇∇∇z(0, 0).

2.7.2.9. Hint. In order for y = axb to give the (x, y) coordinates of the
path of steepest ascent, the tangent vector to y = axb must be parallel to
the height gradient ∇∇∇h(x, y) at all points on y = axb. Also, don’t forget
that (1, 1) must be on y = axb.

2.7.2.28. Hint. Review §2.7.
(e) Suppose that the ant moves along the curve y = y(x). For the ant to

always experience maximum rate of cooling (or maximum rate of heating),
the tangent to this curve must be parallel to∇∇∇T (x, y) at every point of the
curve. This gives a separable differential equation for the function y(x).
Also, don’t forget that (2,−1) must be on the curve.
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2.8 · A First Look at Partial Differential Equa-
tions
2.8.3 · Exercises

2.8.3.1. Hint. Just evaluate ut(x, t) and uxx(x, t) + u(x, t) and stare at
them for a while.
2.8.3.2. Hint. (a), (b) Fix any y0 and set v(x) = u(x, y0). What is
dv
dx (x)?

2.8.3.4. ∗. Hint. Just substitute the given u(x, t) into the given PDE.

2.8.3.5. Hint. Just substitute the given u(x, y, z) into the given PDE.

2.8.3.6. Hint. Just substitute the given u(x, t) into the given PDE.

2.8.3.7. Hint. Just substitute the given z(x, y) into the given PDE.

2.8.3.8. Hint. Substitute the given u(x, t) into the given PDE. Review
Theorem 3.3.2 in the CLP-1 text.
2.8.3.10. Hint. Evaluate uxx + uyy for the given u(x, y).

2.8.3.12. Hint. (b) The left hand side is independent of x and the right
hand side is independent of t.

(c) Review Section 3.3 in the CLP-1 text and Section 2.4 in the CLP-2
text.
2.8.3.13. Hint. Evaluate d

dtu
(
X(t), Y (t)

)
.

2.8.3.14. Hint. Evaluate vX .

2.9 · Maximum and Minimum Values
2.9.4 · Exercises

2.9.4.2. Hint. Interpret the height
√
x2 + y2 geometrically.

2.9.4.3. Hint. Define f(t) = g(a + td).

2.9.4.4. ∗. Hint. Write down the equations of specified level curves.

2.9.4.13. Hint. One way to deal with the boundary x2 + y2 = 1 is to
parametrize it by x = cos θ, y = sin θ, 0 ≤ θ < 2π.
2.9.4.30. Hint. Suppose that the bends are made a distance x from the
ends of the fence and that the bends are through an angle θ. Draw a sketch
of the enclosure and figure out its area, as a function of x and θ.
2.9.4.31. Hint. Suppose that the box has side lengths x, y and z.

2.10 · Lagrange Multipliers
2.10.2 · Exercises

2.10.2.2. Hint. (a) The function f decreases, or at least does not in-
crease, as you leave (x0, y0, z0) in the direction d. The function f also
decreases, or at least does not increase, as you leave (x0, y0, z0) in the
direction −d.
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2.10.2.4. Hint. The ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 passes through the point
(1, 2, 1) if and only if 1

a2 + 4
b2 + 1

c2 = 1.

2.10.2.19. Hint. The ends of the major axes are the points on the
ellipse which are farthest from the origin. The ends of the minor axes are
the points on the ellipse which are closest to the origin.

3 · Multiple Integrals
3.1 · Double Integrals
3.1.7 · Exercises

3.1.7.2. Hint. Be careful to match each integration variable with its
own limits. Remember that the integral with respect to x treats y as a
constant and the integral with respect to y treats x as a constant.

3.1.7.9. ∗. Hint. The antiderivative of the function sin(y2) cannot be
expressed in terms of familiar functions. So we do not want the inside
integral to be over y.

3.1.7.10. ∗. Hint. The inside integral,
∫ 1√

y
sin(πx2)

x dx, in the given form
of I looks really nasty. So try exchanging the order of integration.

3.1.7.14. ∗. Hint. The inside integral,
∫ 1√

x

√
1 + y3 dy, of the given

integral looks pretty nasty. Try reversing the order of integration.

3.1.7.15. ∗. Hint. (b) The inside integral,
∫ 1

1
2
√
x
ey

3 dy, looks pretty
nasty because ey3 does not have an obvious antiderivative. Try reversing
the order of integration.

3.1.7.16. ∗. Hint. (b) The inside integral,
∫ 2√
−y cos(x3) dx looks nasty.

Try reversing the order of integration.

3.1.7.18. ∗. Hint. 1
9−x2 = 1

6

(
1

x+3 −
1

x−3

)
.

3.1.7.19. ∗. Hint. The antiderivative of the function e−y
2 cannot be

expressed in terms of elementary functions. So the inside integral
∫ 2x
−2 e

y2 dy
cannot be evaluated using standard calculus 2 techniques. Try reversing
the order of integration.

3.1.7.22. ∗. Hint. The inside integral, over y, looks pretty nasty because
sin(y3) does not have an obvious antiderivative. So try reversing the order
of integration.

3.1.7.24. ∗. Hint. The inside integral,
∫ 4
x2 cos

(
y3/2) dy, in the given

integral looks really nasty. So try exchanging the order of integration.

3.1.7.26. ∗. Hint. The inside integral,
∫ 3

√
y

sin
(
πx3) dx, in the given

integral looks really nasty. So try exchanging the order of integration.

3.2 · Double Integrals in Polar Coordinates
3.2.5 · Exercises

3.2.5.2. Hint. r is allowed to be negative.
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3.2.5.3. Hint. Compute, for each angle θ, the dot product er(θ) · eθ(θ).

3.2.5.4. Hint. Sketch 〈a, b〉 and 〈A,B〉. The trigonometric addition
formulas

sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ
cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ

will help.

3.2.5.11. ∗. Hint.∫
sinn u du = − 1

n
sinn−1 u cosu+ n− 1

n

∫
sinn−2 u du

3.3 · Applications of Double Integrals
3.3.4 · Exercises

3.3.4.9. ∗. Hint. Try using polar coordinates.

3.4 · Surface Area
3.4.1 · Exercises

3.4.1.1. Hint. S is a very simple geometric object.

3.4.1.3. Hint. The triangle is part of the plane x
a + y

b + z
c = 1.

3.4.1.8. ∗. Hint. The total surface area of (b) (ii) can be determined
without evaluating any integrals.

3.5 · Triple Integrals
3.5.1 · Exercises

3.5.1.20. ∗. Hint. Sketch E. You can picture E by thinking of the
region bounded by the planes x = 0, y = 0, z = 0 and x+ y = 2 as a large
wedge of cheese and thinking of the cylinder y2 + z2 = 1 as a drill hole in
the wedge. Then to set up the limits of integration, first sketch a top view
of E.

3.6 · Triple Integrals in Cylindrical Coordinates
3.6.4 · Exercises

3.6.4.12. Hint. Use cylindrical coordinates.

3.7 · Triple Integrals in Spherical Coordinates
3.7.5 · Exercises

3.7.5.19. ∗. Hint. Switch to spherical coordinates.

3.7.5.26. ∗. Hint. (b) it is a solid of revolution.



Appendix C

Answers to Exercises

1 · Vectors and Geometry in Two and Three
Dimensions
1.1 · Points
1.1.1 · Exercises

1.1.1.1. Answer.
a The sphere of radius 3 centered on (1,−2, 0).

b The interior of the sphere of radius 3 centered on (1,−2, 0).

1.1.1.2. Answer.
a x = y is the straight line through the origin that makes an angle 45◦

with the x- and y-axes. It is sketched in the figure on the left below.

x

y

y “ x

x

y

p1, 0q

p0, 1q
x ` y “ 1

b x + y = 1 is the straight line through the points (1, 0) and (0, 1). It
is sketched in the figure on the right above.

c x2 +y2 = 4 is the circle with centre (0, 0) and radius 2. It is sketched
in the figure on the left below.

x

y

p2, 0q

x2 ` y2 “ 4

x

y

p0, 1q

x2 ` y2 “ 2y

d x2+y2 = 2y is the circle with centre (0, 1) and radius 1. It is sketched
in the figure on the right above.

e x2 +y2 < 2y is the set of points that are strictly inside the circle with

415
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centre (0, 1) and radius 1. It is the shaded region (not including the
dashed circle) in the sketch below.

x

y

p0, 1q

x2 ` y2 “ 2y

1.1.1.3. Answer.
(a) The set z = x is the plane which contains the y-axis and which makes

an angle 45◦ with the xy-plane. Here is a sketch of the part of the
plane that is in the first octant.

y

z

x

(b) x + y + z = 1 is the plane through the points (1, 0, 0), (0, 1, 0) and
(0, 0, 1). Here is a sketch of the part of the plane that is in the first
octant.

x

y

z

p1,0,0q
p0,1,0q

p0,0,1q

(c) x2 + y2 + z2 = 4 is the sphere with centre (0, 0, 0) and radius 2. Here
is a sketch of the part of the sphere that is in the first octant.

z

y

x

(d) (d) x2 + y2 + z2 = 4, z = 1 is the circle in the plane z = 1 that
has centre (0, 0, 1) and radius

√
3. The part of the circle in the first

octant is the heavy quarter circle in the sketch
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z

y

x

(e) x2 + y2 = 4 is the cylinder of radius 2 centered on the z-axis. Here
is a sketch of the part of the cylinder that is in the first octant.

z

y

x

(f) z = x2 + y2 is a paraboloid consisting of a vertical stack of horizon-
tal circles. The intersection of the surface with the yz-plane is the
parabola z = y2. Here is a sketch of the part of the paraboloid that
is in the first octant.

z

y

x

z“y2

x“0z“x2

y“0

1.1.1.4. Answer.
a 3

b 1

c
√

(x− 2)2 + 10

d (2, 0, 0)

e
√

10

1.1.1.5. Answer. The circumscribing circle has centre (x̄, ȳ) and radius
r with x̄ = a

2 , ȳ = b2+c2−ab
2c and r =

√(
a
2
)2 +

(
b2+c2−ab

2c
)2.
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1.1.1.6. ∗. Answer. x2 +y2 = 4z The surface is a paraboloid consisting
of a stack of horizontal circles, starting with a point at the origin and with
radius increasing vertically. The circle in the plane z = z0 has radius 2√z0.

1.1.1.7. Answer. The sphere has radius 3 and is centered on (1, 2,−1).

1.1.1.8. Answer.

x

y

p“0 p“1 p“2 p“3

1.2 · Vectors
1.2.9 · Exercises

1.2.9.1. Answer. a + b = 〈3, 1〉, a + 2b = 〈4, 2〉 2a − b = 〈3,−1〉

x

y

a
b

a ` b

x

y

a

2b
a ` 2b

x
y

2a

´b
2a ´ b

1.2.9.2. Answer.
a not collinear

b collinear
1.2.9.3. Answer.

a perpendicular

b perpendicular

c not perpendicular

1.2.9.4. Answer.

a 1
5 〈3, 4〉

b ±1
5 〈3, 4〉

c ±〈6, 8〉

d ±1
5 〈4,−3〉
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1.2.9.5. Answer.

a 1
5 〈3, 4, 0〉

b ±1
5 〈3, 4, 0〉

c A vector is of length one and perpendicular to b if and only if it is
of the form

〈
x,− 3

4x, z
〉
with

√
25
16x

2 + z2 = 1. There are infinitely
many such vectors. Four of them are

±〈0, 0, 1〉 ± 1
5 〈4,−3, 0〉

1.2.9.6. Answer. proĵıııa = a1ı̂ıı proĵa = a2̂.

1.2.9.7. Answer. Yes.
1.2.9.8. Answer. See the solution.
1.2.9.9. Answer. See the solution
1.2.9.10. Answer. See the solution.
1.2.9.11. Answer. This statement is false. One counterexample is a =
〈1, 0, 0〉, b = 〈0, 1, 0〉 , c = 〈0, 0, 1〉. Then a · b = a · c = 0, but b 6= c.
There are many other counterexamples.
1.2.9.12. Answer. True.
1.2.9.13. Answer. None. The given equation is nonsense.

1.2.9.14. Answer. If b and c are parallel, then a · (b × c) = 0 for all
a. If b and c are not parallel, then a must be of the form αb + βc with α
and β real numbers.

1.2.9.15. Answer. (a), (c)

A

B

C

PA

PB

O

proj−−→
OA

−−→
OC = −−→OPA = 〈a/2, 0〉 proj−−→

OB

−−→
OC = −−→OPA = 〈b/2, c/2〉

(b) The centre of the circumscribing circle is (x̄, ȳ) with x̄ = a
2 and

ȳ = b2+c2−ab
2c .

1.2.9.16. Answer. (x− 3)2 + (y − 2)2 + (z − 7)2 = 11

1.2.9.17. Answer. See the solution.
1.2.9.18. Answer.

a 13

b 20

1.2.9.19. ∗. Answer. 2
√

19
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1.2.9.20. Answer.
a 126

b 5
1.2.9.21. Answer.

a · b = 4 θ = 60.25◦ (a)
a · b = 0 θ = 90◦ (b)
a · b = 4 θ = 0◦ (c)
a · b = 2 θ = 61.87◦ (d)
a · b = 0 θ = 90◦ (e)

1.2.9.22. Answer.
a 10.3◦

b 61.6◦

c 82.6◦

1.2.9.23. Answer.
a −1

b 0, 4

c −2,−3

1.2.9.24. Answer.
(a) −5

(b) 0.8

(c) none

1.2.9.25. Answer.

a 42√
14

b 〈3, 6, 9〉

c 〈1, 4,−3〉

1.2.9.26. Answer. −3̂ııı+ 6̂− 3k̂

1.2.9.27. Answer.
a 〈−27,−9,−9〉

b 〈−31,−34, 8〉

c 〈−4, 5,−4〉

1.2.9.28. Answer. (a) See the solution.
(b) p× q = −q × p = 〈−6, 5,−13〉
(c) p× (3r) = 3(p× r) = 〈6, 9,−15〉
(d) p× (q + r) = p× q + p× r = 〈−4, 8,−18〉
(e) p× (q × r) = 〈−46,−19, 15〉, (p× q)× r = 〈−44,−32, 8〉

1.2.9.29. Answer. 2
√

6

1.2.9.30. ∗. Answer. See the solution.
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1.2.9.31. Answer. See the solution.
1.2.9.32. Answer.

a All 6 edges have length
√

2s.

b 109.5◦

1.2.9.33. Answer. 35.26◦ or 90◦ or 144.74◦

1.2.9.34. Answer.
√

1 + h′
(
x0
)2√−g/h′′(x0

)
1.2.9.35. Answer. The marble rolls in the directionn

〈
ac, bc,−a2 − b2

〉
.

If c = 0, the plane is vertical. In this case, the marble doesn’t roll - it
falls straight down. If a = b = 0, the plane is horizontal. In this case, the
marble doesn’t roll — it remains stationary.

1.2.9.36. Answer. See the solution.
1.2.9.37. Answer. See the solution.
1.2.9.38. Answer. (a × b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

1.2.9.39. Answer.
(a) • AA′B′B is a parallelogram, but not a rectangle.

• AA′C ′C is a rectangle.
• BB′C ′C is a parallelogram, but not a rectangle.

(b)
√

17

(c) 13
2

(d) 51
2

1.2.9.40. Answer. See the solution.
1.2.9.41. Answer. See the solution.

1.3 · Equations of Lines in 2d
1.3.1 · Exercises

1.3.1.1. Answer. Both!
1.3.1.2. Answer. Generally, only the first.

1.3.1.3. Answer. Since both lines pass through (1, 9) and (9, 13), the
lines are identical.
1.3.1.4. Answer. 〈dx, dy〉 can be any nonzero scalar multiple of 〈9, 7〉,
and 〈x0, y0〉 can be any point on the line, i.e. any pair that satisfies 7x0 +
24 = 9y0.

1.3.1.5. Answer. (a) 〈x, y〉 = 〈1, 2〉 + t 〈3, 2〉, x = 1 + 3t, y = 2 + 2t,
x−1

3 = y−2
2

(b) 〈x, y〉 = 〈5, 4〉+ t 〈2,−1〉, x = 5 + 2t, y = 4− t, x−5
2 = y−4

−1
(c) 〈x, y〉 = 〈−1, 3〉+ t 〈−1, 2〉, x = −1− t, y = 3 + 2t, x+1

−1 = y−3
2

1.3.1.6. Answer. (a) 〈x, y〉 = 〈1, 2〉 + t 〈−2, 3〉, x = 1 − 2t, y = 2 + 3t,
x−1
−2 = y−2

3
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(b) 〈x, y〉 = 〈5, 4〉+ t 〈1, 2〉, x = 5 + t, y = 4 + 2t, x− 5 = y−4
2

(c) 〈x, y〉 = 〈−1, 3〉+ t 〈2, 1〉, x = −1 + 2t, y = 3 + t, x+1
2 = y − 3

1.3.1.7. Answer. 14/5

1.3.1.8. Answer. (a)

x(t) = a + t
(1

2b + 1
2c− a

)
x(s) = b + s

(1
2a + 1

2c− b
)

x(u) = c + u
(1

2a + 1
2b− c

)
(b) 1

3 (a + b + c)

1.3.1.9. Answer. One way of writing the equation is x+
√

3y = 4+
√

3.

1.4 · Equations of Planes in 3d
1.4.1 · Exercises

1.4.1.1. Answer. Any vector of the form c k̂ with c 6= 0 and c 6= 1
works. Three possible choices are −k̂, 2 k̂, 7.12345 k̂.

1.4.1.2. Answer.
(a) (0, 8, 0)

(b) (0, 0, 4)

(c)

z

y

x

p0, 8, 0q

p0, 0, 4q

1.4.1.3. Answer.
(a) x+ 2y + 3z = 0

(b) x+ y + 3z = 3

(c) There is no plane that passes through both (1, 2, 3) and (1, 0, 0) and
has normal vector 〈4, 5, 6〉.

(d) 2x+ y + z = 7

1.4.1.4. ∗. Answer. x+ y + z = 1

1.4.1.5. Answer.
(a) x+ y + z = 2

(b) No.

(c) No.

(d) Yes.
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1.4.1.6. Answer. All three points (1, 2, 3), (2, 3, 4) and (3, 4, 5) are on
the line x(t) = (1, 2, 3) + t(1, 1, 1). There are many planes through that
line.

1.4.1.7. Answer.
a 9x− y − z = 8

b 14x− 7y − 8z = 52

(c) For any real numbers a and b, the plane ax+ by− (a+ b)z = 4a+ b
contains the three given points.

1.4.1.8. Answer.
a
√

3

b 7/
√

6

1.4.1.9. ∗. Answer.
a 3x+ 2y + z = 8

b
(
3 , −1 , 1

)
1.4.1.10. ∗. Answer.

a x− y + z = 3

b 5x+ y − 4z = −3

1.4.1.11. ∗. Answer. 4x+ 2y − 4z = 15 and 4x+ 2y − 4z = −9

1.4.1.12. ∗. Answer. 2

1.4.1.13. ∗. Answer.
a (x, y, z) = (−3, 1, 0) + t 〈0,−1, 1〉

b
√

17

1.4.1.14. Answer. (x− 1)2 + (y − 2)2 + (z − 3)2 = 3

1.4.1.15. Answer. 3x− y + z = −5

1.4.1.16. Answer. |c− n · p|/|n|

1.4.1.17. Answer. It is the plane x+ z = 8, which is the plane through
(3, 2, 5) = 1

2 (1, 2, 3)+ 1
2 (5, 2, 7) with normal 〈1, 0, 1〉 = 1

4
(
〈5, 2, 7〉−〈1, 2, 3〉

)
.

1.4.1.18. Answer. It is the plane 2(b−a) ·x = |b|2− |a|2, which is the
plane through 1

2a + 1
2b with normal vector b− a.

1.4.1.19. ∗. Answer.

a 1
2
√

11 ≈ 1.658

b 3√
11
≈ 0.9045

1.4.1.20. ∗. Answer. Any positive constant times 〈1, 1,−1〉×〈1, 0, 1〉 =
〈1,−2,−1〉

1.5 · Equations of Lines in 3d
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1.5.1 · Exercises
1.5.1.1. Answer. There are infinitely many planes satisfying the condi-
tion described, but we’re asked for “the” line.

We need two normal directions to figure out the direction of a line in
R3. Since the given normal vectors are parallel to each other, they really
only specify one normal direction.

1.5.1.2. Answer. There are infinitely many correct answers. One is

〈x , y , z − 1〉 = t 〈1, 0, 0〉 〈x , y , z − 2〉 = t 〈0, 1, 0〉
〈x , y , z − 3〉 = t 〈1, 1, 0〉 〈x , y , z − 4〉 = t 〈1,−1, 0〉

1.5.1.3. Answer. (a) 〈x, y, z〉 = 〈3, 5, 0〉+
〈
2,− 1

2 , 1
〉
t

(b) 〈x, y, z〉 = 〈−2,−1, 0〉+
〈 3

2 , 1, 1
〉
t

1.5.1.4. Answer. (a) 〈x, y, z〉 = 〈−1, 4, 0〉+ t 〈1,−2, 1〉
(b) The two planes are parallel and do not intersect.

1.5.1.5. Answer. (a) (1, 0, 3) lies on both lines. x + y + 2z = 7 is the
only plane containing both lines.

(b) The two lines do not intersect. No plane contains the two lines.
(c) The two lines do not intersect. x+z = 1 is the only plane containing

both lines.
(d) The two lines are identical. For arbitrary a and b (not both zero)

the plane ax+ by + (a+ b)z = a contains both lines.

1.5.1.6. Answer. vector parametric equation: 〈x− 2, y + 1, z + 1〉 =
t 〈1,−1,−1〉

scalar parametric equation: x = 2 + t, y = −1− t, z = −1− t
symmetric equation: x− 2 = −y − 1 = −z − 1

1.5.1.7. ∗. Answer. 〈x, y, z〉 = 〈1, 0, 2〉+ t 〈−1, 1,−1〉

1.5.1.8. Answer. (a) 〈x, y, z〉 = 〈5, 3, 0〉+t 〈4, 1,−2〉 = 〈5 + 4t, 3 + t,−2t〉.
(b)
√

5

1.5.1.9. Answer. (a) 8x+ 2y − 11z = 59
(b) 64√

189 ≈ 4.655

1.5.1.10. ∗. Answer. (a) Any nonzero constant times 〈1 , −5 , −3〉.
(b) x = −4 + t, y = 3− 5t, z = 2− 3t

1.5.1.11. ∗. Answer. (a) (3, 3, 0), (12, 0,−6), (0, 4, 2)
(b) x = 10 + t, y = 11 + t, z = 13 + t.

1.5.1.12. ∗. Answer. (a) x−2
3 = y

4 z = −1
(b) α = π

2 − arccos 1
5
√

6 ≈ 0.08 radians

1.5.1.13. ∗. Answer. (x, y, z) =
(
12 , −1− t , t

)
1.5.1.14. ∗. Answer. (a) (0, 4, 0)

(b) 2x− y − z = −2

1.5.1.15. ∗. Answer. (a) x = 0, y = 2 + t, z = 2
(b) The sphere (x− 1)2 + (y − 2)2 + (z − 2)2 = 1
(c) (0, 4, 4)
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1.5.1.16. Answer. See the solution.
1.5.1.17. Answer. 3

1.6 · Curves and their Tangent Vectors
1.6.2 · Exercises

1.6.2.1. Answer. (1, 25), (−1/
√

2, 0), (0, 25).

1.6.2.2. Answer. The curve crosses itself at all points (0, (πn)2) where
n is an integer. It passes such a point twice, 2πn time units apart.

1.6.2.3. Answer. (a) r(y) =
√
a2 − y2 ı̂ıı+ y ̂, 0 ≤ y ≤ a

(b)
(
x(φ), y(φ)

)
=
(
a sinφ,−a cosφ

)
, π2 ≤ φ ≤ π

(c)
(
x(s), y(s)

)
=
(
a cos(π2 −

s
a ), a sin(π2 −

s
a )
)
, 0 ≤ s ≤ π

2 a

1.6.2.4. Answer. (a) (a+ aθ, a)
(b)(a+ aθ + a sin θ, a+ a cos θ)

1.6.2.5. Answer. z = − 1
2

√
1− y2

2 −
y
4

1.6.2.6. Answer. The particle is moving upwards from t = 1 to t = 2,
and from t = 3 onwards. The particle is moving downwards from t = 0 to
t = 1, and from t = 2 to t = 3.

The particle is moving faster when t = 1 than when t = 3.

1.6.2.7. Answer.

r(t+ h)

r(t)

r(0)

The red vector is r(t+h)−r(t). The arclength of the segment indicated
by the blue line is the (scalar) s(t+ h)− s(t).

Remark: as h approaches 0, the curve (if it’s differentiable at t) starts
to resemble a straight line, with the length of the vector r(t + h) − r(t)
approaching the scalar s(t+h)−s(t). This step is crucial to understanding
Lemma 1.6.12.
1.6.2.8. Answer. Velocity is a vector-valued quantity, so it has both a
magnitude and a direction. Speed is a scalar--the magnitude of the velocity.
It does not include a direction.
1.6.2.9. ∗. Answer. (c)

1.6.2.10. ∗. Answer. (d)

1.6.2.11. Answer. (a)

v(t) = −a sin t ı̂ıı+ a cos t ̂+ c k̂
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ds
dt (t) =

√
a2 + c2

a(t) = −a cos t ı̂ıı− a sin t ̂

The path is a helix with radius a and with each turn having height 2πc.
(b)

v(t) = a cos 2t ı̂ıı+ a sin 2t ̂− a sin t k̂
ds
dt (t) = a

√
1 + sin2 t

a(t) = −2a sin 2t ı̂ıı+ 2a cos 2t ̂− a cos t k̂

The (x, y) coordinates go around a circle of radius a
2 and centre

(
0, a2

)
counterclockwise. At the same time the z coordinate oscillates over the
interval between 1 and −1 half as fast.

1.6.2.12. ∗. Answer. (a) T̂(1) = (2,0,1)√
5

(b) 1
3
[
53/2 − 8

]
1.6.2.13. Answer. 2
1.6.2.14. Answer. 1

1.6.2.15. ∗. Answer. (a) 20
3

(b) x(t) = −2π − 2t, y(t) = −2πt, z(t) = π3

3 + π2t

1.6.2.16. ∗. Answer. (a) r′(t) =
(
− 3 sin t, 3 cos t, 4

)
(b) 5

1.6.2.17. ∗. Answer. (a) 1
27
(
10
√

10− 1
)

(b) 2
27
(
10
√

10− 1
)

1.6.2.18. ∗. Answer. s(t) = t3

3 + t
2

1.6.2.19. ∗. Answer. 8
27

[(
2 + 9

4b
m
)3/2

−
(

2 + 9
4a
m
)3/2]

1.6.2.20. Answer. |t|

1.6.2.21. ∗. Answer. (a) r(2) = 2̂+ 4k̂
(b) any nonzero multiple of r′(2) = 2π ı̂ıı+ ̂+ 4 k̂
(c) Γ and E do not intersect at right angles.

1.6.2.22. ∗. Answer. d
dt
[
|r(t)|2 + |r′(t)|2

]
= 0

1.6.2.23. ∗. Answer.
a r(u) = u3 ı̂ıı+ 3u2 ̂+ 6u k̂

b 7

c 2

d 1

1.6.2.24. ∗. Answer. (a) r(t) =
(
π2t
2 −

t3

2
)
ı̂ıı+ (t− sin t) ̂+

( 1
2e

2t − t
)

k̂
(b) t = π
(c) −π2 ı̂ıı+ 2 ̂+

(
e2π − 1

)
k̂
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1.6.2.25. ∗. Answer.
a 21

b 6

c 2̂ııı+ 4 ̂+ 4 k̂

d −8
3
(
2̂ııı+ ̂− 2 k̂

)
1.6.2.26. Answer. x(t)y′(t)−y(t)x′(t)

x2+y2

1.6.2.27. Answer. r(t) = r0 − e−αt−1
α v0 + g 1−αt−e−αt

α2 k̂

1.6.2.28. ∗. Answer. (a) r(t) = 〈− cos t,− sin t, t〉
(b) v(t) · a(t) = 0
(c) r(u) =

〈
0, 1,−π2

〉
+ u 〈−1, 0, 1〉

(d) True

1.6.2.29. ∗. Answer. (a) x(t)2 + y(t)2 = z(t)2 for all t
(b)

velocity =
[

cos
(
πt
2
)
− πt

2 sin
(
πt
2
)]̂
ııı+

[
sin
(
πt
2
)

+ πt
2 cos

(
πt
2
)]
̂+ k̂

speed =
√

2 + π2t2

4
(c) 〈x, y, z〉 = 〈0, 1, 1〉+ (t− 1)

〈
−π2 , 1, 1

〉
(d) 2

π seconds

1.6.2.30. ∗. Answer. (a) 90◦
(b) 2

√
3

1.7 · Sketching Surfaces in 3d
1.7.2 · Exercises

1.7.2.1. ∗. Answer. (a) ↔ (C)
(b) ↔ (F)
(c) ↔ (D)
(d) ↔ (B)
(e) ↔ (A)
(f) ↔ (E)

1.7.2.2. Answer.
(a) z

y

x

(b) z

y

x

1.7.2.3. Answer.
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x

y
f“0.25

f“0.5

f“1

f“2

f“3

1.7.2.4. Answer.
(a)

x

y

f“1

f“2

f“0

(b)

x

y

f“2

f“1

f“2 f“´2

f“´2

f“0

(c)

x

y
f“1f“´1

f“2f“´2

f“0
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1.7.2.5. ∗. Answer.

x

y

f“0

f“1

f“´1

f“2

f“´2

1.7.2.6. ∗. Answer.

x

y

f“1

f“e

f“e

f“e9

f“e9

f“e´1f“e´1 f“e´9f“e´9

1.7.2.7. ∗. Answer.
(a)

x

y

z“0,2

z“´1,3

z“´2,4
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(b) z

y

x

1.7.2.8. ∗. Answer.
z

y

x

1.7.2.9. Answer. (a) If c > 0, f(x, y, z) = c is the sphere of radius
√
c

centered at the origin. If c = 0, f(x, y, z) = c is just the origin. If c < 0,
no (x, y, z) satisfies f(x, y, z) = c.

(b) f(x, y, z) = c is the plane normal to (1, 2, 3) passing through (c, 0, 0).
(c) If c > 0, f(x, y, z) = c is the cylinder parallel to the z-axis whose

cross-section is a circle of radius
√
c that is parallel to the xy-plane and is

centered on the z-axis. If c = 0, f(x, y, z) = c is the z-axis. If c < 0, no
(x, y, z) satisfies f(x, y, z) = c.

1.7.2.10. Answer.

(a)

z

y

x
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(b)

z

y

x

(c)

z

y

x

1.7.2.11. Answer. (a) This is an elliptic cylinder parallel to the z-axis.
Here is a sketch of the part of the surface above the xy--plane.

y

z

x
p0, 4, 0qp2, 0, 0q

(b) This is a plane through (4, 0, 0), (0, 4, 0) and (0, 0, 2). Here is a
sketch of the part of the plane in the first octant.

p4, 0, 0q

p0, 4, 0q

p0, 0, 2q

y

x

z

(c) This is a hyperboloid of one sheet with axis the x-axis.
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z

y
x

(d) This is a circular cone centred on the y-axis.

y

z

(e) This is an ellipsoid centered on the origin with semiaxes 3,
√

12 =
2
√

3 and 3 along the x, y and z-axes, respectively.
z

y
x p3, 0, 0q p0,?

12, 0q

p0, 0, 3q

p0,?
12, 0q

p0, 0, 3q

p3, 0, 0q

(f) This is a sphere of radius rb = 1
2
√
b2 + 4b+ 97 centered on 1

2 (−4, b,−9).

1
2
p´4, b ` 2rb,´9q

1
2
p´4, b,´9 ` 2rbq

1
2
p´4, b,´9q

1
2
p´4 ` 2rb, b,´9q

(g) This is an elliptic paraboloid with axis the x-axis.
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z

y

x

(h) This is an upward openning parabolic cylinder.
z

y

x

1.7.2.12. Answer. x2 + y2 =
(
|z|
3 + 1

)2

2 · Partial Derivatives
2.1 · Limits
2.1.2 · Exercises

2.1.2.1. Answer. in general, false.

2.1.2.2. Answer. (a) the position of the particle in the basin
(b) the position in the basin that the millstone hits
(c) 50 µm

2.1.2.3. Answer. (a) along the x-axis
(b) along the y-axis
(c) lim

(x,y)→(0,0)
f(x, y) does not exist

2.1.2.4. Answer. (a) r2 cos(2θ)
(b) min = −1, max = 1
(c) min = −r2, max = r2

(d) r <
√
ε

(e) lim
(x,y)→(0,0)

f(x, y) = 0

2.1.2.5. Answer. f(a, b)

2.1.2.6. Answer. (a) 2
(b) undefined
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(c) undefined
(d) 0
(e) 0
(f) 1

2.1.2.7. ∗. Answer. (a) 0
(b) See the solution.

2.1.2.8. ∗. Answer. (a) 0
(b) The limit does not exist since the limits (i) x = 0, y → 0 and (ii)

y = 0, x→ 0 are different.

2.1.2.9. ∗. Answer. (a) 2
(b) The limit does not exist. See the solution.

2.1.2.10. Answer. (a) 0
(b) 1

2
(c) No.

2.1.2.11. ∗. Answer. (a), (b), (d) Do not exist. See the solutions.
(c) 0

2.1.2.12. Answer. (a), (b). The limit does not exist. See the solution.

2.2 · Partial Derivatives
2.2.2 · Exercises

2.2.2.1. Answer.
(a)

∂f

∂x
(0, 0) ≈ f(h, 0)− f(0, 0)

h

∣∣∣∣
h=0.1

= 1.10517− 1
0.1 = 1.0517

and

∂f

∂x
(0, 0) ≈ f(h, 0)− f(0, 0)

h

∣∣∣∣
h=0.01

= 1.01005− 1
0.01 = 1.005

(b)

∂f

∂y
(0, 0) ≈ f(0, h)− f(0, 0)

h

∣∣∣∣
h=−0.1

= 0.99500− 1
−0.1 = 0.0500

and

∂f

∂y
(0, 0) ≈ f(0, h)− f(0, 0)

h

∣∣∣∣
h=−0.01

= 0.99995− 1
−0.01 = .0050

(c) ∂f
∂x (0, 0) = 1 and ∂f

∂y (0, 0) = 0

2.2.2.2. Answer. No: you can go higher by moving in the negative y
direction.
2.2.2.3. ∗. Answer. (a) 0

(b) 0
(c) 1

2
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2.2.2.4. Answer. (a)

fx(x, y, z) = 3x2y4z5 fx(0,−1,−1) = 0
fy(x, y, z) = 4x3y3z5 fy(0,−1,−1) = 0
fz(x, y, z) = 5x3y4z4 fz(0,−1,−1) = 0

(b)

wx(x, y, z) = yzexyz

1 + exyz
wx(2, 0,−1) = 0

wy(x, y, z) = xzexyz

1 + exyz
wy(2, 0,−1) = −1

wz(x, y, z) = xyexyz

1 + exyz
wz(2, 0,−1) = 0

(c)

fx(x, y) = − x

(x2 + y2)3/2 fx(−3, 4) = 3
125

fy(x, y) = − y

(x2 + y2)3/2 fy(−3, 4) = − 4
125

2.2.2.5. Answer. See the solution.

2.2.2.6. ∗. Answer. (a) ∂z
∂x = z(1−x)

x(yz−1) ,
∂z
∂y = z(1+y−yz)

y(yz−1)
(b) ∂z

∂x (−1,−2) = 1
2 ,

∂z
∂y (−1,−2) = 0.

2.2.2.7. ∗. Answer. ∂U
∂T (1, 2, 4) = − 2 ln(2)

1+2 ln(2)
∂T
∂V (1, 2, 4) = 1− 1

4 ln(2)

2.2.2.8. ∗. Answer. 24
2.2.2.9. Answer. fx(0, 0) = 1,

fy(0, 0) = 2

2.2.2.10. Answer. Yes.

2.2.2.11. Answer. (a) ∂f
∂x (0, 0) = 1, ∂f∂y (0, 0) = 4

(b) Nope.

2.2.2.12. Answer. 1 resp. 0

2.3 · Higher Order Derivatives
2.3.3 · Exercises

2.3.3.1. Answer. See the solution.
2.3.3.2. Answer. No such f(x, y) exists.

2.3.3.3. Answer. (a) fxx(x, y) = 2y3

fyxy(x, y) = fxyy(x, y) = 12xy
(b) fxx(x, y) = y4exy

2

fxy(x, y) =
(
2y + 2xy3)exy2
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fxxy(x, y) =
(
4y3 + 2xy5)exy2

fxyy(x, y) =
(
2 + 10xy2 + 4x2y4)exy2

(c) ∂3f

∂u ∂v ∂w
(u, v, w) = − 36

(u+ 2v + 3w)4

∂3f

∂u ∂v ∂w
(3, 2, 1) = −0.0036 = − 9

2500

2.3.3.4. Answer. fxx = 5y2

(x2+5y2)3/2

fxy = fyx = − 5xy
(x2+5y2)3/2

fyy = 5x2

(x2+5y2)3/2

2.3.3.5. Answer. (a) fxyz(x, y, z) = 0
(b) fxyz(x, y, z) = 0
(c) fxx(1, 0, 0) = 0

2.3.3.6. ∗. Answer. (a) frr(1, 0) = m(m−1), frθ(1, 0) = 0, fθθ(1, 0) =
−m2

(b) λ = 1

2.3.3.7. Answer. See the solution.

2.4 · The Chain Rule
2.4.5 · Exercises

2.4.5.1. Answer. (a) ∂h
∂x (x, y) = ∂f

∂x

(
x, u(x, y)

)
+ ∂f

∂u

(
x, u(x, y)

)
∂u
∂x (x, y)

(b)

dh
dx (x) = ∂f

∂x

(
x, u(x), v(x)

)
+ ∂f

∂u

(
x, u(x), v(x)

)du
dx (x)

+ ∂f

∂v

(
x, u(x), v(x)

)dv
dx (x)

(c)

∂h

∂x
(x, y, z) = ∂f

∂u

(
u(x, y, z), v(x, y), w(x)

)∂u
∂x

(x, y, z)

+ ∂f

∂v

(
u(x, y, z), v(x, y), w(x)

)∂v
∂x

(x, y)

+ ∂f

∂w

(
u(x, y, z), v(x, y), w(x)

)dw
dx (x)

2.4.5.2. Answer. To visualize, in a simplified setting, the situation from
Example 2.4.10, note that w′(x) is the rate of change of z as we slide along
the blue line, while fx(x, y) is the change of z as we slide along the orange
line.

In the approximation fx(x, y) ≈ ∆f
∆x , starting at the point P0, ∆x =

x2 − x1 and ∆f = z2 − z1.
In the approximation dw

dx ≈
∆w
∆x , starting at the point P0, ∆x = x2−x1

again, and ∆w = z1 − z1 = 0.

2.4.5.3. ∗. Answer. dw
dt = 1 and ft = 5. ft gives the rate of change

of f(x, y, t) as t varies while x and y are held fixed. dw
dt gives the rate of

change of f
(
x(t), y(t), t

)
. For the latter all of x = x(t), y = y(t) and t are

changing at once.
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2.4.5.4. Answer. See the solution.

2.4.5.5. Answer. The problem is that ∂w
∂x is used to represent two

completely different functions in the same equation. See the solution for
more details.

2.4.5.6. Answer. ws(s, t) = 2s(t2 + 1)
wt(s, t) = s2(2t)

2.4.5.7. Answer. We have

∂3

∂x∂y2 f(2x+ 3y, xy) = 6f12 + 2x f22 + 18 f111 + (9y + 12x) f112

+ (6xy + 2x2) f122 + x2y f222

All functions on the right hand side have arguments (2x + 3y, xy). The
notation f21, for example, means first differentiate with respect to the
second argument and then differentiate with respect to the first argument.

2.4.5.8. Answer.

gss(s, t) = 4f11(2s+ 3t, 3s− 2t) + 12f12(2s+ 3t, 3s− 2t)
+ 9f22(2s+ 3t, 3s− 2t)

gst(s, t) = 6f11(2s+ 3t, 3s− 2t) + 5f12(2s+ 3t, 3s− 2t)
− 6f22(2s+ 3t, 3s− 2t)

gtt(s, t) = 9f11(2s+ 3t, 3s− 2t)− 12f12(2s+ 3t, 3s− 2t)
+ 4f22(2s+ 3t, 3s− 2t)

Here f1 denotes the partial derivative of f with respect to its first argument,
f12 is the result of first taking one partial derivative of f with respect to
its first argument and then taking a partial derivative with respect to its
second argument, and so on.

2.4.5.9. ∗. Answer. See the solutions.
2.4.5.10. ∗. Answer. a = 5 and b = c = 2.
2.4.5.11. ∗. Answer.

∂2

∂x ∂y
F (x2 − y2, 2xy) = 2Fv(x2 − y2, 2xy)− 4xy Fuu(x2 − y2, 2xy)

+ 4(x2 − y2)Fuv(x2 − y2, 2xy)
+ 4xy Fvv(x2 − y2, 2xy)

2.4.5.12. ∗. Answer. (a) ∂u
∂x (x, y) = ey

x ,
∂u
∂y (x, y) = ey ln(x) − y2 ey −

2yey
(b) See the solution.

2.4.5.13. ∗. Answer. −54
2.4.5.14. ∗. Answer. See the solution.
2.4.5.15. ∗. Answer. (a)

∂z

∂t
(r, t) = −r sin t ∂f

∂x
(r cos t , r sin t) + r cos t ∂f

∂y
(r cos t , r sin t)



APPENDIX C. ANSWERS TO EXERCISES 438

(b)

∂2z

∂t2
(r, t) = −r cos t ∂f

∂x
− r sin t ∂f

∂y

+ r2 sin2 t
∂2f

∂x2 − 2r2 sin t cos t ∂
2 f

∂x∂y
+ r2 cos2 t

∂2f

∂y2

with all of the partial derivatives of f evaluated at (r cos t , r sin t).

2.4.5.16. ∗. Answer. 28
2.4.5.17. ∗. Answer. A = 2.
2.4.5.18. ∗. Answer. 10a
2.4.5.19. ∗. Answer. See the solution.
2.4.5.20. ∗. Answer. (a)

wss(s, t) = 4uxx(2s+ 3t, 3s− 2t) + 12uxy(2s+ 3t, 3s− 2t)
+ 9uyy(2s+ 3t, 3s− 2t)

(b) A = −1

2.4.5.21. ∗. Answer. (a)

∂

∂θ

[
f
(
r cos θ , r sin θ

)]
= −r sin θ fx + r cos θ fy

∂

∂r

[
f
(
r cos θ , r sin θ

)]
= cos θ fx + sin θ fy

∂2

∂θ ∂r

[
f
(
r cos θ , r sin θ

)]
= − sin θ fx + cos θ fy

− r sin θ cos θ fxx + r[cos2 θ − sin2 θ] fxy
+ r sin θ cos θ fyy

with the arguments of fx, fy, fxx, fxy and fyy all being
(
r cos θ , r sin θ

)
.

(b)

∂

∂r

[
f
(
r cos θ , r sin θ

)]
= −1

r

∂

∂θ

[
g
(
r cos θ , r sin θ

)]
∂

∂θ

[
f
(
r cos θ , r sin θ

)]
= r

∂

∂r

[
g
(
r cos θ , r sin θ

)]
2.4.5.22. ∗. Answer. ∇∇∇z(1, 2) = 〈−47, 108〉

2.4.5.23. ∗. Answer. (a) See the solution.
(b) 4

15

2.4.5.24. ∗. Answer. (a) ∂x
∂u

(
π
2 , 0
)

= 2
3π ,

∂y
∂u

(
π
2 , 0
)

= 4
3π

(b) 8
π

2.4.5.25. ∗. Answer. α = 2

2.4.5.26. Answer. See the solutions.

2.4.5.27. Answer. (a) ∂y
∂z

(x, z) = x2 ln y(x, z)− y(x, z)ey(x,z) z

zey(x,z) z − x2z
y(x,z)

(b) dy
dx (x) = −

F1
(
x, y(x), x2 − y(x)2)+ 2xF3

(
x, y(x), x2 − y(x)2)

F2
(
x, y(x), x2 − y(x)2

)
− 2y(x)F3

(
x, y(x), x2 − y(x)2

)
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(c)
(
∂y

∂x

)
u

(x, u) = y(x, u) v(x, u)− x y(x, u)
x y(x, u)− x v(x, u)

2.5 · Tangent Planes and Normal Lines
2.5.3 · Exercises

2.5.3.1. Answer. Yes. The plane z = 0 is the tangent plane to both
surfaces at (0, 0, 0).

2.5.3.2. Answer. See the solution.
2.5.3.3. Answer. The normal plane is n · 〈x− x0 , y − y0 , z − z0〉 = 0,
where the normal vector n =∇∇∇F (x0, y0, z0)×∇∇∇G(x0, y0, z0).

2.5.3.4. Answer. Tangent line is

x = x0 + t
[
gy(x0, y0)− fy(x0, y0)

]
y = y0 + t

[
fx(x0, y0)− gx(x0, y0)

]
z = z0 + t

[
fx(x0, y0)gy(x0, y0)− fy(x0, y0)gx(x0, y0)

]
2.5.3.5. ∗. Answer. 2x+ y + 9z = 2

2.5.3.6. ∗. Answer. 2x+ y + z = 6

2.5.3.7. Answer. (a) The tangent plane is 4x + 2y + z = −3 and the
normal line is 〈x, y, z〉 = 〈−2, 1, 3〉+ t 〈4, 2, 1〉.

(b) The tangent plane is 2y − z = −1 and the normal line is 〈x, y, z〉 =
〈2, 0, 1〉+ t 〈0, 2,−1〉.

2.5.3.8. ∗. Answer. z = − 3
4x−

3
2y + 11

4

2.5.3.9. ∗. Answer. (a) 2ax− 2ay + z = −a2

(b) a = 1
2 .

2.5.3.10. ∗. Answer. The tangent plane is 8
25x−

6
25y − z = − 8

5 .
The normal line is 〈x, y, z〉 =

〈
−1, 2, 4

5
〉

+ t
〈 8

25 , −
6
25 , −1

〉
.

2.5.3.11. ∗. Answer. ±(1, 0,−2)

2.5.3.12. ∗. Answer.
( 1√

2 , −1 , − 1
2
)
and

(
− 1√

2 , −1 , − 1
2
)

2.5.3.13. ∗. Answer. ±
( 1

2 ,−1,−1
)

2.5.3.14. Answer. ±
√

3 〈3,14,−30〉
|〈3,14,−30〉| = ±

√
3

1105 〈3, 14,−30〉

2.5.3.15. Answer. The horizontal tangent planes are z = 0, z = e−1

and z = −e−1. The largest and smallest values of z are e−1 and −e−1,
respectively.

2.5.3.16. ∗. Answer. (a) y + z = 3
r(t) = 〈0, 2, 1〉+ t 〈0, 5, 5〉
(b) zx(x, y) = 2−2x−y

y+3z(x,y)2

zy(x, y) = −x+2y+z(x,y)
y+3z(x,y)2

zy(0, 2) = −1
(c) zxy(x, y) = 1

y+3z(x,y)2 − 2−2x−y
[y+3z(x,y)2]2

(
1− 6z(x, y)x+2y+z(x,y)

y+3z(x,y)2

)
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2.5.3.17. ∗. Answer. (a) 〈1, 0, 3〉
(b) 〈3, 3,−1〉
(c) r(t) = 〈1, 1, 3〉+ t 〈3, 3,−1〉

2.5.3.18. ∗. Answer. 49.11◦ (to two decimal places)

2.5.3.19. Answer.
√

3
2

2.6 · Linear Approximations and Error
2.6.3 · Exercises

2.6.3.1. Answer. (a) P (x0 +∆x, y0 +∆y) ≈ P (x0, y0)+mxm−1
0 yn0 ∆x+

nxm0 y
n−1
0 ∆y

(b) P% ≤ |m|x% + |n| y%

2.6.3.2. Answer. We used that d
dθ sin θ = cos θ. That is true only if θ

is given in radians, not degrees.

2.6.3.3. Answer. 0.01π + 0.05 ≈ 0.0814
2.6.3.4. ∗. Answer. 0.3
2.6.3.5. Answer. 25000
2.6.3.6. ∗. Answer. 0.22
2.6.3.7. ∗. Answer. −0.06

2.6.3.8. Answer. 1
17 ≈ 0.059

2.6.3.9. Answer. 13
40% = 0.325%

2.6.3.10. ∗. Answer. Method 1 is better.
2.6.3.11. Answer. The sag will be more sensitive to changes in height.

2.6.3.12. ∗. Answer. 0.84

2.6.3.13. ∗. Answer. (a) fx(x, y) = − y f(x,y)+1
3f(x,y)2+xy

(b) f(x, y) ≈ −1− 3
2 (y − 1)

(c) −0.955

2.6.3.14. ∗. Answer. (a) The differential at x = a, y = b is dx
ef(a,b)+b +

1−f(a,b)
ef(a,b)+b dy

(b) f
(
0.99 , 0.01

)
≈ 0

2.6.3.15. ∗. Answer. π
75 + 0.14 ≈ 0.182

2.6.3.16. ∗. Answer. 59.560
2.6.3.17. ∗. Answer. π × 128× 0.04 = 5.12π ≈ 16.1cc
2.6.3.18. ∗. Answer. (a) z(x, y) ≈ 1− 4x+ 2y

(b) 0.84

2.6.3.19. ∗. Answer. (a) ∂z
∂x = 4+yz2

3z2−2xyz ,
∂z
∂x = xz2

3z2−2xyz
(b) ∂z

∂x (1, 1) = 1, ∂z∂y (1, 1) = 1
2

(c) ±0.04
(d) At A, dz

dθ = 2
3 .

At B, dz
dθ = −1.
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2.6.3.20. ∗. Answer. (a) 1+e−1

10
(b) any nonzero constant times

〈
−1 , e−1 , −1

〉
2.6.3.21. ∗. Answer. (a) ∂z

∂x = y2z2

4z3−2xy2z ,
∂z
∂y = 2xy z2−1

4z3−2xy2z

(b) ∂z
∂x (2,−1/2) = 1

12 ,
∂z
∂y (2,−1/2) = −1

(c) f(1.94,−0.4)− 1 ≈ −0.105
(d) x

12 − y − z = − 1
3

2.6.3.22. ∗. Answer. (a) 1.4
(b) 3x− 2y − z = −4

2.6.3.23. ∗. Answer. 0.1
2.6.3.24. ∗. Answer. (a) z = 1− 4x+ 8y

(b) 1.12

2.6.3.25. ∗. Answer. (a) f(0.1, 1.2) ≈ 0.4
(b)

( 1
5 ,

4
5 , ln 4

5
)

2.6.3.26. ∗. Answer. (a) −(2 + π)x+ 2y + 3z = −π − 3
(b) ∂z

∂x (1, 1) = π+2
3

(c) z(0.97, 1) ≈ −π+102
100

2.6.3.27. ∗. Answer. (a) Fy(1, 2) = −2,\ Fz(1, 2) = −16
(b) 0.3

2.7 · Directional Derivatives and the Gradient
2.7.2 · Exercises

2.7.2.1. ∗. Answer. 0
2.7.2.2. ∗. Answer. y cos(xy) ı̂ıı+ [2y + x cos(xy)] ̂

2.7.2.3. Answer. (a) −3
(b) − 61

144
√

3 ≈ −0.2446

2.7.2.4. Answer. (a)
〈
±
√

3
2 ,−

1
2

〉
(b) 〈0,−1〉
(c) No direction works!

2.7.2.5. Answer. ∇∇∇f(a, b) = 〈7,−1〉

2.7.2.6. ∗. Answer. −2

2.7.2.7. ∗. Answer. (a) 6̂ııı− 3̂+ 3k̂
(b) 3√

2

2.7.2.8. ∗. Answer. (a) The path of steepest ascent is in the direction
− 1√

17 〈1 , 4〉, which is a little west of south. The slope is |∇∇∇f(2, 1)| =
| 〈−1 , −4〉 | =

√
17.

(b) So the hiker descends with slope 4.
(c) ± 1√

17 〈4,−1〉

2.7.2.9. Answer. a = 1, b = 3
2

2.7.2.10. ∗. Answer. (a) Any nonzero 〈a , b , c〉 that obeys 12a+ 4b−
2c = 0 is an allowed direction. Four allowed unit vectors are ± 〈0 , 1 , 2〉√

5 and
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± 〈1 ,−3 , 0〉√
10 .

(b) No they need not be the same. Four different explicit directions
were given in part (a).

(c) − 〈6 , 2 ,−1〉√
41

2.7.2.11. ∗. Answer. (a) 10
(b) ± 1

5 〈3 ,−4 , 0〉

2.7.2.12. ∗. Answer. (a) 1
3

(b)
〈
± 4

5 ,
3
5
〉

2.7.2.13. ∗. Answer. 0.04e√
5

2.7.2.14. ∗. Answer. (a) 0
(b) 1√

6 〈−1 , 1 , −2〉
(c) 4
(d) a = 2

2.7.2.15. ∗. Answer. (a) ∇∇∇f(0, 1,−1) = e−2 〈2,−1, 2〉, ∇∇∇g(0, 1,−1) =
〈−1, 1,−1〉

(b) 10
(c) Any vector which is a (strictly) positive constant times 〈−1 , 0 , 1〉

is fine.
2.7.2.16. ∗. Answer. (a) v = 〈−2 , −4 , 4〉

(b) −10

2.7.2.17. ∗. Answer. (a) 25
√

2 e−9

(b) 〈2,2,−3〉√
17

(c) −10
√

17e−9

2.7.2.18. ∗. Answer. The unit vector in the direction of maximum rate
of change is 〈2 ,−4 ,−3〉√

29 . The maximum rate of change is
√

29.

2.7.2.19. ∗. Answer. ± 1√
5 〈2,−1〉

2.7.2.20. ∗. Answer. (a) South
(b) 2
(c) −2

√
5

2.7.2.21. ∗. Answer. (a) −16
(b) C 〈4 , 1 , −2〉 for any nonzero constant C
(c) Any positive non zero multiple of −〈1 , 2 , 1〉 will do.

2.7.2.22. ∗. Answer. ∇∇∇f(a, b, c) =
√

3 〈2, 6,−4〉

2.7.2.23. ∗. Answer. (a) 1√
2 〈1, 1〉

(b) v = c 〈1,−1, 0〉 for any nonzero constant c
(c) v = 1√

2

〈
1, 1, 2e−2〉. Any positive multiple of this vector is also a

correct answer.
2.7.2.24. ∗. Answer. (a) 〈1, 2, 2〉

(b) 14◦/s
(c) any positive constant times −〈2, 2, 4〉
(d) any positive constant times ±〈2, 0,−1〉

2.7.2.25. ∗. Answer. (a) v = −
〈 3

5 ,
4
5 , 0
〉

(b) 500
169 ≈ 2.96◦/s
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2.7.2.26. ∗. Answer. (a) 360
(b) − 40

3
√

3 ≈ −7.70

(c) ∇∇∇T (x, y, z) = −360 xı̂ıı+ŷ+zk̂
(x2+y2+z2)3/2

2.7.2.27. ∗. Answer. (a)

x

y

(b) ± 1√
17 〈4,−1〉

(c) − 1√
17 〈1, 4〉

2.7.2.28. Answer. (a) Here is a sketch which show the isotherms T =
0, 1, −1 as well as the branch of the T = 2 isotherm that contains the
ant’s location (2,−1).

T“0

T“0

T “ ´1

T “ ´1

T“1 T “ 2T “ 1

p2,´1q

(b) 〈−1,−1〉 /
√

2
(c) 4

√
2 v

(d) 12√
5 v

(e) y = − 4
x2

2.7.2.29. ∗. Answer. (a) ı̂ıı
(b) x = 1
(c) 1
(d) π

4

2.7.2.30. ∗. Answer. (a) 2
√

3
(b) 5.5
(c) ± 〈1,1,−1〉√

3

2.7.2.31. ∗. Answer. (a) −2.1
(b) F increases.
(c) Any nonzero constant times 〈4 , 8 , −1〉.

2.7.2.32. ∗. Answer. (a)
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x

y

(b) −〈1, 4〉

2.7.2.33. ∗. Answer. (a) any positive multiple of 〈3, 4〉
(b) −800e−17

(c) ±
( 4

5 ,−
3
5
)

(d) y = 2
9x

2

2.7.2.34. ∗. Answer. (a) See the solution.
(b) 4

√
5 ≈ 8.944

(c) 7.35

2.8 · A First Look at Partial Differential Equa-
tions
2.8.3 · Exercises

2.8.3.1. Answer. g(x) = 1− 4x2

2.8.3.2. Answer. (a) u(x, y) = C(y) with C(y) being any function of
the single variable y.

(b) u(x, y) = F (x) +C(y) where F (x) is any function obeying F ′(x) =
f(x) (i.e. any antiderivative of f(x)) and C(y) is any function of the single
variable y.

2.8.3.3. Answer. (a), (d) and (e) are harmonic. (b) and (c) are not
harmonic.
2.8.3.4. ∗. Answer. a = ±2
2.8.3.5. Answer. a = ±5
2.8.3.6. Answer. a = ±b, for any real number b.

2.8.3.7. Answer. Yes it is. For the justification, see the solution.

2.8.3.8. Answer. f(t) = Ce−4t with C being an arbitrary constant.

2.8.3.9. Answer. See the solution.
2.8.3.10. Answer. perpendicular

2.8.3.11. Answer. n = 0,−1

2.8.3.12. Answer. (a), (b) See the solutions.
(c) T (t) = Ceλt, X(x) = Kxλ, u(x, t) = Deλt xλ with C, D and K

being arbitrary positive constants.

2.8.3.13. Answer. See the solution.
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2.8.3.14. Answer. (a) vX(X,Y ) = 1
3v(X,Y )

(b) vX(X,Y ) = 1
X v(X,Y )

2.9 · Maximum and Minimum Values
2.9.4 · Exercises

2.9.4.1. ∗. Answer. (a) (i) T , U
(a) (ii) U
(a) (iii) S
(a) (iv) S
(b) (i) Fx(1, 2) > 0
(b) (ii) F does not have a critical point at (2, 2).
(b) (iii) Fxy(1, 2) < 0

2.9.4.2. Answer. The minimum height is zero at (0, 0, 0). The deriva-
tives zx and zy do not exist there. The maximum height is

√
2 at (±1,±1,

√
2).

There zx and zy exist but are not zero — those points would not be the
highest points if it were not for the restriction |x|, |y| ≤ 1.

2.9.4.3. Answer. ∇∇∇g(x0) ·d = 0, i.e. ∇∇∇g(x0) ⊥ d, and x0 = a + t0d for
some t0. The second condition is to ensure that x0 lies on the line.

2.9.4.4. ∗. Answer.
(a)

x

y

f“0
f“1f“1

f“1

f“1

f“16f“16

f“16

f“16

3´3

3

´3

(b) (0, 0) is a local (and also absolute) minimum.
(c) No. See the solutions.

2.9.4.5. ∗. Answer. |c| > 2

2.9.4.6. ∗. Answer.
critical
point type
(0, 0) saddle point(
− 2

3 ,
2
3
)

local max

2.9.4.7. ∗. Answer.
critical
point type
(0, 3) saddle point

(0,−3) saddle point
(−2, 1) local max
(2,−1) local min
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2.9.4.8. ∗. Answer. The minimum value is 0 on{
(x, y, z)

∣∣ x ≥ 0, y ≥ 0, z ≥ 0, 2x+y+z = 5, at least one of x, y, z zero
}

The maximum value is 4 at (1, 2, 1).

2.9.4.9. Answer.
critical
point type
(0, 0) local min

(
√

2,−1) saddle point
(−
√

2,−1) saddle point

2.9.4.10. ∗. Answer.
critical
point type( 1√
3 ,

1√
3

)
local min

−
( 1√

3 ,
1√
3

)
saddle point

2.9.4.11. ∗. Answer.
critical
point type
(0, 0) local max
(2, 0) saddle point

2.9.4.12. Answer. min = 0 max = 2
3
√

3 ≈ 0.385

2.9.4.13. Answer. min = − 1√
e

max = 1√
e

2.9.4.14. ∗. Answer.
(i)

(ii)
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(iii)

(iv)

2.9.4.15. ∗. Answer.
critical
point type( 3
2 ,−

1
4
)

local min
(−1, 1) saddle point

2.9.4.16. ∗. Answer. (a)
critical
point type(
0, 2√

3

)
local max(

0,− 2√
3

)
local min

(2, 0) saddle point
(−2, 0) saddle point

(b) The maximum and minimum values of h(x, y) in x2 + y2 ≤ 1 are 3
(at (0, 1)) and −3 (at (0,−1)), respectively.

2.9.4.17. ∗. Answer. The minimum is −2 and the maximum is 6.

2.9.4.18. ∗. Answer. 6− 2
√

5

2.9.4.19. ∗. Answer. (a) (0,0) and (3,0) and (0,3) are saddle points
(1,1) is a local min
(b) The minimum is −1 at (1, 1) and the maximum is 80 at (4, 4).

2.9.4.20. ∗. Answer. (0,0) is a local max
(0,2) is a local min
(1,1) and (-1,1) are saddle points

2.9.4.21. ∗. Answer. (a) (1, 1) is a saddle point and (2, 4) is a local
min

(b) The min and max are 19
27 and 5, respectively.
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2.9.4.22. ∗. Answer. (0, 0) is a saddle point and ±(1, 1) are local mins

2.9.4.23. ∗. Answer. (a) (0, 0), (6, 0), (0, 3) are saddle points and (2, 1)
is a local min

(b) The maximum value is 0 and the minimum value is 4(4
√

2 − 6) ≈
−1.37.
2.9.4.24. ∗. Answer. (0, 0) is a saddle point and ±(1, 1) are local mins

2.9.4.25. ∗. Answer. The coldest temperture is −0.391 and the coldest
point is (0, 2).

2.9.4.26. ∗. Answer. (0,±1) are saddle points,
( 1√

3 , 0
)
is a local min

and
(
− 1√

3 , 0
)
is a local max

2.9.4.27. ∗. Answer. (a) (0,−5) is a saddle point
(b) The smallest value of g is 0 at (0, 0) and the largest value is 21 at

(±2
√

3,−1).

2.9.4.28. ∗. Answer. (−1,±
√

3) and (2, 0) are saddle points and (0, 0)
is a local max.
2.9.4.29. ∗. Answer. e−1 ≈ 0.368
2.9.4.30. Answer. 2500√

3

2.9.4.31. Answer. The box has dimensions (2V )1/3×(2V )1/3×2−2/3V 1/3.

2.9.4.32. ∗. Answer. (a) The maximum and minimum values of T (x, y)
in x2 + y2 ≤ 4 are 20 (at (0, 0)) and 4 (at (±2, 0)), respectively.

(b) 1√
17 〈−4,−1〉

(c) 18
(d) (0, 2)

2.9.4.33. ∗. Answer. Case k < 1
2 :

critical
point type

(0, 0) local max
(0, 2) saddle point

Case k = 1
2 :

critical
point type

(0, 0) local max
(0, 2) unknown

Case k > 1
2 :

critical
point type
(0, 0) local max
(0, 2) local min(√

1
k3 (2k − 1) , 1

k

)
saddle point(

−
√

1
k3 (2k − 1) , 1

k

)
saddle point

2.9.4.34. ∗. Answer. (a) x = 1, y = 1
2 , f

(
1, 1

2
)

= 6
(b) local minimum
(c) As x or y tends to infinity (with the other at least zero), 2x + 4y

tends to +∞. As (x, y) tends to any point on the first quadrant part of the
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x- and y--axes, 1
xy tends to +∞. Hence as x or y tends to the boundary

of the first quadrant (counting infinity as part of the boundary), f(x, y)
tends to +∞. As a result

(
1, 1

2
)
is a global (and not just local) minimum

for f in the first quadrant. Hence f(x, y) ≥ f
(
1, 1

2
)

= 6 for all x, y > 0.

2.9.4.35. Answer. m = nSxy−SxSy
nSx2−S2

x
and b = SySx2−SxSxy

nSx2−S2
x

where Sy =
n∑
i=1

yi, Sx2 =
n∑
i=1

x2
i and Sxy =

n∑
i=1

xiyi.

2.10 · Lagrange Multipliers
2.10.2 · Exercises

2.10.2.1. ∗. Answer. (a) f does not have a maximum. It does have a
minimum.

(b) The minima are at ±(1, 1), where f takes the value 2.

2.10.2.2. Answer. (a), (b) 0

2.10.2.3. Answer. The max is f =
√

3 and the min is f = −
√

3.

2.10.2.4. Answer. a = c =
√

3, b = 2
√

3.

2.10.2.5. ∗. Answer. The minimum value is 2 1
3 + 2− 2

3 = 3
2

3
√

2 = 3
3√4 at(

± 2 1
6 , 2− 1

3
)
.

2.10.2.6. ∗. Answer. radius =
√

2
3 and height = 2√

3 .

2.10.2.7. ∗. Answer. The maximum and minimum values of f are 1
2
√

2
and − 1

2
√

2 , respectively.

2.10.2.8. ∗. Answer. min= 1, max=
√

2.

2.10.2.9. ∗. Answer. (1,−2, 1) is the closest point. (−1, 4,−1) is the
farthest point.

2.10.2.10. ∗. Answer. The maximum is 5 and the minimum is 0.

2.10.2.11. ∗. Answer.
(√

3 ,
√

2 , 1
)

2.10.2.12. ∗. Answer. The maximum is 6 and is achieved at
(√

6 , −
√

6 , −1
)

and
(
−
√

6 ,
√

6 , −1
)
.

2.10.2.13. ∗. Answer.
√

6− 4
√

2 ≈ 0.59

2.10.2.14. ∗. Answer. (a) 4
3

(b) (1, 1)

2.10.2.15. ∗. Answer. (a) The min is 6 and the max is 54.
(b) (−1, 1,−2)

2.10.2.16. ∗. Answer. (a)
(√

5− 1
)2 = 6− 2

√
5

(b) The minimum of f subject to the constraint x2 + y2 + z2 = 1 is the
square of the distance from (2, 1, 0) to the point on the sphere x2+y2+z2 =
1 that is nearest (2, 1, 0).

2.10.2.17. ∗. Answer. The maximum value is 2e2 and the minimum
value is −2e2.
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2.10.2.18. ∗. Answer. The farthest points are ±
√

6(−2, 1). The near-
est points are ±(1, 2).

2.10.2.19. Answer. The ends of the minor axes are ±
( 1√

2 ,−
1√
2

)
. The

ends of the major axes are ±(1, 1).

2.10.2.20. ∗. Answer. x = y = 4, z = 6 meters

2.10.2.21. ∗. Answer. The hottest temperature is +5 and the coldest
temperature is −5.

2.10.2.22. ∗. Answer. 2
√

3× 4× 24
2.10.2.23. ∗. Answer. 2m× 2m× 3m

2.10.2.24. ∗. Answer. 2
3√3m× 2

3√3m× 32/3m

2.10.2.25. ∗. Answer. a = 1
3 , b = 1

6 , c = 1
9 , max volume= 27

2.10.2.26. ∗. Answer.
√

11

2.10.2.27. ∗. Answer. The min is −27
√

3 at (−3
√

3, 0, 3) and the max
is 48 at (4,±4, 2).

2.10.2.28. ∗. Answer. (a - i)

2x ey = λ(2x)
ey
(
x2 + y2 + 2y

)
= λ(2y)

x2 + y2 = 100

(a-ii) The warmest point is (0, 10) and the coolest point is (0,−10).
(b-i)

2x ey = 0
ey
(
x2 + y2 + 2y

)
= 0

(b-ii) (0, 0) and (0,−2)
(c) (0, 0)

2.10.2.29. ∗. Answer. (a) c = ±12
(b) ±12
(c) The level surfaces of x + y + z are planes with equation of the

form x + y + z = c. To find the largest (smallest) value of x + y + z on
4x2 + 4y2 + z2 = 96 we keep increasing (decreasing) c until we get to the
largest (smallest) value of c for which the plane x + y + z = c intersects
4x2 + 4y2 + z2 = 96. For this value of c, x + y + z = c is tangent to
4x2 + 4y2 + z2 = 96.

2.10.2.30. Answer. See the solution.

3 · Multiple Integrals
3.1 · Double Integrals
3.1.7 · Exercises

3.1.7.1. Answer. (a) 20
(b) π
(c) 9π
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3.1.7.2. Answer. (a) 108y3

(b) 48x2

(c), (d) 432
(e) 648

3.1.7.3. Answer. (a) 1
3
(
a3b+ ab3

)
(b) a2b

6 −
ab2

2
(c) 3

56
(d) 1

2 (1− cos 1)
(e) 1

2 (e− 2)
(f) 1

4
(
π
4 −

1
2 ln 2

)
3.1.7.4. Answer. (a) e2 − 3

(b) 8
3

(c) 9
2

3.1.7.5. ∗. Answer.
∫ x=1
x=0

∫ y=2−x
y=x f(x, y) dy dx

3.1.7.6. ∗. Answer. (a)

x

y

1

1

x “ y

y “ 1

(b) 1
2 (e− 1)

3.1.7.7. ∗. Answer. (a) The region R is the shaded region in the figure

x

y

x “ ?
y

x “ y{2
x “ 1{y

y “ ?
2

p2,4q

p1,1q
p 1?

2
,
?
2q

(b) I =
∫ 1

1/
√

2
∫ 2x

1/x f(x, y) dy dx+
∫ 2

1
∫ 2x
x2 f(x, y) dy dx

(c) 1
2

3.1.7.8. ∗. Answer. (a) 32
3

(b)
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x

y

y “ 2x ` 3

y “ x2p´1,1q

p3,9q

(c) I =
∫ 1

0 dy
∫√y
−√y dx x+

∫ 9
1 dy

∫√y
(y−3)/2 dx x

3.1.7.9. ∗. Answer. 3
4
[
1− cos(16)

]
3.1.7.10. ∗. Answer. (a)

x

y

x “ 1x “ ?
y

p1,1q

(b) 1
π

3.1.7.11. ∗. Answer. (a) I =
∫ 1

0 dx
∫ 1
x

dy y2 sin xy =
∫ 1

0 dy
∫ y

0 dx y2 sin xy
(b) 1−sin 1

2

3.1.7.12. ∗. Answer. 1−e−1

2

3.1.7.13. ∗. Answer. (a)

x

y

y “ 2 ´ xy “ x

p1,1q

p2,0q
(b) I =

∫ 1
0 dx

∫ x
0 dy y

x +
∫ 2

1 dx
∫ 2−x

0 dy y
x

(c) 2 ln 2− 1

3.1.7.14. ∗. Answer. (a)
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x

y

y “ 1

y “ ?
x

p1,1q

(b) 2
(

2
√

2−1
)

9

3.1.7.15. ∗. Answer. (a) J = 27
4

x

y

x “ y2

y “ x ´ 2
D

p1,´1q

p4,2q

(b) I = 4
3
[
e− 1

]

x

y

y “ 1
2

?
x

y “ 1
p4,1q

3.1.7.16. ∗. Answer. (a)

x

y

x“?´y

p2,0q

p2,´4q
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(b) sin(8)
3

3.1.7.17. ∗. Answer. (a) I =
∫ 2
−1
∫ x+2
x2 f(x, y) dy dx

(b) 2e2 + 1
e

3.1.7.18. ∗. Answer. (a)

x

y

x“?
y x“?

8´y

y “ 4p2,4q

p?
8,0q

(b)
∫ 2

0
∫ x2

0 f(x, y) dy dx+
∫√8

2
∫ 8−x2

0 f(x, y) dy dx
(c)
√

8− arctan 2− 1
6

[
ln 3+

√
8

3−
√

8 − ln 5
]

3.1.7.19. ∗. Answer. 1
4
[
e4 − 1

]
3.1.7.20. ∗. Answer. I =

∫ 2
0
∫ 6−y2

y
f(x, y) dxdy

3.1.7.21. ∗. Answer. (a)

p´1, 0q

p0, 1q

p1, 0q
x

y

y “ 1 ´ x2

D

(b)
∫ 1

0
∫√1−y
−
√

1−y f(x, y) dxdy,
∫ 1
−1
∫ 1−x2

0 f(x, y) dy dx
(c) e2/3 − e−2/3

3.1.7.22. ∗. Answer. (a)

x

y

y “ 1

y “ x2

p1,1q

(b) 1−cos(1)
12

3.1.7.23. ∗. Answer. (a)
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x

y “ 3

xy “ 6

y x “ 3

(b) 27 + 18 ln 3
2 ≈ 34.30

3.1.7.24. ∗. Answer. 4
3 sin 8 ≈ 1.319

3.1.7.25. ∗. Answer. (a) I =
∫∫

D

(8+2xy) dxdy whereD =
{

(x, y)
∣∣ x2+

(y − 1)2 ≤ 1
}

(b) I =
∫ 2

0
dy
∫ √2y−y2

−
√

2y−y2
dx (8 + 2xy) =

∫ 1

−1
dx
∫ 1+

√
1−x2

1−
√

1−x2
dy (8 + 2xy)

(c) 8π

3.1.7.26. ∗. Answer. 2
3π ≈ 0.212

3.1.7.27. ∗. Answer. (a)

x

y
x “ y2

x “ 1

(b)
∫ 1

−1

[ ∫ 1

y2
sin
(
y3 − 3y

)
dx
]

dy

(c) 0

3.1.7.28. ∗. Answer. 36

3.1.7.29. Answer. 48
√

2π

3.2 · Double Integrals in Polar Coordinates
3.2.5 · Exercises

3.2.5.1. Answer. The first hand sketch below contains the points,
(x1, y1), (x3, y3), (x5, y5), that are on the axes. The second hand sketch
below contains the points, (x2, y2), (x4, y4), that are not on the axes.
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x

y

π
2π (3, 0)

(0, 1)

(−2, 0)

x

y
(1, 1)

√
2

(−1, 1)

π
4

3π
4

r1 = 3, θ1 = 0
r2 =

√
2, θ2 = π

4
r3 = 1, θ3 = π

2
r4 =

√
2, θ4 = 3π

4
r5 = 2, θ5 = π

3.2.5.2. Answer. (a)
(
r1 = 2 , θ1 = nπ, n odd integer

)
or
(
r1 =

−2 , θ1 = nπ, n even integer
)
. In particular,

(
r1 = −2 , θ1 = 0

)
has

r1 < 0 and 0 ≤ θ1 < 2π.
(b)

(
r2 =

√
2 , θ2 = π

4 + 2nπ
)
or
(
r2 = −

√
2 , θ2 = 5π

4 + 2nπ
)
, with n

integer. In particular,
(
r2 = −

√
2 , θ2 = 5π

4
)
has r2 < 0 and 0 ≤ θ2 < 2π.

(c)
(
r3 =

√
2 , θ3 = 5π

4 + 2nπ
)
or
(
r3 = −

√
2 , θ3 = π

4 + 2nπ
)
, with n

integer. In particular,
(
r3 = −

√
2 , θ3 = π

4
)
has r3 < 0 and 0 ≤ θ3 < 2π.

(d)
(
r4 = 3 , θ4 = 0 + 2nπ

)
or
(
r4 = −3 , θ4 = π+ 2nπ

)
, with n integer.

In particular,
(
r4 = −3 , θ4 = π

)
has r4 < 0 and 0 ≤ θ4 < 2π.

(e)
(
r5 = 1 , θ5 = π

2 + 2nπ
)
or
(
r5 = −1 , θ5 = 3π

2 + 2nπ
)
, with n

integer. In particular,
(
r5 = −1 , θ5 = 3π

2
)
has r5 < 0 and 0 ≤ θ5 < 2π.

3.2.5.3. Answer. (a) Both er(θ) and eθ(θ) have length 1. The angle
between them is π

2 . The cross product is er(θ)× eθ(θ) = k̂.
(b) Here is a sketch of (xi, yi), er(θi), eθ(θi) for i = 1, 3, 5 (the points

on the axes)

x

y

(3, 0)

(0, 1)

(−2, 0) er(0)

eθ(0)

er(
π
2
)

eθ(
π
2
)

er(π)

eθ(π)

and here is a sketch (to a different scale) of (xi, yi), er(θi), eθ(θi) for
i = 2, 4 (the points off the axes).
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x

y

(1, 1)(−1, 1)

er(
π
4
)eθ(

π
4
)er(

3π
4
)

eθ(
3π
4
) π

4

3π
4

3.2.5.4. Answer. (a) a = r cos θ, b = r sin θ
(b) A = a cosϕ− b sinϕ, B = b cosϕ+ a sinϕ

3.2.5.5. Answer. (a)∫∫
R
f(x, y) dxdy =

∫ π
4

0
dθ
∫ 2

0
dr r f(r cos θ, r sin θ)

=
∫ 2

0
dr
∫ π

4

0
dθ r f(r cos θ, r sin θ)

(b) ∫∫
R
f(x, y) dxdy =

∫ π
2

0
dθ
∫ 2

1
dr r f(r cos θ, r sin θ)

=
∫ 2

1
dr
∫ π

2

0
dθ r f(r cos θ, r sin θ)

(c) ∫∫
R
f(x, y) dx dy =

∫ π
2

0
dθ
∫ 2 cos θ

0
dr r f(r cos θ, r sin θ)

=
∫ 2

0
dr
∫ arccos r2

0
dθ r f(r cos θ, r sin θ)

(d)∫∫
R
f(x, y) dxdy =

∫ π
2

π
4

dθ
∫ 2

sin θ

0
dr r f(r cos θ, r sin θ)

=
∫ 2

0
dr
∫ π

2

π
4

dθ r f(r cos θ, r sin θ)

+
∫ 2
√

2

2
dr
∫ arcsin 2

r

π
4

dθ r f(r cos θ, r sin θ)

3.2.5.6. Answer. (a)
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x

y

x2 ` y2 “ 4
x2 ` y2 “ 1

y “ x

y “ ´x

(b)

x

y

y “ x y “ 2 ´ x

(c)

x

y
x2`9y2“9

3.2.5.7. Answer. (a) a3

6
[√

3 + 1
]

(b) 2
3

(c) 1
3

(d) −π

3.2.5.8. Answer. π
[ 4

3
√

2− 7
6
]
≈ 2.26

3.2.5.9. Answer. 64
9 a

3

3.2.5.10. Answer. 128
15 a

3

3.2.5.11. ∗. Answer. (a)
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z

y

x

p0, 2, 0q

p0, 2, 2q

p1, 1, 0q

(b) 32
9

3.2.5.12. ∗. Answer. 16π
5

3.2.5.13. ∗. Answer. (a)

x

z

x2`y2“4

x2`y2“2

y “ x

L

(b) M =
∫ π/4

0 dθ
∫ 2√

2 dr r ρ(r cos θ , r sin θ)
(c) 1

2

3.2.5.14. ∗. Answer. π

3.2.5.15. ∗. Answer. 1− 1√
2

3.2.5.16. ∗. Answer. (a)

x

y

x2 ` y2 “ 4

π{6

x “ ?
3 y

p?
3,1q

(b) π
12
[
5 ln(5)− 4

]
3.2.5.17. ∗. Answer.

√
3

2 −
π
6
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3.2.5.18. ∗. Answer. (a) D =
{

(r cos θ , r sin θ)
∣∣ − π

2 ≤ θ ≤ π
4 , 0 ≤

r ≤ 2 cos θ
}

(b) Volume = 40
18
√

2 + 16
9

3.2.5.19. ∗. Answer. 2π+44/9
π+8 ≈ 1.442

3.2.5.20. ∗. Answer. (a)

x

y

x2 ` y2 “ 1

y “ x{2

y “ 2x

´
2?
5
, 1?

5

¯

´
1?
5
, 2?

5

¯

G

(b)

∫∫
G

f(x, y) dA =
∫ 1√

5

0
dy
∫ 2y

y/2
dx f(x, y) +

∫ 2√
5

1√
5

dy
∫ √1−y2

y/2
dx f(x, y)

(c) ∫∫
G

f(x, y) dA =
∫ arctan 2

arctan 1
2

dθ
∫ 1

0
dr r f(r cos θ, r sin θ)

3.2.5.21. ∗. Answer. (a)

x

y

x “ a
4 ´ y2

x “ y

p?
2,

?
2q

p2,0q

(b) J =
∫√2

0
∫ x

0
y
xe
x2+y2 dy dx+

∫ 2√
2
∫√4−x2

0
y
xe
x2+y2 dy dx

(c) 1
4
[
e4 − 1

]
ln 2

3.2.5.22. Answer. π
8 ab

3.2.5.23. Answer. About 3.5’’ above the bottom
3.2.5.24. ∗. Answer. (a) π

(
e9 − 1

)
≈ 25, 453

(b)
∫ 1

0 dx
∫ 2−x
x

dy ex2+y2
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1

2

1
x

y

x “ y

x “ 2 ´ y

3.3 · Applications of Double Integrals
3.3.4 · Exercises

3.3.4.1. Answer. (a) 6π
(b) 1

2ab(a+ b)

3.3.4.2. ∗. Answer. x̄ = 0 and ȳ = 5
7 .

3.3.4.3. ∗. Answer. (a)

x

y

R

x2 ` y2 “ 4

x “ 1

(b) mass = 4π
3 − 2 ln

(
2 +
√

3
)

(c) x̄ = 2
√

3−ln(2+
√

3)
4π
3 −2 ln(2+

√
3) ≈ 1.38, ȳ = 0.

3.3.4.4. ∗. Answer. x̄ = 10
3π+8 ≈ 0.57

3.3.4.5. ∗. Answer. x̄ = ȳ = 4
3π

3.3.4.6. ∗. Answer. 6
5

3.3.4.7. ∗. Answer. 2
3

3.3.4.8. ∗. Answer. (a) 3π
4

(b) − 1
6

3.3.4.9. ∗. Answer. 4
√

2−
√

2π ≈ 1.214

3.3.4.10. ∗. Answer. (a) 1
3 (b− a , c)

(b) See the solution.
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3.4 · Surface Area
3.4.1 · Exercises

3.4.1.1. Answer. ab
√

1 + tan2 θ = ab sec θ

3.4.1.2. Answer.
√
a2+b2+c2

c A(D)

3.4.1.3. Answer. (a) 1
2
√
a2b2 + a2c2 + b2c2

(b) See the solution.

3.4.1.4. ∗. Answer. 8
27

[( 13
4
)3/2 − 1

]
3.4.1.5. ∗. Answer. π

6
[
(1 + 4a2)3/2 − 1

]
3.4.1.6. ∗. Answer. 5

√
2π

3.4.1.7. ∗. Answer. 4
15
[
9
√

3− 8
√

2 + 1
]

3.4.1.8. ∗. Answer. (a) F (x, y) =
√

1 + fx(x, y)2 + fy(x, y)2

(b)-(i)
∫ 2π

0 dθ
∫ 1

0 dr 2r√
4−r2

(b)-(ii) 16π

3.4.1.9. ∗. Answer. 255
√

2π ≈ 1132.9

3.4.1.10. ∗. Answer. a2[π − 2]

3.5 · Triple Integrals
3.5.1 · Exercises

3.5.1.1. Answer. 1
4πab

2

3.5.1.2. ∗. Answer. 3

3.5.1.3. Answer. a2bc
24

3.5.1.4. Answer. 5
24

3.5.1.5. Answer. (a)
∫ 1

0
dx
∫ x

0
dy
∫ 1−x

0
dz f(x, y, z)+

∫ 1

0
dx
∫ 1

x

dy
∫ 1−y

0
dz f(x, y, z)

(b)
∫ 1

0
dx
∫ 1

x

dy
∫ y2

0
dz f(x, y, z)

3.5.1.6. ∗. Answer. (a)
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z

y

x

p0,1,0q
p0,´1,0q

p0,0,1q

p1,1,0q
p2,0,0q

p3,´1,0q

p1,0,1q

(b)∫ y=1

y=−1

∫ x=1+y2−y

x=0

∫ z=1−y2

z=0
f(x, y, z) dz dxdy

+
∫ y=1

y=−1

∫ x=2−y

x=1+y2−y

∫ z=2−x−y

z=0
f(x, y, z) dz dx dy

3.5.1.7. ∗. Answer. (a)
z

y

x x“1

2x`y`4z“4

p0,0,1q

p0,4,0qp1,0,0q

p1,0,1{2q

p1,2,0q
(b)

J =
∫ y=2

y=0

∫ x=1

x=0

∫ z= 4−2x−y
4

z=0
f(x, y, z) dz dxdy

+
∫ y=4

y=2

∫ x= 4−y
2

x=0

∫ z= 4−2x−y
4

z=0
f(x, y, z) dz dx dy

3.5.1.8. ∗. Answer.

I =
∫ 1

0

∫ 1

√
x

∫ 1−y

0
f(x, y, z) dz dy dx =

∫ 1

0

∫ 1−
√
x

0

∫ 1−z

√
x

f(x, y, z) dy dz dx

=
∫ 1

0

∫ y2

0

∫ 1−y

0
f(x, y, z) dz dxdy =

∫ 1

0

∫ 1−y

0

∫ y2

0
f(x, y, z) dxdz dy

=
∫ 1

0

∫ (1−z)2

0

∫ 1−z

√
x

f(x, y, z) dy dx dz =
∫ 1

0

∫ 1−z

0

∫ y2

0
f(x, y, z) dxdy dz
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3.5.1.9. ∗. Answer. (a) I =
∫ x=0
x=−1

∫ y=0
y=−2(1+x)

∫ z=3(1+x+y/2)
z=0 f(x, y, z) dz dy dx

(b) I =
∫ z=3
z=0

∫ x=0
x=−(1−z/3)

∫ y=0
y=−2(1+x−z/3) f(x, y, z) dy dxdz

3.5.1.10. ∗. Answer. 1
48

3.5.1.11. ∗. Answer. 2
3.5.1.12. ∗. Answer. 1

12

3.5.1.13. ∗. Answer. 1
60

3.5.1.14. ∗. Answer. 13
2 −

e−6

2

3.5.1.15. ∗. Answer. (a)
z

y

x

(b)
∫ 1
−1 dx

∫ 1−x2

0 dy
∫ 1−x2

y
dz f(x, y, z)

3.5.1.16. ∗. Answer. J =
∫ 1

0
∫ 1
z

∫ 1
y
f(x, y, z) dx dy dz

3.5.1.17. ∗. Answer.
∫ y=

√
6

y=−
√

6
∫ x=3
x=y2/2

∫ z=2x
z=y2 f(x, y, z) dz dxdy∫ y=

√
6

y=−
√

6
∫ z=6
z=y2

∫ x=3
x=z/2 f(x, y, z) dxdz dy∫ z=6

z=0
∫ x=3
x=z/2

∫ y=
√
z

y=−
√
z
f(x, y, z) dy dxdz

3.5.1.18. ∗. Answer. (a)
∫ 1
−1
∫√1−y2

−
√

1−y2

∫ y
−1 f(x, y, z) dz dxdy

(b)
∫ 1
−1
∫ 1
z

∫√1−y2

−
√

1−y2
f(x, y, z) dxdy dz

(c) ∫ 1

−1

∫ −√1−x2

−1

∫ √1−x2

−
√

1−x2
f(x, y, z) dy dz dx

+
∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ √1−x2

z

f(x, y, z) dy dz dx

3.5.1.19. ∗. Answer. (a)
∫ 2

0
∫√3−y
−
√

3−y
∫ 3−y
x2 f(x, y, z) dz dxdy

(b)
∫ 1

0
∫ 2

0
∫√z
−
√
z
f(x, y, z) dxdy dz +

∫ 3
1
∫ 3−z

0
∫√z
−
√
z
f(x, y, z) dxdy dz

(c)
∫ 1

0
∫√z
−
√
z

∫ 2
0 f(x, y, z) dy dxdz +

∫ 3
1
∫√z
−
√
z

∫ 3−z
0 f(x, y, z) dy dxdz

3.5.1.20. ∗. Answer. 13
24 ≈ 0.5417

3.5.1.21. ∗. Answer. 1
8 = 0.125

3.5.1.22. ∗. Answer. (a) Here is a 3d sketch of the region. The coordi-
nates of the labelled corners are

a = (0, 0, 1) b = (0, 0, 0) c = (1, 0, 0)
d = (0, 1, 1) f = (0, 2, 0) g = (1, 1, 0)
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z

y

x

a

b
c

d

f

g

x ` y ` z “ 2

z “ 1 ´ x2

(b) 17
60

3.6 · Triple Integrals in Cylindrical Coordinates
3.6.4 · Exercises

3.6.4.1. Answer.
(a), (b)

y

z

x

r “ 0

y

z

x

1

r “ 1

(c), (d)

y

z

x
θ “ 0

y

z

x

θ “ π{4

3.6.4.2. Answer.
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z

y

x

π
4

r“1, θ“0, z“0

1

r“1, θ“π
4
, z“0

1

r“1, θ“π
2
, z“0

1

r“1, θ“π
4
, z“1

1

r“0, θ“π, z“1

1

3.6.4.3. Answer. (a) (1, 0, 0)
(b)

(
1√
2 ,

1√
2 , 0
)

(c) (0, 1, 0)
(d) (0, 0, 1)
(e)
(

1√
2 ,

1√
2 , 1
)

3.6.4.4. Answer. (a) r =
√

2, z = 2, θ = π
4 (plus possibly any integer

multiple of 2π)
(b) r =

√
2, z = 2, θ = 5π

4 (plus possibly any integer multiple of 2π)
(c) r = 2, z = 0, θ = 2π

3 (plus possibly any integer multiple of 2π)
(d) r = 0, z = 1, θ = arbitrary

3.6.4.5. Answer. (a) z = r2 sin(2θ)
(b) r2 + z2 = 1
(c) r = 2 cos θ

3.6.4.6. Answer. (a) a3(2π − 32
9
)

(b) 7
48π

(c) π
2

3.6.4.7. ∗. Answer. 8π
35

3.6.4.8. ∗. Answer.
(
0, 0, 7

16
√

2−14 ≈ 0.811
)

3.6.4.9. ∗. Answer. π
[ 48

5
√

6− 328
15
]
≈ 1.65π

3.6.4.10. ∗. Answer. 4a3

3
[
π
2 −

2
3
]

3.6.4.11. ∗. Answer. 16π
3

3.6.4.12. Answer. x̄ = ȳ = z̄ = 3
8a

3.6.4.13. ∗. Answer. (a) mass =
∫ 2

1/2
dr
∫ √4−r2

−
√

4−r2
dz
∫ 2π

0
dθ 5√

3
(z2 +

1)r
(b) 525

24
√

5π ≈ 153.7kg

3.6.4.14. ∗. Answer. (a)
∫ 2

−2
dx
∫ √4−x2

−
√

4−x2
dy
∫ e−x

2−y2

0
dz

(b) π
[
1− e−4] ≈ 3.084
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3.6.4.15. ∗. Answer. 8
3

3.6.4.16. ∗. Answer. (a) The unit vector in the direction of maximum
rate of increse is 1√

10 (3, 0, 1).
(b) 2π

3.6.4.17. Answer. M
( 3

4a
2 + b2

)
3.7 · Triple Integrals in Spherical Coordinates
3.7.5 · Exercises

3.7.5.1. Answer.z

y

x

ϕ “ 0

z

y

x

π
4

ϕ “ π
4

z

y

x

ϕ “ π
2

z

y

x

3π
4

ϕ “ 3π
4

3.7.5.2. Answer. z

y

x

π
3

π
6

ρ“1, θ“π
3
, ϕ“π

2

ρ“1, θ“π
2
, ϕ“π

2

ρ“1, θ“0, ϕ“π
2

ρ“0, θ“0.1π, ϕ“0.7π

ρ“1, θ“0.3π, ϕ“0

ρ“1, θ“π
3
, ϕ“π

6

1

1

1

1

1

3.7.5.3. Answer. (a) ρ = 2, θ = π, ϕ = π
2

(b) ρ = 3, θ = π
2 , ϕ = π

2
(c) ρ = 4, θ = arbitrary, ϕ = π
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(d) ρ = 2, θ = 3π
4 , ϕ = π

6

3.7.5.4. Answer. (a)
(

1
4 ,
√

3
4 ,

√
3

2

)
(b) (0, 2, 0)

3.7.5.5. Answer. (a) ϕ = π
6 or 5π

6
(b) ρ = 2 cosϕ
(c) ρ sinϕ = 2

3.7.5.6. ∗. Answer. See the solution.

3.7.5.7. ∗. Answer. (a)

y

z

x

p1,0,0q p0,1,0q

p0,0,1q

p0,0,2q

(b) 11π
6

3.7.5.8. ∗. Answer. 2π

3.7.5.9. Answer. (a) 2π a
3

3
(
1− 1√

2

)
(b) πa4

16
(c) 4πA

(
a−
√
B tan−1 a√

B

)
(d) 8

3πa
3

3.7.5.10. ∗. Answer. (a) 38
3 πD

(b) x̄ = ȳ = 0
z̄ = 195

152 ≈ 1.28

3.7.5.11. ∗. Answer. (a)
z

y
x

ρ “ 1

(b) I =
∫ π/2

0 dϕ
∫ π/2

0 dθ
∫ 1

0 dρ ρ4 sin2 ϕ cosϕ cos θ
(c) 1

15

3.7.5.12. ∗. Answer. 81
5
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3.7.5.13. ∗. Answer. 2π2

3

3.7.5.14. ∗. Answer. 64π
9

3.7.5.15. Answer. πa2h

3.7.5.16. ∗. Answer. 64
15π
(
1− 1

2
√

2

)
≈ 8.665

3.7.5.17. ∗. Answer. (a) π
16

(b) The centroid is (x̄, ȳ, z̄) with x̄ = ȳ = 0 and z̄ = 3
8 .

3.7.5.18. ∗. Answer. (a) 9
∫ 2

0
dρ

∫ π/2

0
dφ

∫ 2π

0
dθ ρ3 sinφ cosφ

(b) 1
2

3.7.5.19. ∗. Answer. It does not exist.

3.7.5.20. ∗. Answer. (a) Mass =
∫ 2

0 dz
∫ 2π

0 dθ
∫ 2
z

dr r2

(b) Mass =
∫ π/2
π/4 dϕ

∫ 2π
0 dθ

∫ 2/ sinϕ
0 dρ ρ3 sin2 ϕ

(c) 8π

3.7.5.21. ∗. Answer. (a)
∫ 1

0 dr
∫ 2π

0 dθ
∫√2−r2

r
dz r3

(b)
∫√2

0 dρ
∫ 2π

0 dθ
∫ π/4

0 dϕ ρ4 sin3 ϕ

(c) π
[

16
√

2
15 −

4
3

]
≈ 0.5503

3.7.5.22. ∗. Answer. (a)
∫ π/2

0 dϕ
∫ π/2

0 dθ
∫ 1

0 dρ ρ4 sin2 ϕ cosϕ cos θ
(b)

∫ 1
0 dz

∫ π/2
0 dθ

∫√1−z2

0 dr r2 z cos θ
(c) 1

15

3.7.5.23. ∗. Answer. (a)
∫ 3

0 dρ
∫ 2π

0 dθ
∫ π/6

0 dϕ ρ4 sin3 ϕ

(b)
∫ 3/2

0 dr
∫ 2π

0 dθ
∫√9−r2
√

3 r dz r3

(c) 81π
[

4
5 −

9
√

3
20

]
≈ 5.24

3.7.5.24. ∗. Answer. (a)
∫ 1/
√

2
0 dr

∫ 2π
0 dθ

∫√1−r2

r
dz r
√
r2 + z2

(b)
∫ 1

0 dρ
∫ 2π

0 dθ
∫ π/4

0 dϕ ρ3 sinϕ
(c) π

2

[
1− 1√

2

]
3.7.5.25. ∗. Answer. (a) 2π

3

[(
12
)3/2 + 54

]
(b) i. The top part is the part of the snowman’s head that is inside the

sphere
x2 + y2 + (z − 4)2 = 4

and above the cone

z − 4 = −
√
x2 + y2

3 .

ii. The middle part is the part of the snowman’s head and body that
is bounded on the top by the cone z − 4 = −

√
x2+y2

3 and is bounded on
the bottom by the cone z =

√
3(x2 + y2).

iii. The bottom part is the part of the snowman’s body that is inside
the sphere x2 + y2 + z2 = 12 and is below the cone z =

√
3(x2 + y2).
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3.7.5.26. ∗. Answer. (a) 2(83)π
3

12π
32 = 128π2

(b) The surface is a torus (a donut) but with the hole in the centre
shrunk to a point. The figure below is a sketch of the part of the surface
in the first octant.

y

z

x

3.7.5.27. ∗. Answer. (a) I =
∫ 1

0 dr
∫ 2π

0 dθ
∫ r

0 dz r z
√
r2 + z2

(b) I =
∫ π/2
π/4 dϕ

∫ 2π
0 dθ

∫ 1/ sinϕ
0 dρ ρ4 sinϕ cosϕ

(c) 2(2
√

2−1)π
15

3.7.5.28. ∗. Answer. (a)
∫ a

0 dz
∫ 3π/2
π

dθ
∫√a2−z2

0 dr r
(
r2 + z2)2014

(b)
∫ π/2

0 dϕ
∫ 3π/2
π

dθ
∫ a

0 dρ ρ4030 sinϕ
(c) a4031π

8062

3.7.5.29. ∗. Answer. (a)
∫ 1

0 dr r
∫ 2π

0 dθ
∫ r
r2 dz z(r2 + z2)

(b)
∫ π/2
π/4 dϕ

∫ 2π
0 dθ

∫ cosϕ/ sin2 ϕ

0 dρ ρ5 sinϕ cosϕ
(c) 3π

40

3.7.5.30. ∗. Answer. (a) V =
∫ 1

0 dr
∫ π/2

0 dθ
∫ 1+

√
1−r2

r
dz r

(b) V =
∫ π/4

0 dϕ
∫ π/2

0 dθ
∫ 2 cosϕ

0 dρ ρ2 sinϕ
(c) π

4

3.7.5.31. ∗. Answer. (a)
∫ 2π

0 dθ
∫ 3/2

0 dr r
∫√9−r2
√

3 r dz r2

(b)
∫ 2π

0 dθ
∫ π/6

0 dϕ
∫ 3

0 dρ
(
ρ2 sinϕ

)(
ρ2 sin2 ϕ

)
(c) 2π 35

5
[ 2

3 −
3
√

3
8
]



Appendix D

Solutions to Exercises

1 · Vectors and Geometry in Two and Three
Dimensions
1.1 · Points
1.1.1 · Exercises

1.1.1.1. Solution.
a The point (x, y, z) satisfies x2 + y2 + z2 = 2x − 4y + 4 if and only
if it satisfies x2 − 2x + y2 + 4y + z2 = 4, or equivalently (x − 1)2 +
(y + 2)2 + z2 = 9. Since

√
(x− 1)2 + (y + 2)2 + z2 is the distance

from (1,−2, 0) to (x, y, z), our point satisfies the given equation if and
only if its distance from (1,−2, 0) is three. So the set is the sphere
of radius 3 centered on (1,−2, 0).

b As in part (a), x2 + y2 + z2 < 2x − 4y + 4 if and only if (x − 1)2 +
(y+ 2)2 + z2 < 9. Hence our point satifies the given inequality if and
only if its distance from (1,−2, 0) is strictly smaller than three. The
set is the interior of the sphere of radius 3 centered on (1,−2, 0).

1.1.1.2. Solution.
a x = y is a straight line and passes through the points (0, 0) and (1, 1).
So it is the straight line through the origin that makes an angle 45◦
with the x- and y-axes. It is sketched in the figure on the left below.

x

y

y “ x

x

y

p1, 0q

p0, 1q
x ` y “ 1

b x + y = 1 is the straight line through the points (1, 0) and (0, 1). It
is sketched in the figure on the right above.

c x2+y2 is the square of the distance from (0, 0) to (x, y). So x2+y2 = 4
is the circle with centre (0, 0) and radius 2. It is sketched in the figure
on the left below.

471
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x

y

p2, 0q

x2 ` y2 “ 4

x

y

p0, 1q

x2 ` y2 “ 2y

d The equation x2 + y2 = 2y is equivalent to x2 + (y − 1)2 = 1. As
x2 + (y − 1)2 is the square of the distance from (0, 1) to (x, y), x2 +
(y−1)2 = 1 is the circle with centre (0, 1) and radius 1. It is sketched
in the figure on the right above.

e As in part (d),

x2 + y2 < 2y ⇐⇒ x2 + y2 − 2y < 0 ⇐⇒ x2 + y2 − 2y + 1 < 1
⇐⇒ x2 + (y − 1)2 < 1

As x2 + (y − 1)2 is the square of the distance from (0, 1) to (x, y),
x2 + (y − 1)2 < 1 is the set of points whose distance from (0, 1) is
strictly less than 1. That is, it is the set of points strictly inside the
circle with centre (0, 1) and radius 1. That set is the shaded region
(not including the dashed circle) in the sketch below.

x

y

p0, 1q

x2 ` y2 “ 2y

1.1.1.3. Solution.
a For each fixed y0, z = x, y = y0 is a straight line that lies in the

plane, y = y0 (which is parallel to the plane containing the x and z
axes and is a distance y0 from it). This line passes through x = z = 0
and makes an angle 45◦ with the xy-plane. Such a line (with y0 = 0)
is sketched in the figure below. The set z = x is the union of all the
lines z = x, y = y0 with all values of y0. As y0 varies z = x, y = y0
sweeps out the plane which contains the y-axis and which makes an
angle 45◦ with the xy-plane. Here is a sketch of the part of the plane
that is in the first octant.

y

z

x

b x + y + z = 1 is the plane through the points (1, 0, 0), (0, 1, 0) and
(0, 0, 1). Here is a sketch of the part of the plane that is in the first
octant.
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x

y

z

p1,0,0q
p0,1,0q

p0,0,1q

c x2 + y2 + z2 is the square of the distance from (0, 0, 0) to (x, y, z). So
x2 + y2 + z2 = 4 is the set of points whose distance from (0, 0, 0) is
2. It is the sphere with centre (0, 0, 0) and radius 2. Here is a sketch
of the part of the sphere that is in the first octant.

z

y

x

d x2 + y2 + z2 = 4, z = 1 or equivalently x2 + y2 = 3, z = 1, is the
intersection of the plane z = 1 with the sphere of centre (0, 0, 0) and
radius 2. It is a circle in the plane z = 1 that has centre (0, 0, 1)
and radius

√
3. The part of the circle in the first octant is the heavy

quarter circle in the sketch
z

y

x

e For each fixed z0, x2 + y2 = 4, z = z0 is a circle in the plane z = z0
with centre (0, 0, z0) and radius 2. So x2 + y2 = 4 is the union of
x2 + y2 = 4, z = z0 for all possible values of z0. It is a vertical stack
of horizontal circles. It is the cylinder of radius 2 centered on the
z-axis. Here is a sketch of the part of the cylinder that is in the first
octant.
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z

y

x

f For each fixed z0 ≥ 0, the curve z = x2 + y2, z = z0 is the circle in
the plane z = z0 with centre (0, 0, z0) and radius √z0. As z = x2 +y2

is the union of z = x2 + y2, z = z0 for all possible values of z0 ≥ 0, it
is a vertical stack of horizontal circles. The intersection of the surface
with the yz-plane is the parabola z = y2. Here is a sketch of the part
of the paraboloid that is in the first octant.

z

y

x

z“y2

x“0z“x2

y“0

1.1.1.4. Solution.
a The z coordinate of any point is the signed distance from the point to
the xy-plane. So the distance from (2, 1, 3) to the xy-plane is |3| = 3.

b The y coordinate of any point is the signed distance from the point to
the xz-plane. So the distance from (2, 1, 3) to the xz-plane is |1| = 1.

c The distance from (2, 1, 3) to (x, 0, 0) is√
(2− x)2 + (1− 0)2 + (3− 0)2 =

√
(x− 2)2 + 10

d Since (x − 2)2 ≥ 0, the distance
√

(x− 2)2 + 10 is minimized when
x = 2. Alternatively,

d
dx
√

(x− 2)2 + 10 = x− 2√
(x− 2)2 + 10

= 0 ⇐⇒ x = 2

So the point on the x-axis that is closest to A is (2, 0, 0).

e As (2, 0, 0) is the point on the x-axis that is nearest (2, 1, 3), the
distance from A to the x-axis is√

(2− 2)2 + (1− 0)2 + (3− 0)2 =
√

12 + 32 =
√

10
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p2, 0, 3q

p2, 0, 0q p2, 1, 0q

p2, 1, 3q

1

1

3

x

y

z

1.1.1.5. Solution. Call the centre of the circumscribing circle (x̄, ȳ).
This centre must be equidistant from the three vertices. So

x̄2 + ȳ2 = (x̄− a)2 + ȳ2 = (x̄− b)2 + (ȳ − c)2

or, subtracting x̄2 + ȳ2 from the three equal expressions,

0 = a2 − 2ax̄ = b2 − 2bx̄+ c2 − 2cȳ

which implies

x̄ = a

2 ȳ = b2 + c2 − 2bx̄
2c = b2 + c2 − ab

2c

The radius is the distance from the vertex (0, 0) to the centre (x̄, ȳ), which
is
√(

a
2
)2 +

(
b2+c2−ab

2c
)2.

1.1.1.6. ∗. Solution. The distance from P to the point (0, 0, 1) is√
x2 + y2 + (z − 1)2. The distance from P to the specified plane is |z+ 1|.

Hence the equation of the surface is

x2 + y2 + (z − 1)2 = (z + 1)2 or x2 + y2 = 4z

All points on this surface have z ≥ 0. The set of points on the surface that
have any fixed value, z0 ≥ 0, of z consists of a circle that is centred on the
z-axis, is parallel to the xy-plane and has radius 2√z0. The surface consists
of a stack of these circles, starting with a point at the origin and with radius
increasing vertically. The surface is a paraboloid and is sketched below.

z

y

x

1.1.1.7. Solution. Let (x, y, z) be a point in P . The distances from
(x, y, z) to (3,−2, 3) and to (3/2, 1, 0) are√

(x− 3)2 + (y + 2)2 + (z − 3)2 and
√

(x− 3/2)2 + (y − 1)2 + z2
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respectively. To be in P , (x, y, z) must obey√
(x− 3)2 + (y + 2)2 + (z − 3)2 = 2

√
(x− 3/2)2 + (y − 1)2 + z2

(x− 3)2 + (y + 2)2 + (z − 3)2 = 4(x− 3/2)2 + 4(y − 1)2 + 4z2

Squaring out both sides gives

x2 − 6x+ 9 + y2 + 4y + 4 + z2 − 6z + 9
= 4x2 − 12x+ 9 + 4y2 − 8y + 4 + 4z2

and the simplifying gives

3x2 − 6x+ 3y2 − 12y + 3z2 + 6z − 9 = 0
x2 − 2x+ y2 − 4y + z2 + 2z − 3 = 0

(x− 1)2 + (y − 2)2 + (z + 1)2 = 9

This is a sphere of radius 3 centered on (1, 2,−1).

1.1.1.8. Solution. For each fixed c ≥ 0, the isobar p(x, y) = c is the
curve x2 − 2cx + y2 = 3c2, or equivalently, (x − c)2 + y2 = 4c2. This is
a circle with centre (c, 0) and radius 2c. Here is a sketch of the isobars
p(x, y) = c with c = 0, 1, 2, 3.

x

y

p“0 p“1 p“2 p“3

1.2 · Vectors
1.2.9 · Exercises

1.2.9.1. Solution. a + b = 〈3, 1〉, a + 2b = 〈4, 2〉 2a − b = 〈3,−1〉

x

y

a
b

a ` b

x

y

a

2b
a ` 2b

x
y

2a

´b
2a ´ b

1.2.9.2. Solution. If three points are collinear, then the vector from the
first point to the second point, and the vector from the first point to the
third point must both be parallel to the line, and hence must be parallel
to each other (i.e. must be multiples of each other).
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x

y

a The vectors 〈0, 3, 7〉 − 〈1, 2, 3〉 = 〈−1, 1, 4〉 and 〈3, 5, 11〉 − 〈1, 2, 3〉 =
〈2, 3, 8〉 are not parallel (i.e. are not multiples of each other), so the
three points are not on the same line.

b The vectors 〈1, 2,−2〉−〈0, 3,−5〉 = 〈1,−1, 3〉 and 〈3, 0, 4〉−〈0, 3,−5〉 =
〈3,−3, 9〉 are parallel (i.e. are multiples of each other), so the three
points are on the same line.

1.2.9.3. Solution. By property 7 of Theorem 1.2.11,

〈1, 3, 2〉 · 〈2,−2, 2〉 = 1× 2− 3× 2 + 2× 2 = 0 (a)
〈−3, 1, 7〉 · 〈2,−1, 1〉 = −3× 2− 1× 1 + 7× 1 = 0 (b)
〈2, 1, 1〉 · 〈−1, 4, 2〉 = −2× 1 + 1× 4 + 1× 2 = 4 6= 0 (c)

says that the vectors of parts (a) and (b) are perpendicular, while the
vectors of part (c) are not perpendicular.

1.2.9.4. Solution.
a The vector a has length

| 〈3, 4〉 | =
√

32 + 42 =
√

25 = 5

So the vector 1
5 〈3, 4〉 has length 1 (i.e. is a unit vector) and is in the

same direction as 〈3, 4〉.

b Recall, from Definition 1.2.5, that a vector is parallel to a if and only
if it is of the form sa for some nonzero real number s. Such a vector
is a unit vector if and only if

|sa| = 1 ⇐⇒ |s| | 〈3, 4〉 | = 1 ⇐⇒ |s| = 1
| 〈3, 4〉 | = 1

5

⇐⇒ s = ±1
5

So there are two unit vectors that are parallel to a, namely ± 1
5 〈3, 4〉.

c We have already found, in part (b), all vectors that are parallel to
a and have length 1, namely ± 1

5 〈3, 4〉. To increase the lengths of
those vectors to 10, we just need to multiply them by 10, giving
± 10

5 〈3, 4〉 = ±2 〈3, 4〉 = ±〈6, 8〉.

d A vector 〈x, y〉 is perpendicular to a = 〈3, 4〉 if and only if

0 = 〈x, y〉·〈3, 4〉 = 3x+4y ⇐⇒ y = −3
4x ⇐⇒ 〈x, y〉 =

〈
x,−3

4x
〉

= x

4 〈4,−3〉

Such a vector is a unit vector if and only if
|x|
4 | 〈4,−3〉 | = 1 ⇐⇒ |x|

4 = 1
| 〈4,−3〉 | = 1

5
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⇐⇒ x

4 = ±1
5

So there are two unit vectors that are perpendicular to a, namely
± 1

5 〈4,−3〉.

1.2.9.5. Solution.
a The vector b has length

| 〈3, 4, 0〉 | =
√

32 + 42 + 02 =
√

25 = 5

So the vector 1
5 〈3, 4, 0〉 has length 1 (i.e. is a unit vector) and is in

the same direction as 〈3, 4, 0〉.

b Recall, from Definition 1.2.5, that a vector is parallel to b if and only
if it is of the form sb for some nonzero real number s. Such a vector
is a unit vector if and only if

|sb| = 1 ⇐⇒ |s| | 〈3, 4, 0〉 | = 1 ⇐⇒ |s| = 1
| 〈3, 4, 0〉 | = 1

5

⇐⇒ s = ±1
5

So there are two unit vectors that are parallel to b, namely± 1
5 〈3, 4, 0〉.

c A vector 〈x, y, z〉 is perpendicular to a = 〈3, 4, 0〉 if and only if

0 = 〈x, y, z〉·〈3, 4, 0〉 = 3x+4y ⇐⇒ y = −3
4x ⇐⇒ 〈x, y, z〉 =

〈
x,−3

4x, z
〉

Such a vector is a unit vector if and only if∣∣∣∣〈x,−3
4x, z

〉∣∣∣∣ = 1 ⇐⇒
√
x2 + 9

16x
2 + z2 = 1 ⇐⇒

√
25
16x

2 + z2 = 1

There are infinitely many pairs x, z that obey
√

25
16x

2 + z2 = 1.
We can easily get two of them by setting x = 0 and choosing z to
obey

√
z2 = 1, i.e. choosing z = ±1. We can easily get two more

of them by setting z = 0 and choosing x to obey
√

25
16x

2 = 1, i.e.
choosing x = ± 4

5 . This gives us four vectors of length one that are
perpendicular to b, namely

±〈0, 0, 1〉 ±
〈

4
5 , −

3
4

4
5 , 0

〉
= ±1

5 〈4,−3, 0〉

1.2.9.6. Solution. proĵıııa = (a · ı̂ıı)̂ııı = a1ı̂ıı and proĵa = (a · ̂)̂ = a2̂.

1.2.9.7. Solution. The vector from (1, 2, 3) to (4, 0, 5) is 〈3,−2, 2〉. The
vector from (1, 2, 3) to (3, 6, 4) is 〈2, 4, 1〉. The dot product between these
two vectors is 〈3,−2, 2〉 · 〈2, 4, 1〉 = 0, so the vectors are perpendicular and
the triangle does contain a right angle.

1.2.9.8. Solution. The area of a parallelogram is the length of its base
time its height.
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b
b

a

a

h

θ

We can choose the base to be a. Then, if θ is the angle between its
sides a and b, its height is |b| sin θ. So

area = |a||b| sin θ = |a × b|

1.2.9.9. Solution. The volume of a parallelepiped is the area of its base
time its height. We can choose the base to be the parallelogram determined
by the vectors b and c. It has area |b×c|. The vector b×c is perpendicular
to the base.

a

c

b

b ˆ c

θ

Denote by θ the angle between a and the perpendicular b × c. The
height of the parallelepiped is |a|| cos θ|. So

volume = |a| | cos θ| |b× c| = |a · (b× c)|

1.2.9.10. Solution. (a)

ı̂ıı× ̂ = det

ı̂ıı ̂ k̂
1 0 0
0 1 0


= ı̂ıı(0× 0− 0× 1)− ̂(1× 0− 0× 0) + k̂(1× 1− 0× 0)
= k̂

̂× k̂ = det

ı̂ıı ̂ k̂
0 1 0
0 0 1


= ı̂ıı(1× 1− 0× 0)− ̂(0× 1− 0× 0) + k̂(0× 0− 1× 0)
= ı̂ıı

k̂× ı̂ıı = det

ı̂ıı ̂ k̂
0 0 1
1 0 0


= ı̂ıı(0× 0− 1× 0)− ̂(0× 0− 1× 1) + k̂(0× 0− 0× 1)
= ̂

(b)

a · (a × b) = a1
(
a2b3 − a3b2

)
− a2

(
a1b3 − a3b1

)
+ a3

(
a1b2 − a2b1

)
= 0

b · (a × b) = b1
(
a2b3 − a3b2

)
− b2

(
a1b3 − a3b1

)
+ b3

(
a1b2 − a2b1

)
= 0
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1.2.9.11. Solution. This statement is false. The two numbers a ·b, a ·c
are equal if and only if a · (b−c) = 0. This in turn is the case if and only if
a is perpendicular to b− c (under the convention that 0 is perpendicular
to all vectors). For example, if a = 〈1, 0, 0〉, b = 〈0, 1, 0〉 , c = 〈0, 0, 1〉,
then b− c = 〈0, 1,−1〉 is perpendicular to a so that a · b = a · c.

1.2.9.12. Solution. This statement is true. In the event that b and c
are parallel, b×c = 0 so that a×(b×c) = 0 = 0b+0c, so we may assume
that b and c are not parallel. Then as α and β run over R, the vector
αb+βc runs over the plane that contains the origin and the vectors b and
c. Call this plane P . Because d = b × c is nonzero and perpendicular to
both b and c, P is the plane that contains the origin and is perpendicular
to d. As a × (b× c) = a × d is always perpendicular to d, it lies in P .

1.2.9.13. Solution. None. The given equation is nonsense. The left
hand side is a number while the right hand side is a vector.

1.2.9.14. Solution. If b and c are parallel, then b× c = 0 and a · (b×
c) = 0 for all a. If b and c are not parallel, a · (b × c) = 0 if and only if
a is perpendicular to d = b× c. As we saw in question 1.2.9.12, the set of
all vectors perpendicular to d is the plane consisting of all vectors of the
form αb + βc with α and β real numbers. So a must be of this form.

1.2.9.15. Solution. (a) The sketch for part (a) is on the left below. To
sketch the projections, we dropped perpendiculars

• from C to the line from O to A, and

• from C to the line from O to B.

By definition,

• proj−−→
OA

−−→
OC is the vector −−→OPA from O to the point PA, where the

perpendicular from C to the line from O to A hits the line, and

• proj−−→
OB

−−→
OC is the vector −−−→OPB from O to the point PB , where the

perpendicular from C to the line from O to B hits the line.

A

B

C

PA

PB

O A

B

C

PA

PB

O

To evaluate the projections we observe that the three lines from C to
O, from C to A and from C to B all have exactly the same length (namely
the radius of the circumscribing circle). Consequently (see the figure on
the right above),

• the triangle OCA is an isoceles triangle, so that PA is exactly the
midpoint of the line segement from O to A. That is, PA is (a/2, 0)
and

proj−−→
OA

−−→
OC = −−→OPA = 〈a/2, 0〉
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• Similarly, the triangle OCB is an isoceles triangle, so that PB is
exactly the midpoint of the line segement from O to B. That is PA
is (b/2, c/2) and

proj−−→
OB

−−→
OC = −−−→OPB = 〈b/2, c/2〉

(b) Call the centre of the circumscribing circle (x̄, ȳ). This centre must
be equidistant from the three vertices. So

x̄2 + ȳ2 = (x̄− a)2 + ȳ2 = (x̄− b)2 + (ȳ − c)2

or, subtracting x̄2 + ȳ2 from all three expression,

0 = a2 − 2ax̄ = b2 − 2bx̄+ c2 − 2cȳ

which implies

x̄ = a

2 ȳ = b2 + c2 − 2bx̄
2c = b2 + c2 − ab

2c

(c) From part (b), we have

−→
OA ·

−−→
OC = 〈a, 0〉 ·

〈
a

2 ,
b2 + c2 − ab

2c

〉
= a2

2 = 1
2 |
−→
OA|2

−−→
OB ·

−−→
OC = 〈b, c〉 ·

〈
a

2 ,
b2 + c2 − ab

2c

〉
= ab

2 + b2 + c2 − ab
2 = b2 + c2

2

= 1
2 |
−−→
OB|2

So, by Equation 1.2.14,

proj−−→
OA

−−→
OC =

−→
OA ·

−−→
OC

|
−→
OA|2

−→
OA = 1

2
−→
OA = 〈a/2, 0〉

proj−−→
OB

−−→
OC =

−−→
OB ·

−−→
OC

|
−−→
OB|2

−−→
OB = 1

2
−−→
OB = 〈b/2, c/2〉

1.2.9.16. Solution. The center of the sphere is 1
2
{

(2, 1, 4)+(4, 3, 10)
}

=
(3, 2, 7). The diameter (i.e. twice the radius) is |(2, 1, 4) − (4, 3, 10)| =
|(−2,−2,−6)| = 2|(1, 1, 3)| = 2

√
11. So the radius of the sphere is

√
11

and the equation of the sphere is

(x− 3)2 + (y − 2)2 + (z − 7)2 = 11

1.2.9.17. Solution. Call the vertices of the triangle A, B and C with
C being the vertex that joins the two sides. We can always choose our
coordinate system so that C is at the origin. Let a be the vector from C
to A and b be the vector from C to B.

C

A
B

a
b

• Then the vector from C to the midpoint of the side from C to A is
1
2a and
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• the vector from C to the midpoint of the side from C to B is 1
2b so

that

• the vector joining the two midpoints is 1
2b− 1

2a.

As the vector from A to B is b − a = 2
[ 1

2b − 1
2a
]
, the line joining the

midpoints is indeed parallel to the third side and half its length.

1.2.9.18. Solution. (a) By 1.2.17, the area is∣∣∣∣det
[
−3 1
4 3

]∣∣∣∣ =
∣∣− 3× 3− 1× 4

∣∣ = | − 13| = 13

(b) By 1.2.17, the area is∣∣∣∣det
[
4 2
6 8

]∣∣∣∣ =
∣∣4× 8− 2× 6

∣∣ = 20

1.2.9.19. ∗. Solution. Note that
• the point on W with x = 0, y = 0 obeys −0 + 3(0) + 3z = 6 and so

has z = 2

• the point on W with x = 0, y = 2 obeys −0 + 3(2) + 3z = 6 and so
has z = 0

• the point on W with x = 3, y = 0 obeys −3 + 3(0) + 3z = 6 and so
has z = 3

• the point on W with x = 3, y = 2 obeys −3 + 3(2) + 3z = 6 and so
has z = 1

So the four corners of the parallelogram are (0, 0, 2), (0, 2, 0), (3, 0, 3) and
(3, 2, 1). The vectors

d1 = 〈0− 0 , 2− 0 , 0− 2〉 = 〈0 , 2 , −2〉
d2 = 〈3− 0 , 0− 0 , 3− 2〉 = 〈3 , 0 , 1〉

form two sides of the paralleogram. So the area of the parallelogram is

∣∣d1 × d2
∣∣ =

∣∣∣∣∣∣det

ı̂ıı ̂ k̂
0 2 −2
3 0 1

∣∣∣∣∣∣ =
∣∣∣2 ı̂ıı− 6 ̂− 6k̂

∣∣∣ =
√

76 = 2
√

19

1.2.9.20. Solution. (a) By 1.2.18, the volume is∣∣∣∣∣∣det

 4 1 −1
−1 5 2
1 1 6

∣∣∣∣∣∣
=
∣∣∣∣4 det

[
5 2
1 6

]
− 1 det

[
−1 2
1 6

]
+ (−1) det

[
−1 5
1 1

]∣∣∣∣
=
∣∣4(30− 2)− 1(−6− 2)− 1(−1− 5)

∣∣ = 4× 28 + 8 + 6
= 126



APPENDIX D. SOLUTIONS TO EXERCISES 483

(b) By 1.2.18, the volume is∣∣∣∣∣∣det

−2 1 2
3 1 2
0 2 5

∣∣∣∣∣∣
=
∣∣∣∣−2 det

[
1 2
2 5

]
− 1 det

[
3 2
0 5

]
+ 2 det

[
3 1
0 2

]∣∣∣∣
=
∣∣− 2(5− 4)− 1(15− 0) + 2(6− 0)

∣∣ =
∣∣− 2− 15 + 12

∣∣ =
∣∣− 5

∣∣
= 5

1.2.9.21. Solution.

a · b = 〈1, 2〉 · 〈−2, 3〉 = 4 cos θ = 4√
5
√

13
= .4961

=⇒ θ = 60.25◦ (a)

a · b = 〈−1, 1〉 · 〈1, 1〉 = 0 cos θ = 0√
2
√

2
= 0

=⇒ θ = 90◦ (b)

a · b = 〈1, 1〉 · 〈2, 2〉 = 4 cos θ = 4√
2
√

8
= 1

=⇒ θ = 0◦ (c)

a · b = 〈1, 2, 1〉 · 〈−1, 1, 1〉 = 2 cos θ = 2√
6
√

3
= .4714

=⇒ θ = 61.87◦ (d)

a · b = 〈−1, 2, 3〉 · 〈3, 0, 1〉 = 0 cos θ = 0√
14
√

10
= 0

=⇒ θ = 90◦ (e)

1.2.9.22. Solution. By property 6 of Theorem 1.2.11,

cos θ = a · b
|a| |b| = 1× 3 + 2× 4√

1 + 4
√

9 + 16
= 11

5
√

5
= .9839

=⇒ θ = 10.3◦ (a)

cos θ = a · b
|a| |b| = 2× 4− 1× 2 + 4× 1√

4 + 1 + 16
√

16 + 4 + 1
= 10

21 = .4762

=⇒ θ = 61.6◦ (b)

cos θ = a · b
|a| |b| = 1× 3− 2× 1 + 1× 0√

1 + 4 + 1
√

9 + 1
= 1√

60
= .1291

=⇒ θ = 82.6◦ (c)

1.2.9.23. Solution.

〈2, 4〉 · 〈2, y〉 = 2× 2 + 4× y = 4 + 4y = 0 ⇐⇒ y = −1 (a)
〈4,−1〉 ·

〈
y, y2〉 = 4× y − 1× y2 = 4y − y2 = 0 ⇐⇒ y = 0, 4 (b)

〈3, 1, 1〉 ·
〈
2, 5y, y2〉 = 6 + 5y + y2 = 0 ⇐⇒ y = −2,−3 (c)

1.2.9.24. Solution. (a) We want 0 = u · v = −2α− 10 or α = −5.
(b) We want −2/α = 5/(−2) or α = 0.8.
(c) We want u · v = −2α − 10 = |u| |v| cos 60◦ =

√
29
√
α2 + 4 1

2 .
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Squaring both sides gives

4α2 + 40α+ 100 = 29
4 (α2 + 4)

=⇒ 13α2 − 160α− 284 = 0

=⇒ α = 160±
√

1602 + 4× 13× 284
26

≈ 13.88 or − 1.574

Both of these α’s give u · v < 0 so no α works.

1.2.9.25. Solution. (a) The component of b in the direction a is

b · a
|a| = 1× 4 + 2× 10 + 3× 6√

1 + 4 + 9
= 42√

14

(b) The projection of b on a is a vector of length 42/
√

14 in direction
a/|a|, namely 42

14 〈1, 2, 3〉 = 〈3, 6, 9〉.
(c) The projection of b perpendicular to a is b minus its projection on

a, namely 〈4, 10, 6〉 − 〈3, 6, 9〉 = 〈1, 4,−3〉.

1.2.9.26. Solution.

〈1, 2, 3〉 × 〈4, 5, 6〉 = det

ı̂ıı ̂ k̂
1 2 3
4 5 6


= ı̂ıı (2× 6− 3× 5)− ̂ (1× 6− 3× 4) + k̂ (1× 5− 2× 4)
= −3 ı̂ıı+ 6 ̂− 3 k̂

1.2.9.27. Solution.

det

 ı̂ıı ̂ k̂
1 −5 2
−2 1 5


= ı̂ııdet

[
−5 2
1 5

]
− ̂det

[
1 2
−2 5

]
+ k̂ det

[
1 −5
−2 1

]
= ı̂ıı(−25− 2)− ̂(5 + 4) + k̂(1− 10) = 〈−27,−9,−9〉 (a)

det

ı̂ıı ̂ k̂
2 −3 −5
4 −2 7


= ı̂ııdet

[
−3 −5
−2 7

]
− ̂det

[
2 −5
4 7

]
+ k̂ det

[
2 −3
4 −2

]
= ı̂ıı(−21− 10)− ̂(14 + 20) + k̂(−4 + 12) = 〈−31,−34, 8〉 (b)

det

 ı̂ıı ̂ k̂
−1 0 1
0 4 5


= ı̂ııdet

[
0 1
4 5

]
− ̂ det

[
−1 1
0 5

]
+ k̂ det

[
−1 0
0 4

]
= ı̂ıı(0− 4)− ̂(−5− 0) + k̂(−4− 0) = 〈−4, 5,−4〉 (c)
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1.2.9.28. Solution.

p× p = det

 ı̂ıı ̂ k̂
−1 4 2
−1 4 2

 (a)

= ı̂ıı(4× 2− 2× 4)− ̂(2− (−2)) + k̂(−4− (−4))
= 〈0, 0, 0〉

p× q = det

 ı̂ıı ̂ k̂
−1 4 2
3 1 −1

 (b)

= ı̂ıı(−4− 2)− ̂(1− 6) + k̂(−1− 12)
= 〈−6, 5,−13〉

q × p = det

 ı̂ıı ̂ k̂
3 1 −1
−1 4 2


= ı̂ıı(2 + 4)− ̂(6− 1) + k̂(12 + 1)
= 〈6,−5, 13〉

p×(3r) = det

 ı̂ıı ̂ k̂
−1 4 2
6 −9 −3

 (c)

= ı̂ıı(−12 + 18)− ̂(3− 12) + k̂(9− 24)
= 〈6, 9,−15〉

3(p× r) = 3 det

 ı̂ıı ̂ k̂
−1 4 2
2 −3 −1


= 3
(
ı̂ıı(−4 + 6)− ̂(1− 4) + k̂(3− 8)

)
= 〈6, 9,−15〉

(d) As q + r = 〈5,−2,−2〉

p× (q + r) = det

 ı̂ıı ̂ k̂
−1 4 2
5 −2 −2


= ı̂ıı(−8 + 4)− ̂(2− 10) + k̂(2− 20)
= 〈−4, 8,−18〉

(e) Using the values of p× q and 3(p× r) computed in parts (b) and (c)

p× q + p× r = 〈−6, 5,−13〉+ 1
3 〈6, 9,−15〉 = 〈−4, 8,−18〉

q × r = det

ı̂ıı ̂ k̂
3 1 −1
2 −3 −1


= ı̂ıı(−1− 3)− ̂(−3 + 2) + k̂(−9− 2)
= 〈−4, 1,−11〉
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p× (q × r) = det

 ı̂ıı ̂ k̂
−1 4 2
−4 1 −11


= ı̂ıı(−44− 2)− ̂(11 + 8) + k̂(−1 + 16)
= 〈−46,−19, 15〉

(p× q)× r = det

 ı̂ıı ̂ k̂
−6 5 −13
2 −3 −1


= ı̂ıı(−5− 39)− ̂(6 + 26) + k̂(18− 10)
= 〈−44,−32, 8〉

1.2.9.29. Solution. Denote by θ the angle between the two vectors
a = 〈1, 2, 3〉 and b = 〈3, 2, 1〉. The area of the triangle is one half times
the length, |a|, of its base times its height h = |b| sin θ.

b

ah

θ

Thus the area of the triangle is 1
2 |a| |b| sin θ. By property 2 of the cross

product in Theorem 1.2.23, |a × b| = |a| |b| sin θ. So

area = 1
2 |a × b| = 1

2 | 〈1, 2, 3〉 × 〈3, 2, 1〉 |

= 1
2 |̂ı
ıı (2− 6)− ̂ (1− 9) + k̂ (2− 6)|

= 1
2
√

16 + 64 + 16

= 2
√

6

1.2.9.30. ∗. Solution. The derivative of L is

dL
dt = d

dt
(
r(t)× r′(t)

)
= r′(t)× r′(t) + r(t)× r′′(t)

= r′(t)× r′(t) + r(t)×
(
ρ(t)r(t)

)
Both terms vanish because the cross product of any two parallel vectors is
zero. So dL

dt = 0 and L(t) is independent of t.

1.2.9.31. Solution. The parallelogram determined by the vectors a and
b has vertices 0, a, b and a +b. As t varies from 0 to 1, t(a +b) traverses
the diagonal from 0 to a+b. As s varies from 0 to 1, a+s(b−a) traverses
the diagonal from a to b. These two straight lines meet when s and t are
such that

t(a + b) = a + s(b− a)

or
(t+ s− 1)a = (s− t)b

Assuming that a and b are not parallel (i.e. the parallelogram has not
degenerated to a line segment), this is the case only when t+s−1 = 0 and
s− t = 0. That is, s = t = 1

2 . So the two lines meet at their midpoints.
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1.2.9.32. Solution. We may choose our coordinate axes so that A =
(0, 0, 0), B = (s, 0, 0), C = (s, s, 0), D = (0, s, 0) and A′ = (0, 0, s), B′ =
(s, 0, s), C ′ = (s, s, s), D′ = (0, s, s).

(a) Then

|A′C ′| =
∣∣ 〈s, s, s〉 − 〈0, 0, s〉 ∣∣ =

∣∣ 〈s, s, 0〉 ∣∣ =
√

2 s
|A′B| =

∣∣ 〈s, 0, 0〉 − 〈0, 0, s〉 ∣∣ =
∣∣ 〈s, 0,−s〉 ∣∣ =

√
2 s

|A′D| =
∣∣ 〈0, s, 0〉 − 〈0, 0, s〉 ∣∣ =

∣∣ 〈0, s,−s〉 ∣∣ =
√

2 s
|C ′B| =

∣∣ 〈s, 0, 0〉 − 〈s, s, s〉 ∣∣ =
∣∣ 〈0,−s,−s〉 ∣∣= √2 s

|C ′D| =
∣∣ 〈0, s, 0〉 − 〈s, s, s〉 ∣∣ =

∣∣ 〈−s, 0,−s〉 ∣∣= √2 s
|BD| =

∣∣ 〈0, s, 0〉 − 〈s, 0, 0〉 ∣∣ =
∣∣ 〈−s, s, 0〉 ∣∣ =

√
2 s

(b) E = 1
2 (s, s, s) so that EA = 〈0, 0, 0〉 − 1

2 〈s, s, s〉 = − 1
2 〈s, s, s〉 and

EC = 〈s, s, 0〉 − 1
2 〈s, s, s〉 = 1

2 〈s, s,−s〉.

cos θ = −〈s, s, s〉 · 〈s, s,−s〉
| 〈s, s, s〉 | | 〈s, s,−s〉 |

= −s
2

3s2 = −1
3 =⇒ θ = 109.5◦

1.2.9.33. Solution. Suppose that the cube has height, length and width
s. We may choose our coordinate axes so that the vertices of the cube are
at (0, 0, 0), (s, 0, 0), (0, s, 0), (0, 0, s), (s, s, 0), (0, s, s), (s, 0, s) and (s, s, s).

We’ll start with a couple of examples. The diagonal from (0, 0, 0) to
(s, s, s) is 〈s, s, s〉. One face of the cube has vertices (0, 0, 0), (s, 0, 0),
(0, s, 0) and (s, s, 0). One diagonal of this face runs from (0, 0, 0) to (s, s, 0)
and hence is 〈s, s, 0〉. The angle between 〈s, s, s〉 and 〈s, s, 0〉 is

arccos
(
〈s, s, s〉 · 〈s, s, 0〉
| 〈s, s, s〉 | | 〈s, s, 0〉 |

)
= arccos

(
2s2

√
3s
√

2s

)
= arccos

(
2√
6

)
≈ 35.26◦

A second diagonal for the face with vertices (0, 0, 0), (s, 0, 0), (0, s, 0) and
(s, s, 0) is that running from (s, 0, 0) to (0, s, 0). This diagonal is 〈−s, s, 0〉.
The angle between 〈s, s, s〉 and 〈−s, s, 0〉 is

arccos
(
〈s, s, s〉 · 〈−s, s, 0〉
| 〈s, s, s〉 | | 〈−s, s, 0〉 |

)
= arccos

(
0√

3s
√

2s

)
= arccos(0)

= 90◦

Now we’ll consider the general case. Note that every component of
every vertex of the cube is either 0 or s. In general, two vertices of the
cube are at opposite ends of a diagonal of the cube if all three components
of the two vertices are different. For example, if one end of the diagonal is
(s, 0, s), the other end is (0, s, 0). The diagonals of the cube are all of the
form 〈±s,±s,±s〉. All of these diagonals are of length

√
3s. Two vertices

are on the same face of the cube if one of their components agree. They are
on opposite ends of a diagonal for the face if their other two components
differ. For example (0, s, s) and (s, 0, s) are both on the face with z = s.
Because the x components 0, s are different and the y components s, 0 are
different, (0, s, s) and (s, 0, s) are the ends of a diagonal of the face with
z = s. The diagonals of the faces with z = 0 or z = s are 〈±s,±s, 0〉. The
diagonals of the faces with y = 0 or y = s are 〈±s, 0,±s〉. The diagonals of
the faces with x = 0 or x = s are 〈0,±s,±s〉. All of these diagonals have
length

√
2s. The dot product of one the cube diagonals 〈±s,±s,±s〉 with
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one of the face diagonals 〈±s,±s, 0〉, 〈±s, 0,±s〉, 〈0,±s,±s〉 is of the form
±s2 ± s2 + 0 and hence must be either 2s2 or 0 or −2s2. In general, the
angle between a cube diagonal and a face diagonal is

arccos
(

2s2 or 0 or − 2s2
√

3s
√

2s

)
= arccos

(
2 or 0 or or − 2√

6

)
≈ 5.26◦ or 90◦ or 144.74◦.

1.2.9.34. Solution. Denote by
(
x(t), y(t)

)
the position of the skier at

time t. As long as the skier remains on the surface of the hill

y(t) = h
(
x(t)

)
=⇒ y′(t) = h′

(
x(t)

)
x′(t)

=⇒ y′′(t) = h′′
(
x(t)

)
x′(t)2 + h′

(
x(t)

)
x′′(t)

So the velocity and acceleration vectors of the skier are

v(t) =
〈
1, h′

(
x(t)

)〉
x′(t)

a(t) =
〈
1, h′

(
x(t)

)〉
x′′(t) +

〈
0, h′′

(
x(t)

)〉
x′(t)2

The skier is subject to two forces. One is gravity. The other acts perpen-
dicularly to the hill and has a magnitude such that the skier remains on
the surface of the hill. From the velocity vector of the skier (which remain
tangential to the hill as long as the skier remains of the surface of the
hill),we see that one vector normal to the hill at

(
x(t), y(t)

)
is

n(t) =
〈
−h′

(
x(t)

)
, 1
〉

This vector is not a unit vector, but that’s ok. By Newton’s law of motion

ma = −mg ̂+ p(t) n(t)

for some function p(t). Dot both sides of this equation with n(t).

ma(t) · n(t) = −mĝ · n(t) + p(t)|n(t)|2

Substituting in

mh′′
(
x(t)

)
x′(t)2 = −mg + p(t)

[
1 + h′

(
x(t)

)2]
=⇒ p(t)

[
1 + h′

(
x(t)

)2] = m
(
g + h′′

(
x(t)

)
x′(t)2

)
As long as p(t) ≥ 0, the hill is pushing up in order to keep the skier on
the surface. When p(t) becomes negative, the hill has to pull on the skier
in order to keep her on the surface. But the hill can’t pull, so the skier
becomes airborne instead. This happens when

g + h′′
(
x(t)

)
x′(t)2 = 0

That is when x′(t) =
√
−g/h′′

(
x(t)

)
. At this time x(t) = x0, y(t) = y0

and the speed of the skier is√
x′(t)2 + y′(t)2 =

√
1 + h′

(
x0
)2√−g/h′′(x0

)
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1.2.9.35. Solution. The marble is subject to two forces. The first,
gravity, is −mg k̂ with m being the mass of the marble. The second is
the normal force imposed by the plane. This forces acts in a direction
perpendicular to the plane. One vector normal to the plane is a ı̂ıı+b ̂+c k̂.
So the force due to the plane is T 〈a, b, c〉 with T determined by the property
that the net force perpendicular to the plane must be exactly zero, so that
the marble remains on the plane, neither digging into nor flying off of it.
The projection of the gravitational force onto the normal vector 〈a, b, c〉 is

−mg 〈0, 0, 1〉 · 〈a, b, c〉
| 〈a, b, c〉 |2

〈a, b, c〉 = −mgc
a2 + b2 + c2

〈a, b, c〉

The condition that determines T is thus

T 〈a, b, c〉+ −mgc
a2 + b2 + c2

〈a, b, c〉 = 0 =⇒ T = mgc

a2 + b2 + c2

The total force on the marble is then (ignoring friction - which will have
no effect on the direction of motion)

T 〈a, b, c〉 −mg 〈0, 0, 1〉 = mgc

a2 + b2 + c2
〈a, b, c〉 −mg 〈0, 0, 1〉

= mg
c 〈a, b, c〉 −

〈
0, 0, a2 + b2 + c2

〉
a2 + b2 + c2

= mg

〈
ac, bc,−a2 − b2

〉
a2 + b2 + c2

The direction of motion
〈
ac, bc,−a2 − b2

〉
. If you want to turn this into

a unit vector, just divide by
√

(a2 + b2)(a2 + b2 + c2). Note that the di-
rection vector in perpendicular 〈a, b, c〉 and hence is parallel to the plane.
If c = 0, the plane is vertical. In this case, the marble doesn’t roll - it
falls straight down. If a = b = 0, the plane is horizontal. In this case, the
marble doesn’t roll — it remains stationary.
1.2.9.36. Solution. By definition, the left and right hand sides are

a · (b× c) = 〈a1, a2, a3〉 · 〈b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1〉
= a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1 (lhs)

(a × b) · c = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉 · 〈c1, c2, c3〉
= a2b3c1 − a3b2c1 + a3b1c2 − a1b3c2 + a1b2c3 − a2b1c3 (rhs)

(lhs) and (rhs) are the same.

1.2.9.37. Solution. By definition,

b× c = (b2c3 − b3c2)̂ııı− (b1c3 − b3c1)̂+ (b1c2 − b2c1)k̂

so that the left and right hand sides are

a × (b× c) = det

 ı̂ıı ̂ k̂
a1 a2 a3

b2c3 − b3c2 −b1c3 + b3c1 b1c2 − b2c1


= ı̂ıı [a2(b1c2 − b2c1)− a3(−b1c3 + b3c1)]
− ̂ [a1(b1c2 − b2c1)− a3(b2c3 − b3c2)]
+ k̂ [a1(−b1c3 + b3c1)− a2(b2c3 − b3c2)] (lhs)
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(a · c)b− (a · b)c
= (a1c1 + a2c2 + a3c3)(b1ı̂ıı+ b2̂+ b3k̂)

− (a1b1 + a2b2 + a3b3)(c1ı̂ıı+ c2̂+ c3k̂)
= ı̂ıı [a1b1c1 + a2b1c2 + a3b1c3 − a1b1c1 − a2b2c1 − a3b3c1]
+ ̂ [a1b2c1 + a2b2c2 + a3b2c3 − a1b1c2 − a2b2c2 − a3b3c2]
+ k̂ [a1b3c1 + a2b3c2 + a3b3c3 − a1b1c3 − a2b2c3 − a3b3c3]
= ı̂ıı [a2b1c2 + a3b1c3 − a2b2c1 − a3b3c1]
+ ̂ [a1b2c1 + a3b2c3 − a1b1c2 − a3b3c2]
+ k̂ [a1b3c1 + a2b3c2 − a1b1c3 − a2b2c3] (rhs)

(lhs) and (rhs) are the same.

1.2.9.38. Solution. By properties 9 and 10 of Theorem 1.2.23,

(a × b) · (c× d) = a · [b× (c× d)] (by property 9 with c→ (c× d))
= a · [(b · d)c− (b · c)d] (by property 10)
= (a · c)(b · d)− (a · d)(b · c)

So
(a × b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

1.2.9.39. Solution. (a) AA′ = 〈4, 0, 1〉 and BB′ = 〈4, 0, 1〉 are oppo-
site sides of the quadrilateral AA′B′B. They have the same length and
direction. The same is true for AB = 〈−1, 3, 0〉 and A′B′ = 〈−1, 3, 0〉. So
AA′B′B is a parallelogram. Because, AA′ · AB = 〈4, 0, 1〉 · 〈−1, 3, 0〉 =
−4 6= 0, the neighbouring edges of AA′B′B are not perpendicular and so
AA′B′B is not a rectangle.

Similarly, the quadilateral ACC ′A′ has opposing sides AA′ = 〈4, 0, 1〉 =
CC ′ = 〈4, 0, 1〉 and AC = 〈−1, 0, 4〉 = A′C ′ = 〈−1, 0, 4〉 and so is a
parallelogram. Because AA′·AC = 〈4, 0, 1〉·〈−1, 0, 4〉 = 0, the neighbouring
edges of ACC ′A′ are perpendicular, so ACC ′A′ is a rectangle.

Finally, the quadilateral BCC ′B′ has opposing sides BB′ = 〈4, 0, 1〉 =
CC ′ = 〈4, 0, 1〉 and BC = 〈0,−3, 4〉 = B′C ′ = 〈0,−3, 4〉 and so is a
parallelogram. Because BB′ · BC = 〈4, 0, 1〉 · 〈0,−3, 4〉 = 4 6= 0, the
neighbouring edges of BCC ′B′ are not perpendicular, so BCC ′B′ is not a
rectangle.

(b) The length of AA′ is | 〈4, 0, 1〉 | =
√

16 + 1 =
√

17.
(c) The area of a triangle is one half its base times its height. That

is, one half times |AB| times |AC| sin θ, where θ is the angle between AB
and AC. This is precisely 1

2 |AB × AC| = 1
2 | 〈−1, 3, 0〉 × 〈−1, 0, 4〉 | =

1
2 | 〈12, 4, 3〉 | = 13

2 .
(d) The volume of the prism is the area of its base ABC, times its

height, which is the length of AA′ times the cosine of the angle between
AA′ and the normal to ABC. This coincides with 1

2 〈12, 4, 3〉 · 〈4, 0, 1〉 =
1
2 (48 + 3) = 51

2 , which is one half times the length of 〈12, 4, 3〉 (the area of
ABC) times the length of 〈4, 0, 1〉 (the length of AA′) times the cosine of
the angle between 〈12, 4, 3〉 and 〈4, 0, 1〉 (the angle between the normal to
ABC and AA′).

1.2.9.40. Solution. Choose our coordinate axes so that the vertex op-
posite the face of area D is at the origin. Denote by a, b and c the vertices
opposite the sides of area A, B and C respectively. Then the face of area
A has edges b and c so that A = 1

2 |b × c|. Similarly B = 1
2 |c × a| and
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C = 1
2 |a × b|. The face of area D is the triangle spanned by b − a and

c− a so that

D = 1
2 |(b− a)× (c− a)|

= 1
2 |b× c− a × c− b× a|

= 1
2 |b× c + c× a + a × b|

By hypothesis, the vectors a, b and c are all perpendicular to each other.
Consequently the vectors b× c (which is a scalar times a), c× a (which is
a scalar times b) and a × b (which is a scalar times c) are also mutually
perpendicular. So, when we multiply out

D2 = 1
4
[
b× c + c× a + a × b

]
·
[
b× c + c× a + a × b

]
all the cross terms vanish, leaving

D2 = 1
4
[
(b× c) · (b× c) + (c× a) · (c× a) + (a × b) · (a × b)

]
= A2 +B2 + C2

1.2.9.41. Solution. As in problem 1.2.9.40,

D2 = 1
4
[
b× c + c× a + a × b

]
·
[
b× c + c× a + a × b

]
But now (b×c)·(a×c), instead of vanishing, is |b×c| = 2A times |a×c| =
2B times the cosine of the angle between b× c (which is perpendicular to
the face of area A) and a × c (which is perpendicular to the face of area
B). That is

(b× c) · (a × c) = 4AB cos γ
(a × b) · (c× b) = 4AC cosβ
(b× a) · (c× a) = 4BC cosα

(If you’re worried about the signs, that is, if you are worried about why
(b×c) · (a×c) = 4AB cos γ rather than (b×c) · (c×a) = 4AB cos γ, note
that when a ≈ b, (b×c) ·(a×c) ≈ |b×c|2 is positive and (b×c) ·(c×a) ≈
−|b× c|2 is negative.) Now, expanding out

D2 = 1
4
[
b× c + c× a + a × b

]
·
[
b× c + c× a + a × b

]
= 1

4
[
(b× c) · (b× c) + (c× a) · (c× a) + (a × b) · (a × b)

+ 2(b× c) · (c× a) + 2(b× c) · (a × b) + 2(c× a) · (a × b)
]

= A2 +B2 + C2 − 2AB cos γ − 2AC cosβ − 2BC cosα

1.3 · Equations of Lines in 2d
1.3.1 · Exercises

1.3.1.1. Solution. Since t can be any real number, these equation de-
scribe the same line. They’re both valid. For example, the point given
by the first parametric equation with t = 7, namely c + 7d, is exactly the
same as the point given by the second parametric equation with t = −7,
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namely c− (−7)d.

1.3.1.2. Solution. In contrast to Question 1.3.1.1, the sign on c does
generally matter. c is required to be a point on the line, but except in
particular circumstances, there’s no reason to believe that−c = −c+td

∣∣
t=0

is a point on the line. Indeed −c is on the line if and only if there is a
t with c + td = −c, i.e. td = −2c. That is the case if and only if d is
parallel to c. So, only the first equation is correct in general.

1.3.1.3. Solution. Here is one answer of many.
Setting t = 0 in the first equation shows that (1, 9) is on the first line.

To see that (1, 9) is also on the second line, we substitute x = 1, y = 9 into
the second equation to give

〈1− 9, 9− 13〉 = t
〈
1, 1

2
〉

or 〈−8,−4〉 = t
〈
1, 1

2
〉

This equation is satisfied when t = −8. So (1, 9) is on both lines.
Setting t = 0 in the second equation shows that (9, 13) is on the second

line. To see that (9, 13) is also on the first line, we substitute x = 9, y = 13
into the first equation to give

〈9− 1, 13− 9〉 = t 〈8, 4〉 or 〈8, 4〉 = t 〈8, 4〉

This equation is satisfied when t = 1. So (9, 13) is on both lines.
Since both lines pass through (1, 9) and (9, 13), the lines are identical.

1.3.1.4. Solution. 〈dx, dy〉 is the direction of the line, so it can be any
non-zero scalar multiple of 〈9, 7〉.
〈x0, y0〉 can be any point on the line. Describing these is the same as

describing the line itself. We’re trying to find all doubles 〈x0, y0〉 that obey{
x0 − 3 = 9t
y0 − 5 = 7t

for some real number t. That is,

t = x0 − 3
9 = y0 − 5

7
7(x0 − 3) = 9(y0 − 5)
7x0 + 24 = 9y0

Any of these steps could specify the possible values of 〈x0, y0〉. Say,
they can be any pair satisfying 7x0 + 24 = 9y0.

1.3.1.5. Solution. (a) The vector parametric equation is 〈x, y〉 = 〈1, 2〉+
t 〈3, 2〉. The scalar parametric equations are x = 1 + 3t, y = 2 + 2t. The
symmetric equation is x−1

3 = y−2
2 .

(b) The vector parametric equation is 〈x, y〉 = 〈5, 4〉 + t 〈2,−1〉. The
scalar parametric equations are x = 5 + 2t, y = 4 − t. The symmetric
equation is x−5

2 = y−4
−1 .

(c) The vector parametric equation is 〈x, y〉 = 〈−1, 3〉+ t 〈−1, 2〉. The
scalar parametric equations are x = −1 − t, y = 3 + 2t. The symmetric
equation is x+1

−1 = y−3
2 .

1.3.1.6. Solution. (a) The vector 〈−2, 3〉 is perpendicular to 〈3, 2〉 (you
can verify this by taking the dot product of the two vectors) and hence is



APPENDIX D. SOLUTIONS TO EXERCISES 493

a direction vector for the line. The vector parametric equation is 〈x, y〉 =
〈1, 2〉+t 〈−2, 3〉. The scalar parametric equations are x = 1−2t, y = 2+3t.
The symmetric equation is x−1

−2 = y−2
3 .

(b) The vector 〈1, 2〉 is perpendicular to 〈2,−1〉 and hence is a direction
vector for the line. The vector parametric equation for the line is 〈x, y〉 =
〈5, 4〉+ t 〈1, 2〉. The scalar parametric equations are x = 5 + t, y = 4 + 2t.
The symmetric equation is x− 5 = y−4

2 .
(c) The vector 〈2, 1〉 is perpendicular to 〈−1, 2〉 and hence is a direction

vector for the line. The vector parametric equation is 〈x, y〉 = 〈−1, 3〉 +
t 〈2, 1〉. The scalar parametric equations are the two component equations
x = −1 + 2t, y = 3 + t. The symmetric equation is x+1

2 = y − 3.

1.3.1.7. Solution. (0, 1) is one point on the line 3x − 4y = −4. So
〈−2− 0, 3− 1〉 = 〈−2, 2〉 is a vector whose tail is on the line and whose
head is at (−2, 3). 〈3,−4〉 is a vector perpendicular to the line, so 1

5 〈3,−4〉
is a unit vector perpendicular to the line. The distance from (−2, 3) to
the line is the length of the projection of 〈−2, 2〉 on 1

5 〈3,−4〉, which is the
magnitude of 1

5 〈3,−4〉 · 〈−2, 2〉. So the distance is 14/5.

1.3.1.8. Solution. (a) The midpoint of the side opposite a is 1
2 (b + c).

The vector joining a to that midpoint is 1
2b+ 1

2c−a. The vector parametric
equation of the line through a and 1

2 (b + c) is

x(t) = a + t
(1

2b + 1
2c− a

)
Similarly, for the other two medians (but using s and u as parameters,
rather than t)

x(s) = b + s
(1

2a + 1
2c− b

)
x(u) = c + u

(1
2a + 1

2b− c
)

(b) The three medians meet at a common point if there are values of
s, t and u such that

a + t
(1

2b + 1
2c− a

)
= b + s

(1
2a + 1

2c− b
)

= c + u
(1

2a + 1
2b− c

)
(1− t)a + t

2b + t

2c = s

2a + (1− s)b + s

2c = u

2 a + u

2 b + (1− u)c

Assuming that the triangle has not degenerated to a line segment, this is
the case if and only if the coefficients of a, b and c match

1− t = s

2 = u

2
t

2 = 1− s = u

2
t

2 = s

2 = 1− u

or
s = t = u, 1− t = t

2 =⇒ s = t = u = 2
3

The medians meet at 1
3 (a + b + c).
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1.3.1.9. Solution. A normal vector to the line is the vector with its
tail at the centre of C, (2, 1), and its head at

(
5
2 , 1 +

√
3

2

)
. So, we set

n =
〈

5
2 , 1 +

√
3

2

〉
− 〈2, 1〉 =

〈
1
2 ,
√

3
2

〉
.

x

y

2

1
n

We know one point on the line is
(

5
2 , 1 +

√
3

2

)
, so following Equa-

tion 1.3.3:

nxx+ nyy = nxx0 + nyy0

1
2x+

√
3

2 y = 1
2 ·

5
2 +
√

3
2 ·

(
1 +
√

3
2

)
1
2x+

√
3

2 y = 2 +
√

3
2

x+
√

3y = 4 +
√

3

1.4 · Equations of Planes in 3d
1.4.1 · Exercises

1.4.1.1. Solution. We are looking for a vector that is perpendicular to
z = 0 and hence is parallel to k̂. To be parallel of k̂, the vector has to be
of the form c k̂ for some real number c. For the vector to be nonzero, we
need c 6= 0 and for the vector to be different from k̂, we need c 6= 1. So
three possible choices are −k̂, 2 k̂, 7.12345 k̂.

1.4.1.2. Solution.
(a) Each point on the y-axis is of the form (0, y, 0). Such a point is on

the plane P if
3(0) + 1

2y + 0 = 4 ⇐⇒ y = 8

So the intersection of P with the y-axis is the single point (0, 8, 0).

(b) Each point on the z-axis is of the form (0, 0, z). Such a point is on
the plane P if

3(0) + 1
2(0) + z = 4 ⇐⇒ z = 4

So the intersection of P with the z-axis is the single point (0, 0, 4).

(c) The intersection of the plane P with the yz-plane is a line. We have
shown in parts (a) and (b) that the points (0, 8, 0) and (0, 0, 4) are
on that line. Here is a sketch of the part of that line that is in the
first octant.
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z

y

x

p0, 8, 0q

p0, 0, 4q

1.4.1.3. Solution.
(a) If (x, y, z) is any point on the plane, then both the head and the

tail of the vector from (x, y, z) to (0, 0, 0), namely 〈x, y, z〉, lie in the
plane. So the vector 〈x, y, z〉 must be perpendicular to 〈1, 2, 3〉 and

0 = 〈x, y, z〉 · 〈1, 2, 3〉 = x+ 2y + 3z

(b) If (x, y, z) is any point on the plane, then both the head and the tail
of the vector from (x, y, z) to (0, 0, 1), namely 〈x, y, z − 1〉, lie in the
plane. So the vector 〈x, y, z − 1〉 must be perpendicular to 〈1, 1, 3〉
and

0 = 〈x, y, z − 1〉 · 〈1, 1, 3〉 = x+ y + 3(z − 1) ⇐⇒ x+ y + 3z = 3

(c) If both (1, 2, 3) and (1, 0, 0) are on the plane, then both the head and
the tail of the vector from (1, 2, 3) to (1, 0, 0), namely 〈0, 2, 3〉, lie in
the plane. So the vector 〈0, 2, 3〉 must be perpendicular to 〈4, 5, 6〉.
As

〈0, 2, 3〉 · 〈4, 5, 6〉 = 28 6= 0

the vector 〈0, 2, 3〉 is not perpendicular to 〈4, 5, 6〉. So there is no
plane that passes through both (1, 2, 3) and (1, 0, 0) and has normal
vector 〈4, 5, 6〉.

(d) If both (1, 2, 3) and (0, 3, 4) are on the plane, then both the head and
the tail of the vector from (1, 2, 3) to (0, 3, 4), namely 〈1,−1,−1〉,
lie in the plane. So the vector 〈1,−1,−1〉 must be perpendicular to
〈2, 1, 1〉. As

〈1,−1,−1〉 · 〈2, 1, 1〉 = 0

the vector 〈1,−1,−1〉 is indeed perpendicular to 〈2, 1, 1〉. So there is
a plane that passes through both (1, 2, 3) and (0, 3, 4) and has normal
vector 〈2, 1, 1〉. We now just have to build its equation.
If (x, y, z) is any point on the plane, then both the head and the tail of
the vector from (x, y, z) to (1, 2, 3), namely 〈x− 1, y − 2, z − 3〉, lie in
the plane. So the vector 〈x− 1, y − 2, z − 3〉 must be perpendicular
to 〈2, 1, 1〉 and

0 = 〈x− 1, y − 2, z − 3〉 · 〈2, 1, 1〉 = 2(x− 1) + (y − 2) + (z − 3)
⇐⇒ 2x+ y + z = 7

As a check, note that both (x, y, z) = (1, 2, 3) and (x, y, z) = (0, 3, 4)
obey the equation 2x+ y + z = 7.

1.4.1.4. ∗. Solution. Solution 1: That’s too easy. We just guess. The
plane x+ y + z = 1 contains all three given points.



APPENDIX D. SOLUTIONS TO EXERCISES 496

Solution 2: The plane does not pass through the origin. (You can see
this by just making a quick sketch.) So the plane has an equation of the
form ax+ by + cz = 1.

• For (1, 0, 0) to be on the plane we need that

a(1) + b(0) + c(0) = 1 =⇒ a = 1

• For (0, 1, 0) to be on the plane we need that

a(0) + b(1) + c(0) = 1 =⇒ b = 1

• For (0, 0, 1) to be on the plane we need that

a(0) + b(0) + c(1) = 1 =⇒ c = 1

So the plane is x+ y + z = 1.
Solution 3: Both the head and the tail of the vector from (1, 0, 0) to

(0, 1, 0), namely 〈−1, 1, 0〉, lie in the plane. Similarly, both the head and
the tail of the vector from (1, 0, 0) to (0, 0, 1), namely 〈−1, 0, 1〉, lie in the
plane. So the vector

〈−1, 1, 0〉 × 〈−1, 0, 1〉 = det

 ı̂ıı ̂ k̂
−1 1 0
−1 0 1

 = 〈1, 1, 1〉

is a normal vector for the plane. As (1, 0, 0) is a point in the plane,

〈1, 1, 1〉 · 〈x− 1 , y − 0 , z − 0〉 = 0 or x+ y + z = 1

is an equation for the plane.
1.4.1.5. Solution.
(a) Solution 1: That’s too easy. We just guess. The plane x+ y + z = 2

contains all three given points.
Solution 2: Both the head and the tail of the vector from (1, 0, 1) to
(0, 1, 1), namely 〈1,−1, 0〉, lie in the plane. Similarly, both the head
and the tail of the vector from (1, 1, 0) to (0, 1, 1), namely 〈1, 0,−1〉,
lie in the plane. So the vector

〈1,−1, 0〉 × 〈1, 0,−1〉 = det

ı̂ıı ̂ k̂
1 −1 0
1 0 −1

 = 〈1, 1, 1〉

is a normal vector for the plane. As (0, 1, 1) is a point in the plane,

〈1, 1, 1〉 · 〈x− 0 , y − 1 , z − 1〉 = 0 or x+ y + z = 2

is an equation for the plane.

(b) Since [
x+ y + z

]
(x,y,z)=(1,1,1)

= 3 6= 2

the point (1, 1, 1) is not on x+ y + z = 2.

(c) Since [
x+ y + z

]
(x,y,z)=(0,0,0)

= 0 6= 2
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the origin is not on x+ y + z = 2.

(d) Since [
x+ y + z

]
(x,y,z)=(4,−1,−1)

= 2

the point (4,−1,−1) is on x+ y + z = 2.

1.4.1.6. Solution. The vector from (1, 2, 3) to (2, 3, 4), namely 〈1, 1, 1〉
is parallel to the vector from (1, 2, 3) to (3, 4, 5), namely 〈2, 2, 2〉. So the
three given points are collinear. Precisely, all three points (1, 2, 3), (2, 3, 4)
and (3, 4, 5) are on the line 〈x− 1, y − 2, z − 3〉 = t 〈1, 1, 1〉. There are
many planes through that line.

1.4.1.7. Solution. (a) The plane must be parallel to 〈2, 4, 6〉−〈1, 0, 1〉 =
〈1, 4, 5〉 and to 〈1, 2,−1〉 − 〈1, 0, 1〉 = 〈0, 2,−2〉. So its normal vector must
be perpendicular to both 〈1, 4, 5〉 and 〈0, 2,−2〉 and hence parallel to

〈1, 4, 5〉 × 〈0, 2,−2〉 = det

ı̂ıı ̂ k̂
1 4 5
0 2 −2

 = 〈−18, 2, 2〉

The plane is 9(x− 1)− y − (z − 1) = 0 or 9x− y − z = 8.
We can check this by observing that (1, 0, 1), (2, 4, 6) and (1, 2,−1) all

satisfy 9x− y − z = 8.
(b) The plane must be parallel to 〈4,−4, 4〉 − 〈1,−2,−3〉 = 〈3,−2, 7〉

and to 〈3, 2,−3〉 − 〈1,−2,−3〉 = 〈2, 4, 0〉. So its normal vector must be
perpendicular to both 〈3,−2, 7〉 and 〈2, 4, 0〉 and hence parallel to

〈3,−2, 7〉 × 〈2, 4, 0〉 = det

ı̂ıı ̂ k̂
3 −2 7
2 4 0

 = 〈−28, 14, 16〉

The plane is 14(x− 1)− 7(y + 2)− 8(z + 3) = 0 or 14x− 7y − 8z = 52.
We can check this by observing that (1,−2,−3), (4,−4, 4) and (3, 2,−3)

all satisfy 14x− 7y − 8z = 52.
(c) The plane must be parallel to 〈5, 2, 1〉 − 〈1,−2,−3〉 = 〈4, 4, 4〉 and

to 〈−1,−4,−5〉 − 〈1,−2,−3〉 = 〈−2,−2,−2〉. My, my. These two vectors
are parallel. So the three points are all on the same straight line. Any
plane containing the line contains all three points. If 〈a, b, c〉 is any vector
perpendicular to 〈1, 1, 1〉 (i.e. which obeys a + b + c = 0) then the plane
a(x− 1) + b(y+ 2) + c(z+ 3) = 0 or a(x− 1) + b(y+ 2)− (a+ b)(z+ 3) = 0
or ax+ by − (a+ b)z = 4a+ b contains the three given points.

We can check this by observing that (1,−2,−3), (5, 2, 1) and (−1,−4,−5)
all satisfy the equation ax+ by − (a+ b)z = 4a+ b for all a and b.

1.4.1.8. Solution. (a) One point on the plane is (0, 0, 7). The vector
from (−1, 2, 3) to (0, 0, 7) is 〈0, 0, 7〉 − 〈−1, 2, 3〉 = 〈1,−2, 4〉. A unit vector
perpendicular to the plane is 1√

3 〈1, 1, 1〉. The distance from (−1, 2, 3) to
the plane is the length of the projection of 〈1,−2, 4〉 on 1√

3 〈1, 1, 1〉 which
is

1√
3
〈1, 1, 1〉 · 〈1,−2, 4〉 = 3√

3
=
√

3

(b) One point on the plane is (0, 0, 5). The vector from (1,−4, 3) to
(0, 0, 5) is 〈0, 0, 5〉 − 〈1,−4, 3〉 = 〈−1, 4, 2〉. A unit vector perpendicular to
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the plane is 1√
6 〈1,−2, 1〉. The distance from (1,−4, 3) to the plane is the

length of the projection of 〈−1, 4, 2〉 on 1√
6 〈1,−2, 1〉 which is the absolute

value of
1√
6
〈1,−2, 1〉 · 〈−1, 4, 2〉 = −7√

6

or 7/
√

6.

1.4.1.9. ∗. Solution. (a) The vector from C toA, namely 〈1− 2 , 1− 1 , 3− 0〉 =
〈−1 , 0 , 3〉 lies entirely inside Π. The vector from C toB, namely 〈2− 2 , 0− 1 , 2− 0〉 =
〈0 , −1 , 2〉 also lies entirely inside Π. Consequently, the vector

〈−1 , 0 , 3〉 × 〈0 , −1 , 2〉 = det

 ı̂ıı ̂ k̂
−1 0 3
0 −1 2

 = 〈3 , 2 , 1〉

is perpendicular to Π. The equation of Π is then

〈3 , 2 , 1〉 · 〈x− 2 , y − 1 , z〉 = 0 or 3x+ 2y + z = 8

(b) Let E be (x, y, z). Then the vector fromD to E, namely 〈x− 6 , y − 1 , z − 2〉
has to be parallel to the vector 〈3 , 2 , 1〉, which is perpendicular to Π. That
is, there must be a number t such that

〈x− 6 , y − 1 , z − 2〉 = t 〈3 , 2 , 1〉
or x = 6 + 3t, y = 1 + 2t, z = 2 + t

As (x, y, z) must be in Π,

8 = 3x+ 2y + z = 3(6 + 3t) + 2(1 + 2t) + (2 + t) = 22 + 14t

which implies that t = −1. So (x, y, z) =
(
6+3(−1) , 1+2(−1) , 2+(−1)

)
=(

3 , −1 , 1
)
.

1.4.1.10. ∗. Solution. We are going to need a direction vector for L in
both parts (a) and (b). So we find one first.

• The vector 〈1, 1, 0〉 is perpendicular to x+ y = 1 and hence to L.

• The vector 〈1, 2, 1〉 is perpendicular to x + 2y + z = 3 and hence to
L.

So the vector

〈1, 1, 0〉 × 〈1, 2, 1〉 = det

ı̂ıı ̂ k̂
1 1 0
1 2 1

 = 〈1 , −1 , 1〉

is a direction vector for L.
(a) The plane is to contain the point (2, 3, 4) and is to have 〈−1, 1,−1〉

as a normal vector. So

〈−1, 1,−1〉 · 〈x− 2, y − 3, z − 4〉 = 0 or x− y + z = 3

does the job.
(b) The plane is to contain the points A = (2, 3, 4) and (1, 0, 2) (which

is on L) so that the vector 〈2− 1, 3− 0, 4− 2〉 = 〈1, 3, 2〉 is to be parallel
to the plane. The direction vector of L, namely 〈−1, 1,−1〉, is also to be
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parallel to the plane. So the vector

〈1, 3, 2〉 × 〈−1, 1,−1〉 = det

 ı̂ıı ̂ k̂
1 3 2
−1 1 −1

 = 〈−5 , −1 , 4〉

is to be normal to the plane. So

〈−5,−1, 4〉 · 〈x− 2, y − 3, z − 4〉 = 0 or 5x+ y − 4z = −3

does the job.
1.4.1.11. ∗. Solution. All planes that are parallel to the plane 4x+2y−
4z = 3 must have 〈4 , 2 , −4〉 as a normal vector and hence must have an
equation of the form 4x+ 2y− 4z = C for some constant C. We must find
the C’s for which the distance from 4x+ 2y − 4z = 3 to 4x+ 2y − 4z = C
is 2. One point on 4x+ 2y − 4z = 3 is

(
0, 3

2 , 0
)
. The two points (x′, y′, z′)

with

vector from
(

0, 3
2 ,0
)

to (x′,y′,z′)︷ ︸︸ ︷〈
x′ − 0 , y′ − 3

2 , z
′ − 0

〉
= ±2

unit vector︷ ︸︸ ︷
〈4 , 2 , −4〉√
16 + 4 + 16

= ±2
6 〈4 , 2 , −4〉

= ±
〈

4
3 ,

2
3 , −

4
3

〉
are the two points that are a distance 2 from

(
0, 3

2 , 0
)
in the direction of

the normal.The two points (x′, y′, z′) are(
0 + 4

3 ,
3
2 + 2

3 , 0− 4
3

)
=
(

4
3 ,

13
6 , −4

3

)
and

(
0− 4

3 ,
3
2 −

2
3 , 0 + 4

3

)
=
(
−4

3 ,
5
6 ,

4
3

)
These two points lie on the desired planes, so the two desired planes are

4x+ 2y − 4z = 4× 4
3 + 2× 13

6 − −4× 4
3 = 32 + 26 + 32

6 = 15

and

4x+ 2y − 4z = 4× (−4)
3 + 2× 5

6 − 4× 4
3 = −32 + 10− 32

6 = −9

1.4.1.12. ∗. Solution. The two vectors

a = 〈1,−1, 3〉 − 〈0, 1, 1〉 = 〈1,−2, 2〉
b = 〈2, 0,−1〉 − 〈0, 1, 1〉 = 〈2,−1,−2〉

both lie entirely inside the plane. So the vector

a × b = det

ı̂ıı ̂ k̂
1 −2 2
2 −1 −2

 = 〈6, 6, 3〉

is perpendicular to the plane. The vector c = 1
3 〈6, 6, 3〉 = 〈2, 2, 1〉 is also

perpendicular to the plane. The vector

d = 〈1, 2, 3〉 − 〈0, 1, 1〉 = 〈1, 1, 2〉
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joins the point to the plane. So, if θ is the angle between d and c, the
distance is

|d| cos θ = c · d
|c| = 6√

9
= 2

1.4.1.13. ∗. Solution. (a) Let’s use z as the parameter and rename it
to t. That is, z = t. Subtracting 2 times the W2 equation from the W1
equation gives

−5y − 5z = −5 =⇒ y = 1− z = 1− t or y − 1 = −t

Substituting the result into the equation for W2 gives

−x+ 3(1− t) + 3t = 6 =⇒ x = −3 or x+ 3 = 0

So a parametric equation is

〈x+ 3, y − 1, z〉 = t 〈0,−1, 1〉

(b) Solution 1
We can also parametrize M using z = t:

x = 2z + 10 = 2t+ 10, y = 2z + 12 = 2t+ 12
=⇒ 〈x, y, z〉 = 〈10, 12, 0〉+ t 〈2, 2, 1〉

So one point on M is (10, 12, 0) and one point on L is (−3, 1, 0) and

v = 〈(−3)− 10 , 1− 12 , 0− 0〉 = 〈−13 , −11 , 0〉

is one vector from a point on M to a point on L.
The direction vectors of L and M are 〈0,−1, 1〉 and 〈2, 2, 1〉, respec-

tively. The vector

n = 〈0,−1, 1〉 × 〈2, 2, 1〉 = det

ı̂ıı ̂ k̂
0 −1 1
2 2 1

 = 〈−3 , 2 , 2〉

is then perpendicular to both L and M .
The distance from L to M is then the length of the projection of v on

n, which is

|v · n|
|n| = |39− 22 + 0|√

9 + 4 + 4
=
√

17

(b) Solution 2 We can also parametrize M using z = s:

x = 2z + 10 = 2s+ 10, y = 2z + 12 = 2s+ 12
=⇒ 〈x, y, z〉 = 〈10, 12, 0〉+ s 〈2, 2, 1〉

The vector from the point (−3 , 1− t , t) on L to the point (10 + 2s , 12 +
2s , s) on M is

〈13 + 2s , 11 + 2s+ t , s− t〉

So the distance from the point (−3 , 1 − t , t) on L to the point (10 +
2s , 12 + 2s , s) on M is the square root of

D(s, t) = (13 + 2s)2 + (11 + 2s+ t)2 + (s− t)2
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That distance is minimized when

0 = ∂D

∂s
= 4(13 + 2s) + 4(11 + 2s+ t) + 2(s− t)

0 = ∂D

∂t
= 2(11 + 2s+ t)− 2(s− t)

Cleaning up those equations gives

18s+ 2t = −96
2s+ 4t = −22

or

9s+ t = −48 (E1)
s+ 2t = −11 (E2)

Subtracting (E2) from twice (E1) gives

17s = −85 =⇒ s = −5

Substituting that into (E2) gives

2t = −11 + 5 =⇒ t = −3

Note that

13 + 2s = 3
11 + 2s+ t = −2

s− t = −2

So the distance is√
D(−5,−3) =

√
32 + (−2)2 + (−2)2 =

√
17

1.4.1.14. Solution. The two planes x+ y+ z = 3 and x+ y+ z = 9 are
parallel. The centre must be on the plane x+ y + z = 6 half way between
them. So, the center is on x+y+z = 6, 2x−y = 0 and 3x−z = 0. Solving
these three equations, or equvalently,

y = 2x, z = 3x, x+ y + z = 6x = 6

gives (1, 2, 3) as the centre. (1, 1, 1) is a point on x+ y + z = 3. (3, 3, 3) is
a point on x+ y + z = 9. So 〈2, 2, 2〉 is a vector with tail on x+ y + z = 3
and head on x + y + z = 9. Furthermore 〈2, 2, 2〉 is perpendicular to the
two planes. So the distance between the planes is | 〈2, 2, 2〉 | = 2

√
3 and

the radius of the sphere is
√

3. The sphere is

(x− 1)2 + (y − 2)2 + (z − 3)2 = 3

1.4.1.15. Solution. Set y = 0 and then solve 2x+ 3y− z = 0, x− 4y+
2z = −5, i.e. 2x− z = 0, x+ 2z = −5, or equvalently

z = 2x, x+ 2z = 5x = −5

The result, (−1, 0,−2), is one point on the plane. Set y = 5 and then solve
2x+ 3y− z = 0, x− 4y+ 2z = −5, i.e. 2x+ 15− z = 0, x− 20 + 2z = −5,
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or equivalently

z = 2x+ 15, x− 20 + 4x+ 30 = −5

The result, (−3, 5, 9), is another point on the plane. So three points on the
plane are (−2, 0, 1), (−1, 0,−2) and (−3, 5, 9). 〈−2 + 1 , 0− 0 , 1 + 2〉 =
〈−1, 0, 3〉 and 〈−2 + 3 , 0− 5 , 1− 9〉 = 〈1,−5,−8〉 are two vectors having
both head and tail in the plane.

〈−1, 0, 3〉 × 〈1,−5,−8〉 = det

 ı̂ıı ̂ k̂
−1 0 3
1 −5 −8

 = 〈15,−5, 5〉

is a vector perpendicular to the plane. 1
5 〈15,−5, 5〉 = 〈3,−1, 1〉 is also a

vector perpendicular to the plane. The plane is

3(x+ 1)− (y − 0) + (z + 2) = 0 or 3x− y + z = −5

1.4.1.16. Solution. The vector n is perpendicular to the plane n ·x = c.
So the line

x(t) = p + tn

passes through p and is perpendicular to the plane.

n ¨ x “ c p

n

It crosses the plane at the value of t which obeys

n · x(t) = c or n · [p + tn] = c

namely
t = [c− n · p]/|n|2

The vector
x(t)− p = tn = n [c− n · p]/|n|2

has head on the plane n ·x = c, tail at p, and is perpendicular to the plane.
So the distance is the length of that vector, which is

|c− n · p|/|n|

1.4.1.17. Solution. The distance from the point (x, y, z) to (1, 2, 3) is√
(x− 1)2 + (y − 2)2 + (z − 3)2 and the distance from (x, y, z)to (5, 2, 7) is√
(x− 5)2 + (y − 2)2 + (z − 7)2. Hence (x, y, z) is equidistant from (1, 2, 3)

and (5, 2, 7) if and only if

(x− 1)2 + (y − 2)2 + (z − 3)2 = (x− 5)2 + (y − 2)2 + (z − 7)2

⇐⇒ x2 − 2x+ 1 + z2 − 6z + 9 = x2 − 10x+ 25 + z2 − 14z + 49
⇐⇒ 8x+ 8z = 64
⇐⇒ x+ z = 8

This is the plane through (3, 2, 5) = 1
2 (1, 2, 3)+ 1

2 (5, 2, 7) with normal vector
〈1, 0, 1〉 = 1

4
(
〈5, 2, 7〉 − 〈1, 2, 3〉

)
.
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1.4.1.18. Solution. The distance from the point x to a is
√

(x− a) · (x− a)
and the distance from x to b is

√
(x− b) · (x− b). Hence x is equidistant

from a and b if and only if

(x− a) · (x− a) = (x− b) · (x− b)
⇐⇒ |x|2 − 2a · x + |a|2 = |x|2 − 2b · x + |b|2

⇐⇒ 2(b− a) · x = |b|2 − |a|2

This is the plane through 1
2a + 1

2b with normal vector b− a.

1.4.1.19. ∗. Solution. (a) One side of the triangle is −−→AB = 〈1, 0, 1〉 −
〈0, 1, 1〉 = 〈1,−1, 0〉. A second side of the triangle is −→AC = 〈1, 3, 0〉 −
〈0, 1, 1〉 = 〈1, 2,−1〉. If the angle between −−→AB and −→AC is θ and if we take
−−→
AB as the base of the triangle, then the triangle has base length b = |−−→AB|
and height h = |−→AC| sin θ and hence

area = 1
2bh = 1

2 |
−−→
AB| |

−→
AC| sin θ = 1

2 |
−−→
AB ×

−→
AC|

= 1
2 | 〈1,−1, 0〉 × 〈1, 2,−1〉 |

As

〈1,−1, 0〉 × 〈1, 2,−1〉 = det

ı̂ıı ̂ k̂
1 −1 0
1 2 −1

 = ı̂ıı+ ̂+ 3k̂

we have
area = 1

2 | 〈1, 1, 3〉 | =
1
2
√

11 ≈ 1.658

(b) A unit vector perpendicular to the plane containing the triangle is

n̂ =
−−→
AB ×

−→
AC

|
−−→
AB ×

−→
AC|

= 〈1, 1, 3〉√
11

The distance from P to the plane containing the triangle is the length of
the projection of −→AP = 〈5,−10, 2〉 − 〈0, 1, 1〉 = 〈5,−11, 1〉 on n̂. If θ the
angle between −→AP and n̂, then this is

distance = |−→AP | | cos θ| =
∣∣−→AP · n̂∣∣ =

∣∣∣∣〈5,−11, 1〉 · 〈1, 1, 3〉√
11

∣∣∣∣ = 3√
11

≈ 0.9045

1.4.1.20. ∗. Solution. Switch to a new coordinate system with

X = x− 1 Y = y − 2 Z = z + 1

In this new coordinate system, the sphere has equation X2 +Y 2 +Z2 = 2.
So the sphere is centred at (X,Y, Z) = (0, 0, 0) and has radius

√
2. In the

new coordinate system, the initial point (x, y, z) = (2, 2, 0) has (X,Y, Z) =
(1, 0, 1) and our final point (x, y, z) = (2, 1,−1) has (X,Y, Z) = (1,−1, 0).
Call the initial point P and the final point Q. The shortest path will follow
the great circle from P to Q.
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Z

Y

X

P

Q

A great circle on a sphere is the intersection of the sphere with a plane
that contains the centre of the sphere. Our strategy for finding the initial
direction will be based on two observations.

• The shortest path lies on the plane Π that contains the origin and
the points P and Q. Since the shortest path lies on Π, our direction
vector must also lie on Π and hence must be perpendicular to the
normal vector to Π.

• The shortest path also remains on the sphere, so our initial direction
must also be perpendicular to the normal vector to the sphere at our
initial point P .

As our initial direction is perpendicular to the two normal vectors, it is
parallel to their cross product.

So our main job is to find normal vectors to the plane Π and to the
sphere at P .

• One way to find a normal vector to Π is to guess an equation for Π.
As (0, 0, 0) is on Π, (0, 0, 0) must obey Π’s equation. So Π’s equation
must be of the form aX + bY + cZ = 0. That (X,Y, Z) = (1, 0, 1)
is on Π forces a + c = 0. That (X,Y, Z) = (1,−1, 0) is on Π forces
a − b = 0. So we may take a = 1, b = 1 and c = −1. That is, Π is
X + Y − Z = 0. (Check that all three points (0, 0, 0), (1, 0, 1) and
(1,−1, 0) do indeed obey X + Y − Z = 0.) A normal vector to Π is
〈1, 1,−1〉.

• A second way to find a normal vector to Π is to observe that both

◦ the vector from (0, 0, 0) to (1, 0, 1), that is 〈1, 0, 1〉, lies com-
pletely inside Π and
◦ the vector from (0, 0, 0) to (1,−1, 0), that is 〈1,−1, 0〉, lies com-
pletely inside Π.

So the vector

〈1, 0, 1〉 × 〈1,−1, 0〉 = det

ı̂ıı ̂ k̂
1 0 1
1 −1 0

 = ı̂ıı+ ̂− k̂

is perpendicular to Π.

• The vector from the centre of the sphere to the point P on the sphere
is perpendicular to the sphere at P . So a normal vector to the sphere
at our initial point (X,Y, Z) = (1, 0, 1) is 〈1, 0, 1〉.

Since our initial direction1 must be perpendicular to both 〈1, 1,−1〉 and
〈1, 0, 1〉, it must be one of ±〈1, 1,−1〉 × 〈1, 0, 1〉. To get from (1, 0, 1) to
(1,−1, 0) by the shortest path, our Z coordinate should decrease from 1 to
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0. So the Z coordinate of our initial direction should be negative. This is
the case for

〈1, 1,−1〉 × 〈1, 0, 1〉 = det

ı̂ıı ̂ k̂
1 1 −1
1 0 1

 = ı̂ıı− 2 ̂− k̂

1.5 · Equations of Lines in 3d
1.5.1 · Exercises

1.5.1.1. Solution. Note 12
〈 1

3 ,−
1
2 ,

1
6
〉

= 〈4,−6, 2〉. So, we actually only
know one normal direction to the line we’re supposed to be describing.
That means there are actually infinitely many lines satisfying the given
conditions.

n

1.5.1.2. Solution. There are infinitely many correct answers. One is

L1 : 〈x , y , z − 1〉 = t 〈1, 0, 0〉 L2 : 〈x , y , z − 2〉 = t 〈0, 1, 0〉
L3 : 〈x , y , z − 3〉 = t 〈1, 1, 0〉 L4 : 〈x , y , z − 4〉 = t 〈1,−1, 0〉

No two of the lines are parallel because
• L1 and L2 are not parallel because 〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, 1〉 6= 0.

• L1 and L3 are not parallel because 〈1, 0, 0〉 × 〈1, 1, 0〉 = 〈0, 0, 1〉 6= 0.

• L1 and L4 are not parallel because 〈1, 0, 0〉× 〈1,−1, 0〉 = 〈0, 0,−1〉 6=
0.

• L2 and L3 are not parallel because 〈0, 1, 0〉×〈1, 1, 0〉 = 〈0, 0,−1〉 6= 0.

• L2 and L4 are not parallel because 〈0, 1, 0〉× 〈1,−1, 0〉 = 〈0, 0,−1〉 6=
0.

• L3 and L4 are not parallel because 〈1, 1, 0〉× 〈1,−1, 0〉 = 〈0, 0,−2〉 6=
0.

No two of the lines intersect because

• every point on L1 has z = 1 and

• every point on L2 has z = 2 and

• every point on L3 has z = 3 and

• every point on L4 has z = 4.

1.5.1.3. Solution. (a) The point (x, y, z) obeys both x−2z = 3 and y+
1
2z = 5 if and only if 〈x, y, z〉 =

〈
3 + 2z, 5− 1

2z, z
〉

= 〈3, 5, 0〉+
〈
2,− 1

2 , 1
〉
z.

So, introducing a new variable t obeying t = z, we get the vector parametric
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equation 〈x, y, z〉 = 〈3, 5, 0〉+
〈
2,− 1

2 , 1
〉
t.

(b) The point (x, y, z) obeys{
2x− y − 2z = −3
4x− 3y − 3z = −5

}
⇐⇒

{
2x− y = 2z − 3
4x− 3y = 3z − 5

}
⇐⇒

{
4x− 2y = 4z − 6
4x− 3y = 3z − 5

}
⇐⇒

{
4x− 2y = 4z − 6

y = z − 1

}
Hence the point (x, y, z) is on the line if and only if

〈x, y, z〉 =
〈

1
4(2y + 4z − 6), z − 1, z

〉
=
〈

3
2z − 2, z − 1, z

〉
= 〈−2,−1, 0〉+

〈
3
2 , 1, 1

〉
z

So, introducing a new variable t obeying t = z, we get the vector parametric
equation 〈x, y, z〉 = 〈−2,−1, 0〉+

〈 3
2 , 1, 1

〉
t.

1.5.1.4. Solution. (a) The normals to the two planes are 〈1, 1, 1〉 and
〈1, 2, 3〉 respectively. The line of intersection must have direction perpen-
dicular to both of these normals. Its direction vector is

〈1, 1, 1〉 × 〈1, 2, 3〉 = det

ı̂ıı ̂ k̂
1 1 1
1 2 3

 = 〈1,−2, 1〉

Substituting z = 0 into the equations of the two planes and solving{
x+ y = 3
x+ 2y = 7

}
⇐⇒

{
x = 3− y
x+ 2y = 7

}
⇐⇒

{
x = 3− y

3− y + 2y = 7

}
we see that z = 0, y = 4, x = −1 lies on both planes. The line of intersec-
tion is 〈x, y, z〉 = 〈−1, 4, 0〉+ t 〈1,−2, 1〉. This can be checked by verifying
that, for all values of t, 〈x, y, z〉 = 〈−1, 4, 0〉 + t 〈1,−2, 1〉 satisfies both
x+ y + z = 3 and x+ 2y + 3z = 7.

(b) The equation x + y + z = 3 is equivalent to 2x + 2y + 2z = 6.
So the two equations x + y + z = 3 and 2x + 2y + 2z = 7 are mutually
contradictory. They have no solution. The two planes are parallel and do
not intersect.
1.5.1.5. Solution. (a) Note that the value of the parameter t in the
equation 〈x, y, z〉 = 〈−3, 2, 4〉 + t 〈−4, 2, 1〉 need not have the same value
as the parameter t in the equation 〈x, y, z〉 = 〈2, 1, 2〉+ t 〈1, 1,−1〉. So it is
much safer to change the name of the parameter in the first equation from
t to s. In order for a point (x, y, z) to lie on both lines we need

〈−3, 2, 4〉+ s 〈−4, 2, 1〉 = 〈2, 1, 2〉+ t 〈1, 1,−1〉

or equivalently, writing out the three component equations and moving all
s’s and t’s to the left and constants to the right,

−4s− t = 5
2s− t = −1
s+ t = −2
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Adding the last two equations together gives 3s = −3 or s = −1. Substi-
tuting this into the last equation gives t = −1. Note that s = t = −1
does indeed satisfy all three equations so that 〈x, y, z〉 = 〈−3, 2, 4〉 −
〈−4, 2, 1〉 = 〈1, 0, 3〉 lies on both lines. Any plane that contains the two
lines must be parallel to both direction vectors 〈−4, 2, 1〉 and 〈1, 1,−1〉.
So its normal vector must be perpendicular to them, i.e. must be par-
allel to 〈−4, 2, 1〉 × 〈1, 1,−1〉 = 〈−3,−3,−6〉 = −3 〈1, 1, 2〉. The plane
must contain (1, 0, 3) and be perpendicular to 〈1, 1, 2〉. Its equation is
〈1, 1, 2〉 · 〈x− 1, y, z − 3〉 = 0 or x + y + 2z = 7. This can be checked
by verifying that 〈−3, 2, 4〉 + s 〈−4, 2, 1〉 and 〈2, 1, 2〉 + t 〈1, 1,−1〉 obey
x+ y + 2z = 7 for all s and t respectively.

(b) In order for a point (x, y, z) to lie on both lines we need

〈−3, 2, 4〉+ s 〈−4, 2, 1〉 = 〈2, 1,−1〉+ t 〈1, 1,−1〉

or equivalently, writing out the three component equations and moving all
s’s and t’s to the left and constants to the right,

−4s− t = 5
2s− t = −1
s+ t = −5

Adding the last two equations together gives 3s = −6 or s = −2. Sub-
stituting this into the last equation gives t = −3. However, substituting
s = −2, t = −3 into the first equation gives 11 = 5, which is impossible.
The two lines do not intersect. In order for two lines to lie in a common
plane and not intersect, they must be parallel. So, in this case no plane
contains the two lines.

(c) In order for a point (x, y, z) to lie on both lines we need

〈−3, 2, 4〉+ s 〈−2,−2, 2〉 = 〈2, 1,−1〉+ t 〈1, 1,−1〉

or equivalently, writing out the three component equations and moving all
s’s and t’s to the left and constants to the right,

−2s− t = 5
−2s− t = −1

2s+ t = −5

The first two equations are obviously contradictory. The two lines do
not intersect. Any plane containing the two lines must be parallel to
〈1, 1,−1〉 (and hence automatically parallel to 〈−2,−2, 2〉 = −2 〈1, 1,−1〉)
and must also be parallel to the vector from the point (−3, 2, 4), which
lies on the first line, to the point (2, 1,−1), which lies on the second.
The vector is 〈5,−1,−5〉. Hence the normal to the plane is 〈5,−1,−5〉 ×
〈1, 1,−1〉 = 〈6, 0, 6〉 = 6 〈1, 0, 1〉. The plane perpendicular to 〈1, 0, 1〉 con-
taining (2, 1,−1) is 〈1, 0, 1〉 · 〈x− 2, y − 1, z + 1〉 = 0 or x+ z = 1.

(d) Again the two lines are parallel, since 〈−2,−2, 2〉 = −2 〈1, 1,−1〉.
Furthermore the point 〈3, 2,−2〉 = 〈3, 2,−2〉+ 0 〈−2,−2, 2〉 = 〈2, 1,−1〉+
1 〈1, 1,−1〉 lies on both lines. So the two lines not only intersect but are
identical. Any plane that contains the point (3, 2,−2) and is parallel to
〈1, 1,−1〉 contains both lines. In general, the plane ax+by+cz = d contains
(3, 2,−2) if and only if d = 3a+ 2b− 2c and is parallel to 〈1, 1,−1〉 if and
only if 〈a, b, c〉 · 〈1, 1,−1〉 = a + b − c = 0. So, for arbitrary a and b (not
both zero) ax+ by + (a+ b)z = a works.
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1.5.1.6. Solution. First observe that
• 〈1, 1, 0〉 is perpendicular to x+ y = 0 and hence to the line, and

• 〈1,−1, 2〉 is perpendicular to x− y + 2z = 0 and hence to the line.

Consequently

〈1 , 1 , 0〉 × 〈1 , −1 , 2〉 = det

ı̂ıı ̂ k̂
1 1 0
1 −1 2

 = 〈2 , −2 , −2〉

is perpendicular to both 〈1, 1, 0〉 and 〈1,−1, 2〉. So 1
2 〈2 , −2 , −2〉 = 〈1,−1,−1〉 >

is also perpendicular to both 〈1, 1, 0〉 and 〈1,−1, 2〉 and hence is parallel to
the line. As the point (2,−1,−1) is on the line, the vector equation of the
line is

〈x− 2, y + 1, z + 1〉 = t 〈1,−1,−1〉

The scalar parametric equations for the line are

x− 2 = t, y + 1 = −t, z + 1 = −t or x = 2 + t, y = −1− t, z = −1− t

The symmetric equations for the line are

(t =)x− 2
1 = y + 1

−1 = z + 1
−1 or x− 2 = −y − 1 = −z − 1

1.5.1.7. ∗. Solution. Let’s parametrize L using y, renamed to t, as the
parameter. Then y = t, so that

x+ y = 1 =⇒ x+ t = 1 =⇒ x = 1− t

and
x+ 2y + z = 3 =⇒ 1− t+ 2t+ z = 3 =⇒ z = 2− t

and
〈x, y, z〉 = 〈1, 0, 2〉+ t 〈−1, 1,−1〉

is a vector parametric equation for L.

1.5.1.8. Solution. (a) The normal vectors to the two given planes are
〈1, 2, 3〉 and 〈1,−2, 1〉 respectively. Since the line is to be contained in
both planes, its direction vector must be perpendicular to both 〈1, 2, 3〉
and 〈1,−2, 1〉, and hence must be parallel to

〈1, 2, 3〉 × 〈1,−2, 1〉 = det

ı̂ıı ̂ k̂
1 2 3
1 −2 1

 = 〈8, 2,−4〉

or to 〈4, 1,−2〉. Setting z = 0 in x + 2y + 3z = 11, x − 2y + z = −1 and
solving{

x+ 2y = 11
x− 2y = −1

}
⇐⇒

{
2y = 11− x
x− 2y = −1

}
⇐⇒

{
2y = 11− x

x− (11− x) = −1

}
⇐⇒

{
2y = 11− x

2x = 10

}
we see that (5, 3, 0) is on the line. So the vector parametric equation of the
line is 〈x, y, z〉 = 〈5, 3, 0〉+ t 〈4, 1,−2〉 = 〈5 + 4t, 3 + t,−2t〉.

(b) The vector from (1, 0, 1) to the point (5 + 4t, 3 + t,−2t) on the line
is 〈4 + 4t, 3 + t,−1− 2t〉. In order for (5 + 4t, 3 + t,−2t) to be the point of
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the line closest to (1, 0, 1), the vector 〈4 + 4t, 3 + t,−1− 2t〉 joining those
two points must be perpendicular to the direction vector 〈4, 1,−2〉 of the
line. (See Example 1.5.4.) This is the case when

〈4, 1,−2〉 · 〈4 + 4t, 3 + t,−1− 2t〉 = 0
or 16 + 16t+ 3 + t+ 2 + 4t = 0
or t = −1

The point on the line nearest (1, 0, 1) is thus (5 + 4t, 3 + t,−2t)
∣∣∣
t=−1

=
(5 − 4, 3 − 1, 2) = (1, 2, 2). The distance from the point to the line is
the length of the vector from (1, 0, 1) to the point on the line nearest
(1, 0, 1). That vector is 〈1, 2, 2〉 − 〈1, 0, 1〉 = 〈0, 2, 1〉. So the distance is
| 〈0, 2, 1〉 | =

√
5.

1.5.1.9. Solution. (a) The plane P must be parallel to both 〈2, 3, 2〉
(since it contains L1) and 〈5, 2, 4〉 (since it is parallel to L2). Hence

〈2, 3, 2〉 × 〈5, 2, 4〉 = det

ı̂ıı ̂ k̂
2 3 2
5 2 4

 = 〈8, 2,−11〉

is normal to P . As the point (1,−2,−5) is on P , the equation of P is

〈8, 2,−11〉 · 〈x− 1, y + 2, z + 5〉 = 0 or 8x+ 2y − 11z = 59

(b) As L2 is parallel to P , the distance from L2 to P is the same
as the distance from any one point of L2, for example (−3, 4,−1), to
P . As (1,−2,−5) is a point on P , the vector 〈1,−2,−5〉 − 〈−3, 4,−1〉 =
〈4,−6,−4〉 has its head on P and tail at (−3, 4,−1) on L2. The distance
from L2 to P is the length of the projection of the vector 〈4,−6,−4〉 on
the normal to P . (See Example 1.4.5.) This is∣∣∣proj〈8,2,−11〉 〈4,−6,−4〉

∣∣∣ = | 〈4,−6,−4〉 · 〈8, 2,−11〉 |
| 〈8, 2,−11〉 | = 64√

189
≈ 4.655

1.5.1.10. ∗. Solution. (a) The line L must be perpendicular both to
〈2 , 1 , −1〉, which is a normal vector for the plane 2x + y − z = 5, and to
〈−1 , −2 , 3〉, which is a direction vector for the line x = 3− t, y = 1− 2t
and z = 3t. Any such vector must be a nonzero constant times

〈2 , 1 , −1〉 × 〈−1 , −2 , 3〉 = det

 ı̂ıı ̂ k̂
2 1 −1
−1 −2 3

 = 〈1 , −5 , −3〉

(b) For the point Q(a, b, c)

• to be a distance 2 from the xy--plane, it is necessary that |c| = 2,
and

• to be a distance 3 from the xz--plane, it is necessary that |b| = 3,
and

• to be a distance 4 from the yz--plane, it is necessary that |a| = 4.

As a < 0, b > 0, c > 0, the point Q is (−4, 3, 2) and the line L is

x = −4 + t y = 3− 5t z = 2− 3t
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1.5.1.11. ∗. Solution. (a) The line L intersects the xy--plane when
x+ y + z = 6, x− y + 2z = 0, and z = 0. When z = 0 the equations of L
reduce to x+ y = 6, x− y = 0. So the intersection point is (3, 3, 0).

The line L intersects the xz--plane when x+ y+ z = 6, x− y+ 2z = 0,
and y = 0. When y = 0 the equations of L reduce to x+ z = 6, x+ 2z = 0.
Substituting x = −2z into x + z = 6 gives −z = 6. So the intersection
point is (12, 0,−6).

The line L intersects the yz--plane when x+ y+ z = 6, x− y+ 2z = 0,
and x = 0. When x = 0 the equations of L reduce to y+z = 6, −y+2z = 0.
Substituting y = 2z into y + z = 6 gives 3z = 6. So the intersection point
is (0, 4, 2).

(b) Our main job is to find a direction vector d for the line.

• Since the line is to be parallel to y = z, d must be perpendicular to
the normal vector for y = z, which is 〈0, 1,−1〉.

• d must also be perpendicular to L. For a point (x, y, z) to be on L it
must obey x+y = 6−z and x−y = −2z. Adding these two equations
gives 2x = 6− 3z and subtracting the second equation from the first
gives 2y = 6 + z. So for a point (x, y, z) to be on L it must obey
x = 3− 3z

2 , y = 3 + z
2 . The point on L with z = 0 is (3, 3, 0) and the

point on L with z = 2 is (0, 4, 2). So 〈0− 3, 4− 3, 2− 0〉 = 〈−3, 1, 2〉
is a direction vector for L.

So d must be perpendicular to both 〈0, 1,−1〉 and 〈−3, 1, 2〉 and so must
be a nonzero constant times

〈0, 1,−1〉 × 〈−3, 1, 2〉 = det

 ı̂ıı ̂ k̂
0 1 −1
−3 1 2

 = 〈3 , 3 , 3〉

We choose d = 1
3 〈3 , 3 , 3〉 = 〈1 , 1 , 1〉. So

〈x, y, z〉 = 〈10, 11, 13〉+ t 〈1 , 1 , 1〉

is a vector parametric equation for the line. We can also write this as
x = 10 + t, y = 11 + t, z = 13 + t.

1.5.1.12. ∗. Solution. (a) Since

x = 2 + 3t =⇒ t = x− 2
3

y = 4t =⇒ t = y

4
we have

x− 2
3 = y

4 z = −1

(b) The direction vector for the line r(t) = 2 ı̂ıı − k̂ + t(3 ı̂ıı + 4 ̂) is
d = 3 ı̂ıı+4 ̂. A normal vector for the plane x−y+2z = 0 is n = ±

(̂
ııı−̂+2 k̂

)
.

The angle θ between d and n obeys

cos θ = d · n
|d| |n| = 1

5
√

6
=⇒ θ = arccos 1

5
√

6
≈ 1.49 radians

(We picked n = −ı̂ıı+ ̂− 2k̂ to make 0 ≤ θ ≤ π
2 .) Then the angle between

d and the plane is

α = π

2 − arccos 1
5
√

6
≈ 0.08 radians
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n

plane
x ´ y ` 2z “ 0

θ
α line L

1.5.1.13. ∗. Solution. Let’s use z as the parameter and call it t. Then
z = t and

x+ y = 11− t
x− y = 13 + t

Adding the two equations gives 2x = 24 and subtracting the second equa-
tion from the first gives 2y = −2− 2t. So

(x, y, z) =
(
12 , −1− t , t

)
1.5.1.14. ∗. Solution. (a) The point (0, y, 0), on the y--axis, is equidis-
tant from (2, 5,−3) and (−3, 6, 1) if and only if∣∣ 〈2, 5,−3〉 − 〈0, y, 0〉

∣∣ =
∣∣ 〈−3, 6, 1〉 − 〈0, y, 0〉

∣∣
⇐⇒ 22 + (5− y)2 + (−3)2 = (−3)2 + (6− y)2 + 12

⇐⇒ 2y = 8
⇐⇒ y = 4

(b) The points (1, 3, 1) and r(0) = (0, 0, 2) are both on the plane. Hence
the vector 〈1, 3, 1〉 − 〈0, 0, 2〉 = 〈1, 3,−1〉 joining them, and the direction
vector of the line, namely 〈1, 1, 1〉 are both parallel to the plane. So

〈1, 3,−1〉 × 〈1, 1, 1〉 = det

ı̂ıı ̂ k̂
1 3 −1
1 1 1

 = 〈4,−2,−2〉

is perpendicular to the plane. As the point (0, 0, 2) is on the plane and the
vector 〈4,−2,−2〉 is perpendicular to the plane, the equation of the plane
is

4(x− 0)− 2(y − 0)− 2(z − 2) = 0 or 2x− y − z = −2

1.5.1.15. ∗. Solution. (a) We are given one point on the line, so we
just need a direction vector. That direction vector has to be perpendicular
to the triangle ABC.

The fast way to get a direction vector is to observe that all three points
A, B and C, and consequently the entire triangle ABC, are contained
in the plane y = 2. A normal vector to that plane, and consequently a
direction vector for the desired line, is ̂.

Here is another, more mechanical, way to get a direction vector. The
vector from A to B is 〈2− 0 , 2− 2 , 2− 2〉 = 〈2, 0, 0〉 and the vector from
A to C is 〈5− 0 , 2− 2 , 1− 2〉 = 〈5, 0,−1〉. So a vector perpendicular to



APPENDIX D. SOLUTIONS TO EXERCISES 512

the triangle ABC is

〈2, 0, 0〉 × 〈5, 0,−1〉 = det

ı̂ıı ̂ k̂
2 0 0
5 0 −1

 = 〈0 , 2 , 0〉

The vector 1
2 〈0 , 2 , 0〉 = 〈0 , 1 , 0〉 is also perpendicular to the triangle

ABC.
So the specified line has to contain the point (0, 2, 2) and have direction

vector 〈0, 1, 0〉. The parametric equations

〈x, y, z〉 = 〈0, 2, 2〉+ t 〈0, 1, 0〉

or

x = 0, y = 2 + t, z = 2

do the job.
(b) Let P be the point (x, y, z). Then the vector from P to A is

〈0− x , 2− y , 2− z〉 and the vector from P to B is 〈2− x , 2− y , 2− z〉.
These two vector are perpendicular if and only if

0 = 〈−x , 2− y , 2− z〉 · 〈2− x , 2− y , 2− z〉
= x(x− 2) + (y − 2)2 + (z − 2)2

= (x− 1)2 − 1 + (y − 2)2 + (z − 2)2

This is a sphere.
(c) The light ray that forms Ã starts at the origin, passes through A

and then intersects the plane x+7y+z = 32 at Ã. The line from the origin
through A has vector parametric equation

〈x, y, z〉 = 〈0, 0, 0〉+ t 〈0, 2, 2〉 = 〈0, 2t, 2t〉

This line intersects the plane x+ 7y + z = 32 at the point whose value of
t obeys

(0) + 7
y︷︸︸︷

(2t) +
z︷︸︸︷

(2t) = 32 ⇐⇒ t = 2

So Ã is (0, 4, 4).

1.5.1.16. Solution. The face opposite p is the triangle with vertices q,
r and s. The centroid of this triangle is 1

3 (q + r + s). The direction vector
of the line through p and the centroid 1

3 (q + r + s) is 1
3 (q + r + s) − p.

The points on the line through p and the centroid 1
3 (q + r + s) are those

of the form
x = p + t

[
1
3(q + r + s)− p

]
for some real number t. Observe that when t = 3

4

p + t

[
1
3(q + r + s)− p

]
= 1

4(p + q + r + s)

so that 1
4 (p + q + r + s) is on the line. The other three lines have vector
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parametric equations

x = q + t

[
1
3(p + r + s)− q

]
x = r + t

[
1
3(p + q + s)− r

]
x = s + t

[
1
3(p + q + r)− s

]
When t = 3

4 , each of the three right hand sides also reduces to 1
4 (p+q+r+s)

so that 1
4 (p + q + r + s) is also on each of these three lines.

1.5.1.17. Solution. We’ll use the procedure of Example 1.5.7. The
vector

〈3,−4, 4〉 × 〈−3, 4, 1〉 = det

 ı̂ıı ̂ k̂
3 −4 4
−3 4 1

 = 〈−20,−15, 0〉

is perpendicular to both lines. Hence so is n = − 1
5 〈−20,−15, 0〉 = 〈4, 3, 0〉.

The point (−2, 7, 2) is on the first line and the point (1,−2,−1) is on the
second line. Hence v = 〈−2, 7, 2〉 − 〈1,−2,−1〉 = 〈−3, 9, 3〉 is a vector
joining the two lines. The desired distance is the length of the projection
of v on n. This is∣∣projnv

∣∣ = | 〈−3, 9, 3〉 · 〈4, 3, 0〉 |
| 〈4, 3, 0〉 | = 15

5 = 3

1.6 · Curves and their Tangent Vectors
1.6.2 · Exercises

1.6.2.1. Solution. We can find the time at which the curve hits a given
point by considering the two equations that arise from the two coordinates.
For the y-coordinate to be 0, we must have (t− 5)2 = 0, i.e. t = 5. So, the
point (−1/

√
2, 0) happens when t = 5.

Similarly, for the y-coordinate to be 25, we need (t − 5)2 = 25, so
(t − 5) = ±5. When t = 0, the curve hits (1, 25); when t = 10, the curve
hits (0, 25).

So, in order, the curve passes through the points (1, 25), (−1/
√

2, 0),
and (0, 25).

1.6.2.2. Solution. The curve “crosses itself” when the same coordinates
occur for different values of t, say t1 and t2. So, we want to know when
sin t1 = sin t2 and also t21 = t22. Since t1 and t2 should be different, the
second equation tells us t2 = −t1. Then the first equation tells us sin t1 =
sin t2 = sin(−t1) = − sin t1. That is, sin t1 = − sin t1, so sin t1 = 0. That
happens whenever t1 = πn for an integer n.

So, the points at which the curve crosses itself are those points (0, (πn)2)
where n is an integer. It passes such a point at times t = πn and t = −πn.
So, the curve hits this point 2πn time units apart.

1.6.2.3. Solution. (a) Since, on the specified part of the circle, x =√
a2 − y2 and y runs from 0 to a, the parametrization is r(y) =

√
a2 − y2 ı̂ıı+

y ̂, 0 ≤ y ≤ a.
(b) Let θ be the angle between

• the radius vector from the origin to the point (a cos θ, a sin θ) on the
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circle and

• the positive x-axis.

The tangent line to the circle at (a cos θ, a sin θ) is perpendicular to the
radius vector and so makes angle φ = π

2 + θ with the positive x axis. (See
the figure on the left below.) As θ = φ− π

2 , the desired parametrization is(
x(φ), y(φ)

)
=
(
a cos(φ− π

2 ), a sin(φ− π
2 )
)

=
(
a sinφ,−a cosφ

)
, π

2 ≤ φ ≤ π

x

y

x2 + y2 = a2

θ

φ

(a cos θ, a sin θ)

x

y

x2 + y2 = a2

(
a cos θ , a sin θ

)

θ

(0, a)

s

(c) Let θ be the angle between

• the radius vector from the origin to the point (a cos θ, a sin θ) on the
circle and

• the positive x-axis.

The arc from (0, a) to (a cos θ, a sin θ) subtends an angle π
2 − θ and so has

length s = a
(
π
2 − θ

)
. (See the figure on the right above.) Thus θ = π

2 −
s
a

and the desired parametrization is(
x(s), y(s)

)
=
(
a cos

(π
2 −

s

a

)
, a sin

(π
2 −

s

a

))
, 0 ≤ s ≤ π

2 a

1.6.2.4. Solution. Pretend that the circle is a spool of thread. As the
circle rolls it dispenses the thread along the ground. When the circle rolls
θ radians it dispenses the arc length θa of thread and the circle advances
a distance θa. So centre of the circle has moved θa units to the right
from its starting point, x = a. The centre of the circle always has y-
coordinate a. So, after rolling θ radians, the centre of the circle is at
position c(θ) = (a+ aθ, a).

Now, let’s consider the position of P on the circle, after the circle has
rolled θ radians.

P

θ

a sin θ

a
co

sθ
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From the diagram, we see that P is a cos θ units above the centre of
the circle, and a sin θ units to the right of it. So, the position of P is
(a+ aθ + a sin θ, a+ a cos θ).

Remark: this type of curve is known as a cycloid.

1.6.2.5. Solution. We aren’t concerned with x, so we can eliminate it
by solving for it in one equation, and plugging that into the other. Since
C lies on the plane, x = −y − z, so:

1 = x2 − 1
4y

2 + 3z2 = (−y − z)2 − 1
4y

2 + 3z2

= 3
4y

2 + 4z2 + 2yz

Completing the square,

1 = 1
2y

2 +
(

2z + y

2

)2

1− y2

2 =
(

2z + y

2

)2

Since y is small, the left hand is close to 1 and the right hand side is close
to (2z)2. So (2z2) ≈ 1. Since z is negative, z ≈ −1

2 and 2z + y
2 < 0. Also,

1− y2

2 is positive, so it has a real square root.

−
√

1− y2

2 = 2z + y

2

−1
2

√
1− y2

2 −
y

4 = z

1.6.2.6. Solution. To determine whether the particle is rising or falling,
we only need to consider its z-coordinate: z(t) = (t − 1)2(t − 3)2. Its
derivative with respect to time is z′(t) = 4(t − 1)(t − 2)(t − 3). This is
positive when 1 < t < 2 and when 3 < t, so the particle is increasing on
(1, 2) ∪ (3,∞) and decreasing on (0, 1) ∪ (2, 3).

If r(t) is the position of the particle at time t, then its speed is |r′(t)|.
We differentiate:

r′(t) = −e−t ı̂ıı− 1
t2
̂+ 4(t− 1)(t− 2)(t− 3)k̂

So, r(1) = − 1
e ı̂ıı−1 ̂ and r(3) = − 1

e3 ı̂ıı− 1
9 ̂. The absolute value of every

component of r(1) is greater than or equal to that of the corresponding
component of r(3), so |r(1)| > |r(3)|. That is, the particle is moving more
swiftly at t = 1 than at t = 3.

Note: We could also compute the sizes of both vectors directly: |r′(1)| =√( 1
e

)2 + (−1)2, and |r′(3)| =
√( 1

e3

)2 +
(
− 1

9
)2.

1.6.2.7. Solution.
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r(t+ h)

r(t)

r(0)

The red vector is r(t+h)−r(t). The arclength of the segment indicated
by the blue line is the (scalar) s(t+ h)− s(t).

Remark: as h approaches 0, the curve (if it’s differentiable at t) starts
to resemble a straight line, with the length of the vector r(t + h) − r(t)
approaching the scalar s(t+h)−s(t). This step is crucial to understanding
Lemma 1.6.12.
1.6.2.8. Solution. Velocity is a vector-valued quantity, so it has both a
magnitude and a direction. Speed is a scalar--the magnitude of the velocity.
It does not include a direction.
1.6.2.9. ∗. Solution. By the product rule

d
dt
[
(r× r′) · r′′

]
= (r′ × r′) · r′′ + (r× r′′) · r′′ + (r× r′) · r′′′

The first term vanishes because r′ × r′ = 0. The second term vanishes
because r× r′′ is perpendicular to r′′. So

d
dt
[
(r× r′) · r′′

]
= (r× r′) · r′′′

which is (c).

1.6.2.10. ∗. Solution. We have

v(t) = r′(t) = 5
√

2 ı̂ıı+ 5e5t ̂+ 5e−5t k̂

and hence

|v(t)| = |r′(t)| = 5
∣∣√2 ı̂ıı+ e5t ̂+ e−5t k̂

∣∣ = 5
√

2 + e10t + e−10t

Since 2 + e10t + e−10t =
(
e5t + e−5t)2, that’s (d).

1.6.2.11. Solution. (a) By definition,

r(t) = a cos t ı̂ıı+ a sin t ̂+ ct k̂
v(t) = r′(t) = −a sin t ı̂ıı+ a cos t ̂+ c k̂

ds
dt (t) = |v(t)| =

√
a2 + c2

a(t) = r′′(t) = −a cos t ı̂ıı− a sin t ̂

The (x, y) = a(cos t, sin t) coordinates go around a circle of radius a and
centre (0, 0) counterclockwise. One circle is completed for each increase
of t by 2π. At the same time, the z coordinate increases at a constant



APPENDIX D. SOLUTIONS TO EXERCISES 517

rate. Each time the (x, y) coordinates complete one circle, the z coordinate
increases by 2πc. The path is a helix with radius a and with each turn
having height 2πc.

(b) By definition,

r(t) = a cos t sin t ı̂ıı+ a sin2 t ̂+ a cos t k̂

= a

2 sin 2t ı̂ıı+ a
1− cos 2t

2 ̂+ a cos t k̂

v(t) = r′(t) = a cos 2t ı̂ıı+ a sin 2t ̂− a sin t k̂
ds
dt (t) = |v(t)| = a

√
1 + sin2 t

a(t) = r′′(t) = −2a sin 2t ı̂ıı+ 2a cos 2t ̂− a cos t k̂

The (x, y) coordinates go around a circle of radius a
2 and centre

(
0, a2

)
counterclockwise. At the same time the z coordinate oscillates over the
interval between 1 and −1 half as fast.

1.6.2.12. ∗. Solution. (a) Since r′(t) = (2t, 0, t2), the specified unit
tangent at t = 1 is

T̂(1) = (2, 0, 1)√
5

(b) We are to find the arc length between r(0) and r(−1). As ds
dt =√

4t2 + t4, the

arc length =
∫ 0

−1

√
4t2 + t4 dt

The integrand is even, so

arc length =
∫ 1

0

√
4t2 + t4 dt =

∫ 1

0
t
√

4 + t2 dt =
[

1
3 (4 + t2)3/2

]1
0

= 1
3
[
53/2 − 8

]
1.6.2.13. Solution. By Lemma 1.6.12, the arclength of r(t) from t = 0
to t = 1 is

∫ 1
0
∣∣dr

dt (t)
∣∣dt. We’ll calculate this in a few pieces to make the

steps clearer.

r(t) =
(
t,

√
3
2 t

2, t3

)
dr
dt (t) =

(
1,
√

6t, 3t2
)

∣∣∣∣dr
dt (t)

∣∣∣∣ =
√

12 + (
√

6t)2 + (3t2)2 =
√

1 + 6t2 + 9t4

=
√

(3t2 + 1)2 = 3t2 + 1∫ 1

0

∣∣∣∣dr
dt (t)

∣∣∣∣dt =
∫ 1

0

(
3t2 + 1

)
dt = 2

1.6.2.14. Solution. Since r(t) is the position of the particle, its acceler-
ation is r′′(t).

r(t) = (t+ sin t, cos t)
r′(t) = (1 + cos t,− sin t)
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r′′(t) = (− sin t,− cos t)

|r′′(t)| =
√

sin2 t+ cos2 t = 1

The magnitude of acceleration is constant, but its direction is changing,
since r′′(t) is a vector with changing direction.

1.6.2.15. ∗. Solution. (a) The speed is

ds
dt (t) =

∣∣r′(t)∣∣ =
∣∣(2 cos t− 2t sin t , 2 sin t+ 2t cos t , t2

)∣∣
=
√(

2 cos t− 2t sin t
)2 +

(
2 sin t+ 2t cos t

)2 + t4

=
√

4 + 4t2 + t4

= 2 + t2

so the length of the curve is

length =
∫ 2

0

ds
dt dt =

∫ 2

0
(2 + t2) dt =

[
2t+ t3

3

]2

0
= 20

3

(b) A tangent vector to the curve at r(π) =
(
− 2π , 0 , π

3

3
)
is

r′(π) =
(
2 cosπ − 2π sin π , 2 sin π + 2π cosπ , π2) = (−2 , −2π , π2)

So parametric equations for the tangent line at r(π) are

x(t) = −2π − 2t
y(t) = −2πt

z(t) = π3

3 + π2t

1.6.2.16. ∗. Solution. (a) As r(t) =
(
3 cos t, 3 sin t, 4t

)
, the velocity of

the particle is
r′(t) =

(
− 3 sin t, 3 cos t, 4

)
(b) As ds

dt , the rate of change of arc length per unit time, is

ds
dt (t) = |r′(t)| =

∣∣(− 3 sin t, 3 cos t, 4
)∣∣ = 5

the arclength of its path between t = 1 and t = 2 is∫ 2

1
dt ds

dt (t) =
∫ 2

1
dt 5 = 5

1.6.2.17. ∗. Solution. (a) As

r′(t) = − sin t cos2 t ı̂ıı+ sin2 t cos t ı̂ıı+ 3 sin2 t cos t k̂
= sin t cos t

(
− cos t ı̂ıı+ sin t ̂+ 3 sin t k̂

)
ds
dt (t) = | sin t cos t|

√
cos2 t+ sin2 t+ 9 sin2 t = | sin t cos t|

√
1 + 9 sin2 t

the arclength from t = 0 to t = π
2 is∫ π/2

0

ds
dt (t) dt =

∫ π/2

0
sin t cos t

√
1 + 9 sin2 tdt
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= 1
18

∫ 10

1

√
u du

with u = 1 + 9 sin2 t, du = 18 sin t cos tdt

= 1
18

[2
3u

3/2
]10

1

= 1
27
(
10
√

10− 1
)

(b) The arclength from t = 0 to t = π is∫ π

0

ds
dt (t) dt =

∫ π

0
| sin t cos t|

√
1 + 9 sin2 tdt

Don’t forget the absolute value signs!

= 2
∫ π/2

0
| sin t cos t|

√
1 + 9 sin2 tdt

= 2
∫ π/2

0
sin t cos t

√
1 + 9 sin2 tdt

since the integrand is invariant under t→ π−t. So the arc length from t = 0
to t = π is just twice the arc length from part (a), namely 2

27
(
10
√

10− 1
)
.

1.6.2.18. ∗. Solution. Since

r(t) = t3

3 ı̂ıı+ t2

2 ̂+ t

2 k̂

r′(t) = t2 ı̂ıı+ t ̂+ 1
2 k̂

ds
dt (t) = |r′(t)| =

√
t4 + t2 + 1

4 =
√(

t2 + 1
2

)2
= t2 + 1

2

the length of the curve is

s(t) =
∫ t

0

ds
dt (u) du =

∫ t

0

(
u2 + 1

2

)
du = t3

3 + t

2

1.6.2.19. ∗. Solution. Since

r(t) = tm ı̂ıı+ tm ̂+ t3m/2 k̂

r′(t) = mtm−1 ı̂ıı+mtm−1 ̂+ 3m
2 t3m/2−1 k̂

ds
dt = |r′(t)| =

√
2m2t2m−2 + 9m2

4 t3m−2 = mtm−1
√

2 + 9
4 t
m

the arc length is∫ b

a

ds
dt (t) dt =

∫ b

a

mtm−1
√

2 + 9
4 t
m dt

= 4
9

∫ 2+ 9
4 b
m

2+ 9
4a
m

√
udu with u = 2 + 9

4 t
m, du = 9m

4 tm−1

= 4
9

[2
3u

3/2
]2+ 9

4 b
m

2+ 9
4a
m

= 8
27

[(
2 + 9

4b
m
)3/2

−
(

2 + 9
4a

m
)3/2]
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1.6.2.20. Solution. Given the position of the particle, we can find its
velocity:

v(t) = r′(t) = (cos t,− sin t, 1)

Applying the given formula,

L(t) = r× v = (sin t, cos t, t)× (cos t,− sin t, 1).

• [Solution 1:] We can first compute the cross product, then differ-
entiate:

L(t) = (cos t+ t sin t)̂ııı+ (t cos t− sin t)̂− k̂
L′(t) = t cos t ı̂ıı− t sin t ̂

|L′(t)| =
√
t2(sin2 t+ cos2 t) =

√
t2 = |t|

• [Solution 2:] Using the product rule:

L′(t) = r′(t)× v(t) + r(t)× v′(t)
= r′(t)× r′(t)︸ ︷︷ ︸

0

+r(t)× v′(t)

= (sin t, cos t, t)× (− sin t,− cos t, 0)
= t cos t ı̂ıı− t sin t ̂

|L′(t)| =
√
t2 cos2 t+ t2 sin t2 = |t|

1.6.2.21. ∗. Solution. (a) The curve intersects E when

2
(
t sin(πt)

)2 + 2
(
t cos(πt)

)2 +
(
t2
)2 = 24 ⇐⇒ 2t2 + t4 = 24

⇐⇒ (t2 − 4)(t2 + 6) = 0

Since we need t > 0, the desired time is t = 2 and the corresponding point
is r(2) = 2 ̂+ 4 k̂.

(b) Since

r′(t) =
[

sin(πt) + πt cos(πt)
]̂
ııı+

[
cos(πt)− πt sin(πt)

]
̂+ 2tk̂

a tangent vector to Γ at P is any nonzero multiple of

r′(2) = 2π ı̂ıı+ ̂+ 4 k̂

(c) A normal vector to E at P is

∇∇∇(2x2 + 2y2 + z2)
∣∣
(0,2,4) = 〈4x, 4y, 2z〉

∣∣
(0,2,4) = 〈0, 8, 8〉

Since r′(2) and 〈0, 8, 8〉 are not parallel, Γ and E do not intersect at right
angles.
1.6.2.22. ∗. Solution.

d
dt
[
|r(t)|2 + |r′(t)|2

]
= d

dt
[
r(t) · r(t) + r′(t) · r′(t)

]
= 2r(t) · r′(t) + 2r′(t) · r′′(t)
= 2r′(t) ·

[
r(t) + r′′(t)

]
= 0 since r′′(t) = −r(t)

Since d
dt
[
|r(t)|2 + |r′(t)|2

]
= 0 for all t, |r(t)|2 + |r′(t)|2 is independent of t.
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1.6.2.23. ∗. Solution. (a) Since z = 6u, y = z2

12 = 3u2 and x = yz
18 = u3,

r(u) = u3 ı̂ıı+ 3u2 ̂+ 6u k̂

(b)

r′(u) = 3u2 ı̂ıı+ 6u ̂+ 6 k̂
r′′(u) = 6u ı̂ıı+ 6 ̂

ds
du (u) = |r′(u)| =

√
9u4 + 36u2 + 36 = 3

(
u2 + 2

)

∫
C
ds =

∫ 1

0

ds
du du =

∫ 1

0
3
(
u2 + 2

)
du =

[
u3 + 6u

]1
0 = 7

(c) Denote by R(t) the position of the particle at time t. Then

R(t) = r
(
u(t)

)
=⇒ R′(t) = r′

(
u(t)

)du
dt

In particular, if the particle is at (1, 3, 6) at time t1, then u(t1) = 1 and

6 ı̂ıı+ 12 ̂+ 12 k̂ = R′(t1) = r′(1)du
dt (t1) =

(
3 ı̂ıı+ 6 ̂+ 6 k̂

)du
dt (t1)

which implies that du
dt (t1) = 2.

(d) By the product and chain rules,

R′(t) = r′
(
u(t)

)du
dt =⇒ R′′(t) = r′′

(
u(t)

)(du
dt

)2
+ r′

(
u(t)

)d2u

dt2

In particular,

27 ı̂ıı+ 30 ̂+ 6 k̂ = R′′(t1) = r′′(1)
(du

dt (t1)
)2

+ r′
(
1
)d2u

dt2 (t1)

=
(
6 ı̂ıı+ 6 ̂

)
22 +

(
3 ı̂ıı+ 6 ̂+ 6 k̂

)d2u

dt2 (t1)

Simplifying

3 ı̂ıı+ 6 ̂+ 6 k̂ =
(
3 ı̂ıı+ 6 ̂+ 6 k̂

)d2u

dt2 (t1) =⇒ d2u

dt2 (t1) = 1

1.6.2.24. ∗. Solution. (a) According to Newton,

mr′′(t) = F(t) so that r′′(t) = −3t ı̂ıı+ sin t ̂+ 2e2t k̂

Integrating once gives

r′(t) = −3 t
2

2 ı̂ıı− cos t ̂+ e2t k̂ + c

for some constant vector c. We are told that r′(0) = v0 = π2

2 ı̂ıı. This forces
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c = π2

2 ı̂ıı+ ̂− k̂ so that

r′(t) =
(
π2

2 −
3t2

2

)
ı̂ıı+ (1− cos t) ̂+

(
e2t − 1

)
k̂

Integrating a second time gives

r(t) =
(
π2t

2 −
t3

2

)
ı̂ıı+ (t− sin t) ̂+

(
1
2e

2t − t
)

k̂ + c

for some (other) constant vector c. We are told that r(0) = r0 = 1
2 k̂. This

forces c = 0 so that

r(t) =
(
π2t

2 −
t3

2

)
ı̂ıı+ (t− sin t) ̂+

(
1
2e

2t − t
)

k̂

(b) The particle is in the plane x = 0 when

0 =
(
π2t

2 −
t3

2

)
= t

2(π2 − t2) ⇐⇒ t = 0,±π

So the desired time is t = π.
(c) At time t = π, the velocity is

r′(π) =
(
π2

2 −
3π2

2

)
ı̂ıı+ (1− cosπ) ̂+

(
e2π − 1

)
k̂

= −π2 ı̂ıı+ 2 ̂+
(
e2π − 1

)
k̂

1.6.2.25. ∗. Solution. (a) Parametrize C by x. Since y = x2 and
z = 2

3x
3,

r(x) = x ı̂ıı+ x2 ̂+ 2
3x

3 k̂

r′(x) = ı̂ıı+ 2x ̂+ 2x2 k̂
r′′(x) = 2 ̂+ 4x k̂

ds
dx = |r′(x)| =

√
1 + 4x2 + 4x4 = 1 + 2x2

and ∫
C

ds =
∫ 3

0

ds
dx dx =

∫ 3

0

(
1 + 2x2) dx =

[
x+ 2

3x
3
]3

0
= 21

(b) The particle travelled a distance of 21 units in 7
2 time units. This

corresponds to a speed of 21
7/2 = 6.

(c) Denote by R(t) the position of the particle at time t. Then

R(t) = r
(
x(t)

)
=⇒ R′(t) = r′

(
x(t)

)dx
dt

By parts (a) and (b) and the chain rule

6 = ds
dt = ds

dx
dx
dt = (1 + 2x2)dx

dt =⇒ dx
dt = 6

1 + 2x2
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In particular, the particle is at
(
1, 1, 2

3
)
at x = 1. At this time dx

dt =
6

1+2×1 = 2 and

R′ = r′
(
1
)dx

dt =
(̂
ııı+ 2 ̂+ 2 k̂

)
2 = 2̂ııı+ 4 ̂+ 4 k̂

(d) By the product and chain rules,

R′(t) = r′
(
x(t)

)dx
dt =⇒ R′′(t) = r′′

(
x(t)

)(dx
dt

)2
+ r′

(
x(t)

)d2x

dt2

Applying d
dt to 6 =

(
1 + 2x(t)2)dx

dt (t) gives

0 = 4x
(dx

dt

)2
+ (1 + 2x2)d2x

dt2

In particular, when x = 1 and dx
dt = 2, 0 = 4 × 1

(
2
)2 + (3)d2x

dt2 gives
d2x
dt2 = − 16

3 and

R′′ =
(
2 ̂+ 4 k̂

)(
2
)2 − (̂ııı+ 2 ̂+ 2 k̂

)16
3 = −8

3
(
2̂ııı+ ̂− 2 k̂

)
1.6.2.26. Solution. The question is already set up as an xy--plane,
with the camera at the origin, so the vector in the direction the camera is
pointing is (x(t), y(t)). Let θ be the angle the camera makes with the pos-
itive x-axis (due east). The camera, the object, and the due-east direction
(positive x-axis) make a right triangle.

x

y

object

θ

x(t)

y(t)

camera

tan θ = y

x

Differentiating implicitly with respect to t:

sec2 θ
dθ
dt = xy′ − yx′

x2

dθ
dt = cos2 θ

(
xy′ − yx′

x2

)
=
(

x√
x2 + y2

)2(
xy′ − yx′

x2

)
= xy′ − yx′

x2 + y2

1.6.2.27. Solution. Define u(t) = eαt dr
dt (t). Then

du
dt

(t) = αeαt
dr
dt

(t) + eαt
d2r
dt2

(t)

= αeαt
dr
dt

(t)− geαtk̂− αeαt dr
dt

(t)



APPENDIX D. SOLUTIONS TO EXERCISES 524

= −geαtk̂

Integrating both sides of this equation from t = 0 to t = T gives

u(T )− u(0) = −g e
αT − 1
α

k̂

=⇒ u(T ) = u(0)− g e
αT − 1
α

k̂ = dr
dt

(0)− g e
αT − 1
α

k̂

= v0 − g
eαT − 1

α
k̂

Substituting in u(T ) = eαt dr
dt (T ) and multiplying through by e−αT

dr
dt

(T ) = e−αTv0 − g
1− e−αT

α
k̂

Integrating both sides of this equation from T = 0 to T = t gives

r(t)− r(0) = e−αt − 1
−α

v0 − g
t

α
k̂ + g

e−αt − 1
−α2 k̂

=⇒ r(t) = r0 −
e−αt − 1

α
v0 + g

1− αt− e−αt

α2 k̂

1.6.2.28. ∗. Solution. (a) By definition,

v′(t) = a(t) = 〈cos t, sin t, 0〉 =⇒ v(t) = 〈sin t+ c1,− cos t+ c2, c3〉

for some constants c1, c2, c3. To satisfy v(0) = 〈0,−1, 1〉, we need c1 = 0,
c2 = 0 and c3 = 1. So v(t) = 〈sin t,− cos t, 1〉. Similarly,

r′(t) = v(t) = 〈sin t,− cos t, 1〉
=⇒ r(t) = 〈− cos t+ d1,− sin t+ d2, t+ d3〉

for some constants d1, d2, d3. To satisfy r(0) = 〈−1, 0, 0〉, we need d1 = 0,
d2 = 0 and d3 = 0. So r(t) = 〈− cos t,− sin t, t〉.

(b) To test for orthogonality, we compute the dot product

v(t) · a(t) = 〈sin t,− cos t, 1〉 · 〈cos t, sin t, 0〉
= sin t cos t− cos t sin t+ 1× 0 = 0

so v(t) ⊥ a(t) for all t.
(c) At t = −π2 the particle is at r

(
− π

2
)

=
〈
0, 1,−π2

〉
and has velocity

v
(
− π

2
)

= 〈−1, 0, 1〉. So the tangent line must pass through
〈
0, 1,−π2

〉
and

have direction vector 〈−1, 0, 1〉. Here is a vector parametric equation for
the tangent line.

r(u) =
〈

0, 1,−π2

〉
+ u 〈−1, 0, 1〉

(d) True. Look at the path followed by the particle from the top so that
we only see x and y coordinates. The path we see (call this the projected
path) is x(t) = − cos t, y(t) = − sin t, which is a circle of radius one centred
on the origin. Any tangent line to any circle always remains outside the
circle. So no tangent line to the projected path can pass through the (0, 0).
So no tangent line to the path followed by the particle can pass through
the z--axis and, in particular, through (0, 0, 0).
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1.6.2.29. ∗. Solution. (a) Since

x(t)2 + y(t)2 = t2 cos2 (πt
2
)

+ t2 sin2 (πt
2
)

= t2 and z(t)2 = t2

are the same, the path of the particle lies on the cone z2 = x2 + y2.
(b) By definition,

velocity = r′(t)
=
[

cos
(
πt
2
)
− πt

2 sin
(
πt
2
)]̂
ııı+

[
sin
(
πt
2
)

+ πt
2 cos

(
πt
2
)]
̂+ k̂

speed = |r′(t)|

=
√[

cos
(
πt
2
)
− πt

2 sin
(
πt
2
)]2 +

[
sin
(
πt
2
)

+ πt
2 cos

(
πt
2
)]2 + 12

=
[

cos2 (πt
2
)
− 2πt2 cos

(
πt
2
)

sin
(
πt
2
)

+
(
πt
2
)2 sin2 (πt

2
)

+ sin2 (πt
2
)

+ 2πt2 cos
(
πt
2
)

sin
(
πt
2
)

+
(
πt
2
)2 cos2 (πt

2
)

+ 1
]1/2

=
√

2 + π2t2

4

(c) At t = 1, the particle is at r(1) = (0, 1, 1) and has velocity r′(1) =〈
−π2 , 1, 1

〉
. So for t ≥ 1, the particle is at

〈x, y, z〉 = 〈0, 1, 1〉+ (t− 1)
〈
−π2 , 1, 1

〉
This is also a vector parametric equation for the line.

(d) Assume that the particle’s speed remains constant as it flies along
L. Then the x-coordinate of the particle at time t (for t ≥ 1) is −π2 (t− 1).
This takes the value −1 when t − 1 = 2

π . So the particle hits x = −1, 2
π

seconds after it flew off the cone.
1.6.2.30. ∗. Solution. (a) The tangent vectors to the two curves are

r′1(t) =
〈
1, 2t, 3t2

〉
r′2(t) = 〈− sin t, cos t, 1〉

Both curves pass through P at t = 0 and then the tangent vectors are

r′1(0) = 〈1, 0, 0〉 r′2(0) = 〈0, 1, 1〉

So the angle of intersection, θ, is determined by

r′1(0) · r′2(0) = |r′1(0)| |r′2(0)| cos θ =⇒ 〈1, 0, 0〉 · 〈0, 1, 1〉 = 1 ·
√

2 · cos θ
=⇒ cos θ = 0 =⇒ θ = 90◦

(b) Our strategy will be to

• find a vector v whose tail is on one line and whose head is on the
other line and then

• find a vector n that is perpendicular to both lines.

• Then, if we denote by θ the angle between v and n, the distance
between the two lines is |v| cos θ = |v·n|

|n|

Here we go

• So the first step is to find a v.

◦ One point on the line r(t) = 〈t,−1 + 2t, 1 + 3t〉 is r(0) = 〈0,−1, 1〉.
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◦ (x, y, z) is on the other line if and only if x + y − z = 4 and
2x− z = 4. In particular, if z = 0 then x+ y = 4 and 2x = 4 so
that x = 2 and y = 2.
◦ So the vector v = 〈2− 0 , 2− (−1) , 0− 1〉 = 〈2, 3,−1〉 has its
head on one line and its tail on the other line.

• Next we find a vector n that is perpendicular to both lines.

◦ First we find a direction vector for the line x + y − z = 4,
2x − z = 4. We already know that x = y = 2, z = 0 is on
that line. We can find a second point on that line by choosing,
for example, z = 2 and then solving x + y = 6, 2x = 6 to get
x = 3, y = 3. So one direction vector for the line x+ y − z = 4,
2x− z = 4 is d1 = 〈3− 2 , 3− 2 , 2− 0〉 = 〈1, 1, 2〉.
◦ A second way to get a direction vector for the line x+y−z = 4,

2x− z = 4 is to observe that 〈1, 1,−1〉 is normal to x+ y− z =
4 and so is perpendicular to the line and 〈2, 0,−1〉 is normal
to 2x − z = 4 and so is also perpendicular to the line. So
〈1, 1,−1〉 × 〈2, 0,−1〉 is a direction vector for the line.
◦ A direction vector for the line r(t) = 〈t,−1 + 2t, 1 + 3t〉 is d2 =

r′(t) = 〈1, 2, 3〉.
◦ So

n = d2 × d1 = det

ı̂ıı ̂ k̂
1 2 3
1 1 2

 = ı̂ıı+ ̂− k̂

is perpendicular to both lines.

The distance between the two lines is then

|v| cos θ = |v · n|
|n| = 〈2, 3,−1〉 · 〈1, 1,−1〉

| 〈1, 1,−1〉 | = 6√
3

= 2
√

3

1.7 · Sketching Surfaces in 3d
1.7.2 · Exercises

1.7.2.1. ∗. Solution. (a) ϕ = π
3 is a surface of constant (spherical

coordinate) ϕ. So it is a cone with vertex at the origin. We can express
ϕ = π

3 in cartesian coordinates by observing that 0 ≤ ϕ ≤ π
2 so that z ≥ 0,

and

ϕ = π

3 ⇐⇒ tanϕ =
√

3
2 ⇐⇒ ρ sinϕ =

√
3

2 ρ cosϕ

⇐⇒
√
x2 + y2 =

√
3

2 z

So the picture that corresponds to (a) is (C).
(b) As r and θ are cylindrical coordinates

r = 2 cos θ ⇐⇒ r2 = 2r cos θ ⇐⇒ x2 + y2 = 2x
⇐⇒ (x− 1)2 + y2 = 1

There is no z appearing in (x − 1)2 + y2 = 1. So every constant z cross--
section of (x − 1)2 + y2 = 1 is a (horizontal) circle of radius 1 centred on
the line x = 1, y = 0. It is a cylinder of radius 1 centred on the line x = 1,
y = 0. So the picture that corresponds to (b) is (F).
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(c) Each constant z cross--section of x2 + y2 = z2 + 1 is a (horizontal)
circle centred on the z--axis. The radius of the circle is 1 when z = 0 and
grows as z moves away from z = 0. So x2 + y2 = z2 + 1 consists of a
bunch of (horizontal) circles stacked on top of each other, with the radius
increasing with |z|. It is a hyperboloid of one sheet. The picture that
corresponds to (c) is (D).

(d) Every point of y = x2 + z2 has y ≥ 0. Only (B) has that property.
We can also observe that every constant y cross--section is a circle centred
on x = z = 0. The radius of the circle is zero when y = 0 and increases
as y increases. The surface y = x2 + z2 is a paraboloid. The picture that
corresponds to (d) is (B).

(e) As ρ and ϕ are spherical coordinates

ρ = 2 cosϕ ⇐⇒ ρ2 = 2ρ cosϕ ⇐⇒ x2 + y2 + z2 = 2z
⇐⇒ x2 + y2 + (z − 1)2 = 1

This is the sphere of radius 1 centred on (0, 0, 1). The picture that corre-
sponds to (e) is (A).

(f) The only possibility left is that the picture that corresponds to (f)
is (E).

1.7.2.2. Solution. Each solution below consists of three sketchs.
• In the first sketch, we just redraw the given level curves with the x-

and y-axes reoriented so that the sketch looks like we are high on the
z-axis looking down at the xy-plane.

• In the second sketch, we lift up each level curve f(x, y) = C and draw
it in the horizontal plane z = C. That is we draw{

(x, y, z)
∣∣ f(x, y) = C, z = C, x ≥ 0, y ≥ 0

}
=
{

(x, y, z)
∣∣ z = f(x, y), z = C, x ≥ 0, y ≥ 0

}
• Finally, in the third sketch, we draw the part of graph z = f(x, y) in

the first octant, just by “filling in the gaps in the second sketch”.

(a) y

x

1 2 3 4

1

2

3

4

f“4
f“3

f“2
f“1

f“0

z

y

x

z “ 0

z “ 1

z “ 2

z “ 3

z “ 4
z

y

x

(b) y

x

1 2

1

2

f“4

f“3

f“2

f“1

f“0

z

y

x

z “ 0

z “ 1

z “ 2

z “ 3

z “ 4
z

y

x
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1.7.2.3. Solution. We first add into the sketch of the graph the hori-
zontal planes z = C, for C = 3, 2, 1, 0.5, 0.25.

z

y

x

z “ 3

z “ 2

z “ 1
z“0.5

To reduce clutter, for each C, we have drawn in only

• the (gray) intersection of the horizontal plane z = C with the yz--
plane, i.e. with the vertical plane x = 0, and

• the (blue) intersection of the horizontal plane z = C with the graph
z = f(x, y).

We have also omitted the label for the plane z = 0.25.
The intersection of the plane z = C with the graph z = f(x, y) is line{
(x, y, z)

∣∣ z = f(x, y), z = C
}

=
{

(x, y, z)
∣∣ f(x, y) = C, z = C

}
Drawing this line (which is parallel to the x-axis) in the xy-plane, rather
than in the plane z = C, gives a level curve. Doing this for each of C = 3,
2, 1, 0.5, 0.25 gives five level curves.

x

y
f“0.25

f“0.5

f“1

f“2

f“3

1.7.2.4. Solution. (a) For each fixed c > 0, the level curve x2 + 2y2 = c
is the ellipse centred on the origin with x semi axis

√
c and y semi axis√

c/2. If c = 0, the level curve x2 + 2y2 = c = 0 is the single point (0, 0).
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x

y

f“1

f“2

f“0

(b) For each fixed c 6= 0, the level curve xy = c is a hyperbola centred
on the origin with asymptotes the x- and y-axes. If c > 0, any x and y
obeying xy = c > 0 are of the same sign. So the hyperbola is contained in
the first and third quadrants. If c < 0, any x and y obeying xy = c > 0 are
of opposite sign. So the hyperbola is contained in the second and fourth
quadrants. If c = 0, the level curve xy = c = 0 is the single point (0, 0).

x

y

f“2

f“1

f“2 f“´2

f“´2

f“0

(c) For each fixed c 6= 0, the level curve xe−y = c is the logarithmic
curve y = − ln c

x . Note that, for c > 0, the curve

• is restricted to x > 0, so that c
x > 0 and ln c

x is defined, and that

• as x→ 0+, y goes to −∞, while

• as x→ +∞, y goes to +∞, and

• the curve crosses the x-axis (i.e. has y = 0) when x = c.

and for c < 0, the curve

• is restricted to x < 0, so that c
x > 0 and ln c

x is defined, and that

• as x→ 0−, y goes to −∞, while

• as x→ −∞, y goes to +∞, and

• the curve crosses the x-axis (i.e. has y = 0) when x = c.

If c = 0, the level curve xe−y = c = 0 is the y-axis, x = 0.
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x

y
f“1f“´1

f“2f“´2

f“0

1.7.2.5. ∗. Solution. If C = 0, the level curve f = C = 0 is just
the line y = 0. If C 6= 0 (of either sign), we may rewrite the equation,
f(x, y) = 2y

x2+y2 = C, of the level curve f = C as

x2 − 2
C
y + y2 = 0 ⇐⇒ x2 +

(
y − 1

C

)2
= 1
C2

which is the equation of the circle of radius 1
|C| centred on

(
0 , 1

C

)
.

x

y

f“0

f“1

f“´1

f“2

f“´2

Remark. To be picky, the function f(x, y) = 2y
x2+y2 is not defined at

(x, y) = (0, 0). The question should have either specified that the domain of
f excludes (0, 0) or have specified a value for f(0, 0). In fact, it is impossible
to assign a value to f(0, 0) in such a way that f(x, y) is continuous at (0, 0),
because limx→0 f(x, 0) = 0 while limy→0 f(0, |y|) = ∞. So it makes more
sense to have the domain of f being R2 with the point (0, 0) removed.
That’s why there is a little hole at the origin in the above sketch.

1.7.2.6. ∗. Solution. Observe that, for any constant C, the curve
−x2 + 4y2 = C is the level curve f = eC .

• If C = 0, then −x2 + 4y2 = C = 0 is the pair of lines y = ±x2 .

• If C > 0, then −x2 + 4y2 = C > 0 is the hyperbola y = ± 1
2
√
C + x2.

• If C < 0, then −x2+4y2 = C < 0 is the hyperbola x = ±
√
|C|+ 4y2.
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x

y

f“1

f“e

f“e

f“e9

f“e9

f“e´1f“e´1 f“e´9f“e´9

1.7.2.7. ∗. Solution. (a) We can rewrite the equation as

x2 + y2 = (z − 1)2 − 1

The right hand side is negative for |z − 1| < 1, i.e. for 0 < z < 2. So no
point on the surface has 0 < z < 2. For any fixed z, outside that range, the
curve x2 +y2 = (z−1)2−1 is the circle of radius

√
(z − 1)2 − 1 centred on

the z--axis. That radius is 0 when z = 0, 2 and increases as z moves away
from z = 0, 2. For very large |z|, the radius increases roughly linearly with
|z|. Here is a sketch of some level curves.

x

y

z“0,2

z“´1,3

z“´2,4

(b) The surface consists of two stacks of circles. One stack starts with
radius 0 at z = 2. The radius increases as z increases. The other stack
starts with radius 0 at z = 0. The radius increases as z decreases. This
surface is a hyperboloid of two sheets. Here are two sketchs. The sketch
on the left is of the part of the surface in the first octant. The sketch on
the right of the full surface.

z

y

x
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1.7.2.8. ∗. Solution. For each fixed z, 4x2 +y2 = 1+z2 is an ellipse. So
the surface consists of a stack of ellipses one on top of the other. The semi
axes are 1

2
√

1 + z2 and
√

1 + z2. These are smallest when z = 0 (i.e. for
the ellipse in the xy-plane) and increase as |z| increases. The intersection
of the surface with the xz-plane (i.e. with the plane y = 0) is the hyperbola
4x2 − z2 = 1 and the intersection with the yz-pane (i.e. with the plane
x = 0) is the hyperbola y2 − z2 = 1. Here are two sketches of the surface.
The sketch on the left only shows the part of the surface in the first octant
(with axes).

z

y

x

1.7.2.9. Solution. (a) If c > 0, f(x, y, z) = c, i.e. x2 + y2 + z2 = c, is
the sphere of radius

√
c centered at the origin. If c = 0, f(x, y, z) = c is

just the origin. If c < 0, no (x, y, z) satisfies f(x, y, z) = c.
(b) f(x, y, z) = c, i.e. x + 2y + 3z = c, is the plane normal to (1, 2, 3)

passing through (c, 0, 0).
(c) If c > 0, f(x, y, z) = c, i.e. x2 + y2 = c, is the cylinder parallel to

the z-axis whose cross-section is a circle of radius
√
c that is parallel to the

xy-plane and is centered on the z-axis. If c = 0, f(x, y, z) = c is the z-axis.
If c < 0, no (x, y, z) satisfies f(x, y, z) = c.

1.7.2.10. Solution. (a) The graph is z = sin x with (x, y) running over
0 ≤ x ≤ 2π, 0 ≤ y ≤ 1. For each fixed y0 between 0 and 1, the intersection
of this graph with the vertical plane y = y0 is the same sin graph z = sin x
with x running from 0 to 2π. So the whole graph is just a bunch of 2-d sin
graphs stacked side-by-side. This gives the graph on the left below.

z

y

x

z

y

x

(b) The graph is z =
√
x2 + y2. For each fixed z0 ≥ 0, the intersection

of this graph with the horizontal plane z = z0 is the circle
√
x2 + y2 = z0.

This circle is centred on the z-axis and has radius z0. So the graph is the
upper half of a cone. It is the sketch on the right above.

(c) The graph is z = |x|+ |y|. For each fixed z0 ≥ 0, the intersection of
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this graph with the horizontal plane z = z0 is the square |x|+ |y| = z0. The
side of the square with x, y ≥ 0 is the straight line x + y = z0. The side
of the square with x ≥ 0 and y ≤ 0 is the straight line x − y = z0 and so
on. The four corners of the square are (±z0, 0, z0) and (0,±z0, z0). So the
graph is a stack of squares. It is an upside down four-sided pyramid. The
part of the pyramid in the first octant (that is, x, y, z ≥ 0) is the sketch
below.

z

y

x

1.7.2.11. Solution. (a) For each fixed z0, the z = z0 cross-section (par-
allel to the xy-plane) of this surface is an ellipse centered on the origin
with one semiaxis of length 2 along the x-axis and one semiaxis of length 4
along the y-axis. So this is an elliptic cylinder parallel to the z-axis. Here
is a sketch of the part of the surface above the xy--plane.

y

z

x
p0, 4, 0qp2, 0, 0q

(b) This is a plane through (4, 0, 0), (0, 4, 0) and (0, 0, 2). Here is a
sketch of the part of the plane in the first octant.

p4, 0, 0q

p0, 4, 0q

p0, 0, 2q

y

x

z

(c) For each fixed x0, the x = x0 cross-section parallel to the yz-plane
is an ellipse with semiaxes 3

√
1 + x2

0
16 parallel to the y-axis and 2

√
1 + x2

0
16

parallel to the z-axis. As you move out along the x-axis, away from x = 0,
the ellipses grow at a rate proportional to

√
1 + x2

16 , which for large x is
approximately |x|4 . This is called a hyperboloid of one sheet. Its
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z

y
x

(d) For each fixed y0, the y = x0 cross-section (parallel to the xz-plane)
is a circle of radius |y| centred on the y-axis. When y0 = 0 the radius is
0. As you move further from the xz-plane, in either direction, i.e. as |y0|
increases, the radius grows linearly. The full surface consists of a bunch of
these circles stacked sideways. This is a circular cone centred on the y-axis.

y

z

(e) This is an ellipsoid centered on the origin with semiaxes 3,
√

12 =
2
√

3 and 3 along the x, y and z-axes, respectively.
z

y
x p3, 0, 0q p0,?

12, 0q

p0, 0, 3q

p0,?
12, 0q

p0, 0, 3q

p3, 0, 0q

(f) Completing three squares, we have that x2+y2+z2+4x−by+9z−b =
0 if and only if (x+ 2)2 +

(
y − b

2
)2 +

(
z + 9

2
)2 = b+ 4 + b2

4 + 81
4 . This is a

sphere of radius rb = 1
2
√
b2 + 4b+ 97 centered on 1

2 (−4, b,−9).

1
2
p´4, b ` 2rb,´9q

1
2
p´4, b,´9 ` 2rbq

1
2
p´4, b,´9q

1
2
p´4 ` 2rb, b,´9q
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(g) There are no points on the surface with x < 0. For each fixed x0 > 0
the cross-section x = x0 parallel to the yz-plane is an ellipse centred on the
x--axis with semiaxes √x0 in the y-axis direction and 3

2
√
x0 in the z--axis

direction. As you increase x0, i.e. move out along the x-axis, the ellipses
grow at a rate proportional to √x0. This is an elliptic paraboloid with axis
the x-axis.

z

y

x

(h) This is called a parabolic cylinder. For any fixed y0, the y = y0
cross-section (parallel to the xz-plane) is the upward opening parabola
z = x2 which has vertex on the y-axis.

z

y

x

1.7.2.12. Solution. Since the level curves are circles centred at the
origin (in the xy-plane), when z is a constant, the equation will have the
form x2 + y2 = c for some constant. That is, our equation looks like

x2 + y2 = g(z),

where g(z) is a function depending only on z.
Because our cross-sections are so nicely symmetric, we know the in-

tersection of the figure with the left side of the yz-plane as well: z =
3(−y− 1) = −3(y+ 1) (when z ≥ 0) and z = −3(−y− 1) = 3(y+ 1) (when
z < 0). Below is the intersection of our surface with the yz plane.
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z

y

z = 3(y − 1)

z = −3(y − 1)

z = −3(y + 1)

z = 3(y + 1)

Setting x = 0, our equation becomes y2 = g(z). Looking at the right

side of the yz plane, this should lead to:
{
z = 3(y − 1) if z ≥ 0, y ≥ 1
z = −3(y − 1) if z < 0, y ≥ 1

}
.

That is:

|z| = 3(y − 1)
|z|
3 + 1 = y(

|z|
3 + 1

)2
= y2 (∗)

A quick check: when we squared both sides of the equation in (∗), we
added another solution, |z|3 + 1 = −y. Let’s make sure we haven’t diverged
from our diagram.

(
|z|
3 + 1

)2
= y2

⇔ |z|
3 + 1︸ ︷︷ ︸

positive

= ±y

⇔

{
|z|
3 + 1 = y y > 0
|z|
3 + 1 = −y y < 0

⇔

{
|z|
3 + 1 = y y ≥ 1
|z|
3 + 1 = −y y ≤ −1

⇔

{
|z| = 3(y − 1) y ≥ 1
|z| = −3(y + 1) y ≤ −1

⇔


z = ± 3(y − 1)︸ ︷︷ ︸

positive

y ≥ 1

z = ± 3(y + 1)︸ ︷︷ ︸
negative

y ≤ −1
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⇔


z = 3(y − 1) y ≥ 1, z ≥ 0
z = −3(y − 1) y ≥ 1, z ≤ 0
z = −3(y + 1) y ≤ −1, z ≥ 0
z = 3(y + 1) y ≤ −1, z ≤ 0

This matches our diagram eactly. So, all together, the equation of the
surface is

x2 + y2 =
(
|z|
3 + 1

)2

2 · Partial Derivatives
2.1 · Limits
2.1.2 · Exercises

2.1.2.1. Solution. In general, this is false. Consider f(x, y) = 12− (1−
10x)2 − (1− 10y)2.

• lim
(x,y)→(0,0)

f(x, y) = 12− 1− 1 = 10 (the function is continuous)

• f(0.1, 0.1) = 12− (1− 1)2 − (1− 1)2 = 12

• f(0.2, 0.2) = 12− (1− 2)2 − (1− 2)2 = 10

We often (somewhat lazily) interpret the limit “ lim
(x,y)→(0,0)

f(x, y) = 10”

to mean that, as (x, y) gets closer and closer to the origin, f(x, y) gets closer
and closer to 10. This isn’t exactly what the definition means, though. The
definition tells us that, we can guarantee that f(x, y) be very close to 10
by choosing (x, y) very close to (0, 0).

The function f(x, y) can also be very close to 10 for some (x, y)’s that
are not close to (0, 0). Moreover, we don’t know how close to (0, 0) we have
to be in order for f(x, y) to be “very close” to 10.

2.1.2.2. Solution.
a The function we’re taking the limit of has its input as the position
of the particle, and its output the size of the particle. So, f(x, y)
gives the size of particles found at position (x, y). In the definition,
we write x = (x, y). So, x is the position in the basin the particle
was taken from.

b Our claim deals with particles very close to where the millstone hits
the basin, so a is the position in the basinfwhere the millstone hits.

c L is the limit of the function: in this case, 50 µm.
2.1.2.3. Solution.

a By inspection, when y = 0, then f(x, y) = 1 as long as x 6= 0. So,
if we follow the x-axis in towards the origin, f(x, y) = 1 along this
route.

b Also by inspection, when x = 0, then f(x, y) = 0 as long as y 6= 0.
So, if we follow the y-axis in towards the origin, f(x, y) = 0 along
this route.

c Since two different directions give us different values as we approach
the origin, lim

(x,y)→(0,0)
f(x, y) does not exist.
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x

y

f = 0

f = 0

f = 1
f = 1

2.1.2.4. Solution.
a Since x = r cos θ and y = r sin θ, we have that

f = x2 − y2 = r2 cos2 θ − r2 sin2 θ = r2 cos(2θ)

b When r = 1, f = cos(2θ). So, f(x, y) runs between −1 and 1. It
smallest value is −1 and its largest value is +1.

c The distance from (x, y) to the origin is r (for r ≥ 0). So, at a
distance r, our function is r2 cos(2θ). Then f(x, y) runs over the
interval [−r2, r2]. It smallest value is −r2 and its largest value is
+r2.

d Using our answer to the last part, we have that |f | ≤ r2. So for
0 < r <

√
ε, we necessarily have that |f(x, y)| < ε whenever the

distance from (x, y) to the origin is at most r.

e For every ε > 0, if we choose (x, y) to be sufficiently close to (0, 0) (in
particular, within a distance r <

√
ε), then f(x, y) is within distance

ε of 0. By Definition 2.1.2, we have that lim
(x,y)→(0,0)

f(x, y) = 0.

2.1.2.5. Solution. By Theorem 2.1.6, f(x, y) is continuous over its do-
main. The domain of a polynomial is everywhere; in this case, R2. So,
f(x, y) is continuous at (a, b). By the definition of continuity, lim

(x,y)→(a,b)
f(x, y) =

f(a, b).

2.1.2.6. Solution. (a) lim
(x,y)→(2,−1)

(
xy + x2) = 2(−1) + 22 = 2

(b) Switching to polar coordinates,

lim
(x,y)→(0,0)

x

x2 + y2 = lim
r→0+

0≤θ<2π

r cos θ
r2 = lim

r→0+
0≤θ<2π

cos θ
r

which does not exist, since, for example,
• if θ = 0, then

lim
r→0+
θ=0

cos θ
r

= lim
r→0+

1
r

= +∞

• while if θ = π, then

lim
r→0+
θ=π

cos θ
r

= lim
r→0+

−1
r

= −∞

(c) Switching to polar coordinates,

lim
(x,y)→(0,0)

x2

x2 + y2 = lim
r→0+

0≤θ<2π

r2 cos2 θ

r2 = lim
r→0+

0≤θ<2π

cos2 θ
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which does not exist, since, for example,

• if θ = 0, then
lim
r→0+
θ=0

cos2 θ = lim
r→0+

1 = 1

• while if θ = π
2 , then

lim
r→0+
θ=π/2

cos2 θ = lim
r→0+

0 = 0

(d) Switching to polar coordinates,

lim
(x,y)→(0,0)

x3

x2 + y2 = lim
r→0+

0≤θ<2π

r3 cos3 θ

r2 = lim
r→0+

0≤θ<2π

r cos3 θ = 0

since | cos θ| ≤ 1 for all θ.
(e) Switching to polar coordinates,

lim
(x,y)→(0,0)

x2y2

x2 + y4 = lim
r→0+

0≤θ<2π

r2 cos2 θ r2 sin2 θ

r2 cos2 θ + r4 sin4 θ

= lim
r→0+

0≤θ<2π

r2 sin2 θ
cos2 θ

cos2 θ + r2 sin4 θ

= 0

Here, we used that∣∣∣∣sin2 θ
cos2 θ

cos2 θ + r2 sin4 θ

∣∣∣∣ ≤ cos2 θ

cos2 θ + r2 sin4 θ

≤

{
cos2 θ
cos2 θ if cos θ 6= 0
0 if cos θ = 0

}
≤ 1

for all r > 0.
(f) To start, observe that

lim
(x,y)→(0,0)

(sin x) (ey − 1)
xy

=
[

lim
x→0

sin x
x

] [
lim
y→0

ey − 1
y

]

We may evaluate
[

lim
x→0

sin x
x

]
by l’Hôpital’s rule or by using the definition

of the derivative to give

lim
x→0

sin x
x

= lim
x→0

sin x− sin 0
x− 0 = d

dx sin x
∣∣∣∣
x=0

= cosx
∣∣∣
x=0

= 1

Similarly, we may evaluate
[

lim
y→0

ey − 1
y

]
by l’Hôpital’s rule or by using

the definition of the derivative to give

lim
y→0

ey − 1
y

= lim
y→0

ey − e0

y − 0 = d
dy e

y

∣∣∣∣
y=0

= ey
∣∣∣
y=0

= 1

So all together

lim
(x,y)→(0,0)

(sin x) (ey − 1)
xy

=
[

lim
x→0

sin x
x

] [
lim
y→0

ey − 1
y

]
= [1] [1] = 1

2.1.2.7. ∗. Solution. (a) In polar coordinates, x = r cos θ, y = r sin θ,
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so that

x8 + y8

x4 + y4 = r8 cos8 θ + r8 sin8 θ

r4 cos4 θ + r4 sin4 θ
= r4 cos8 θ + sin8 θ

cos4 θ + sin4 θ

As

cos8 θ + sin8 θ

cos4 θ + sin4 θ
≤ cos8 θ + 2 cos4 θ sin4 θ + sin8 θ

cos4 θ + sin4 θ
=
(

cos4 θ + sin4 θ
)2

cos4 θ + sin4 θ

= cos4 θ + sin4 θ ≤ 2

we have
0 ≤ x8 + y8

x4 + y4 ≤ 2r4

As lim
(x,y)→(0,0)

2r4 = 0, the squeeze theorem yields lim
(x,y)→(0,0)

x8 + y8

x4 + y4 = 0.

(b) In polar coordinates

xy5

x8 + y10 = r6 cos θ sin5 θ

r8 cos8 θ + r10 sin10 θ
= 1
r2

cos θ sin5 θ

cos8 θ + r2 sin10 θ

As (x, y)→ (0, 0) the first fraction 1
r2 →∞ but the second factor can take

many different values. For example, if we send (x, y) towards the origin
along the y--axis, i.e. with θ = ±π2 ,

lim
(x,y)→(0,0)

x=0

xy5

x8 + y10 = lim
y→0

0
y10 = 0

but if we send (x, y) towards the origin along the line y = x, i.e. with
θ = π

4 ,
5π
4 ,

lim
(x,y)→(0,0)

y=x

xy5

x8 + y10 = lim
x→0

x6

x8 + x10 = lim
x→0

1
x2

1
1 + x2 = +∞

and if we send (x, y) towards the origin along the line y = −x, i.e. with
θ = −π4 ,

3π
4 ,

lim
(x,y)→(0,0)
y=−x

xy5

x8 + y10 = lim
x→0

−x6

x8 + x10 = lim
x→0
− 1
x2

1
1 + x2 = −∞

So xy5

x8+y10 does not approach a single value as (x, y)→ (0, 0) and the limit
does not exist.
2.1.2.8. ∗. Solution. (a) In polar coordinates

x3 − y3

x2 + y2 = r3 cos3 θ − r3 sin3 θ

r2 = r cos3 θ − r sin3 θ

Since ∣∣r cos3 θ − r sin3 θ
∣∣ ≤ 2r

and 2r → 0 as r → 0, the limit exists and is 0.
(b) The limit as we approach (0, 0) along the x-axis is

lim
t→0

x2 − y4

x2 + y4

∣∣∣∣
(x,y)=(t,0)

= lim
t→0

t2 − 04

t2 + 04 = 1
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On the other hand the limit as we approach (0, 0) along the y-axis is

lim
t→0

x2 − y4

x2 + y4

∣∣∣∣
(x,y)=(0,t)

= lim
t→0

02 − t4

02 + t4
= −1

These are different, so the limit as (x, y)→ 0 does not exist.
We can gain a more detailed understanding of the behaviour of x

2−y4

x2+y4

near the origin by switching to polar coordinates.

x2 − y4

x2 + y4 = r2 cos2 θ − r4 sin4 θ

r2 cos2 θ + r4 sin4 θ
= cos2 θ − r2 sin4 θ

cos2 θ + r2 sin4 θ

Now fix any θ and let r → 0 (so that we are approaching the origin along
the ray that makes an angle θ with the positive x-axis). If cos θ 6= 0 (i.e.
the ray is not part of the y-axis)

lim
r→0

cos2 θ − r2 sin4 θ

cos2 θ + r2 sin4 θ
= cos2 θ

cos2 θ
= 1

But if cos θ = 0 (i.e. the ray is part of the y-axis)

lim
r→0

cos2 θ − r2 sin4 θ

cos2 θ + r2 sin4 θ
= lim
r→0

−r2 sin4 θ

r2 sin4 θ
= − sin4 θ

sin4 θ
= −1

2.1.2.9. ∗. Solution. (a) In polar coordinates x = r cos θ, y = r sin θ

2x2 + x2y − y2x+ 2y2

x2 + y2

= 2r2 cos2 θ + r3 cos2 θ sin θ − r3 cos θ sin2 θ + 2r2 sin2 θ

r2

= 2 + r
[

cos2 θ sin θ − sin2 θ cos θ
]

As
r
∣∣ cos2 θ sin θ − sin2 θ cos θ

∣∣ ≤ 2r → 0 as r → 0

we have
lim

(x,y)→(0,0)

2x2 + x2y − y2x+ 2y2

x2 + y2 = 2

(b) Since

x2y2 − 2x2y + x2

(x2 + y2 − 2y + 1)2 = x2(y − 1)2[
x2 + (y − 1)2

]2
and, in polar coordinates centred on (0, 1), x = r cos θ, y = 1 + r sin θ,

x2(y − 1)2[
x2 + (y − 1)2

]2 = r4 cos2 θ sin2 θ

r4 = cos2 θ sin2 θ

we have that the limit does not exist. For example, if we send (x, y) to
(0, 1) along the line y = 1, so that θ = 0, we get the limit 0, while if we
send (x, y) to (0, 1) along the line y = x + 1, so that θ = π

4 , we get the
limit 1

4 .
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2.1.2.10. Solution. (a) We have

lim
r→0+

f(r cos θ, r sin θ) = lim
r→0+

(r cos θ)2(r sin θ)
(r cos θ)4 + (r sin θ)2

= lim
r→0+

r
cos2 θ sin θ

r2 cos4 θ + sin2 θ

= lim
r→0+

r lim
r→0+

cos2 θ sin θ
r2 cos4 θ + sin2 θ

Observe that, if sin θ = 0, then

cos2 θ sin θ
r2 cos4 θ + sin2 θ

= 0

for all r 6= 0. If sin θ 6= 0,

lim
r→0+

cos2 θ sin θ
r2 cos4 θ + sin2 θ

= cos2 θ sin θ
sin2 θ

= cos2 θ

sin θ

So the limit lim
r→0+

cos2 θ sin θ
r2 cos4 θ + sin2 θ

exists (and is finite) for all fixed θ and

lim
r→0+

f(r cos θ, r sin θ) = 0

(b) We have

lim
x→0

f(x, x2) = lim
x→0

x2x2

x4 + (x2)2 = lim
x→0

x4

2x4 = 1
2

(c) Note that in part (a) we showed that as (x, y) approaches (0, 0)
along any straight line, f(x, y) approaches the limit zero. In part (b) we
have just shown that as (x, y) approaches (0, 0) along the parabola y = x2,
f(x, y) approaches the limit 1

2 , not zero. So f(x, y) takes values very close
to 0, for some (x, y)’s that are really near (0, 0) and also takes values very
close to 1

2 , for other (x, y)’s that are really near (0, 0). There is no single
number, L, with the property that f(x, y) is really close to L for all (x, y)
that are really close to (0, 0). So the limit does not exist.

2.1.2.11. ∗. Solution. (a) Since, in polar coordinates,

xy

x2 + y2 = r2 cos θ sin θ
r2 = cos θ sin θ

we have that the limit does not exist. For example,
• if we send (x, y) to (0, 0) along the positive x-axis, so that θ = 0, we

get the limit sin θ cos θ
∣∣
θ=0 = 0,

• while if we send (x, y) to (0, 0) along the line y = x in the first
quadrant, so that θ = π

4 , we get the limit sin θ cos θ
∣∣
θ=π/4 = 1

2 .

(b) This limit does not exist, since if it were to exist the limit

lim
(x,y)→(0,0)

xy

x2 + y2 = lim
(x,y)→(0,0)

xy

sin(xy)
sin(xy)
x2 + y2

= lim
(x,y)→(0,0)

xy

sin(xy) lim
(x,y)→(0,0)

sin(xy)
x2 + y2
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would also exist. (Recall that lim
t→0

sin t
t = 1.)

(c) Since

lim
(x,y)→(−1,1)

[
x2 + 2xy2 + y4] = (−1)2 + 2(−1)(1)2 + (1)4 = 0

lim
(x,y)→(−1,1)

[
1 + y4] = 1 + (1)4 = 2

and the second limit is nonzero,

lim
(x,y)→(−1,1)

x2 + 2xy2 + y4

1 + y4 = 0
2 = 0

(d) Since the limit along the positive x-axis

lim
t→0
t>0

|y|x
∣∣∣
(x,y)=(t,0)

= lim
t→0
t>0

0t = lim
t→0
t>0

0 = 0

and the limit along the y-axis

lim
t→0
|y|x

∣∣∣
(x,y)=(0,t)

= lim
t→0
|t|0 = lim

t→0
1 = 1

are different, the limit as (x, y)→ 0 does not exist.

2.1.2.12. Solution. (a) Let a be any nonzero constant. When y = x+ x2

a
and x 6= 0,

x2

y − x
= x2

x2/a
= a

So the limit along the curve y = x+ x2

a is

lim
t→0

x2

y − x

∣∣∣
(x,y)=(t,t+t2/a)

= lim
t→0

a = a

In particular, the limit along the curve y = x + x2, which is 1, and the
limit along the curve y = x − x2, which is −1, are different. So the limit
as (x, y)→ 0 does not exist.

(b) Let a be any nonzero constant. When y = x+ x8

a and x 6= 0,

x8

y − x
= x8

x8/a
= a

So the limit along the curve y = x+ x8

a is

lim
t→0

x8

y − x

∣∣∣
(x,y)=(t,t+t8/a)

= lim
t→0

a = a

In particular, the limit along the curve y = x + x8, which is 1, and the
limit along the curve y = x − x8, which is −1, are different. So the limit
as (x, y)→ 0 does not exist.

2.2 · Partial Derivatives
2.2.2 · Exercises
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2.2.2.1. Solution.
(a) By definition

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)
h

One approximation to this is

∂f

∂x
(0, 0) ≈ f(h, 0)− f(0, 0)

h

∣∣∣∣
h=0.1

= 1.10517− 1
0.1 = 1.0517

Another approximation to this is

∂f

∂x
(0, 0) ≈ f(h, 0)− f(0, 0)

h

∣∣∣∣
h=0.01

= 1.01005− 1
0.01 = 1.005

(b) By definition
∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)
h

One approximation to this is

∂f

∂y
(0, 0) ≈ f(0, h)− f(0, 0)

h

∣∣∣∣
h=−0.1

= 0.99500− 1
−0.1 = 0.0500

Another approximation to this is

∂f

∂y
(0, 0) ≈ f(0, h)− f(0, 0)

h

∣∣∣∣
h=−0.01

= 0.99995− 1
−0.01 = .0050

(c) To take the partial derivative with respect to x at (0, 0), we set y = 0,
differentiate with respect to x and then set x = 0. So

∂f

∂x
(0, 0) = d

dxe
x cos 0

∣∣∣∣
x=0

= ex|x=0 = 1

To take the partial derivative with respect to y at (0, 0), we set x = 0,
differentiate with respect to y and then set y = 0. So

∂f

∂y
(0, 0) = d

dy e
0 cos y

∣∣∣∣
y=0

= sin y|y=0 = 0

2.2.2.2. Solution. If fy(0, 0) < 0, then f(0, y) decreases as y increases
from 0. Thus moving in the positive y direction takes you downhill. This
means you aren’t at the lowest point in a valley, since you can still move
downhill. On the other hand, as fy(0, 0) < 0, f(0, y) also decreases as y
increases towards 0 from slightly negative values. Thus if you move in the
negative y-direction from y = 0, your height z will increase. So you are not
at a locally highest point—you’re not at a summit.

2.2.2.3. ∗. Solution. (a) By definition

∂f

∂x
(0, 0) = lim

∆x→0

f(∆x, 0)− f(0, 0)
∆x

= lim
∆x→0

(∆x2)(0)
∆x2+02 − 0

∆x
= 0
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(b) By definition

∂f

∂y
(0, 0) = lim

∆y→0

f(0,∆y)− f(0, 0)
∆y

= lim
∆y→0

(02)(∆y)
02+∆y2 − 0

∆y
= 0

(c) By definition

d
dtf(t, t)

∣∣∣
t=0

= lim
t→0

f(t, t)− f(0, 0)
t

= lim
h→0

(t2)(t)
t2+t2 − 0

t

= lim
t→0

t/2
t

= 1
2

2.2.2.4. Solution. (a)

fx(x, y, z) = 3x2y4z5 fx(0,−1,−1) = 0
fy(x, y, z) = 4x3y3z5 fy(0,−1,−1) = 0
fz(x, y, z) = 5x3y4z4 fz(0,−1,−1) = 0

(b)

wx(x, y, z) = yzexyz

1 + exyz
wx(2, 0,−1) = 0

wy(x, y, z) = xzexyz

1 + exyz
wy(2, 0,−1) = −1

wz(x, y, z) = xyexyz

1 + exyz
wz(2, 0,−1) = 0

(c)

fx(x, y) = − x

(x2 + y2)3/2 fx(−3, 4) = 3
125

fy(x, y) = − y

(x2 + y2)3/2 fy(−3, 4) = − 4
125

2.2.2.5. Solution. By the quotient rule

∂z

∂x
(x, y) = (1)(x− y)− (x+ y)(1)

(x− y)2 = −2y
(x− y)2

∂z

∂y
(x, y) = (1)(x− y)− (x+ y)(−1)

(x− y)2 = 2x
(x− y)2

Hence
x
∂z

∂x
(x, y) + y

∂z

∂y
(x, y) = −2xy + 2yx

(x− y)2 = 0
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2.2.2.6. ∗. Solution. (a) We are told that z(x, y) obeys

z(x, y) y − y + x = ln
(
xy z(x, y)

)
(∗)

for all (x, y) (near (−1,−2)). Differentiating (∗) with respect to x gives

y
∂z

∂x
(x, y) + 1 = 1

x
+

∂z
∂x (x, y)
z(x, y) =⇒ ∂z

∂x
(x, y) =

1
x − 1

y − 1
z(x,y)

or, dropping the arguments (x, y) and multiplying both the numerator and
denominator by xz,

∂z

∂x
= z − xz
xyz − x

= z(1− x)
x(yz − 1)

Differentiating (∗) with respect to y gives

z(x, y) + y
∂z

∂y
(x, y)− 1 = 1

y
+

∂z
∂y (x, y)
z(x, y)

=⇒ ∂z

∂y
(x, y) =

1
y + 1− z(x, y)
y − 1

z(x,y)

or, dropping the arguments (x, y) and multiplying both the numerator and
denominator by yz,

∂z

∂y
= z + yz − yz2

y2z − y
= z(1 + y − yz)

y(yz − 1)

(b) When (x, y, z) = (−1,−2, 1/2),

∂z

∂x
(−1,−2) =

1
x − 1
y − 1

z

∣∣∣∣
(x,y,z)=(−1,−2,1/2)

=
1
−1 − 1
−2− 2 = 1

2

∂z

∂y
(−1,−2) =

1
y + 1− z
y − 1

z

∣∣∣∣∣
(x,y,z)=(−1,−2,1/2)

=
1
−2 + 1− 1

2
−2− 2 = 0

2.2.2.7. ∗. Solution. We are told that the four variables T , U , V , W
obey the the single equation (TU − V )2 ln(W − UV ) = ln 2. So they are
not all independent variables. Roughly speaking, we can treat any three of
them as independent variables and solve the given equation for the fourth
as a function of the three chosen independent variables.

We are first asked to find ∂U
∂T . This implicitly tells to treat T , V and

W as independent variables and to view U as a function U(T, V,W ) that
obeys (

T U(T, V,W )− V
)2 ln

(
W − U(T, V,W )V

)
= ln 2 (E1)

for all (T,U, V,W ) sufficiently near (1, 1, 2, 4). Differentiating (E1) with
respect to T gives

2
(
T U(T, V,W )−V

)[
U(T, V,W )+T ∂U

∂T
(T, V,W )

]
ln
(
W−U(T, V,W )V

)
−
(
T U(T, V,W )− V

)2 1
W − U(T, V,W )V

∂U

∂T
(T, V,W )V = 0
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In particular, for (T,U, V,W ) = (1, 1, 2, 4),

2
(
(1)(1)− 2

) [
1 + (1)∂U

∂T
(1, 2, 4)

]
ln
(
4− (1)(2)

)
−
(
(1)(1)− 2

)2 1
4− (1)(2)

∂U

∂T
(1, 2, 4) (2) = 0

This simplifies to

− 2
[
1 + ∂U

∂T
(1, 2, 4)

]
ln(2)− ∂U

∂T
(1, 2, 4) = 0

=⇒ ∂U

∂T
(1, 2, 4) = − 2 ln(2)

1 + 2 ln(2)

We are then asked to find ∂T
∂V . This implicitly tells to treat U , V and

W as independent variables and to view T as a function T (U, V,W ) that
obeys (

T (U, V,W )U − V
)2 ln

(
W − U V

)
= ln 2 (E2)

for all (T,U, V,W ) sufficiently near (1, 1, 2, 4). Differentiating (E2) with
respect to V gives

2
(
T (U, V,W )U − V

) [ ∂T
∂V

(U, V,W ) U − 1
]

ln
(
W − U V

)
−
(
T (U, V,W )U − V

)2 U

W − U V
= 0

In particular, for (T,U, V,W ) = (1, 1, 2, 4),

2
(
(1)(1)− 2

) [
(1) ∂T

∂V
(1, 2, 4)− 1

]
ln
(
4− (1)(2)

)
−
(
(1)(1)− 2

)2 1
4− (1)(2) = 0

This simplifies to

−2
[
∂T

∂V
(1, 2, 4)− 1

]
ln(2)− 1

2 = 0 =⇒ ∂T

∂V
(1, 2, 4) = 1− 1

4 ln(2)

2.2.2.8. ∗. Solution. The function

u(ρ, r, θ) =
[
ρr cos θ

]2 +
[
ρr sin θ

]
ρr

= ρ2r2 cos2 θ + ρ2r2 sin θ

So

∂u

∂r
(ρ, r, θ) = 2ρ2r cos2 θ + 2ρ2r sin θ

and

∂u

∂r
(2, 3, π/2) = 2(22)(3)(0)2 + 2(22)(3)(1) = 24

2.2.2.9. Solution. By definition

fx(x0, y0) = lim
∆x→0

f(x0 + ∆x, y0)− f(x0, y0)
∆x
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fy(x0, y0) = lim
∆y→0

f(x0, y0 + ∆y)− f(x0, y0)
∆y

Setting x0 = y0 = 0,

fx(0, 0) = lim
∆x→0

f(∆x, 0)− f(0, 0)
∆x = lim

∆x→0

f(∆x, 0)
∆x

= lim
∆x→0

((∆x)2 − 2× 02)/(∆x− 0)
∆x

= lim
∆x→0

1 = 1

fy(0, 0) = lim
∆y→0

f(0,∆y)− f(0, 0)
∆y = lim

∆y→0

f(0,∆y)
∆y

= lim
∆y→0

(02 − 2(∆y)2)/(0−∆y)
∆y

= lim
∆y→0

2 = 2

2.2.2.10. Solution. As z(x, y) = f(x2 + y2)

∂z

∂x
(x, y) = 2xf ′(x2 + y2)

∂z

∂y
(x, y) = 2yf ′(x2 + y2)

by the (ordinary single variable) chain rule. So

y
∂z

∂x
− x∂z

∂y
= y(2x)f ′(x2 + y2)− x(2y)f ′(x2 + y2) = 0

and the differential equation is always satisfied, assuming that f is differ-
entiable, so that the chain rule applies.
2.2.2.11. Solution. By definition

∂f

∂x
(0, 0) = lim

∆x→0

f(∆x, 0)− f(0, 0)
∆x

= lim
∆x→0

(∆x+2×0)2

∆x+0 − 0
∆x

= lim
∆x→0

∆x
∆x

= 1

and
∂f

∂y
(0, 0) = lim

∆y→0

f(0,∆y)− f(0, 0)
∆y

= lim
∆y→0

(0+2∆y)2

0+∆y − 0
∆y

= lim
∆y→0

4∆y
∆y

= 4

(b) f(x, y) is not continuous at (0, 0), even though both partial deriva-
tives exist there. To see this, make a change of coordinates from (x, y) to
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(X, y) with X = x+ y (the denominator). Of course, (x, y)→ (0, 0) if and
only if (X, y) → (0, 0). Now watch what happens when (X, y) → (0, 0)
with X a lot smaller than y. For example, X = ay2. Then

(x+ 2y)2

x+ y
= (X + y)2

X
= (ay2 + y)2

ay2 = (1 + ay)2

a
→ 1

a

This depends on a. So approaching (0, 0) along different paths gives dif-
ferent limits. (You can see the same effect without changing coordinates
by sending (x, y) → (0, 0) with x = −y + ay2.) Even more dramatically,
watch what happens when (X, y)→ (0, 0) with X = y3. Then

(x+ 2y)2

x+ y
= (X + y)2

X
= (y3 + y)2

y3 = (1 + y2)2

y
→ ±∞

2.2.2.12. Solution 1. Let’s start by finding an equation for this surface.
Every level curve is a horizontal circle of radius one, so the equation should
be of the form

(x− f1)2 + (y − f2)2 = 1

where f1 and f2 are functions depending only on z. Since the centre of the
circle at height z is at position x = 0, y = z, we see that the equation of
our surface is

x2 + (y − z)2 = 1

The height of the surface at the point (x, y) is the z(x, y) found by solving
that equation. That is,

x2 +
(
y − z(x, y)

)2 = 1 (∗)

We differentiate this equation implicitly to find zx(x, y) and zy(x, y) at the
desired point (x, y) = (0,−1). First, differentiating (∗) with respect to y
gives

0 + 2
(
y − z(x, y)

)(
1− zy(x, y)

)
= 0

2(−1− 0)
(
1− zy(0,−1)

)
= 0 at (0,−1, 0)

so that the slope looking in the positive y direction is zy(0,−1) = 1. Sim-
ilarly, differentiating (∗) with respect to x gives

2x+ 2
(
y − z(x, y)

)
·
(
0− zx(x, y)

)
= 0

2x = 2
(
y − z(x, y)

)
· zx(x, y)

zx(x, y) = x

y − z(x, y)
zx(0,−1) = 0 at (0,−1, 0)

The slope looking in the positive x direction is zx(0,−1) = 0.
Solution 2. Standing at (0,−1, 0) and looking in the positive y direction,
the surface follows the straight line that

• passes through the point (0,−1, 0), and

• is parallel to the central line z = y, x = 0 of the cylinder.

Shifting the central line one unit in the y-direction, we get the line z = y+1,
x = 0. (As a check, notice that (0,−1, 0) is indeed on z = y + 1, x = 0.)
The slope of this line is 1.
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Standing at (0,−1, 0) and looking in the positive x direction, the surface
follows the circle x2+y2 = 1, z = 0, which is the intersection of the cylinder
with the xy-plane. As we move along that circle our z coordinate stays
fixed at 0. So the slope in that direction is 0.

2.3 · Higher Order Derivatives
2.3.3 · Exercises

2.3.3.1. Solution. We have to derive a bunch of equalities.
• Fix any real number x and set g(y, z) = fx(x, y, z). By (Clairaut’s)

Theorem 2.3.4 gyz(y, z) = gzy(y, z), so

fxyz(x, y, z) = gyz(y, z) = gzy(y, z) = fxzy(x, y, z)

• For every fixed real number z, (Clairaut’s) Theorem 2.3.4 gives fxy(x, y, z) =
fyx(x, y, z). So

fxyz(x, y, z) = ∂

∂z
fxy(x, y, z) = ∂

∂z
fyx(x, y, z) = fyxz(x, y, z)

So far, we have

fxyz(x, y, z) = fxzy(x, y, z) = fyxz(x, y, z)

• Fix any real number y and set g(x, z) = fy(x, y, z). By (Clairaut’s)
Theorem 2.3.4 gxz(x, z) = gzx(x, z). So

fyxz(x, y, z) = gxz(x, z) = gzx(x, z) = fyzx(x, y, z)

So far, we have

fxyz(x, y, z) = fxzy(x, y, z) = fyxz(x, y, z) = fyzx(x, y, z)

• For every fixed real number y, (Clairaut’s) Theorem 2.3.4 gives fxz(x, y, z) =
fzx(x, y, z). So

fxzy(x, y, z) = ∂

∂y
fxz(x, y, z) = ∂

∂y
fzx(x, y, z) = fzxy(x, y, z)

So far, we have

fxyz(x, y, z) = fxzy(x, y, z) = fyxz(x, y, z)
= fyzx(x, y, z) = fzxy(x, y, z)

• Fix any real number z and set g(x, y) = fz(x, y, z). By (Clairaut’s)
Theorem 2.3.4 gxy(x, y) = gyx(x, y). So

fzxy(x, y, z) = gxy(x, y) = gyx(x, y) = fzxy(x, y, z)

We now have all of

fxyz(x, y, z) = fxzy(x, y, z) = fyxz(x, y, z)
= fyzx(x, y, z) = fzxy(x, y, z) = fzxy(x, y, z)

2.3.3.2. Solution. No such f(x, y) exists, because if it were to exist,
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then we would have that fxy(x, y) = fyx(x, y). But

fxy(x, y) = ∂

∂y
fx(x, y) = ∂

∂y
ey = ey

fyx(x, y) = ∂

∂x
fy(x, y) = ∂

∂x
ex = ex

are not equal.

2.3.3.3. Solution. (a) We have

fx(x, y) = 2xy3 fxx(x, y) = 2y3

fxy(x, y) = 6xy2 fyxy(x, y) = fxyy(x, y) = 12xy

(b) We have

fx(x, y) = y2exy
2

fxx(x, y) = y4exy
2

fxxy(x, y) = 4y3exy
2

+ 2xy5exy
2

fxy(x, y) = 2yexy
2

+ 2xy3exy
2

fxyy(x, y) =
(
2+4xy2+6xy2+4x2y4)exy2

=
(
2 + 10xy2 + 4x2y4)exy2

(c) We have

∂f

∂u
(u, v, w) = − 1

(u+ 2v + 3w)2

∂2f

∂u ∂v
(u, v, w) = 4

(u+ 2v + 3w)3

∂3f

∂u ∂v ∂w
(u, v, w) = − 36

(u+ 2v + 3w)4

In particular

∂3f

∂u ∂v ∂w
(3, 2, 1) = − 36

(3 + 2× 2 + 3× 1)4 = − 36
104 = − 9

2500

2.3.3.4. Solution. Let f(x, y) =
√
x2 + 5y2. Then

fx = x√
x2 + 5y2

fxx = 1√
x2 + 5y2

− 1
2

(x)(2x)
(x2 + 5y2)3/2 fxy = −1

2
(x)(10y)

(x2 + 5y2)3/2

fy = 5y√
x2 + 5y2

fyy = 5√
x2 + 5y2

− 1
2

(5y)(10y)
(x2 + 5y2)3/2 fyx = −1

2
(5y)(2x)

(x2 + 5y2)3/2

Simplifying, and in particular using that 1√
x2+5y2

= x2+5y2

(x2+5y2)3/2 ,

fxx = 5y2

(x2 + 5y2)3/2 fxy = fyx = − 5xy
(x2 + 5y2)3/2

fyy = 5x2

(x2 + 5y2)3/2
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2.3.3.5. Solution. (a) As f(x, y, z) = arctan
(
e
√
xy
)
is independent of

z, we have fz(x, y, z) = 0 and hence

fxyz(x, y, z) = fzxy(x, y, z) = 0

(b) Write u(x, y, z) = arctan
(
e
√
xy
)
, v(x, y, z) = arctan

(
e
√
xz
)
and

w(x, y, z) = arctan
(
e
√
yz
)
. Then

• As u(x, y, z) = arctan
(
e
√
xy
)
is independent of z, we have uz(x, y, z) =

0 and hence uxyz(x, y, z) = uzxy(x, y, z) = 0

• As v(x, y, z) = arctan
(
e
√
xz
)
is independent of y, we have vy(x, y, z) =

0 and hence vxyz(x, y, z) = vyxz(x, y, z) = 0

• As w(x, y, z) = arctan
(
e
√
yz
)
is independent of x, we have wx(x, y, z) =

0 and hence wxyz(x, y, z) = 0

As f(x, y, z) = u(x, y, z) + v(x, y, z) + w(x, y, z), we have

fxyz(x, y, z) = uxyz(x, y, z) + vxyz(x, y, z) + wxyz(x, y, z) = 0

(c) In the course of evaluating fxx(x, 0, 0), both y and z are held fixed
at 0. Thus, if we set g(x) = f(x, 0, 0), then fxx(x, 0, 0) = g′′(x). Now

g(x) = f(x, 0, 0) = arctan
(
e
√
xyz
)∣∣∣
y=z=0

= arctan(1) = π

4

for all x. So g′(x) = 0 and g′′(x) = 0 for all x. In particular,

fxx(1, 0, 0) = g′′(1) = 0

2.3.3.6. ∗. Solution. (a) The first order derivatives are

fr(r, θ) = mrm−1 cosmθ fθ(r, θ) = −mrm sinmθ

The second order derivatives are

frr(r, θ) = m(m− 1)rm−2 cosmθ frθ(r, θ) = −m2rm−1 sinmθ
fθθ(r, θ) = −m2rm cosmθ

so that

frr(1, 0) = m(m− 1), frθ(1, 0) = 0, fθθ(1, 0) = −m2

(b) By part (a), the expression

frr + λ

r
fr + 1

r2 fθθ = m(m− 1)rm−2 cosmθ + λmrm−2 cosmθ

−m2rm−2 cosmθ

vanishes for all r and θ if and only if

m(m− 1) + λm−m2 = 0 ⇐⇒ m(λ− 1) = 0 ⇐⇒ λ = 1

2.3.3.7. Solution. As

ut(x, y, z, t) = −3
2

1
t5/2

e−(x2+y2+z2)/(4αt)
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+ 1
4α t7/2

(x2 + y2 + z2)e−(x2+y2+z2)/(4αt)

ux(x, y, z, t) = − x

2α t5/2
e−(x2+y2+z2)/(4αt)

uxx(x, y, z, t) = − 1
2α t5/2

e−(x2+y2+z2)/(4αt) + x2

4α2 t7/2
e−(x2+y2+z2)/(4αt)

uyy(x, y, z, t) = − 1
2α t5/2

e−(x2+y2+z2)/(4αt) + y2

4α2 t7/2
e−(x2+y2+z2)/(4αt)

uzz(x, y, z, t) = − 1
2α t5/2

e−(x2+y2+z2)/(4αt) + z2

4α2 t7/2
e−(x2+y2+z2)/(4αt)

we have

α
(
uxx+uyy+uzz

)
= − 3

2 t5/2
e−(x2+y2+z2)/(4αt)+ x2+y2+z2

4α t7/2
e−(x2+y2+z2)/(4αt)

= ut

2.4 · The Chain Rule
2.4.5 · Exercises

2.4.5.1. Solution. (c) We’ll start with part (c) and follow the proce-
dure given in §2.4.1. We are to compute the derivative of h(x, y, z) =
f
(
u(x, y, z), v(x, y), w(x)

)
with respect to x. For this function, the tem-

plate of Step 2 in §2.4.1 is

∂h

∂x
= ∂f

∂x

Note that
• The function h appears once in the numerator on the left. The func-

tion f , from which h is constructed by a change of variables, appears
once in the numerator on the right.

• The variable, x, in the denominator on the left appears once in the
denominator on the right.

Now we fill in the blanks with every variable that makes sense. In partic-
ular, since f is a function of u, v and w, it may only be differentiated with
respect to u, v and w. So we add together three copies of our template —
one for each of u, v and w:

∂h

∂x
= ∂f

∂u

∂u

∂x
+ ∂f

∂v

∂v

∂x
+ ∂f

∂w

dw
dx

Since w is a function of only one variable, we use the ordinary derivative
symbol dw

dx , rather than the partial derivative symbol ∂w∂x in the third copy.
Finally we put in the only functional dependence that makes sense. The
left hand side is a function of x, y and z, because h is a function of x, y and
z. Hence the right hand side must also be a function of x, y and z. As f is
a function of u, v and w, this is achieved by evaluating f at u = u(x, y, z),
v = v(x, y) and w = w(x).

∂h

∂x
(x, y, z) = ∂f

∂u

(
u(x, y, z), v(x, y), w(x)

)∂u
∂x

(x, y, z)

+ ∂f

∂v

(
u(x, y, z), v(x, y), w(x)

)∂v
∂x

(x, y)

+ ∂f

∂w

(
u(x, y, z), v(x, y), w(x)

)dw
dx (x)
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(a) We again follow the procedure given in §2.4.1. We are to compute
the derivative of h(x, y) = f

(
x, u(x, y)

)
with respect to x. For this function,

the template of Step 2 in §2.4.1 is

∂h

∂x
= ∂f

∂x

Now we fill in the blanks with every variable that makes sense. In partic-
ular, since f is a function of x and u, it may only be differentiated with
respect to x, and u. So we add together two copies of our template — one
for x and one for u:

∂h

∂x
= ∂f

∂x

dx
dx + ∂f

∂u

∂u

∂x

In dx
dx we are to differentiate the (explicit) function x (i.e. the function

F (x) = x) with respect to x. The answer is of course 1. So

∂h

∂x
= ∂f

∂x
+ ∂f

∂u

du
dx

Finally we put in the only functional depedence that makes sense. The
left hand side is a function of x, and y, because h is a function of x and y.
Hence the right hand side must also be a function of x and y. As f is a
function of x, u, this is achieved by evaluating f at u = u(x, y).

∂h

∂x
(x, y) = ∂f

∂x

(
x, u(x, y)

)
+ ∂f

∂u

(
x, u(x, y)

)∂u
∂x

(x, y)

(b) Yet again we follow the procedure given in §2.4.1. We are to com-
pute the derivative of h(x) = f

(
x, u(x), v(x)

)
with respect to x. For this

function, the template of Step 2 in §2.4.1 is

dh
dx = ∂f

∂x

(As h is function of only one variable, we use the ordinary derivative symbol
dh
dx on the left hand side.) Now we fill in the blanks with every variable
that makes sense. In particular, since f is a function of x, u and v, it may
only be differentiated with respect to x, u and v. So we add together three
copies of our template — one for each of x, u and v:

dh
dx = ∂f

∂x

dx
dx + ∂f

∂u

du
dx + ∂f

∂v

dv
dx

= ∂f

∂x
+ ∂f

∂u

du
dx + ∂f

∂v

dv
dx

Finally we put in the only functional depedence that makes sense.

dh
dx (x) = ∂f

∂x

(
x, u(x), v(x)

)
+ ∂f

∂u

(
x, u(x), v(x)

)du
dx (x)

+ ∂f

∂v

(
x, u(x), v(x)

)dv
dx (x)

2.4.5.2. Solution. To visualize, in a simplified setting, the situation
from Example 2.4.10, note that w′(x) is the rate of change of z as we slide
along the blue line, while fx(x, y) is the change of z as we slide along the
orange line.

In the partial derivative fx(x, y) ≈ ∆f
∆x , we let x change, while y stays
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the same. Necessarily, that forces f to change as well. Starting at point
P0, if we move x but keep y fixed, we end up at P2. According to the labels
on the diagram, ∆x is x2 − x1, and ∆f is z2 − z1.

The function w(x) is a constant function, so we expect w′(x) = 0.
In the approximation dw

dx ≈
∆w
∆x , we let x change, but w stays the same.

Necessarily, to stay on the surface, this forces y to change. Starting at point
P0, if we move x but keep z = f(x, y) fixed, we end up at P1. According
to the labels on the diagram, ∆x is x2 − x1 again, and ∆w = z1 − z1 = 0.

To compare the two situations, note the first case has ∆y = 0 while the
second case has ∆f = 0.

2.4.5.3. ∗. Solution. We are told in the statement of the question that
w(t) = f

(
x(t), y(t), t

)
. Applying the chain rule to w(t) = f

(
x(t), y(t), t

)
,

by following the procedure given in §2.4.1, gives

dw
dt (t) = ∂f

∂x

(
x(t), y(t), t

)dx
dt (t) + ∂f

∂y

(
x(t), y(t), t

)dy
dt (t)

+ ∂f

∂t

(
x(t), y(t), t

)dt
dt

= ∂f

∂x

(
x(t), y(t), t

)dx
dt (t) + ∂f

∂y

(
x(t), y(t), t

)dy
dt (t)

+ ∂f

∂t

(
x(t), y(t), t

)
Substituting in the values given in the question

dw
dt = 2× 1− 3× 2 + 5 = 1

On the other hand, we are told explicitly in the question that ft is 5. The
reason that ft and dw

dt are different is that
• ft gives the rate of change of f(x, y, t) as t varies while x and y are

held fixed, but

• dw
dt gives the rate of change of f

(
x(t), y(t), t

)
. For the latter all of

x = x(t), y = y(t) and t are changing at once.

2.4.5.4. Solution. The basic assumption is that the three quantites x,
y and z are not independent. Given any two of them, the third is uniquely
determined. They are assumed to satisfy a relationship F (x, y, z) = 0,
which can be solved to

• determine x as a function of y and z (say x = f(y, z)) and can
alternatively be solved to

• determine y as a function of x and z (say y = g(x, z)) and can
alternatively be solved to

• determine z as a function of x and y (say z = h(x, y)).

As an example, if F (x, y, z) = xyz − 1, then

• F (x, y, z) = xyz − 1 = 0 implies that x = 1
yz = f(y, z) and

• F (x, y, z) = xyz − 1 = 0 implies that y = 1
xz = g(x, z) and

• F (x, y, z) = xyz − 1 = 0 implies that z = 1
xy = h(x, y)
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In general, saying that F (x, y, z) = 0 determines x = f(y, z) means that

F
(
f(y, z), y, z

)
= 0 (∗)

for all y and z. Set F(y, z) = F
(
f(y, z), y, z

)
. Applying the chain rule to

F(y, z) = F
(
f(y, z), y, z

)
(with y and z independent variables) gives

∂F
∂z

(y, z) = ∂F

∂x

(
f(y, z), y, z

)∂f
∂z

(y, z) + ∂F

∂z

(
f(y, z), y, z

)
The equation (∗) says that F(y, z) = F

(
f(y, z), y, z

)
= 0 for all y and z.

So differentiating the equation (∗) with respect to z gives

∂F
∂z

(y, z) = ∂F

∂x

(
f(y, z), y, z

)∂f
∂z

(y, z) + ∂F

∂z

(
f(y, z), y, z

)
= 0

=⇒ ∂f

∂z
(y, z) = −

∂F
∂z

(
f(y, z), y, z

)
∂F
∂x

(
f(y, z), y, z

)
for all y and z. Similarly, differentiating F

(
x, g(x, z), z

)
= 0 with respect

to x and F
(
x, y, h(x, y)

)
= 0 with respect to y gives

∂g

∂x
(x, z) = −

∂F
∂x

(
x, g(x, z), z

)
∂F
∂y

(
x, g(x, z), z

) ∂h

∂y
(x, y) = −

∂F
∂y

(
x, y, h(x, y)

)
∂F
∂z

(
x, y, h(x, y)

)
If (x, y, z) is any point satisfying F (x, y, z) = 0 (so that x = f(y, z) and
y = g(x, z) and z = h(x, y)), then

∂f

∂z
(y, z) = −

∂F
∂z

(
x, y, z

)
∂F
∂x

(
x, y, z

) ∂g

∂x
(x, z) = −

∂F
∂x

(
x, y, z

)
∂F
∂y

(
x, y, z

)
∂h

∂y
(x, y) = −

∂F
∂y

(
x, y, z

)
∂F
∂z

(
x, y, z

)
and

∂f

∂z
(y, z) ∂g

∂x
(x, z) ∂h

∂y
(x, y) = −

∂F
∂z

(
x, y, z

)
∂F
∂x

(
x, y, z

) ∂F
∂x

(
x, y, z

)
∂F
∂y

(
x, y, z

) ∂F
∂y

(
x, y, z

)
∂F
∂z

(
x, y, z

)
= −1

2.4.5.5. Solution. The problem is that ∂w∂x is used to represent two com-
pletely different functions in the same equation. The careful way to write
the equation is the following. Let f(x, y, z) and g(x, y) be continuously
differentiable functions and define w(x, y) = f

(
x, y, g(x, y)

)
. By the chain

rule,

∂w

∂x
(x, y) = ∂f

∂x

(
x, y, g(x, y)

)∂x
∂x

+ ∂f

∂y

(
x, y, g(x, y)

)∂y
∂x

+ ∂f

∂z

(
x, y, g(x, y)

)∂g
∂x

(x, y)

= ∂f

∂x

(
x, y, g(x, y)

)
+ ∂f

∂z

(
x, y, g(x, y)

)∂g
∂x

(x, y)

While w(x, y) = f
(
x, y, g(x, y)

)
, it is not true that ∂w∂x (x, y) = ∂f

∂x

(
x, y, g(x, y)

)
.

For example, take f(x, y, z) = x − z and g(x, y) = x. Then w(x, y) =
f
(
x, y, g(x, y)

)
= x − g(x, y) = 0 for all (x, y), so that ∂w

∂x (x, y) = 0 while
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∂f
∂x (x, y, z) = 1 for all (x, y, z).

2.4.5.6. Solution. Method 1: Since w(s, t) = x(s, t)2 + y(s, t)2 + z(s, t)2

with x(s, t) = st, y(s, t) = s cos t and z(s, t) = s sin t we can write out
w(s, t) explicitly:

w(s, t) = (st)2 + (s cos t)2 + (s sin t)2 = s2(t2 + 1)
=⇒ ws(s, t) = 2s(t2 + 1) and wt(s, t) = s2(2t)

Method 2: The question specifies that w(s, t) = x(s, t)2 + y(s, t)2 +
z(s, t)2 with x(s, t) = st, y(s, t) = s cos t and z(s, t) = s sin t. That is,
w(s, t) = W

(
x(s, t), y(s, t), z(s, t)

)
withW (x, y, z) = x2+y2+z2. Applying

the chain rule to w(s, t) = W
(
x(s, t), y(s, t), z(s, t)

)
and noting that ∂W

∂x =
2x, ∂W∂y = 2y, ∂W∂z = 2z, gives

∂w

∂s
(s, t) = ∂W

∂x

(
x(s, t), y(s, t), z(s, t)

)∂x
∂s

(s, t)

+ ∂W

∂y

(
x(s, t), y(s, t), z(s, t)

)∂y
∂s

(s, t)

+ ∂W

∂z

(
x(s, t), y(s, t), z(s, t)

)∂z
∂s

(s, t)

= 2x(s, t) xs(s, t) + 2y(s, t) ys(s, t) + 2z(s, t) zs(s, t)
= 2(st) t+ 2(s cos t) cos t+ 2(s sin t) sin t
= 2st2 + 2s

∂w

∂t
(s, t) = ∂W

∂x

(
x(s, t), y(s, t), z(s, t)

)∂x
∂t

(s, t)

+ ∂W

∂y

(
x(s, t), y(s, t), z(s, t)

)∂y
∂t

(s, t)

+ ∂W

∂z

(
x(s, t), y(s, t), z(s, t)

)∂z
∂t

(s, t)

= 2x(s, t) xt(s, t) + 2y(s, t) yt(s, t) + 2z(s, t) zt(s, t)
= 2(st) s+ 2(s cos t) (−s sin t) + 2(s sin t) (s cos t)
= 2s2t

2.4.5.7. Solution. By definition,

∂3

∂x∂y2 f(2x+ 3y, xy) = ∂

∂x

[
∂

∂y

(
∂

∂y
f(2x+ 3y, xy)

)]
We’ll compute the derivatives from the inside out. Let’s call F (x, y) =
f(2x + 3y, xy) so that the innermost derivative is G(x, y) = ∂

∂yf(2x +
3y, xy) = ∂

∂yF (x, y). By the chain rule

G(x, y) = ∂

∂y
F (x, y)

= f1(2x+ 3y, xy) ∂
∂y

(2x+ 3y) + f2(2x+ 3y, xy) ∂
∂y

(xy)

= 3f1(2x+ 3y, xy) + xf2(2x+ 3y, xy)

Here the subscript 1 means take the partial derivative of f with respect
to the first argument while holding the second argument fixed, and the
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subscript 2 means take the partial derivative of f with respect to the second
argument while holding the first argument fixed. Next call the middle
derivative H(x, y) = ∂

∂y

(
∂
∂yf(2x+ 3y, xy)

)
so that

H(x, y) = ∂

∂y
G(x, y)

= ∂

∂y

(
3f1(2x+ 3y, xy) + xf2(2x+ 3y, xy)

)
= 3 ∂

∂y

(
f1(2x+ 3y, xy)

)
+ x

∂

∂y

(
f2(2x+ 3y, xy)

)
By the chain rule (twice),

∂

∂y

(
f1(2x+ 3y, xy)

)
= f11(2x+ 3y, xy) ∂

∂y
(2x+ 3y)

+ f12(2x+ 3y, xy) ∂
∂y

(xy)

= 3f11(2x+ 3y, xy) + xf12(2x+ 3y, xy)
∂

∂y

(
f2(2x+ 3y, xy)

)
= f21(2x+ 3y, xy) ∂

∂y
(2x+ 3y)

+ f22(2x+ 3y, xy) ∂
∂y

(xy)

= 3f21(2x+ 3y, xy) + xf22(2x+ 3y, xy)

so that

H(x, y) = 3
(

3f11(2x+ 3y, xy) + xf12(2x+ 3y, xy)
)

+ x
(

3f21(2x+ 3y, xy) + xf22(2x+ 3y, xy)
)

= 9f11(2x+ 3y, xy) + 6xf12(2x+ 3y, xy) + x2f22(2x+ 3y, xy)

In the last equality we used that f21(2x+ 3y, xy) = f12(2x+ 3y, xy). The
notation f21 means first differentiate with respect to the second argument
and then differentiate with respect to the first argument. For example, if
f(x, y) = e2y sin x, then

f21(x, y) = ∂

∂x

[ ∂
∂y

(
e2y sin x

)]
= ∂

∂x

[
2e2y sin x

]
= 2ey cosx

Finally, we get to

∂3

∂x∂y2 f(2x+ 3y, xy) = ∂

∂x
H(x, y)

= ∂

∂x

(
9f11(2x+ 3y, xy) + 6xf12(2x+ 3y, xy) + x2f22(2x+ 3y, xy)

)
= 9 ∂

∂x

(
f11(2x+ 3y, xy)

)
+ 6f12(2x+ 3y, xy) + 6x ∂

∂x

(
f12(2x+ 3y, xy)

)
+ 2xf22(2x+ 3y, xy) + x2 ∂

∂x

(
f22(2x+ 3y, xy)

)
By three applications of the chain rule

∂3

∂x∂y2 f(2x+ 3y, xy) = 9
(

2f111 + yf112

)
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+ 6f12 + 6x
(

2f121 + yf122

)
+ 2xf22 + x2

(
2f221 + yf222

)
= 6 f12 + 2x f22 + 18 f111 + (9y + 12x) f112

+ (6xy + 2x2) f122 + x2y f222

All functions on the right hand side have arguments (2x+ 3y, xy).

2.4.5.8. Solution. The given function is

g(s, t) = f(2s+ 3t, 3s− 2t)

The first order derivatives are

gs(s, t) = 2f1(2s+ 3t, 3s− 2t) + 3f2(2s+ 3t, 3s− 2t)
gt(s, t) = 3f1(2s+ 3t, 3s− 2t)− 2f2(2s+ 3t, 3s− 2t)

The second order derivatives are

gss(s, t) = ∂

∂s

(
2f1(2s+ 3t, 3s− 2t) + 3f2(2s+ 3t, 3s− 2t)

)
= 2
(

2f11 + 3f12

)
+ 3
(

2f21 + 3f22

)
= 4f11 + 6f12 + 6f21 + 9f22

= 4f11(2s+ 3t, 3s− 2t) + 12f12(2s+ 3t, 3s− 2t)
+ 9f22(2s+ 3t, 3s− 2t)

gst(s, t) = ∂

∂t

(
2f1(2s+ 3t, 3s− 2t) + 3f2(2s+ 3t, 3s− 2t)

)
= 2
(

3f11 − 2f12

)
+ 3
(

3f21 − 2f22

)
= 6f11(2s+ 3t, 3s− 2t) + 5f12(2s+ 3t, 3s− 2t)

− 6f22(2s+ 3t, 3s− 2t)

gtt(s, t) = ∂

∂t

(
3f1(2s+ 3t, 3s− 2t)− 2f2(2s+ 3t, 3s− 2t)

)
= 3
(

3f11 − 2f12

)
− 2
(

3f21 − 2f22

)
= 9f11(2s+ 3t, 3s− 2t)− 12f12(2s+ 3t, 3s− 2t)

+ 4f22(2s+ 3t, 3s− 2t)

Here f1 denotes the partial derivative of f with respect to its first argument,
f12 is the result of first taking one partial derivative of f with respect to
its first argument and then taking a partial derivative with respect to its
second argument, and so on.
2.4.5.9. ∗. Solution. By the chain rule,

∂g

∂s
(s, t) = ∂

∂s
f(s− t, s+ t)

= ∂f

∂x

(
s− t , s+ t

) ∂
∂s

(
s− t

)
+ ∂f

∂y

(
s− t , s+ t

) ∂
∂s

(
s+ t

)
= ∂f

∂x

(
s− t , s+ t

)
+ ∂f

∂y

(
s− t , s+ t

)
∂2g

∂s2 (s, t) = ∂

∂s

[
∂f

∂x

(
s− t , s+ t

)]
+ ∂

∂s

[
∂f

∂y

(
s− t , s+ t

)]
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= ∂2f

∂x2

(
s− t , s+ t

)
+ ∂2f

∂y∂x

(
s− t , s+ t

)
+ ∂2f

∂x∂y

(
s− t , s+ t

)
+ ∂2f

∂y2

(
s− t , s+ t

)
=
{
∂2f

∂x2

(
s−t, s+t

)
+ 2 ∂2f

∂x∂y

(
s−t, s+t

)
+ ∂2f

∂y2

(
s−t, s+t

)}
and

∂g

∂t
(s, t) = ∂

∂t
f(s− t, s+ t)

= ∂f

∂x

(
s− t , s+ t

) ∂
∂t

(
s− t

)
+ ∂f

∂y

(
s− t , s+ t

) ∂
∂t

(
s+ t

)
= −∂f

∂x

(
s− t , s+ t

)
+ ∂f

∂y

(
s− t , s+ t

)
∂2g

∂t2
(s, t) = − ∂

∂t

[
∂f

∂x

(
s− t , s+ t

)]
+ ∂

∂t

[
∂f

∂y

(
s− t , s+ t

)]
= −

[
− ∂2f

∂x2

(
s− t , s+ t

)
+ ∂2f

∂y∂x

(
s− t , s+ t

)]
+
[
− ∂2f

∂x∂y

(
s− t , s+ t

)
+ ∂2f

∂y2

(
s− t , s+ t

)]
=
{
∂2f

∂x2

(
s−t, s+t

)
− 2 ∂2f

∂x∂y

(
s−t, s+t

)
+ ∂2f

∂y2

(
s−t, s+t

)}
Suppressing the arguments

∂2g

∂s2 + ∂2g

∂t2
=
{
∂2f

∂x2 + 2 ∂2f

∂x∂y
+ ∂2f

∂y2

}
+
{
∂2f

∂x2 − 2 ∂2f

∂x∂y
+ ∂2f

∂y2

}
= 2

[
∂2f

∂x2 + ∂2f

∂y2

]
= 0

as desired.
2.4.5.10. ∗. Solution. The notation in the statement of this question
is horrendous — the symbol z is used with two different meanings in one
equation. On the left hand side, it is a function of x and y, and on the right
hand side, it is a function of s and t. Unfortunately that abuse of notation
is also very common. Let us undo the notation conflict by renaming the
function of s and t to F (s, t). That is,

F (s, t) = f
(
2s+ t , s− t

)
In this new notation, we are being asked to find a, b and c so that

a
∂2f

∂x2 + b
∂2f

∂x∂y
+ c

∂2f

∂y2 = ∂2F

∂s2 + ∂2F

∂t2

with the arguments on the right hand side being (s, t) and the arguments
on the left hand side being

(
2s+ t , s− t

)
.

By the chain rule,

∂F

∂s
(s, t) = ∂f

∂x

(
2s+ t , s− t

) ∂
∂s

(2s+ t) + ∂f

∂y

(
2s+ t , s− t

) ∂
∂s

(s− t)
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= 2∂f
∂x

(
2s+ t , s− t

)
+ ∂f

∂y

(
2s+ t , s− t

)
∂2F

∂s2 (s, t) = 2 ∂
∂s

[
∂f

∂x

(
2s+ t , s− t

)]
+ ∂

∂s

[
∂f

∂y

(
2s+ t , s− t

)]
= 4∂

2f

∂x2

(
2s+ t , s− t

)
+ 2 ∂2f

∂y∂x

(
2s+ t , s− t

)
+ 2 ∂2f

∂x∂y

(
2s+ t , s− t

)
+ ∂2f

∂y2

(
2s+ t , s− t

)
and

∂F

∂t
(s, t) = ∂f

∂x

(
2s+ t , s− t

) ∂
∂t

(2s+ t) + ∂f

∂y

(
2s+ t , s− t

) ∂
∂t

(s− t)

= ∂f

∂x

(
2s+ t , s− t

)
− ∂f

∂y

(
2s+ t , s− t

)
∂2F

∂t2
(s, t) = ∂

∂t

[
∂f

∂x

(
2s+ t , s− t

)]
− ∂

∂t

[
∂f

∂y

(
2s+ t , s− t

)]
= ∂2f

∂x2

(
2s+ t , s− t

)
− ∂2f

∂y∂x

(
2s+ t , s− t

)
− ∂2f

∂x∂y

(
2s+ t , s− t

)
+ ∂2f

∂y2

(
2s+ t , s− t

)
Suppressing the arguments

∂2F

∂s2 + ∂2F

∂t2
= 5∂

2f

∂x2 + 2 ∂2f

∂x∂y
+ 2∂

2f

∂y2

Finally, translating back into the (horrendous) notation of the question

∂2z

∂s2 + ∂2z

∂t2
= 5∂

2z

∂x2 + 2 ∂2z

∂x∂y
+ 2∂

2z

∂y2

so that a = 5 and b = c = 2.
2.4.5.11. ∗. Solution. Let u(x, y) = x2 − y2 , and v(x, y) = 2xy. Then
F (x2 − y2, 2xy) = F

(
u(x, y), v(x, y)

)
. By the chain rule

∂

∂y
F (x2 − y2, 2xy) = ∂

∂y
F (u(x, y), v(xy))

= Fu(u(x, y), v(xy))∂u
∂y

(x, y) + Fv(u(x, y), v(xy))∂v
∂y

(x, y)

= Fu(x2 − y2, 2xy) (−2y) + Fv(x2 − y2, 2xy) (2x)
∂2

∂x ∂y
F (x2 − y2, 2xy) = ∂

∂x

{
−2yFu(x2 − y2, 2xy) + 2xFv(x2 − y2, 2xy)

}
= −2y ∂

∂x

[
Fu(x2 − y2, 2xy)

]
+ 2Fv(x2 − y2, 2xy)

+ 2x ∂

∂x

[
Fv(x2 − y2, 2xy)

]
= −4xy Fuu(x2 − y2, 2xy)− 4y2Fuv(x2 − y2, 2xy) + 2Fv(x2 − y2, 2xy)

+ 4x2Fvu(x2 − y2, 2xy) + 4xy Fvv(x2 − y2, 2xy)
= 2Fv(x2 − y2, 2xy)− 4xy Fuu(x2 − y2, 2xy)

+ 4(x2 − y2)Fuv(x2 − y2, 2xy)
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+ 4xy Fvv(x2 − y2, 2xy)

2.4.5.12. ∗. Solution. For any (differentiable) function F , we have, by
the chain and product rules,

∂u

∂x
(x, y) = ∂

∂x

[
ey F

(
xe−y

2)]
= ey

∂

∂x

[
F
(
xe−y

2)]
= ey F ′

(
xe−y

2) ∂
∂x

(
xe−y

2
)

= ey F ′
(
xe−y

2)
e−y

2

∂u

∂y
(x, y) = ∂

∂y

[
ey F

(
xe−y

2)]
= ey F

(
xe−y

2)
+ ey

∂

∂y

[
F
(
xe−y

2)]
= ey F

(
xe−y

2)
+ ey F ′

(
xe−y

2) ∂

∂y

(
xe−y

2
)

= ey F
(
xe−y

2)
+ ey F ′

(
xe−y

2)
(−2xy)e−y

2

(a) In particular, when F (z) = ln(z), F ′(z) = 1
z and

∂u

∂x
(x, y) = ey

1
xe−y2 e−y

2
= ey

x
∂u

∂y
(x, y) = ey ln

(
xe−y

2)
+ ey

1
xe−y2 (−2xy)e−y

2
= ey ln

(
xe−y

2)
− 2yey

= ey ln(x)− y2 ey − 2yey

(b) In general

2xy∂u
∂x

+ ∂u

∂y
= 2xy ey F ′

(
xe−y

2)
e−y

2
+ ey F

(
xe−y

2)
+ ey F ′

(
xe−y

2)
(−2xy)e−y

2

= ey F
(
xe−y

2)
= u

2.4.5.13. ∗. Solution. By the chain rule,

∂h

∂t
(s, t) = ∂

∂t

[
f(2s+ 3t)

]
+ ∂

∂t

[
g(s− 6t)

]
= f ′(2s+ 3t) ∂

∂t
(2s+ 3t) + g(s− 6t) ∂

∂t
(s− 6t)

= 3f ′(2s+ 3t)− 6g′(s− 6t)
∂2h

∂t2
(s, t) = 3 ∂

∂t

[
f ′′(2s+ 3t)

]
−6 ∂

∂t

[
g′′(s− 6t)

]
= 3 f ′′(2s+ 3t) ∂

∂t
(2s+ 3t)−6 g′′(s− 6t) ∂

∂t
(s− 6t)

= 9f ′′(2s+ 3t) + 36g′′(s− 6t)

In particular

∂2h

∂t2
(2, 1) = 9f ′′(7) + 36g′′(−4) = 9(−2) + 36(−1) = −54
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2.4.5.14. ∗. Solution. We’ll first compute the first order partial deriva-
tives of w(x, y, z). Write u(x, y, z) = xz and v(x, y, z) = yz so that
w(x, y, z) = f

(
u(x, y, z), v(x, y, z)

)
. By the chain rule,

∂w

∂x
(x, y, z) = ∂

∂x

[
f
(
u(x, y, z), v(x, y, z)

)]
= ∂f

∂u

(
u(x, y, z), v(x, y, z)

)∂u
∂x

(x, y, z)

+ ∂f

∂v

(
u(x, y, z), v(x, y, z)

)∂v
∂x

(x, y, z)

= z
∂f

∂u
(xz, yz)

∂w

∂y
(x, y, z) = ∂

∂y

[
f
(
u(x, y, z), v(x, y, z)

)]
= ∂f

∂u

(
u(x, y, z), v(x, y, z)

)∂u
∂y

(x, y, z)

+ ∂f

∂v

(
u(x, y, z), v(x, y, z)

)∂v
∂y

(x, y, z)

= z
∂f

∂v
(xz, yz)

∂w

∂z
(x, y, z) = ∂

∂z

[
f
(
u(x, y, z), v(x, y, z)

)]
= ∂f

∂u

(
u(x, y, z), v(x, y, z)

)∂u
∂z

(x, y, z)

+ ∂f

∂v

(
u(x, y, z), v(x, y, z)

)∂v
∂z

(x, y, z)

= x
∂f

∂u
(xz, yz) + y

∂f

∂v
(xz, yz)

So

x
∂w

∂x
+ y

∂w

∂y
= xz

∂f

∂u
(xz, yz) + yz

∂f

∂v
(xz, yz)

= z

[
x
∂f

∂u
(xz, yz) + y

∂f

∂v
(xz, yz)

]
= z

∂w

∂z

as desired.
2.4.5.15. ∗. Solution. By definition z(r, t) = f(r cos t , r sin t).

(a) By the chain rule
∂z

∂t
(r, t) = ∂

∂t

[
f(r cos t , r sin t)

]
= ∂f

∂x
(r cos t , r sin t) ∂

∂t
(r cos t) + ∂f

∂y
(r cos t , r sin t) ∂

∂t
(r sin t)

= −r sin t ∂f
∂x

(r cos t , r sin t) + r cos t ∂f
∂y

(r cos t , r sin t)

(b) By linearity, the product rule and the chain rule

∂2z

∂t2
(r, t) = − ∂

∂t

[
r sin t∂f

∂x
(r cos t, r sin t)

]
+ ∂

∂t

[
r cos t∂f

∂y
(r cos t, r sin t)

]
= −r cos t ∂f

∂x
(r cos t , r sin t)−r sin t ∂

∂t

[
∂f

∂x
(r cos t , r sin t)

]
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− r sin t ∂f
∂y

(r cos t , r sin t)+r cos t ∂

∂t

[
∂f

∂y
(r cos t , r sin t)

]
= −r cos t ∂f

∂x
(r cos t , r sin t)

+r2 sin2 t
∂2f

∂x2 (r cos t , r sin t)− r2 sin t cos t ∂
2 f

∂y∂x
(r cos t , r sin t)

− r sin t ∂f
∂y

(r cos t , r sin t)

−r2 sin t cos t ∂
2 f

∂x∂y
(r cos t , r sin t) + r2 cos2 t

∂2f

∂y2 (r cos t , r sin t)

= −r cos t ∂f
∂x
− r sin t ∂f

∂y

+ r2 sin2 t
∂2f

∂x2 − 2r2 sin t cos t ∂
2 f

∂x∂y
+ r2 cos2 t

∂2f

∂y2

with all of the partial derivatives of f evaluated at (r cos t , r sin t).

2.4.5.16. ∗. Solution. Write w(t) = z
(
x(t), y(t)

)
= f

(
x(t), y(t)

)
with

x(t) = 2t2, y(t) = t3. We are to compute d2w
dt2 (1). By the chain rule

dw
dt (t) = d

dtf
(
x(t), y(t)

)
= fx(x(t) , y(t)) dx

dt (t) + fy(x(t) , y(t)) dy
dt (t)

= 4t fx(x(t) , y(t)) + 3t2 fy(x(t) , y(t))

By linearity, the product rule, and the chain rule,

d2

dt2 f
(
x(t), y(t)

)
= d

dt
[
4t fx

(
x(t), y(t)

)]
+ d

dt
[
3t2 fy

(
x(t), y(t)

)]
= 4 fx

(
x(t), y(t)

)
+ 4t d

dt
[
fx
(
x(t), y(t)

)]
+ 6t fy

(
x(t), y(t)

)
+ 3t2 d

dt
[
fy
(
x(t), y(t)

)]
= 4 fx(2t2 , t3) + 4t

[
fxx
(
x(t), y(t)

) dx
dt (t) + fxy

(
x(t), y(t)

) dy
dt (t)

]
+ 6t fy(2t2 , t3) + 3t2

[
fyx
(
x(t), y(t)

) dx
dt (t) + fyy

(
x(t), y(t)

) dy
dt (t)

]
= 4 fx(2t2 , t3) + 16t2 fxx(2t2 , t3) + 12t3 fxy(2t2 , t3)

+ 6t fy(2t2 , t3) + 12t3 fyx(2t2 , t3) + 9t4 fyy(2t2 , t3)

In particular, when t = 1, and since fxy(2, 1) = fyx(2, 1),

d2

dt2 f
(
x(t), y(t)

)∣∣∣∣
t=1

= 4 (5) + 16 (2) + 12 (1)

+ 6 (−2) + 12 (1) + 9 (−4)
= 28

2.4.5.17. ∗. Solution. By the chain rule

∂G

∂t
(γ, s, t) = ∂

∂t

[
F (γ + s, γ − s,At)

]
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= ∂F

∂x
(γ + s, γ − s,At) ∂

∂t
(γ + s) + ∂F

∂y
(γ + s, γ − s,At) ∂

∂t
(γ − s)

+ ∂F

∂z
(γ + s, γ − s,At) ∂

∂t
(At)

= A
∂F

∂z
(γ + s, γ − s,At)

and

∂G

∂γ
(γ, s, t) = ∂

∂γ

[
F (γ + s, γ − s,At)

]
= ∂F

∂x
(γ + s, γ − s,At) ∂

∂γ
(γ + s)

+ ∂F

∂y
(γ + s, γ − s,At) ∂

∂γ
(γ − s)

+ ∂F

∂z
(γ + s, γ − s,At) ∂

∂γ
(At)

= ∂F

∂x
(γ + s, γ − s,At) + ∂F

∂y
(γ + s, γ − s,At) (E1)

and

∂G

∂s
(γ, s, t) = ∂

∂s

[
F (γ + s, γ − s,At)

]
= ∂F

∂x
(γ + s, γ − s,At) ∂

∂s
(γ + s)

+ ∂F

∂y
(γ + s, γ − s,At) ∂

∂s
(γ − s)

+ ∂F

∂z
(γ + s, γ − s,At) ∂

∂s
(At)

= ∂F

∂x
(γ + s, γ − s,At)− ∂F

∂y
(γ + s, γ − s,At) (E2)

We can evaluate the second derivatives by applying the chain rule to the
four terms on the right hand sides of

∂2G

∂γ2 (γ, s, t) = ∂

∂γ

[∂G
∂γ

(γ, s, t)
]

= ∂

∂γ

[∂F
∂x

(γ + s, γ − s,At)
]

+ ∂

∂γ

[∂F
∂y

(γ + s, γ − s,At)
]

∂2G

∂s2 (γ, s, t) = ∂

∂s

[∂G
∂s

(γ, s, t)
]

= ∂

∂s

[∂F
∂x

(γ + s, γ − s,At)
]
− ∂

∂s

[∂F
∂y

(γ + s, γ − s,At)
]

Alternatively, we can observe that replacing F by ∂F
∂x in (E1) and (E2)

gives

∂

∂γ

[∂F
∂x

(γ + s, γ − s,At)
]

= ∂2F

∂x2 (γ + s, γ − s,At) + ∂2F

∂y∂x
(γ + s, γ − s,At)

∂

∂s

[∂F
∂x

(γ + s, γ − s,At)
]
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= ∂2F

∂x2 (γ + s, γ − s,At)− ∂2F

∂y∂x
(γ + s, γ − s,At)

replacing F by ∂F
∂y in (E1) and (E2) gives

∂

∂γ

[∂F
∂y

(γ + s, γ − s,At)
]

= ∂2F

∂x∂y
(γ + s, γ − s,At) + ∂2F

∂y2 (γ + s, γ − s,At)

∂

∂s

[∂F
∂y

(γ + s, γ − s,At)
]

= ∂2F

∂x∂y
(γ + s, γ − s,At)− ∂2F

∂y2 (γ + s, γ − s,At)

Consequently

∂2G

∂γ2 (γ, s, t) = ∂2F

∂x2 (γ + s, γ − s,At) + ∂2F

∂y∂x
(γ + s, γ − s,At)

+ ∂2F

∂x∂y
(γ + s, γ − s,At) + ∂2F

∂y2 (γ + s, γ − s,At)

= ∂2F

∂x2 (γ + s, γ − s,At) + 2 ∂
2F

∂y∂x
(γ + s, γ − s,At)

+ ∂2F

∂y2 (γ + s, γ − s,At)

and

∂2G

∂s2 (γ, s, t) = ∂2F

∂x2 (γ + s, γ − s,At)− ∂2F

∂y∂x
(γ + s, γ − s,At)

−
[ ∂2F

∂x∂y
(γ + s, γ − s,At)− ∂2F

∂y2 (γ + s, γ − s,At)
]

= ∂2F

∂x2 (γ + s, γ − s,At)− 2 ∂
2F

∂y∂x
(γ + s, γ − s,At)

+ ∂2F

∂y2 (γ + s, γ − s,At)

So, suppressing the arguments,

∂2G

∂γ2 + ∂2G

∂s2 −
∂G

∂t
= 2∂

2F

∂x2 + 2∂
2F

∂y2 −A
∂F

∂z
= 2∂F

∂z
−A∂F

∂z
= 0

if A = 2.
2.4.5.18. ∗. Solution. By the chain rule

∂g

∂s
(s, t) = ∂

∂s

[
f(as− bt)

]
= f ′(as− bt) ∂

∂s
(as− bt) = af ′(as− bt)

In particular

∂g

∂s
(b, a) = af ′(ab− ba) = af ′(0) = 10a

2.4.5.19. ∗. Solution. We are told that the function z(x, y) obeys

f
(
x z(x, y) , y z(x, y)

)
= 0 (∗)
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for all x and y. By the chain rule,

∂

∂x

[
f
(
x z(x, y), y z(x, y)

)]
= fu

(
x z(x, y), y z(x, y)

) ∂
∂x

[
x z(x, y)

]
+ fv

(
x z(x, y), y z(x, y)

) ∂
∂x

[
y z(x, y)

]
= fu

(
x z(x, y), y z(x, y)

) [
z(x, y) + x zx(x, y)

]
+ fv

(
x z(x, y), y z(x, y)

)
y zx(x, y)

∂

∂y

[
f
(
x z(x, y), y z(x, y)

)]
= fu

(
x z(x, y), y z(x, y)

) ∂
∂y

[
x z(x, y)

]
+ fv

(
x z(x, y), y z(x, y)

) ∂
∂y

[
y z(x, y)

]
= fu

(
x z(x, y), y z(x, y)

)
x zy(x, y)

+ fv
(
x z(x, y), y z(x, y)

) [
z(x, y) + y zy(x, y)

]
so differentiating (∗) with respect to x and with respect to y gives

fu
(
xz(x, y), yz(x, y)

)[
z(x, y) + xzx(x, y)

]
+ fv

(
xz(x, y), yz(x, y)

)
yzx(x, y)

= 0
fu
(
x z(x, y), yz(x, y)

)
xzy(x, y) + fv

(
xz(x, y), yz(x, y)

)[
z(x, y) + yzy(x, y)

]
= 0

or, leaving out the arguments,

fu
[
z + x zx

]
+ fv yzx = 0

fu x zy + fv
[
z + y zy

]
= 0

Solving the first equation for zx and the second for zy gives

zx = − z fu
x fu + y fv

zy = − z fv
x fu + y fv

so that

x
∂z

∂x
+ y

∂z

∂y
= − xz fu

x fu + y fv
− yz fv
x fu + y fv

= −z (x fu + y fv)
x fu + y fv

= −z

as desired.
Remark: This is of course under the assumption that x fu + y fv is

nonzero. That is equivalent, by the chain rule, to the assumption that
∂
∂z

[
f(xz, yz)

]
is non zero. That, in turn, is almost, but not quite, equivalent

to the statement that f(xz, yz) = 0 is can be solved for z as a function of
x and y.

2.4.5.20. ∗. Solution. (a) By the chain rule

ws(s, t) = ∂

∂s

[
u(2s+ 3t, 3s− 2t)

]
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= ux(2s+ 3t, 3s− 2t) ∂
∂s

(
2s+ 3t

)
+ uy(2s+ 3t, 3s− 2t) ∂

∂s

(
3s− 2t

)
= 2ux(2s+ 3t, 3s− 2t) + 3uy(2s+ 3t, 3s− 2t)

and

wss(s, t) = 2 ∂
∂s

[
ux(2s+ 3t, 3s− 2t)

]
+ 3 ∂

∂s

[
uy(2s+ 3t, 3s− 2t)

]
=
[
4uxx(2s+ 3t, 3s− 2t) + 6uxy(2s+ 3t, 3s− 2t)

]
+
[
6uyx(2s+ 3t, 3s− 2t) + 9uyy(2s+ 3t, 3s− 2t)

]
= 4uxx(2s+ 3t, 3s− 2t) + 12uxy(2s+ 3t, 3s− 2t)

+ 9uyy(2s+ 3t, 3s− 2t)

(b) Again by the chain rule

wt(s, t) = ∂

∂t

[
u(2s+ 3t, 3s− 2t)

]
= ux(2s+ 3t, 3s− 2t) ∂

∂t

(
2s+ 3t

)
+ uy(2s+ 3t, 3s− 2t) ∂

∂t

(
3s− 2t

)
= 3ux(2s+ 3t, 3s− 2t)− 2uy(2s+ 3t, 3s− 2t)

and

wtt(s, t) = 3 ∂
∂t

[
ux(2s+ 3t, 3s− 2t)

]
− 2 ∂

∂t

[
uy(2s+ 3t, 3s− 2t)

]
=
[
9uxx(2s+ 3t, 3s− 2t)− 6uxy(2s+ 3t, 3s− 2t)

]
−
[
6uyx(2s+ 3t, 3s− 2t)− 4uyy(2s+ 3t, 3s− 2t)

]
= 9uxx(2s+ 3t, 3s− 2t)− 12uxy(2s+ 3t, 3s− 2t)

+ 4uyy(2s+ 3t, 3s− 2t)

Consquently, for any constant A,

wss −Awtt = (4− 9A)uxx + (12 + 12A)uxy + (9− 4A)uyy

Given that uxx + uyy = 0, this will be zero, as desired, if A = −1. (Then
(4− 9A) = (9− 4A) = 13.)

2.4.5.21. ∗. Solution. This question uses bad (but standard) notation,
in that the one symbol f is used for two different functions, namely f(x, y)
and f(r, θ) = f(x, y)

∣∣
x=r cos θ, y=r sin θ. Let us undo this notation conflict

by renaming the function of r and θ to F (r, θ). That is,

F (r, θ) = f
(
r cos θ , r sin θ

)
Similarly, rename g, viewed as a function of r and θ, to G(r, θ). That is,

G(r, θ) = g
(
r cos θ , r sin θ

)
In this new notation, we are being asked

• in part (a) to find Fθ, Fr and Frθ in terms of r, θ, fx and fy, and

• in part (b) to express Fr and Fθ in terms of r, θ and Gr, Gθ.
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(a) By the chain rule

Fθ(r, θ) = ∂

∂θ

[
f
(
r cos θ , r sin θ

)]
= fx

(
r cos θ , r sin θ

) ∂

∂θ

(
r cos θ

)
+ fy

(
r cos θ , r sin θ

) ∂

∂θ

(
r sin θ

)
= −r sin θ fx

(
r cos θ , r sin θ

)
+ r cos θ fy

(
r cos θ , r sin θ

)
(E1)

Fr(r, θ) = ∂

∂r

[
f
(
r cos θ , r sin θ

)]
= fx

(
r cos θ , r sin θ

) ∂

∂r

(
r cos θ

)
+ fy

(
r cos θ , r sin θ

) ∂

∂r

(
r sin θ

)
= cos θ fx

(
r cos θ , r sin θ

)
+ sin θ fy

(
r cos θ , r sin θ

)
(E2)

and

Frθ(r, θ) = ∂

∂θ

[
Fr(r, θ)

]
= ∂

∂θ

[
cos θ fx

(
r cos θ , r sin θ

)
+ sin θ fy

(
r cos θ , r sin θ

)]
= − sin θ fx

(
r cos θ , r sin θ

)
+ cos θ ∂

∂θ

[
fx
(
r cos θ , r sin θ

)]
+ cos θ fy

(
r cos θ , r sin θ

)
+ sin θ ∂

∂θ

[
fy
(
r cos θ , r sin θ

)]
= − sin θ fx

(
r cos θ , r sin θ

)
+ cos θ

[
fxx
(
r cos θ , r sin θ

)
(−r sin θ) + fxy

(
r cos θ , r sin θ

)
(r cos θ)

]
+ cos θ fy

(
r cos θ , r sin θ

)
+ sin θ

[
fyx
(
r cos θ , r sin θ

)
(−r sin θ) + fyy

(
r cos θ , r sin θ

)
(r cos θ)

]
= − sin θ fx + cos θ fy

− r sin θ cos θ fxx + r[cos2 θ − sin2 θ] fxy + r sin θ cos θ fyy

with the arguments of fx, fy, fxx, fxy and fyy all being
(
r cos θ , r sin θ

)
.

(b) Replacing f by g in (E1) gives

Gθ(r, θ) = ∂

∂θ

[
g
(
r cos θ , r sin θ

)]
= −r sin θ gx

(
r cos θ , r sin θ

)
+ r cos θ gy

(
r cos θ , r sin θ

)
= −r sin θ fy

(
r cos θ , r sin θ

)
− r cos θ fx

(
r cos θ , r sin θ

)
= −r ∂

∂r

[
f
(
r cos θ , r sin θ

)]
by (E2)

Replacing f by g in (E2) gives

Gr(r, θ) = ∂

∂r

[
g
(
r cos θ , r sin θ

)]
= cos θ gx

(
r cos θ , r sin θ

)
+ sin θ gy

(
r cos θ , r sin θ

)
= cos θ fy

(
r cos θ , r sin θ

)
− sin θ fx

(
r cos θ , r sin θ

)
= 1
r

∂

∂θ

[
f
(
r cos θ , r sin θ

)]
by (E1)
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or

∂

∂r

[
f
(
r cos θ , r sin θ

)]
= −1

r

∂

∂θ

[
g
(
r cos θ , r sin θ

)]
∂

∂θ

[
f
(
r cos θ , r sin θ

)]
= r

∂

∂r

[
g
(
r cos θ , r sin θ

)]
2.4.5.22. ∗. Solution. By the chain rule

∂z

∂s
(s, t) = ∂

∂s
f
(
g(s, t), h(s, t)

)
= ∂f

∂x

(
g(s, t), h(s, t)

)∂g
∂s

(s, t) + ∂f

∂y

(
g(s, t), h(s, t)

)∂h
∂s

(s, t)

∂z

∂t
(s, t) = ∂

∂t
f
(
g(s, t), h(s, t)

)
= ∂f

∂x

(
g(s, t), h(s, t)

)∂g
∂t

(s, t) + ∂f

∂y

(
g(s, t), h(s, t)

)∂h
∂t

(s, t)

In particular

∂z

∂s
(1, 2) = ∂f

∂x

(
g(1, 2), h(1, 2)

)∂g
∂s

(1, 2) + ∂f

∂y

(
g(1, 2), h(1, 2)

)∂h
∂s

(1, 2)

= ∂f

∂x
(3, 6)∂g

∂s
(1, 2) + ∂f

∂y
(3, 6))∂h

∂s
(1, 2)

= 7× (−1) + 8× (−5) = −47
∂z

∂t
(1, 2) = ∂f

∂x

(
g(1, 2), h(1, 2)

)∂g
∂t

(1, 2) + ∂f

∂y

(
g(1, 2), h(1, 2)

)∂h
∂t

(1, 2)

= 7× 4 + 8× 10 = 108

Hence ∇∇∇z(1, 2) = 〈−47, 108〉.

2.4.5.23. ∗. Solution. (a) By the product and chain rules

wx(x, y) = ∂

∂x

[
e−yf(x−y)

]
= e−y

∂

∂x

[
f(x−y)

]
= e−yf ′(x− y) ∂

∂x
(x−y)

= e−yf ′(x− y)

wy(x, y) = ∂

∂y

[
e−yf(x− y)

]
= −e−yf(x− y) + e−y

∂

∂y

[
f(x− y)

]
= −e−yf(x− y) + e−yf ′(x− y) ∂

∂y
(x− y)

= −e−yf(x− y)− e−yf ′(x− y)

Hence

w + ∂w

∂x
+ ∂w

∂y
= e−yf(x−y) + e−yf ′(x−y)− e−yf(x−y)− e−yf ′(x−y)

= 0

as desired.
(b) Think of x = u3 − 3uv2, y = 3u2v − v3 as two equations in the

two unknowns u, v with x, y just being given parameters. The question
implicitly tells us that those two equations can be solved for u, v in terms
of x, y, at least near (u, v) = (2, 1), (x, y) = (2, 11). That is, the question
implicitly tells us that the functions u(x, y) and v(x, y) are determined by

x = u(x, y)3 − 3u(x, y) v(x, y)2 y = 3u(x, y)2v(x, y)− v(x, y)3
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Applying ∂
∂x to both sides of the equation x = u(x, y)3 − 3u(x, y)v(x, y)2

gives

1 = 3u(x, y)2 ∂u

∂x
(x, y)− 3∂u

∂x
(x, y) v(x, y)2 − 6u(x, y) v(x, y) ∂v

∂x
(x, y)

Then applying ∂
∂x to both sides of y = 3u(x, y)2v(x, y)− v(x, y)3 gives

0 = 6u(x, y) ∂u
∂x

(x, y) v(x, y) + 3u(x, y)2 ∂v

∂x
(x, y)− 3 v(x, y)2 ∂v

∂x
(x, y)

Substituting in x = 2, y = 11, u = 2, v = 1 gives

1 = 12∂u
∂x

(2, 11)−3∂u
∂x

(2, 11)−12∂v
∂x

(2, 11) = 9∂u
∂x

(2, 11)−12∂v
∂x

(2, 11)

0 = 12∂u
∂x

(2, 11)+12∂v
∂x

(2, 11)−3∂v
∂x

(2, 11) = 12∂u
∂x

(2, 11)+9∂v
∂x

(2, 11)

From the second equation ∂v
∂x (2, 11) = − 4

3
∂u
∂x (2, 11). Substituting into the

first equation gives

1 = 9∂u
∂x

(2, 11)− 12
[
−4

3
∂u

∂x
(2, 11)

]
= 25∂u

∂x
(2, 11)

so that ∂u
∂x (2, 11) = 1

25 and ∂v
∂x (2, 11) = − 4

75 . The question also tells us
that z(x, y) = u(x, y)2 − v(x, y)2. Hence

∂z

∂x
(x, y) = 2u(x, y)∂u

∂x
(x, y)− 2v(x, y)∂v

∂x
(x, y)

=⇒ ∂z

∂x
(2, 11) = 4∂u

∂x
(2, 11)− 2∂v

∂x
(2, 11) = 4 1

25 + 2 4
75 = 20

75 = 4
15

2.4.5.24. ∗. Solution. (a) We are told that

x(u, v)2 − y(u, v) cos(uv) = v x(u, v)2 + y(u, v)2 − sin(uv) = 4
π
u

Applying ∂
∂u to both equations gives

2x(u, v)∂x
∂u

(u, v)− ∂y

∂u
(u, v) cos(uv) + v y(u, v) sin(uv) = 0

2x(u, v)∂x
∂u

(u, v) + 2y(u, v)∂y
∂u

(u, v)− v cos(uv) = 4
π

Setting u = π
2 , v = 0, x

(
π
2 , 0
)

= 1, y
(
π
2 , 0
)

= 1 gives

2∂x
∂u

(π
2 , 0

)
− ∂y

∂u

(π
2 , 0

)
= 0

2∂x
∂u

(π
2 , 0

)
+ 2∂y

∂u

(π
2 , 0

)
= 4
π

Substituting ∂y
∂u

(
π
2 , 0
)

= 2 ∂x∂u
(
π
2 , 0
)
, from the first equation, into the second

equation gives 6 ∂x∂u
(
π
2 , 0
)

= 4
π so that ∂x

∂u

(
π
2 , 0
)

= 2
3π and ∂y

∂u

(
π
2 , 0
)

= 4
3π .

(b) We are told that z(u, v) = x(u, v)4 + y(u, v)4. So

∂z

∂u
(u, v) = 4x(u, v)3 ∂x

∂u
(u, v) + 4y(u, v)3 ∂y

∂u
(u, v)

Substituting in u = π
2 , v = 0, x

(
π
2 , 0
)

= 1, y
(
π
2 , 0
)

= 1 and using the
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results of part (a),

∂z

∂u

(π
2 , 0

)
= 4x

(π
2 , 0

)3 ∂x

∂u

(π
2 , 0

)
+ 4 y

(π
2 , 0

)3 ∂y

∂u

(π
2 , 0

)
= 4

(
2

3π

)
+ 4

(
4

3π

)
= 8
π

2.4.5.25. ∗. Solution. This question uses bad (but standard) notation,
in that the one symbol f is used for two different functions, namely f(u, v)
and f(x, y) = f(u, v)

∣∣
u=x+y,v=x−y. A better wording is

• [] Let f(u, v) and F (x, y) be differentiable functions such that F (x, y) =
f(x+ y, x− y). Find a constant, α, such that

Fx(x, y)2 + Fy(x, y)2 = α
{
fu(x+ y, x− y)2 + fv(x+ y, x− y)2}

By the chain rule

∂F

∂x
(x, y) = fu(x+ y, x− y) ∂

∂x
(x+ y) + fv(x+ y, x− y) ∂

∂x
(x− y)

= fu(x+ y, x− y) + fv(x+ y, x− y)
∂F

∂y
(x, y) = fu(x+ y, x− y) ∂

∂y
(x+ y) + fv(x+ y, x− y) ∂

∂y
(x− y)

= fu(x+ y, x− y)− fv(x+ y, x− y)

Hence

Fx(x, y)2 + Fy(x, y)2 =
[
fu(x+ y, x− y) + fv(x+ y, x− y)

]2
+
[
fu(x+ y, x− y)− fv(x+ y, x− y)

]2
= 2fu(x+ y, x− y)2 + 2fv(x+ y, x− y)2

So α = 2 does the job.

2.4.5.26. Solution. Recall that u(x, t) = v
(
ξ(x, t), η(x, t)

)
. By the

chain rule

∂u

∂x
(x, t) = ∂v

∂ξ

(
ξ(x, t), η(x, t)

) ∂ξ
∂x

+ ∂v

∂η

(
ξ(x, t), η(x, t)

)∂η
∂x

= ∂v

∂ξ

(
ξ(x, t), η(x, t)

)
+ ∂v

∂η

(
ξ(x, t), η(x, t)

)
∂u

∂t
(x, t) = ∂v

∂ξ

(
ξ(x, t), η(x, t)

)∂ξ
∂t

+ ∂v

∂η

(
ξ(x, t), η(x, t)

)∂η
∂t

= −c∂v
∂ξ

(
ξ(x, t), η(x, t)

)
+ c

∂v

∂η

(
ξ(x, t), η(x, t)

)
Again by the chain rule

∂2u

∂x2 (x, t) = ∂

∂x

[∂v
∂ξ

(
ξ(x, t), η(x, t)

)]
+ ∂

∂x

[∂v
∂η

(
ξ(x, t), η(x, t)

)]
= ∂2v

∂ξ2

(
ξ(x, t), η(x, t)

) ∂ξ
∂x

+ ∂2v

∂η∂ξ

(
ξ(x, t), η(x, t)

)∂η
∂x
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+ ∂2v

∂ξ∂η

(
ξ(x, t), η(x, t)

) ∂ξ
∂x

+ ∂2v

∂η2

(
ξ(x, t), η(x, t)

)∂η
∂x

= ∂2v

∂ξ2

(
ξ(x, t), η(x, t)

)
+ 2 ∂

2v

∂ξ∂η

(
ξ(x, t), η(x, t)

)
+ ∂2v

∂η2

(
ξ(x, t), η(x, t)

)
and

∂2u

∂t2
(x, t) = −c ∂

∂t

[∂v
∂ξ

(
ξ(x, t), η(x, t)

)]
+ c

∂

∂t

[∂v
∂η

(
ξ(x, t), η(x, t)

)]
= −c

[∂2v

∂ξ2

(
ξ(x, t), η(x, t)

)∂ξ
∂t

+ ∂2v

∂η∂ξ

(
ξ(x, t), η(x, t)

)∂η
∂t

]
+ c
[ ∂2v

∂ξ∂η

(
ξ(x, t), η(x, t)

)∂ξ
∂t

+ ∂2v

∂η2

(
ξ(x, t), η(x, t)

)∂η
∂t

]
= c2

∂2v

∂ξ2

(
ξ(x, t), η(x, t)

)
− 2c2 ∂

2v

∂ξ∂η

(
ξ(x, t), η(x, t)

)
+ c2

∂2v

∂η2

(
ξ(x, t), η(x, t)

)
so that

∂2u

∂x2 (x, t)− 1
c2
∂2u

∂t2
(x, t) = 4 ∂

2v

∂ξ∂η

(
ξ(x, t), η(x, t)

)
Hence

∂2u

∂x2 (x, t)− 1
c2
∂2u

∂t2
(x, t) = 0 for all (x, t)

⇐⇒ 4 ∂
2v

∂ξ∂η

(
ξ(x, t), η(x, t)

)
= 0 for all (x, t)

⇐⇒ ∂2v

∂ξ∂η

(
ξ, η
)

= 0 for all (ξ, η)

(b) Now ∂2v
∂ξ∂η

(
ξ, η
)

= ∂
∂ξ

[
∂v
∂η

]
= 0. Temporarily rename ∂v

∂η = w. The
equation ∂w

∂ξ (ξ, η) = 0 says that, for each fixed η, w(ξ, η) is a constant. The
value of the constant may depend on η. That is, ∂v∂η (ξ, η) = w(ξ, η) = H(η),
for some function H. (As a check, observe that ∂

∂ξH(η) = 0.) So the
derivative of v with respect to η, (viewing ξ as a constant) is H(η).

Let G(η) be any function whose derivative is H(η) (i.e. an indefinite
integral of H(η)). Then ∂

∂η

[
v(ξ, η) − G(η)] = H(η) − H(η) = 0. This

is the case if and only if, for each fixed ξ, v(ξ, η) − G(ξ, η) is a constant,
independent of η. That is, if and only if

v(ξ, η)−G(η) = F (ξ)

for some function F . Hence

∂2u

∂x2 (x, t)− 1
c2
∂2u

∂t2
(x, t) = 0 ⇐⇒ ∂2v

∂ξ∂η

(
ξ, η
)

= 0 for all (ξ, η)

⇐⇒ v(ξ, η) = F (ξ) +G(η) for some functions F and G
⇐⇒ u(x, t) = v

(
ξ(x, t), η(x, t)

)
= F

(
ξ(x, t)

)
+G

(
η(x, t)

)
= F (x− ct) +G(x+ ct)



APPENDIX D. SOLUTIONS TO EXERCISES 574

(c) We’ll give the interpretation of F (x − ct). The case G(x + ct) is
similar. Suppose that u(x, t) = F (x − ct). Think of u(x, t) as the height
of water at position x and time t. Pick any number z. All points (x, t) in
space time for which x− ct = z have the same value of u, namely F (z). So
if you move so that your position is x = z+ct (i.e. you move the right with
speed c) you always see the same wave height. Thus F (x− ct) represents
a wave moving to the right with speed c.

x

u

z

u “ F pxq

z ` ct

u “ F px ´ ctq

Similarly, G(x+ ct) represents a wave moving to the left with speed c.

2.4.5.27. Solution. (a) We are told to evaluate ∂y
∂z . So y has to be a

function of z and possibly some other variables. We are also told that x,
y, and z are related by the single equation eyz − x2z ln y = π. So we are
to think of x and z as being independent variables and think of y(x, z) as
being determined by solving eyz −x2z ln y = π for y as a function of x and
z. That is, the function y(x, z) obeys

ey(x,z) z − x2z ln y(x, z) = π

for all x and z. Applying ∂
∂z to both sides of this equation gives[

y(x, z) + z
∂y

∂z
(x, z)

]
ey(x,z) z − x2 ln y(x, z)− x2z

1
y(x, z)

∂y

∂z
(x, z) = 0

=⇒ ∂y

∂z
(x, z) = x2 ln y(x, z)− y(x, z)ey(x,z) z

zey(x,z) z − x2z
y(x,z)

(b) We are told to evaluate dy
dx . So y has to be a function of the single

variable x. We are also told that x and y are related by F (x, y, x2−y2) = 0.
So the function y(x) has to obey

F
(
x, y(x), x2 − y(x)2) = 0

for all x. Applying d
dx to both sides of that equation and using the chain

rule gives

F1
(
x, y(x), x2 − y(x)2) dx

dx + F2
(
x, y(x), x2 − y(x)2) dy

dx (x)

+ F3
(
x, y(x), x2 − y(x)2) d

dx
[
x2 − y(x)2] = 0

=⇒ F1
(
x, y(x), x2 − y(x)2)+ F2

(
x, y(x), x2 − y(x)2) dy

dx (x)

+ F3
(
x, y(x), x2 − y(x)2) [2x− 2y(x) dy

dx (x)
]

= 0

=⇒ dy
dx (x) = −

F1
(
x, y(x), x2 − y(x)2)+ 2xF3

(
x, y(x), x2 − y(x)2)

F2
(
x, y(x), x2 − y(x)2

)
− 2y(x)F3

(
x, y(x), x2 − y(x)2

)
(c) We are told to evaluate

(
∂y
∂x

)
u
, which is the partial derivative of y

with respect to x with u being held fixed. So x and u have to be indepen-
dent variables and y has to be a function of x and u.
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Now the four variables x, y, u and v are related by the two equations
xyuv = 1 and x + y + u + v = 0. As x and u are to be independent
variables, y = y(x, u), v = v(x, u) are to be determined by solving xyuv =
1, x+ y + u+ v = 0 for y and v as functions of x and u. That is

x y(x, u)u v(x, u) = 1
x+ y(x, u) + u+ v(x, u) = 0

for all x and u. Applying ∂
∂x to both sides of both of these equations gives

y u v + x
∂y

∂x
u v + x y u

∂v

∂x
= 0

1 + ∂y

∂x
+ 0 + ∂v

∂x
= 0

Substituting, ∂v∂x = −1− ∂y
∂x , from the second equation, into the first equa-

tion gives

y u v + x
∂y

∂x
u v − x y u

(
1 + ∂y

∂x

)
= 0

Now u cannot be 0 because x y(x, u)u v(x, u) = 1. So

y v + x
∂y

∂x
v − x y

(
1 + ∂y

∂x

)
= 0

=⇒
(
∂y

∂x

)
u

(x, u) = y(x, u) v(x, u)− x y(x, u)
x y(x, u)− x v(x, u)

2.5 · Tangent Planes and Normal Lines
2.5.3 · Exercises

2.5.3.1. Solution. Write F (x, y, z) = x2+y2+(z−1)2−1 andG(x, y, z) =
x2 + y2 + (z + 1)2 − 1. Let S1 denote the surface F (x, y, z) = 0 and S2
denote the surface G(x, y, z) = 0. First note that F (0, 0, 0) = G(0, 0, 0) = 0
so that the point (0, 0, 0) lies on both S1 and S2. The gradients of F and
G are

∇∇∇F (x, y, z) =
〈
∂F

∂x
(x, y, z) , ∂F

∂y
(x, y, z) , ∂F

∂z
(x, y, z)

〉
= 〈2x , 2y , 2(z − 1)〉

∇∇∇G(x, y, z) =
〈
∂G

∂x
(x, y, z) , ∂G

∂y
(x, y, z) , ∂G

∂z
(x, y, z)

〉
= 〈2x , 2y , 2(z + 1)〉

In particular,

∇∇∇F (0, 0, 0) = 〈0, 0,−2〉 ∇∇∇G(0, 0, 0) = 〈0, 0, 2〉

so that the vector k̂ = − 1
2∇∇∇F (0, 0, 0) = 1

2∇∇∇G(0, 0, 0) is normal to both
surfaces at (0, 0, 0). So the tangent plane to both S1 and S2 at (0, 0, 0) is

k̂ · 〈x− 0, y − 0, z − 0〉 = 0 or z = 0

Denote by P the plane z = 0. Thus S1 is tangent to P at (0, 0, 0) and P
is tangent to S2 at (0, 0, 0). So it is reasonable to say that S1 and S2 are
tangent at (0, 0, 0).
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2.5.3.2. Solution. Denote by S the surface G(x, y, z) = 0 and by C the
parametrized curve r(t) =

(
x(t), y(t), z(t)

)
. To start, we’ll find the tangent

plane to S at r0 and the tangent line to C at r0.
• The tangent vector to C at r0 is 〈x′(t0) , y′(t0) , z′(t0)〉, so the para-

metric equations for the tangent line to C at r0 are

x− x0 = tx′(t0) y − y0 = ty′(t0) z − z0 = tz′(t0) (E1)

• The gradient
〈
∂G
∂x

(
x0 , y0 , z0

)
, ∂G∂y

(
x0 , y0 , z0

)
, ∂G∂z

(
x0 , y0 , z0

)〉
is

a normal vector to the surface S at (x0, y0, z0). So the tangent plane
to the surface S at (x0, y0, z0) is〈

∂G

∂x
,
∂G

∂y
,
∂G

∂z

〉
· 〈x− x0, y − y0, z − z0〉 = 0

with the derivatives of G evaluated at
(
x0, y0, z0

)
, or

∂G

∂x

(
x0, y0, z0

)
(x− x0) + ∂G

∂y

(
x0, y0, z0

)
(y − y0)

+ ∂G

∂z

(
x0, y0, z0

)
(z − z0) = 0 (E2)

Next, we’ll show that the tangent vector 〈x′(t0) , y′(t0) , z′(t0)〉 to C at r0

and the normal vector
〈
∂G
∂x

(
x0 , y0 , z0

)
, ∂G∂y

(
x0 , y0 , z0

)
, ∂G∂z

(
x0 , y0 , z0

)〉
to S at r0 are perpendicular to each other. To do so, we observe that, for
every t, the point

(
x(t), y(t), z(t)

)
lies on the surface G(x, y, z) = 0 and so

obeys

G
(
x(t), y(t), z(t)

)
= 0

Differentiating this equation with respect to t gives, by the chain rule,

0 = d
dtG

(
x(t), y(t), z(t)

)
= ∂G

∂x

(
x(t) , y(t) , z(t)

)
x′(t) + ∂G

∂y

(
x(t) , y(t) , z(t)

)
y′(t)

+ ∂G

∂z

(
x(t) , y(t) , z(t)

)
z′(t)

Then setting t = t0 gives

∂G

∂x

(
x0 , y0 , z0

)
x′(t0) + ∂G

∂y

(
x0 , y0 , z0

)
y′(t0)

+ ∂G

∂z

(
x0 , y0 , z0

)
z′(t0) = 0 (E3)

Finally, we are in a position to show that if (x, y, z) is any point on the
tangent line to C at r0, then (x, y, z) is also on the tangent plane to S at
r0. As (x, y, z) is on the tangent line to C at r0 then there is a t such that,
by (E1),

∂G

∂x

(
x0, y0, z0

)
{x−x0}+ ∂G

∂y

(
x0, y0, z0

)
{y−y0}+ ∂G

∂z

(
x0, y0, z0

)
{z−z0}

= ∂G

∂x

(
x0, y0, z0

){
tx′(t0)

}
+ ∂G

∂y

(
x0, y0, z0

){
ty′(t0)

}
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+ ∂G

∂z

(
x0, y0, z0

){
tz′(t0)

}
= t

[
∂G

∂x

(
x0, y0, z0

)
x′(t0) + ∂G

∂y

(
x0, y0, z0

)
y′(t0) + ∂G

∂z

(
x0, y0, z0

)
z′(t0)

]
= 0

by (E3). That is, (x, y, z) obeys the equation, (E2), of the tangent plane
to S at r0 and so is on that tangent plane. So the tangent line to C at r0
is contained in the tangent plane to S at r0.

2.5.3.3. Solution. Use S1 to denote the surface F (x, y, z) = 0, S2 to
denote the surface G(x, y, z) = 0 and C to denote the curve of intersection
of S1 and S2.

• Since C is contained in S1, the tangent line to C at (x0, y0, z0) is
contained in the tangent plane to S1 at (x0, y0, z0), by Q[2.5.3.2]. In
particular, any tangent vector, t, to C at (x0, y0, z0) must be per-
pendicular to ∇∇∇F (x0, y0, z0), the normal vector to S1 at (x0, y0, z0).
(See Theorem 2.5.1.)

• Since C is contained in S2, the tangent line to C at (x0, y0, z0) is
contained in the tangent plane to S2 at (x0, y0, z0), by Q[2.5.3.2]. In
particular, any tangent vector, t, to C at (x0, y0, z0) must be perpen-
dicular to ∇∇∇G(x0, y0, z0), the normal vector to S2 at (x0, y0, z0).

So any tangent vector to C at (x0, y0, z0) must be perpendiular to both
∇∇∇F (x0, y0, z0) and ∇∇∇G(x0, y0, z0). One such tangent vector is

t =∇∇∇F (x0, y0, z0)×∇∇∇G(x0, y0, z0)

(Because the vectors ∇∇∇F (x0, y0, z0) and ∇∇∇G(x0, y0, z0) are nonzero and
not parallel, t is nonzero.) So the normal plane in question passes through
(x0, y0, z0) and has normal vector n = t. Consquently, the normal plane is

n · 〈x− x0 , y − y0 , z − z0〉 = 0
where n = t =∇∇∇F (x0, y0, z0)×∇∇∇G(x0, y0, z0)

2.5.3.4. Solution. Use S1 to denote the surface z = f(x, y), S2 to denote
the surface z = g(x, y) and C to denote the curve of intersection of S1 and
S2.

• Since C is contained in S1, the tangent line to C at (x0, y0, z0) is
contained in the tangent plane to S1 at (x0, y0, z0), by Q[2.5.3.2].
In particular, any tangent vector, t, to C at (x0, y0, z0) must be
perpendicular to −fx(x0, y0) ı̂ıı−fy(x0, y0) ̂+ k̂, the normal vector to
S1 at (x0, y0, z0). (See Theorem 2.5.1.)

• Since C is contained in S2, the tangent line to C at (x0, y0, z0) is
contained in the tangent plane to S2 at (x0, y0, z0), by Q[2.5.3.2].
In particular, any tangent vector, t, to C at (x0, y0, z0) must be
perpendicular to −gx(x0, y0) ı̂ıı− gy(x0, y0) ̂+ k̂, the normal vector to
S2 at (x0, y0, z0).

So any tangent vector to C at (x0, y0, z0) must be perpendicular to both of
the vectors −fx(x0, y0) ı̂ıı−fy(x0, y0) ̂+k̂ and −gx(x0, y0) ı̂ıı−gy(x0, y0) ̂+k̂.
One such tangent vector is

t =
[
− fx(x0, y0) ı̂ıı− fy(x0, y0) ̂+ k̂

]
×
[
− gx(x0, y0) ı̂ıı− gy(x0, y0) ̂+ k̂

]
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= det

 ı̂ıı ̂ k̂
−fx(x0, y0) −fy(x0, y0) 1
−gx(x0, y0) −gy(x0, y0) 1


=
〈
gy(x0, y0)− fy(x0, y0) , fx(x0, y0)− gx(x0, y0) ,

fx(x0, y0)gy(x0, y0)− fy(x0, y0)gx(x0, y0)
〉

So the tangent line in question passes through (x0, y0, z0) and has direction
vector d = t. Consquently, the tangent line is

〈x− x0 , y − y0 , z − z0〉 = td

or

x = x0 + t
[
gy(x0, y0)− fy(x0, y0)

]
y = y0 + t

[
fx(x0, y0)− gx(x0, y0)

]
z = z0 + t

[
fx(x0, y0)gy(x0, y0)− fy(x0, y0)gx(x0, y0)

]
2.5.3.5. ∗. Solution. We are going to use Theorem 2.5.1. To do so, we
need the first order derivatives of f(x, y) at (x, y) = (−1, 1). So we find
them first.

fx(x, y) = 2xy
x4 + 2y2 −

x2y(4x3)
(x4 + 2y2)2 fx(−1, 1) = −2

3 + 4
32 = −2

9

fy(x, y) = x2

x4 + 2y2 −
x2y(4y)

(x4 + 2y2)2 fy(−1, 1) = 1
3 −

4
32 = −1

9

The tangent plane is

z = f(−1, 1) + fx(−1, 1) (x+ 1) + fy(−1, 1) (y − 1)

= 1
3 −

2
9 (x+ 1)− 1

9 (y − 1)

= 2
9 −

2
9x−

1
9y

or 2x+ y + 9z = 2.

2.5.3.6. ∗. Solution. The equation of the given surface is of the form
G(x, y, z) = 9 with G(x, y, z) = 27√

x2+y2+z2+3
. So, by Theorem 2.5.5, a

normal vector to the surface at (2, 1, 1) is

∇∇∇G(2, 1, 1) = −1
2

27
(x2 + y2 + z2 + 3)3/2

(
2x , 2y , 2z

)∣∣∣∣
(x,y,z)=(2,1,1)

= −〈2 , 1 , 1〉

and the equation of the tangent plane is

−〈2 , 1 , 1〉 · 〈x− 2 , y − 1 , z − 1〉 = 0 or 2x+ y + z = 6

2.5.3.7. Solution. (a) The specified graph is z = f(x, y) = x2 − y2 or
F (x, y, z) = x2 − y2 − z = 0. Observe that f(−2, 1) = 3. The vector

∇∇∇F (−2, 1, 3) = 〈Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)〉
∣∣∣
(x,y,z)=(−2,1,3)
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= 〈2x,−2y,−1〉
∣∣∣
(x,y,z)=(−2,1,3)

= 〈−4,−2,−1〉

is a normal vector to the graph at (−2, 1, 3). So the tangent plane is

−4(x+ 2)− 2(y − 1)− (z − 3) = 0 or 4x+ 2y + z = −3

and the normal line is

〈x, y, z〉 = 〈−2, 1, 3〉+ t 〈4, 2, 1〉

(b) The specified graph is z = f(x, y) = exy or F (x, y, z) = exy− z = 0.
Observe that f(2, 0) = 1. The vector

∇∇∇F (2, 0, 1) = 〈Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)〉
∣∣∣
(x,y,z)=(2,0,1)

= 〈yexy, xexy,−1〉
∣∣∣
(x,y,z)=(2,0,1)

= 〈0, 2,−1〉

is a normal vector to the graph at (2, 0, 1). So the tangent plane is

0(x− 2) + 2(y − 0)− (z − 1) = 0 or 2y − z = −1

and the normal line is

〈x, y, z〉 = 〈2, 0, 1〉+ t 〈0, 2,−1〉

2.5.3.8. ∗. Solution. We may use G(x, y, z) = xyz2 + y2z3− 3−x2 = 0
as an equation for the surface. Note that (−1, 1, 2) really is on the surface
since

G(−1, 1, 2) = (−1)(1)(2)2 + (1)2(2)3 − 3− (−1)2 = −4 + 8− 3− 1 = 0

By Theorem 2.5.5, since

Gx(x, y, z) = yz2 − 2x Gx(−1, 1, 2) = 6
Gy(x, y, z) = xz2 + 2yz3 Gy(−1, 1, 2) = 12
Gz(x, y, z) = 2xyz + 3y2z2 Gz(−1, 1, 2) = 8

one normal vector to the surface at (−1, 1, 2) is ∇∇∇G(−1, 1, 2) = 〈6 , 12 , 8〉
and an equation of the tangent plane to the surface at (−1, 1, 2) is

〈6 , 12 , 8〉 · 〈x+ 1 , y − 1 , z − 2〉 = 0 or 6x+ 12y + 8z = 22

or
z = −3

4x−
3
2y + 11

4
2.5.3.9. ∗. Solution. (a) The surface isG(x, y, z) = z−x2+2xy−y2 = 0.
When x = a and y = 2a and (x, y, z) is on the surface, we have z =
a2 − 2(a)(2a) + (2a)2 = a2. So, by Theorem 2.5.5, a normal vector to this
surface at (a, 2a, a2) is

∇∇∇G(a, 2a, a2) = 〈−2x+ 2y , 2x− 2y , 1〉
∣∣∣
(x,y,z)=(a,2a,a2)

= 〈2a , −2a , 1〉
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and the equation of the tangent plane is

〈2a , −2a , 1〉 ·
〈
x− a , y − 2a , z − a2〉 = 0 or 2ax− 2ay + z = −a2

(b) The two planes are parallel when their two normal vectors, namely
〈2a , −2a , 1〉 and 〈1 , −1 , 1〉, are parallel. This is the case if and only if
a = 1

2 .

2.5.3.10. ∗. Solution. The first order partial derivatives of f are

fx(x, y) = − 4xy
(x2 + y2)2 fx(−1, 2) = 8

25

fy(x, y) = 2
x2 + y2 −

4y2

(x2 + y2)2 fy(−1, 2) = 2
5 −

16
25 = − 6

25

So, by Theorem 2.5.1, a normal vector to the surface at (x, y) = (−1, 2) is〈 8
25 , −

6
25 , −1

〉
. As f(−1, 2) = 4

5 , the tangent plane is〈
8
25 , −

6
25 , −1

〉
·
〈
x+ 1 , y − 2 , z − 4

5

〉
= 0

or 8
25x−

6
25y − z = −8

5

and the normal line is

〈x, y, z〉 =
〈
−1, 2, 4

5

〉
+ t

〈
8
25 , −

6
25 , −1

〉
2.5.3.11. ∗. Solution. A normal vector to the surface x2 + 9y2 + 4z2 =
17 at the point (x, y, z) is 〈2x , 18y , 8z〉. A normal vector to the plane
x − 8z = 0 is 〈1 , 0 , −8〉. So we want 〈2x , 18y , 8z〉 to be parallel to
〈1 , 0 , −8〉, i.e. to be a nonzero constant times 〈1 , 0 , −8〉. This is the
case whenever y = 0 and z = −2x with x 6= 0. In addition, we want
(x, y, z) to lie on the surface x2 + 9y2 + 4z2 = 17. So we want y = 0,
z = −2x and

17 = x2 + 9y2 + 4z2 = x2 + 4(−2x)2 = 17x2 =⇒ x = ±1

So the allowed points are ±(1, 0,−2).

2.5.3.12. ∗. Solution. The equation of S is of the form G(x, y, z) =
x2 + 2y2 + 2y− z = 1. So one normal vector to S at the point (x0, y0, z0) is

∇∇∇G(x0, y0, z0) = 2x0 ı̂ıı+ (4y0 + 2) ̂− k̂

and the normal line to S at (x0, y0, z0) is

(x, y, z) = (x0, y0, z0) + t 〈2x0 , 4y0 + 2 , −1〉

For this normal line to pass through the origin, there must be a t with

(0, 0, 0) = (x0, y0, z0) + t 〈2x0 , 4y0 + 2 , −1〉

or

x0 + 2x0 t = 0 (E1)
y0 + (4y0 + 2)t = 0 (E2)

z0 − t = 0 (E3)



APPENDIX D. SOLUTIONS TO EXERCISES 581

Equation (E3) forces t = z0. Substituting this into equations (E1) and
(E2) gives

x0(1 + 2z0) = 0 (E1)
y0 + (4y0 + 2)z0 = 0 (E2)

The question specifies that x0 6= 0, so (E1) forces z0 = − 1
2 . Substituting

z0 = − 1
2 into (E2) gives

−y0 − 1 = 0 =⇒ y0 = −1

Finally x0 is determined by the requirement that (x0, y0, z0) must lie on S
and so must obey

z0 = x2
0 + 2y2

0 + 2y0 − 1 =⇒ −1
2 = x2

0 + 2(−1)2 + 2(−1)− 1

=⇒ x2
0 = 1

2

So the allowed points P are
( 1√

2 , −1 , − 1
2
)
and

(
− 1√

2 , −1 , − 1
2
)
.

2.5.3.13. ∗. Solution. Let (x0, y0, z0) be a point on the hyperboloid
z2 = 4x2+y2−1 where the tangent plane is parallel to the plane 2x−y+z =
0. A normal vector to the plane 2x−y+z = 0 is 〈2,−1, 1〉. Because the hy-
perboloid is G(x, y, z) = 4x2+y2−z2−1 and∇∇∇G(x, y, z) = 〈8x, 2y,−2z〉, a
normal vector to the hyperboloid at (x0, y0, z0) is∇∇∇G(x0, y0, z0) = 〈8x0, 2y0,−2z0〉.
So (x0, y0, z0) satisfies the required conditions if and only if there is a
nonzero t obeying

〈8x0, 2y0,−2z0〉 = t 〈2,−1, 1〉 and z2
0 = 4x2

0 + y2
0 − 1

⇐⇒ x0 = t

4 , y0 = z0 = − t2 and z2
0 = 4x2

0 + y2
0 − 1

⇐⇒ t2

4 = t2

4 + t2

4 − 1 and x0 = t

4 , y0 = z0 = − t2
⇐⇒ t = ±2 (x0, y0, z0) = ±

(1
2 ,−1,−1

)
2.5.3.14. Solution. One vector normal to the surface F (x, y, z) = 4x2 +
9y2 − z2 = 0 at (2, 1,−5) is

∇∇∇F (2, 1,−5) = 〈8x, 18y,−2z〉
∣∣∣
(2,1,−5)

= 〈16, 18, 10〉

One vector normal to the surface G(x, y, z) = 6x+3y+2z = 5 at (2, 1,−5)
is

∇∇∇G(2, 1,−5) = 〈6, 3, 2〉

Now
• The curve lies in the surface z2 = 4x2 + 9y2. So the tangent vec-

tor to the curve at (2, 1,−5) is perpendicular to the normal vector
1
2 〈16, 18, 10〉 = 〈8, 9, 5〉.

• The curve also lies in the surface 6x + 3y + 2z = 5. So the tangent
vector to the curve at (2, 1,−5) is also perpendicular to the normal
vector 〈6, 3, 2〉.
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• So the tangent vector to the curve at (2, 1,−5) is parallel to

〈8, 9, 5〉 × 〈6, 3, 2〉 = det

ı̂ıı ̂ k̂
8 9 5
6 3 2

 = 〈3, 14,−30〉

The desired vectors are

±
√

3 〈3, 14,−30〉
| 〈3, 14,−30〉 | = ±

√
3

1105 〈3, 14,−30〉

2.5.3.15. Solution. Let (x0, y0, z0) be any point on the surface. A
vector normal to the surface at (x0, y0, z0) is

∇∇∇
(
xye−(x2+y2)/2 − z

)∣∣∣∣
(x0,y0,z0)

=
〈
y0e
−(x2

0+y2
0)/2 − x2

0y0e
−(x2

0+y2
0)/2, x0e

−(x2
0+y2

0)/2 − x0y
2
0e
−(x2

0+y2
0)/2,−1

〉
The tangent plane to the surface at (x0, y0, z0) is horizontal if and only
if this vector is vertical, which is the case if and only if its x- and y-
components are zero, which in turn is the case if and only if

y0(1− x2
0) = 0 and x0(1− y2

0) = 0
⇐⇒

{
y0 = 0 or x0 = 1 or x0 = −1

}
and

{
x0 = 0 or y0 = 1 or y0 = −1

}
⇐⇒ (x0, y0) = (0, 0) or (1, 1) or (1,−1) or (−1, 1) or (−1,−1)

The values of z0 at these points are 0, e−1, −e−1, −e−1 and e−1, respec-
tively. So the horizontal tangent planes are z = 0, z = e−1 and z = −e−1.
At the highest and lowest points of the surface, the tangent plane is horizon-
tal. So the largest and smallest values of z are e−1 and −e−1, respectively.

2.5.3.16. ∗. Solution. (a) A normal vector to the surface at (0, 2, 1) is

∇∇∇
(
xy − 2x+ yz + x2 + y2 + z3 − 7

)∣∣
(0,2,1)

=
〈
y − 2 + 2x , x+ z + 2y , y + 3z2〉 ∣∣

(0,2,1)

= 〈0, 5, 5〉

So the tangent plane is

0(x− 0) + 5(y − 2) + 5(z − 1) = 0 or y + z = 3

The vector parametric equations for the normal line are

r(t) = 〈0, 2, 1〉+ t 〈0, 5, 5〉

(b) Differentiating

xy − 2x+ y z(x, y) + x2 + y2 + z(x, y)3 = 7

gives

y − 2 + y zx(x, y) + 2x+ 3z(x, y)2zx(x, y) = 0

=⇒ zx(x, y) = 2− 2x− y
y + 3z(x, y)2
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x+ z(x, y) + y zy(x, y) + 2y + 3z(x, y)2zy(x, y) = 0

=⇒ zy(x, y) = −x+ 2y + z(x, y)
y + 3z(x, y)2

In particular, at (0, 2, 1), zy(0, 2) = − 4+1
2+3 = −1.

(c) Differentiating zx with respect to y gives

zxy(x, y) = − 1
y + 3z(x, y)2 −

2− 2x− y
[y + 3z(x, y)2]2

(
1 + 6z(x, y)zy(x, y)

)
= − 1

y + 3z(x, y)2 −
2− 2x− y

[y + 3z(x, y)2]2

(
1− 6z(x, y)x+ 2y + z(x, y)

y + 3z(x, y)2

)
As an alternate solution, we could also differentiate zy with respect to x.
This gives

zyx(x, y) = − 1 + zx(x, y)
y + 3z(x, y)2 + x+ 2y + z(x, y)

[y + 3z(x, y)2]2
6z(x, y)zx(x, y)

= − 1
y + 3z(x, y)2

(
1 + 2− 2x− y

y + 3z(x, y)2

)
+ x+ 2y + z(x, y)

[y + 3z(x, y)2]2
6z(x, y) 2− 2x− y

y + 3z(x, y)2

2.5.3.17. ∗. Solution. (a) A vector perpendicular to x2 + z2 = 10 at
(1, 1, 3) is

∇∇∇(x2 + z2)
∣∣
(1,1,3) = (2x̂ııı+ 2zk̂)

∣∣
(1,1,3) = 2̂ııı+ 6k̂ or 1

2 〈2, 0, 6〉 = 〈1, 0, 3〉

(b) A vector perpendicular to y2 + z2 = 10 at (1, 1, 3) is

∇∇∇(y2 + z2)
∣∣
(1,1,3) = (2ŷ+ 2zk̂)

∣∣
(1,1,3) = 2̂+ 6k̂ or 1

2 〈0, 2, 6〉 = 〈0, 1, 3〉

A vector is tangent to the specified curve at the specified point if and only
if it perpendicular to both (1, 0, 3) and (0, 1, 3). One such vector is

〈0, 1, 3〉 × 〈1, 0, 3〉 = det

ı̂ıı ̂ k̂
0 1 3
1 0 3

 = 〈3, 3,−1〉

(c) The specified tangent line passes through (1, 1, 3) and has direction
vector 〈3, 3,−1〉 and so has vector parametric equation

r(t) = 〈1, 1, 3〉+ t 〈3, 3,−1〉

2.5.3.18. ∗. Solution. r(t) = 〈x(t) , y(t) , z(t)〉 intersects z3 +xyz−2 =
0 when

z(t)3 + x(t) y(t) z(t)− 2 = 0 ⇐⇒
(
t2
)3 +

(
t3)(t)

(
t2
)
− 2 = 0

⇐⇒ 2t6 = 2
⇐⇒ t = 1

since t is required to be positive. The direction vector for the curve at
t = 1 is

r′(1) = 3 ı̂ıı+ ̂+ 2 k̂
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A normal vector for the surface at r(1) = 〈1, 1, 1〉 is

∇∇∇(z3 + xyz)
∣∣
(1,1,1) = [yzı̂ıı+ xẑ+ (3z2 + xy)k̂](1,1,1) = ı̂ıı+ ̂+ 4k̂

The angle θ between the curve and the normal vector to the surface is
determined by∣∣ 〈3, 1, 2〉 ∣∣ ∣∣ 〈1, 1, 4〉 ∣∣ cos θ = 〈3, 1, 2〉 · 〈1, 1, 4〉 ⇐⇒

√
14
√

18 cos θ = 12
⇐⇒

√
7× 36 cos θ = 12

⇐⇒ cos θ = 2√
7

⇐⇒ θ = 40.89◦

The angle between the curve and the surface is 90−40.89 = 49.11◦ (to two
decimal places).

2.5.3.19. Solution. Let (x, y, z) be any point on the paraboloid z =
x2 + y2. The square of the distance from (1, 1, 0) to this point is

D(x, y) = (x− 1)2 + (y − 1)2 + z2

= (x− 1)2 + (y − 1)2 + (x2 + y2)2

We wish to minimize D(x, y). That is, to find the lowest point on the
graph z = D(x, y). At this lowest point, the tangent plane to z = D(x, y)
is horizontal. So at the minimum, the normal vector to z = D(x, y) has x
and y components zero. So

0 = ∂D

∂x
(x, y) = 2(x− 1) + 2(x2 + y2)(2x)

0 = ∂D

∂y
(x, y) = 2(y − 1) + 2(x2 + y2)(2y)

By symmetry (or multiplying the first equation by y, multiplying the sec-
ond equation by x and subtracting) the solution will have x = y with

0 = 2(x− 1) + 2(x2 + x2)(2x) = 8x3 + 2x− 2

Observe that the value of 8x3 + 2x− 2 = 2(4x3 +x− 1) at x = 1
2 is 0. (See

Appendix A.16 of the CLP-2 text for some useful tricks that can help you
guess roots of polynomials with integer coefficients.) So

(
x− 1

2
)
is a factor

of
4x3 + x− 1 = 4

(
x3 + x

4 −
1
4
)

= 4
(
x− 1

2
)(
x2 + 1

2x+ 1
2
)

and the minimizing (x, y) obeys x = y and

0 = 8x3 + 2x− 2 = 8
(
x− 1

2
)(
x2 + 1

2x+ 1
2
)

= 0

By the quadratic root formula, x2 + 1
2x + 1

2 has no real roots, so the
only solution is x = y = 1

2 , z =
( 1

2
)2 +

( 1
2
)2 = 1

2 and the distance is√( 1
2 − 1

)2 +
( 1

2 − 1
)2 +

( 1
2
)2 =

√
3

2 .

2.6 · Linear Approximations and Error
2.6.3 · Exercises
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2.6.3.1. Solution. (a) The first order partial derivatives of P (x, y) at
x = x0 and y = y0 are

Px(x0, y0) = mxm−1
0 yn0 Py(x0, y0) = nxm0 y

n−1
0

So, by (2.6.1), the linear approximation is

P (x0 + ∆x, y0 + ∆y) ≈ P (x0, y0) + Px(x0, y0) ∆x+ Py(x0, y0) ∆y
≈ P (x0, y0) +mxm−1

0 yn0 ∆x+ nxm0 y
n−1
0 ∆y

(b) By part (a)

P (x0 + ∆x, y0 + ∆y)− P (x0, y0)
P (x0, y0) ≈ mxm−1

0 yn0 ∆x+ nxm0 y
n−1
0 ∆y

xm0 y
n
0

= m
∆x
x0

+ n
∆y
y0

Hence

P% ≈ 100
∣∣∣∣m∆x

x0
+ n

∆y
y0

∣∣∣∣
≤ |m|100

∣∣∣∣∆xx0

∣∣∣∣+ |n|100
∣∣∣∣∆yy0

∣∣∣∣
≤ |m|x% + |n|y%

Warning. The answer mx% + n y%, without absolute values on m and
n, can be seriously wrong. As an example, suppose that m = 1, n = −1,
x0 = y0 = 1, ∆x = 0.05 and ∆y = −0.05. Then

P% ≈ 100
∣∣∣∣m∆x

x0
+ n

∆y
y0

∣∣∣∣
= 100

∣∣∣∣(1)0.05
1 + (−1)−0.05

1

∣∣∣∣
= 10%

while

mx% + n y% = m 100
∣∣∣∣∆xx0

∣∣∣∣+ n 100
∣∣∣∣∆yy0

∣∣∣∣
= (1)100

∣∣∣∣0.05
1

∣∣∣∣+ (−1)100
∣∣∣∣−0.05

1

∣∣∣∣
= 0

The point is that m and n being of opposite sign does not guarantee that
there is a cancelation between the two terms of m∆x

x0
+ n∆y

y0
, because ∆x

x0

and ∆y
y0

can also be of opposite sign.

2.6.3.2. Solution. We used that d
dθ sin θ = cos θ. That is true only if θ

is given in radians, not degrees. (See Lemma 2.8.3 and Warning 3.4.23 in
the CLP-1 text.) So we have to convert 2◦ to radians, which is 2× π

180 = π
90 .

The correct computation is

Y
(
0.9, π90

)
= Y

(
1− 0.1 , 0 + π

90
)
≈ 0 + (0) (−0.1) + (1)

(
π
90
)

= π
90 ≈ 0.035
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Just out of general interest, 0.9 sin π
90 = 0.0314 to four decimal places.

2.6.3.3. Solution. Apply the linear approximation f(0.01, 1.05) ≈ f(0, 1)+
fx(0, 1)(0.01) + fy(0, 1)(0.05), with

f(x, y) = sin(πxy + ln y) f(0, 1) = sin 0 = 0
fx(x, y) = πy cos(πxy + ln y) fx(0, 1) = π cos 0 = π

fy(x, y) =
(
πx+ 1

y

)
cos(πxy + ln y) fy(0, 1) = cos 0 = 1

This gives

f(0.01, 1.05) ≈ f(0, 1) + fx(0, 1)(0.01) + fy(0, 1)(0.05)
= 0 + π(0.01) + 1(0.05)
= 0.01π + 0.05 ≈ 0.0814

2.6.3.4. ∗. Solution. We are going to need the first order derivatives of
f(x, y) at (x, y) = (−1, 1). So we find them first.

fx(x, y) = 2xy
x4 + 2y2 −

x2y(4x3)
(x4 + 2y2)2 fx(−1, 1) = −2

3 + 4
32 = −2

9

fy(x, y) = x2

x4 + 2y2 −
x2y(4y)

(x4 + 2y2)2 fy(−1, 1) = 1
3 −

4
32 = −1

9

The linear approximation to f(x, y) about (−1, 1) is

f(x, y) ≈ f(−1, 1) + fx(−1, 1) (x+ 1) + fy(−1, 1) (y − 1)

= 1
3 −

2
9 (x+ 1)− 1

9 (y − 1)

In particular

f(−0.9, 1.1) ≈ 1
3 −

2
9 (0.1)− 1

9 (0.1) = 27
90 = 0.3

2.6.3.5. Solution. Let the four numbers be x1, x2, x3 and x4. Let the
four rounded numbers be x1 + ε1, x2 + ε2, x3 + ε3 and x4 + ε4. Then
0 ≤ x1, x2, x3, x4 ≤ 50 and |ε1|, |ε2|, |ε3|, |ε4| ≤ 0.05. If P (x1, x2, x3, x4) =
x1x2x3x4, then the error in the product introduced by rounding is, using
the four variable variant of the linear approximation (2.6.2),∣∣P (x1 + ε1, x2 + ε2, x3 + ε3, x4 + ε4)− P (x1, x2, x3, x4)

∣∣
≈
∣∣∣ ∂P
∂x1

(x1, x2, x3, x4)ε1 + ∂P

∂x2
(x1, x2, x3, x4)ε2

+ ∂P

∂x3
(x1, x2, x3, x4)ε3 + ∂P

∂x4
(x1, x2, x3, x4)ε4

∣∣∣
=
∣∣x2x3x4ε1 + x1x3x4ε2 + x1x2x4ε3 + x1x2x3ε4

∣∣
≤ 4× 50× 50× 50× 0.05 = 25000

2.6.3.6. ∗. Solution. Denote by x and y the lengths of sides with
x = 3±0.1 and y = 4±0.2. Then the length of the hypotenuse is f(x, y) =√
x2 + y2. Note that

f(x, y) =
√
x2 + y2 f(3, 4) = 5
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fx(x, y) = x√
x2 + y2

fx(3, 4) = 3
5

fy(x, y) = y√
x2 + y2

fy(3, 4) = 4
5

By the linear approximation

f(x, y) ≈ f(3, 4) + fx(3, 4) (x− 3) + fy(3, 4) (y − 4)

= 5 + 3
5 (x− 3) + 4

5 (y − 4)

So the approximate maximum error in calculating the length of the hy-
potenuse is

3
5 (0.1) + 4

5 (0.2) = 1.1
5 = 0.22

2.6.3.7. ∗. Solution. The function R(R1, R2) is defined implictly by

1
R(R1, R2) = 1

R1
+ 1
R2

(∗)

In particular
1

R(2, 8) = 1
2 + 1

8 = 5
8 =⇒ R(2, 8) = 8

5
We wish to use the linear approximation

R(R1, R2) ≈ R(2, 8) + ∂R

∂R1
(2, 8) (R1 − 2) + ∂R

∂R2
(2, 8) (R2 − 8)

To do so, we need the partial derivatives ∂R
∂R1

(2, 8) and ∂R
∂R2

(2, 8). To find
them, we differentiate (∗) with respect to R1 and R2:

− 1
R(R1, R2)2

∂R

∂R1
(R1, R2) = − 1

R2
1

− 1
R(R1, R2)2

∂R

∂R2
(R1, R2) = − 1

R2
2

Setting R1 = 2 and R2 = 8 gives

− 1
(8/5)2

∂R

∂R1
(2, 8) = −1

4 =⇒ ∂R

∂R1
(2, 8) = 16

25

− 1
(8/5)2

∂R

∂R2
(2, 8) = − 1

64 =⇒ ∂R

∂R2
(2, 8) = 1

25

So the specified change in R is

R(1.9, 8.1)−R(2, 8) ≈ 16
25(−0.1) + 1

25(0.1) = − 15
250 = −0.06

2.6.3.8. Solution. First, we compute the values of the partial derivatives
of R(R1, R2, R3) at the measured values of R1, R2, R3. Applying ∂

∂Ri
, with

i = 1, 2, 3 to both sides of the defining equation

1
R(R1, R2, R3) = 1

R1
+ 1
R2

+ 1
R3
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for R(R1, R2, R3) gives

− 1
R(R1, R2, R3)2

∂R

∂R1
(R1, R2, R3) = − 1

R2
1

− 1
R(R1, R2, R3)2

∂R

∂R2
(R1, R2, R3) = − 1

R2
2

− 1
R(R1, R2, R3)2

∂R

∂R3
(R1, R2, R3) = − 1

R2
3

When R1 = 25Ω, R2 = 40Ω and R3 = 50Ω

1
R(25, 40, 50) = 1

25 + 1
40 + 1

50 = 8 + 5 + 4
200

=⇒ R(25, 40, 50) = 200
17 = 11.765

Substituting in these values of R1, R2, R3 and R,

∂R

∂R1
(25, 40, 50) = R(25, 40, 50)2

252 = 64
172 = 0.221

∂R

∂R2
(25, 40, 50) = R(25, 40, 50)2

402 = 25
172 = 0.0865

∂R

∂R3
(25, 40, 50) = R(25, 40, 50)2

502 = 16
172 = 0.0554

If the absolute errors in measuring R1, R2 and R3 are denoted ε1, ε2
and ε3, respectively, then, , using the linear approximation (2.6.2), the
corresponding error E in R is

E = R(25 + ε1, 40 + ε2, 50 + ε3)−R(25, 40, 50)

≈ ∂R

∂R1
(25, 40, 50)ε1 + ∂R

∂R2
(25, 40, 50)ε2 + ∂R

∂R3
(25, 40, 50)ε3

and obeys

|E| ≤ 64
172 |ε1|+

25
172 |ε2|+

16
172 |ε3|

or |E| ≤ 0.221|ε1|+ 0.0865|ε2|+ 0.0554|ε3|

We are told that the percentage error in each measurement is no more that
0.5%. So

|ε1| ≤
0.5
10025 = 1

8 = 0.125

|ε2| ≤
0.5
10040 = 1

5 = 0.2

|ε3| ≤
0.5
10050 = 1

4 = 0.25

so that

|E| ≤ 8
172 + 5

172 + 4
172 = 1

17
or |E| ≤ 0.221× 0.125 + 0.0865× 0.2 + 0.0554× 0.25 = 0.059
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2.6.3.9. Solution. By the linear approximation

∆S ≈ ∂S

∂A
(20, 12) ∆A+ ∂S

∂W
(20, 12) ∆W

with S(A,W ) = A
A−W = 1 + W

A−W . So

S(A,W ) = A

A−W
S(20, 12) = 20

8 = 5
2

SA(A,W ) = − W

(A−W )2 SA(20, 12) = −12
82 = − 3

16

SW (A,W ) = A

(A−W )2 SW (20, 12) = 20
82 = 5

16

For any given ∆A and ∆W , the percentage error is∣∣∣∣100∆S
S

∣∣∣∣ =
∣∣∣∣1002

5

(
− 3

16∆A+ 5
16∆W

)∣∣∣∣
We are told that |∆A| ≤ 0.01 and |∆W | ≤ 0.02. To maximize

∣∣100 2
5
(
−

3
16∆A + 5

16∆W
)∣∣ take ∆A = −0.01 and ∆W = +0.02. So the maximum

percentage error is

1002
5

[
− 3

16(−0.01) + 5
16(0.02)

]
= 2

5 ×
13
16 = 13

40 = 0.325%

2.6.3.10. ∗. Solution. The linear approximation to P (s, r) at (2, 2) is

P (s, r) ≈ P (2, 2) + Ps(2, 2) (s− 2) + Pr(2, 2) (r − 2)

As

P (2, 2) = (2)(2)
[
4(2)2 − (2)2 − 2

]
= 40 (which we don’t actually need)

Ps(2, 2) =
[
12s2r − r3 − 2r

]
s=r=2

= 84

Pr(2, 2) =
[
4s3 − 3sr2 − 2s

]
s=r=2

= 4

the linear approximation is

P (s, r) ≈ 40 + 84 (s− 2) + 4 (r − 2)

Under method 1, the maximum error in P will have magnitude at most
(approximately)

84(0.01) + 4(0.1) = 1.24

Under method 2, the maximum error in P will have magnitude at most
(approximately)

84(0.02) + 4(0.02) = 1.76

Method 1 is better.
2.6.3.11. Solution. Using the four variable variant of the linear approx-
imation (2.6.2),

∆S ≈ ∂S

∂p
∆p+ ∂S

∂`
∆`+ ∂S

∂w
∆w + ∂S

∂h
∆h
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= C
p`4

wh3

[
∆p
p

+ 4∆`
`
− ∆w

w
− 3∆h

h

]
When w ≈ 0.1 and h ≈ 0.2,

∆w
w
≈ 10∆w 3∆h

h
≈ 15∆h

So a change in height by ∆h = ε produces a change in sag of about ∆S =
15ε times −C p`4

wh3 , while a change ∆w in width by the same ε produces a
change in sag of about ∆S = 10ε times the same −C p`4

wh3 . The sag is more
sensitive to ∆h.
2.6.3.12. ∗. Solution. The first order partial derivatives of f are

fx(x, y) = − 4xy
(x2 + y2)2 fx(−1, 2) = 8

25

fy(x, y) = 2
x2 + y2 −

4y2

(x2 + y2)2 fy(−1, 2) = 2
5 −

16
25 = − 6

25

The linear approximation of f(x, y) about (−1, 2) is

f(x, y) ≈ f(−1, 2) + fx(−1, 2) (x+ 1) + fy(−1, 2) (y − 2)

= 4
5 + 8

25 (x+ 1)− 6
25 (y − 2)

In particular, for x = −0.8 and y = 2.1,

f(−0.8, 2.1) ≈ 4
5 + 8

25 (0.2)− 6
25 (0.1)

= 0.84

2.6.3.13. ∗. Solution. (a) The function f(x, y) obeys

xy f(x, y) + x+ y2 + f(x, y)3 = 0 (∗)

for all x and y (sufficiently close to (−1, 1)). Differentiating (∗) with respect
to x gives

y f(x, y) + xy fx(x, y) + 1 + 3f(x, y)2fx(x, y) = 0

=⇒ fx(x, y) = − y f(x, y) + 1
3f(x, y)2 + xy

Without knowing f(x, y) explicitly, there’s not much that we can do with
this.

(b) f(−1, 1) obeys

(−1)(1) f(−1, 1)+(−1)+(1)2+f(−1, 1)3 = 0 ⇐⇒ f(−1, 1)3−f(−1, 1) = 0

Since f(−1, 1) < 0 we may divide this equation by f(−1, 1) < 0, giving
f(−1, 1)2 − 1 = 0. Since f(−1, 1) < 0, we must have f(−1, 1) = −1. By
part (a)

fx(−1, 1) = − (1) f(−1, 1) + 1
3f(−1, 1)2 + (−1)(1) = 0

To get the linear approximation, we still need fy(−1, 1). Differentiating
(∗) with respect to y gives

x f(x, y) + xy fy(x, y) + 2y + 3f(x, y)2fy(x, y) = 0
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Then setting x = −1, y = 1 and f(−1, 1) = −1 gives

(−1) (−1) + (−1)(1) fy(−1, 1) + 2(1) + 3(−1)2fy(−1, 1) = 0

=⇒ fy(−1, 1) = −3
2

So the linear approximation is

f(x, y) ≈ f(−1, 1) + fx(−1, 1) (x+1) + fy(−1, 1) (y−1) = −1− 3
2(y−1)

(c) By part (b),

f(−1.02, 0.97) ≈ −1− 3
2(0.97− 1) = −0.955

2.6.3.14. ∗. Solution. By definition, the differential at x = a, y = b is

fx(a, b) dx+ fy(a, b) dy

so we have to determine the partial derivatives fx(a, b) and fy(a, b). We
are told that

ef(x,y) + y f(x, y) = x+ y

for all x and y. Differentiating this equation with respect to x and with
respect to y gives, by the chain rule,

ef(x,y)fx(x, y) + y fx(x, y) = 1
ef(x,y)fy(x, y) + f(x, y) + y fy(x, y) = 1

Solving the first equation for fx and the second for fy gives

fx(x, y) = 1
ef(x,y) + y

fy(x, y) = 1− f(x, y)
ef(x,y) + y

So the differential at x = a, y = b is

dx
ef(a,b) + b

+ 1− f(a, b)
ef(a,b) + b

dy

Since we can’t solve explicitly for f(a, b) for general a and b. There’s not
much more that we can do with this.

(b) In particular, when a = 1 and b = 0, we have

ef(1,0) + 0 f(1, 0) = 1 + 0 =⇒ ef(1,0) = 1 =⇒ f(1, 0) = 0

and the linear approximation simpifies to

f
(
1 + dx , dy

)
≈ f(1, 0) + dx

ef(1,0) + 0
+ 1− f(1, 0)
ef(1,0) + 0

dy = dx+ dy

Choosing dx = −0.01 and dy = 0.01, we have

f
(
0.99 , 0.01

)
≈ −0.01 + 0.01 = 0

2.6.3.15. ∗. Solution. Let C(A,B, θ) =
√
A2 +B2 − 2AB cos θ. Then
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C
(
3, 4, π2

)
= 5. Differentiating C2 = A2 +B2 − 2AB cos θ gives

2C ∂C
∂A

(A,B, θ) = 2A− 2B cos θ =⇒ 10∂C
∂A

(
3, 4, π2

)
= 6

2C ∂C
∂B

(A,B, θ) = 2B − 2A cos θ =⇒ 10∂C
∂B

(
3, 4, π2

)
= 8

2C ∂C
∂θ

(A,B, θ) = 2AB sin θ =⇒ 10∂C
∂θ

(
3, 4, π2

)
= 24

Hence the approximate maximum error in the computed value of C is

|∆C| ≈
∣∣∣∣∂C∂A (3, 4, π2 )∆A+ ∂C

∂B

(
3, 4, π2

)
∆B + ∂C

∂θ

(
3, 4, π2

)
∆θ
∣∣∣∣

≤ (0.6)(0.1) + (0.8)(0.1) + (2.4) π

180
= π

75 + 0.14 ≤ 0.182

2.6.3.16. ∗. Solution. Substituting (x0, y0) = (3, 4) and (x, y) =
(3.02, 3.96) into

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

gives

f(3.02, 3.96) ≈ f(3, 4) + 0.02fx(3, 4)− 0.04fy(3, 4)

= 60 + 0.02
(

20 + 36
5

)
− 0.04

(
15 + 48

5

)
= 59.560

since

fx(x, y) = y
√
x2 + y2 + x2y√

x2 + y2
fy(x, y) = x

√
x2 + y2 + xy2√

x2 + y2

2.6.3.17. ∗. Solution. The volume of a cylinder of diameter d and
height h is V (d, h) = π

(
d
2
)2
h. The wording of the question is a bit ambigu-

ous in that it does not specify if the given dimensions are inside dimensions
or outside dimensions. Assume that they are outside dimensions. Then the
volume of the can, including the metal, is V (8, 12) and the volume of the
interior, excluding the metal, is

V (8− 2× 0.04 , 12− 2× 0.04)
≈ V (8, 12) + Vd(8, 12)(−2× 0.04) + Vh(8, 12)(−2× 0.04)

= V (8, 12) + 1
2π × 8× 12× (−2× 0.04) + π

(
8
2

)2
(−2× 0.04)

= V (8, 12)− π × 128× 0.04

So the volume of metal is approximately π × 128× 0.04 = 5.12π ≈ 16.1cc.
(To this level of approximation, it doesn’t matter whether the dimensions
are inside or outside dimensions.)

2.6.3.18. ∗. Solution. (a) The function z(x, y) obeys

z(x, y)3 − z(x, y) + 2xy − y2 = 0
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for all (x, y) near (2, 4). Differentiating with respect to x and y

3z(x, y)2 ∂z

∂x
(x, y)− ∂z

∂x
(x, y) + 2y = 0

3z(x, y)2 ∂z

∂y
(x, y)− ∂z

∂y
(x, y) + 2x− 2y = 0

Substituting in x = 2, y = 4 and z(2, 4) = 1 gives

3∂z
∂x

(2, 4)− ∂z

∂x
(2, 4) + 8 = 0 ⇐⇒ ∂z

∂x
(2, 4) = −4

3∂z
∂y

(2, 4)− ∂z

∂y
(2, 4) + 4− 8 = 0 ⇐⇒ ∂z

∂y
(2, 4) = 2

The linear approximation is

z(x, y) ≈ z(2, 4) + zx(2, 4)(x− 2) + zy(2, 4)(y − 4)
= 1− 4(x− 2) + 2(y − 4)
= 1− 4x+ 2y

(b) Substituting in x = 2.02 and y = 3.96 gives

z(2.02, 3.96) ≈ 1− 4× 0.02 + 2× (−0.04) = 0.84

2.6.3.19. ∗. Solution. (a) We are told that

z(x, y)3 − xy z(x, y)2 − 4x = 0

for all (x, y) (sufficiently near (1, 1)). Differentiating this equation with
respect to x gives

3z(x, y)2 ∂z

∂x
(x, y)− y z(x, y)2 − 2xy z(x, y)∂z

∂x
(x, y)− 4 = 0

=⇒ ∂z

∂x
= 4 + yz2

3z2 − 2xyz

and differentiating with respect to y gives

3z(x, y)2 ∂z

∂y
(x, y)− x z(x, y)2 − 2xy z(x, y)∂z

∂y
(x, y) = 0

=⇒ ∂z

∂y
= xz2

3z2 − 2xyz

(b) When (x, y, z) = (1, 1, 2),

∂z

∂x
(1, 1) = 4 + (1)(2)2

3(2)2 − 2(1)(1)(2) = 1

∂z

∂y
(1, 1) = (1)(2)2

3(2)2 − 2(1)(1)(2) = 1
2

(c) Under the linear approximation at (1, 1)

z(x, y) ≈ z(1, 1) + zx(1, 1) (x− 1) + zy (1, 1) (y − 1)

= 2 + (x− 1) + 1
2(y − 1)
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So errors of ±0.03 in x and ±0.02 in y leads of errors of about

±
[
0.03 + 1

2(0.02)
]

= ±0.04

in z.
(d) By the chain rule

d
dθ z

(
x(θ), y(θ)

)
= zx

(
x(θ), y(θ)

)
x′(θ) + zy

(
x(θ), y(θ)

)
y′(θ)

= −zx
(
1 + cos θ, sin θ

)
sin θ + zy

(
1 + cos θ, sin θ

)
cos θ

At A, x = 2, y = 0, z = 2 (since z3 − (2)(0)z2 − 4(2) = 0) and θ = 0, so
that

∂z

∂x
(2, 0) = 4 + (0)(2)2

3(2)2 − 2(2)(0)(2) = 1
3

∂z

∂y
(2, 0) = (2)(2)2

3(2)2 − 2(2)(0)(2) = 2
3

and

dz
dθ = −1

3 sin(0) + 2
3 cos(0) = 2

3

At B, x = 1, y = 1, z = 2 and θ = π
2 , so that, by part (b),

∂z

∂x
(1, 1) = 1 ∂z

∂y
(1, 1) = 1

2

and

dz
dθ = − sin π2 + 1

2 cos π2 = −1

2.6.3.20. ∗. Solution. We are going to need the first order partial
derivatives of f(x, y) = ye−x at (x, y) = (1, e). Here they are.

fx(x, y) = −ye−x fx(1, e) = −e e−1 = −1
fy(x, y) = e−x fy(1, e) = e−1

(a) The linear approximation to f(x, y) at (x, y) = (1, e) is

f(x, y) ≈ f(1, e) + fx(1, e) (x− 1) + fy(1, e) (y − e)
= 1− (x− 1) + e−1(y − e)

The maximum error is then approximately

−1(−0.1) + e−1(0.1) = 1 + e−1

10

(b) The equation of the graph is g(x, y, z) = f(x, y)−z = 0. Any vector
that is a nonzero constant times

∇∇∇g(1, e, 1) = 〈fx(1, e) , fy(1, e) , −1〉 =
〈
−1 , e−1 , −1

〉
is perpendicular to g = 0 at (1, e, 1).
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2.6.3.21. ∗. Solution. (a) We are told that for all x, y (with (x, y, z)
near (2,−1/2, 1)), the function z(x, y) obeys

z(x, y)4 − xy2z(x, y)2 + y = 0 (∗)

Differentiating (∗) with respect to x gives

4z(x, y)3 ∂z

∂x
(x, y)− y2z(x, y)2 − 2xy2z(x, y)∂z

∂x
(x, y) = 0

=⇒ ∂z

∂x
(x, y) = y2z(x, y)2

4z(x, y)3 − 2xy2z(x, y)

Similarly, differentiating this equation with respect to x gives

4z(x, y)3 ∂z

∂y
(x, y)− 2xy z(x, y)2 − 2xy2z(x, y)∂z

∂y
(x, y) + 1 = 0

=⇒ ∂z

∂y
(x, y) = 2xy z(x, y)2 − 1

4z(x, y)3 − 2xy2z(x, y)

(b) Substituting (x, y, z) = (2,−1/2, 1) into the results of part (a) gives

∂z

∂x
(2,−1/2) = 1/4

4− 1 = 1
12

∂z

∂y
(2,−1/2) = −2− 1

4− 1 = −1

(c) Under the linear approximation about (2,−1/2),

f(x, y) ≈ f(2,−1/2) + fx(2,−1/2) (x− 2) + fy(2,−1/2) (y + 1/2)

= 1 + 1
12(x− 2)− (y + 0.5)

In particular

f(1.94,−0.4) ≈ 1− 0.06
12 − 0.1

so that

f(1.94,−0.4)− 1 ≈ −0.105

(d) The tangent plane is

z = f(2,−1/2) + fx(2,−1/2) (x− 2) + fy(2,−1/2) (y + 1/2)

= 1 + 1
12(x− 2)− (y + 0.5)

or

x

12 − y − z = −1
3

2.6.3.22. ∗. Solution. (a) The linear approximation to f(x, y) at (1, 3)
is

f(x, y) ≈ f(1, 3) + fx(1, 3) (x− 1) + fy(1, 3) (y − 3)
= 1 + 3(x− 1)− 2(y − 3)
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So the change is z is approximately

3(1.2− 1)− 2(2.6− 3) = 1.4

(b) The equation of the tangent plane is

z = f(1, 3) + fx(1, 3) (x− 1) + fy(1, 3) (y − 3) = 1 + 3(x− 1)− 2(y − 3)

or
3x− 2y − z = −4

2.6.3.23. ∗. Solution. Think of the volume as being the function
V (p, T ) of pressure and temperature that is determined implicitly (at least
for p ≈ 1, T ≈ 5 and V ≈ 2) by the equation(

pV (p, T )2 + 16
)(
V (p, T )− 1

)
= TV (p, T )2 (∗)

To determine the approximate change in V , we will use the linear approx-
imation to V (p, T ) at p = 1, T = 5. So we will need the partial derivatives
Vp(1, 5) and VT (1, 5). As the equation (∗) is valid for all p near 1 and T
near 5, we may differentiate (∗) with respect to p, giving(

V 2 + 2pV Vp
)(
V − 1

)
+
(
pV 2 + 16

)
Vp = 2TV Vp

and we may also differentiate (∗) with respect to T , giving(
2pV VT

)(
V − 1

)
+
(
pV 2 + 16

)
VT = V 2 + 2TV VT

In particular, when p = 1, V = 2, T = 5,(
4 + 4Vp(1, 5)

)(
2− 1

)
+
(
4 + 16

)
Vp(1, 5) = 20Vp(1, 5)
=⇒ Vp(1, 5) = −1

4VT (1, 5)
(
2− 1

)
+
(
4 + 16

)
VT (1, 5) = 4 + 20VT (1, 5)
=⇒ VT (1, 5) = 1

so that the change in V is

V (1.2 , 5.3)− V (1, 5) ≈ Vp(1, 5) (0.2) + VT (1, 5) (0.3) = −0.2 + 0.3 = 0.1

2.6.3.24. ∗. Solution. Since

fx(2, 1) = −2xe−x
2+4y2

∣∣∣
(x,y)=(2,1)

= −4

fy(2, 1) = 8ye−x
2+4y2

∣∣∣
(x,y)=(2,1)

= 8

The tangent plane to z = f(x, y) at (2, 1) is

z = f(2, 1) + fx(2, 1) (x− 2) + fy(2, 1) (y − 1) = 1− 4(x− 2) + 8(y − 1)
= 1− 4x+ 8y

and the tangent plane approximation to the value of f(1.99, 1.01) is

f(1.99, 1.01) ≈ 1− 4(1.99− 2) + 8(1.01− 1) = 1.12

2.6.3.25. ∗. Solution. (a) The linear approximation to f(x, y) at (a, b)
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is

f(x, y) ≈ f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)

= ln(4a2 + b2) + 8a
4a2 + b2

(x− a) + 2b
4a2 + b2

(y − b)

In particular, for a = 0 and b = 1,

f(x, y) ≈ 2 (y − 1)

and, for x = 0.1 and y = 1.2,

f(0.1, 1.2) ≈ 0.4

(b) The point (a, b, c) is on the surface z = f(x, y) if and only if

c = f(a, b) = ln(4a2 + b2)

Note that this forces 4a2 + b2 to be nonzero. The tangent plane to the
surface z = f(x, y) at the point (a, b, c) is parallel to the plane 2x+2y−z =
3 if and only if 〈2 , 2 , −1〉 is a normal vector for the tangent plane. That
is, there is a nonzero number t such that

〈2 , 2 , −1〉 = t 〈fx(a, b) , fy(a, b) , −1〉 = t

〈
8a

4a2 + b2
,

2b
4a2 + b2

, −1
〉

For the z--coordinates to be equal, t must be 1. Then, for the x-- and
y--coordinates to be equal, we need

8a
4a2 + b2

= 2

2b
4a2 + b2

= 2

Note that these equations force both a and b to be nonzero. Dividing these
equations gives 8a

2b = 1 and hence b = 4a. Substituting b = 4a into either
of the two equations gives

8a
20a2 = 2 =⇒ a = 1

5

So a = 1
5 , b = 4

5 and

c = ln
(

4
52 + 42

52

)
= ln 4

5

2.6.3.26. ∗. Solution. (a) The surface has equation G(x, y, z) = x2z3 +
y sin(πx) + y2 = 0. So a normal vector to the surface at (1, 1− 1) is

∇∇∇G(1, 1,−1)
=
[(

2xz3 + πy cos(πx)
)̂
ııı+

(
sin(πx) + 2y

)
̂+ 3z2x2 k̂

]
(x,y,z)=(1,1,−1)

=
(
− 2− π

)̂
ııı+ 2 ̂+ 3 k̂

So the equation of the tangent plane is(
− 2− π

)
(x− 1) + 2(y − 1) + 3(z + 1) = 0

or − (2 + π)x+ 2y + 3z = −π − 3
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(b) The functions z(x, y) obeys

x2z(x, y)3 + y sin(πx) + y2 = 0

for all x and y. Differentiating this equation with respect to x gives

2xz(x, y)3 + 3x2z(x, y)2 ∂z

∂x
(x, y) + πy cos(πx) = 0

Evaluating at (1, 1,−1) gives

−2 + 3∂z
∂x

(1, 1)− π = 0 =⇒ ∂z

∂x
(1, 1) = π + 2

3

(c) Using the linear approximation about (x, y) = (1, 1),

z(x, 1) ≈ z(1, 1) + ∂z

∂x
(1, 1) (x− 1)

gives

z(0.97, 1) ≈ −1 + π + 2
3 (−0.03) = −1− π + 2

100 = −π + 102
100

2.6.3.27. ∗. Solution. (a) The function F (y, z) obeys F (y, z)4 + y4 +
z4 + F (y, z)yz = 17 for all y and z near y = 1, z = 2. Applying the
derivatives ∂

∂y and ∂
∂z to this equation gives

4F (y, z)3Fy(y, z) + 4y3 + Fy(y, z)yz + F (y, z)z = 0
4F (y, z)3Fz(y, z) + 4z3 + Fz(y, z)yz + F (y, z)y = 0

Substiututing F (1, 2) = 0, y = 1 and z = 2 gives

4 + 2Fy(1, 2) = 0 =⇒ Fy(1, 2) = −2
32 + 2Fz(1, 2) = 0 =⇒ Fz(1, 2) = −16

(b) Using the tangent plane to x = F (y, z) at y = 1 and z = 2, which
is

x ≈ F (1, 2) + Fy(1, 2) (y − 1) + Fz(1, 2) (z − 2)

with y = 1.01 and z = 1.98 gives

x = F (1.01, 1.98) ≈ F (1, 2) + Fy(1, 2)(1.01− 1) + Fz(1, 2)(1.98− 2)
= 0− 2(.01)− 16(−0.02) = 0.3

2.7 · Directional Derivatives and the Gradient
2.7.2 · Exercises

2.7.2.1. ∗. Solution. The partial derivatives, at a general point (x, y, z)
and also at the point of interest (0, 1, 1), are

fx(x, y, z) = yzexyz fx(0, 1, 1) = 1
fy(x, y, z) = xzexyz fx(0, 1, 1) = 0
fz(x, y, z) = xyexyz fz(0, 1, 1) = 0

So ∇∇∇f(0, 1, 1) = 〈1, 0, 0〉 and the specified directional derivative is

D 〈0,1,1〉√
2

= 〈1, 0, 0〉 · 〈0, 1, 1〉√
2

= 0
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2.7.2.2. ∗. Solution. In two dimensions, write g(x, y) = y2 + sin(xy).
Then

∇∇∇g = 〈gx , gy〉 = 〈y cos(xy) , 2y + x cos(xy)〉

In three dimensions, write g(x, y, z) = y2 + sin(xy). Then

∇∇∇g = 〈gx , gy , gz〉 = 〈y cos(xy) , 2y + x cos(xy) , 0〉

2.7.2.3. Solution. (a) The gradient of f is ∇∇∇f(x, y) = 〈3,−4〉. So the
specified rate of change is

〈3,−4〉 · 〈−2, 0〉
| 〈−2, 0〉 | = −3

(b) The gradient of f is∇∇∇f(x, y, z) =
〈
−x−2,−y−2,−z−2〉. In particu-

lar, the gradient of f at the point (2,−3, 4) is∇∇∇f(2,−3, 4) =
〈
− 1

4 ,−
1
9 ,−

1
16
〉
.

So the specified rate of change is〈
−1

4 ,−
1
9 ,−

1
16

〉
· 〈1, 1, 1〉√

3
= − 61

144
√

3
≈ −0.2446

2.7.2.4. Solution. The gradient of f(x, y) is ∇∇∇f(x, y) = 〈y, x〉. In
particular, the gradient of f at the point (2, 0) is ∇∇∇f(2, 0) = 〈0, 2〉. So
the rate of change in the direction that makes angle θ with respect to the
x-axis, that is, in the direction 〈cos θ, sin θ〉 is

〈cos θ, sin θ〉 · ∇∇∇f(2, 0) = 〈cos θ, sin θ〉 · 〈0, 2〉 = 2 sin θ

(a) To get a rate −1, we need

sin θ = −1
2 =⇒ θ = −30◦, −150◦

So the desired directions are

〈cos θ, sin θ〉 =
〈
±
√

3
2 ,−1

2

〉
(b) To get a rate −2, we need

sin θ = −1 =⇒ θ = −90◦

So the desired direction is

〈cos θ, sin θ〉 = 〈0,−1〉

(c) To get a rate −3, we need

sin θ = −3
2

No θ obeys this, since −1 ≤ sin θ ≤ 1 for all θ. So no direction works!

2.7.2.5. Solution. Denote ∇∇∇f(a, b) = 〈α, β〉. We are told that

〈α, β〉 ·
〈

1√
2
,

1√
2

〉
= 3
√

2 or α+ β = 6
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〈α, β〉 ·
〈

3
5 ,−

4
5

〉
= 5 or 3α− 4β = 25

Adding 4 times the first equation to the second equation gives 7α = 49.
Substituting α = 7 into the first equation gives β = −1. So ∇∇∇f(a, b) =
〈7,−1〉.

2.7.2.6. ∗. Solution. Use a coordinate system with the positive y-axis
pointing north, with the positive x-axis pointing east and with our current
location being x = y = 0. Denote by z(x, y) the elevation of the earth’s
surface at (x, y). We are told that

∇∇∇z(0, 0) · (−̂) = 4

∇∇∇z(0, 0) ·
(
ı̂ıı− ̂√

2

)
=
√

2

The first equation implies that zy(0, 0) = −4 and the second equation
implies that

zx(0, 0)− zy(0, 0)√
2

=
√

2 =⇒ zx(0, 0) = zy(0, 0) + 2 = −2

So the slope in the eastern direction is

∇∇∇z(0, 0) · ı̂ıı = zx(0, 0) = −2

2.7.2.7. ∗. Solution. (a) Use ∇∇∇f(P ) to denote the gradient vector of f
at P . We are told that

• directional derivative of f at P is a maximum in the direction 2̂ııı−̂+k̂,
which implies that ∇∇∇f(P ) is parallel to 2̂ııı− ̂+ k̂, and

• the magnitude of the directional derivative in that direction is 3
√

6,
which implies that |∇∇∇f(P )| = 3

√
6.

So

∇∇∇f(P ) = 3
√

6 2̂ııı− ̂+ k̂
|2̂ııı− ̂+ k̂|

= 6̂ııı− 3̂+ 3k̂

(b) The directional derivative of f at P in the direction ı̂ıı+ ̂ is

∇∇∇f(P ) · ı̂
ıı+ ̂

|̂ııı+ ̂|
= 1√

2
(
6̂ııı− 3̂+ 3k̂

)
·
(̂
ııı+ ̂

)
= 3√

2
2.7.2.8. ∗. Solution. (a) The gradient of f at (x, y) = (2, 1) is

∇∇∇f(2, 1) =
〈
−y2 , −2xy

〉 ∣∣∣
(x,y)=(2,1)

= 〈−1 , −4〉

So the path of steepest ascent is in the direction − 1√
17 〈1 , 4〉, which is a

little west of south. The slope is

|∇∇∇f(2, 1)| = | 〈−1 , −4〉 | =
√

17

(b) The directional derivative in the north direction is

D〈0,1〉f(2, 1) =∇∇∇f(2, 1) · 〈0, 1〉 = 〈−1 , −4〉 · 〈0, 1〉 = −4

So the hiker descends with slope | − 4| = 4.
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(c) To contour, i.e. remain at the same height, the hiker should walk
in a direction perpendicular to ∇∇∇f(2, 1) = 〈−1 , −4〉. Two unit vectors
perpendicular to 〈−1 , −4〉 are ± 1√

17 〈4,−1〉.

2.7.2.9. Solution. The gradient of h(x, y) = 1000−2x2−3y2 is∇∇∇h(x, y) =
(−4x,−6y). This gradient (which points in the direction of steepest ascent)
must be parallel to the tangent to y = axb at all points on y = axb. A
tangent to y = axb is

〈
1, dy

dx

〉
=
〈
1, abxb−1〉.

〈−4x,−6y〉 ‖
〈
1, abxb−1〉 =⇒ abxb−1

1 = −6y
−4x =⇒ 3

2y = abxb

This is true at all points on y = axb if and only if b = 3
2 . As (1, 1) must

also be on y = axb, we need 1 = a1b, which forces a = 1, b = 3
2 . Here is a

contour map showing the hiking trail.
y “ axb

hpx, yq “ 600

2.7.2.10. ∗. Solution. (a) The temperature gradient at (3, 2, 1) is

∇∇∇T (3, 2, 1) = 〈4x , 2y , −2z〉
∣∣∣
(x,y,z)=(3,2,1)

= 〈12 , 4 , −2〉

She wishes to fly in a direction that is perpendicular to ∇∇∇T (3, 2, 1). That
is, she wishes to fly in a direction 〈a , b , c〉 that obeys

0 = 〈12 , 4 , −2〉 · 〈a , b , c〉 = 12a+ 4b− 2c

Any nonzero 〈a , b , c〉 that obeys 12a+ 4b− 2c = 0 is an allowed direction.
Four allowed unit vectors are ± 〈0 , 1 , 2〉√

5 and ± 〈1 ,−3 , 0〉√
10 .

(b) No they need not be the same. Four different explicit directions
were given in part (a).

(c) To cool down as quickly as possible, she should move in the direction
opposite to the temperature gradient. A unit vector in that direction is
− 〈6 , 2 ,−1〉√

41 .

2.7.2.11. ∗. Solution. The temperature gradient at (2, 1, 3) is

∇∇∇T (2, 1, 3) = 〈2x , z , y〉
∣∣∣
(x,y,z)=(2,1,3)

= 〈4 , 3 , 1〉

(a) The bird is flying in the direction 〈4− 2 , 3− 1 , 4− 3〉 = 〈2 , 2 , 1〉
at speed 2 and so has velocity v = 2 〈2 , 2 , 1〉|〈2 , 2 , 1〉| = 2

3 〈2 , 2 , 1〉. The rate of
change of air temperature experienced by the bird at that instant is

∇∇∇T (2, 1, 3) · v = 2
3 〈4 , 3 , 1〉 · 〈2 , 2 , 1〉 = 10

(b) To maintain constant altitude (while not being stationary), the
bird’s direction of travel has to be of the form 〈a , b , 0〉, for some constants
a and b, not both zero. To keep the air temperature fixed, its direction of
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travel has to be perpendicular to ∇∇∇T (2, 1, 3) = 〈4 , 3 , 1〉. So a and b have
to obey

0 = 〈a , b , 0〉 · 〈4 , 3 , 1〉 = 4a+ 3b ⇐⇒ b = −4
3a

and the direction of travel has to be a nonzero constant times 〈3 ,−4 , 0〉.
The two such unit vectors are ± 1

5 〈3 ,−4 , 0〉.

2.7.2.12. ∗. Solution. We are going to need, in both parts of this
question, the gradient of f(x, y) at (x, y) =

(
1,− 4

3
)
. So we find it first.

fx(x, y) = 4x+ 3y fx(1,−4/3) = 0

fy(x, y) = 3x+ 2y fy(1,−4/3) = 1
3

so ∇∇∇f
(
1,− 4

3
)

=
〈
0, 1

3
〉
.

(a) The maximum rate of change of f at P is∣∣∇∇∇f (1,− 4
3
)∣∣ =

∣∣〈0, 1
3
〉∣∣ = 1

3

(b) If 〈a, b〉 is a unit vector, the directional derivative of f at P in the
direction 〈a, b〉 is

D〈a,b〉f
(
1,− 4

3
)

=∇∇∇f
(
1,− 4

3
)
· 〈a, b〉 =

〈
0, 1

3
〉
· 〈a, b〉 = b

3

So we need b
3 = 1

5 and hence b = 3
5 . For 〈a, b〉 to be a unit vector, we also

need

a2 + b2 = 1 ⇐⇒ a2 = 1− b2 = 1− 32

52 = 16
25 ⇐⇒ a = ±4

5

So the allowed directions are
〈
± 4

5 ,
3
5
〉
.

2.7.2.13. ∗. Solution. The slope of y = x2 at (1, 1) is d
dxx

2
∣∣∣
x=1

= 2. So

a unit vector in the bug’s direction of motion is 〈1,2〉√5 and the bug’s velocity
vector is v = 0.01 〈1,2〉√5 .

The temperature gradient at (1, 1) is

∇∇∇T (1, 1) =
〈

2xyex
2
, ex

2
〉 ∣∣∣

(x.y)=(1,1)
= 〈2e , e〉

and the rate of change of T (per unit time) that the bug feels as it passes
through the point (1, 1) is

∇∇∇T (1, 1) · v = 0.01√
5
〈2e , e〉 · 〈1, 2〉 = 0.04e√

5
2.7.2.14. ∗. Solution. (a) We are to find the directional derivative in
the direction

〈0− 3 , 1− 2 , 2− 1〉 = 〈−3 , −1 , 1〉
As the gradient of F is

∇∇∇F (x, y, z) = 〈y − 1 , x− 2y , 2z〉

the directional derivative is

D 〈−3 ,−1 , 1〉
|〈−3 ,−1 , 1〉|

F (3, 2, 1) =∇∇∇F (3, 2, 1) · 〈−3 , −1 , 1〉
| 〈−3 , −1 , 1〉 |
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= 〈2− 1 , 3− 2(2) , 2(1)〉 · 〈−3 , −1 , 1〉
| 〈−3 , −1 , 1〉 |

= 〈1 , −1 , 2〉 · 〈−3 , −1 , 1〉√
11

= 0

(b) The temperature decreases most rapidly in the direction opposite
the gradient. A unit vector in that direction is

− ∇
∇∇F (3, 2, 1)
|∇∇∇F (3, 2, 1)| = − 〈1 , −1 , 2〉

| 〈1 , −1 , 2〉 | = 1√
6
〈−1 , 1 , −2〉

(c) The velocity vector at time 0 is

v = 〈x′(0) , y′(0) , z′(0)〉 =
〈

3et , −2 sin t , 1
2
√

1 + t

〉 ∣∣∣
t=0

=
〈

3 , 0 , 1
2

〉
So the rate of change of temperature with respect to t at t = 0 is

∇∇∇F (3, 2, 1) · v = 〈1 , −1 , 2〉 ·
〈

3 , 0 , 1
2

〉
= 4

(d) For ı̂ıı + 5̂ + ak̂ to be tangent to the level surface F (x, y, z) = 3 at
(3, 2, 1), ı̂ıı+ 5̂+ ak̂ must be perpendicular to ∇∇∇F (3, 2, 1). So

0 = 〈1 , 5 , a〉 · 〈1 , −1 , 2〉 = −4 + 2a

So a = 2.
2.7.2.15. ∗. Solution. (a) The first order partial derivatives of f and g
are

∂f

∂x
(x, y, z) = 2e−(x2+y2+z2) − 2x(2x+ y)e−(x2+y2+z2)

=⇒ ∂f

∂x
(0, 1,−1) = 2e−2

∂f

∂y
(x, y, z) = e−(x2+y2+z2) − 2y(2x+ y)e−(x2+y2+z2)

=⇒ ∂f

∂y
(0, 1,−1) = −e−2

∂f

∂z
(x, y, z) = −2z(2x+ y)e−(x2+y2+z2)

=⇒ ∂f

∂z
(0, 1,−1) = 2e−2

∂g

∂x
(x, y, z) = z

=⇒ ∂g

∂x
(0, 1,−1) = −1

∂g

∂y
(x, y, z) = 2y + z

=⇒ ∂g

∂y
(0, 1,−1) = 1

∂g

∂z
(x, y, z) = x+ y + 2z
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=⇒ ∂g

∂z
(0, 1,−1) = −1

so that gradients are

∇∇∇f(0, 1,−1) = e−2 〈2,−1, 2〉 ∇∇∇g(0, 1,−1) = 〈−1, 1,−1〉

(b) The bird’s velocity is the vector of length 6 in the direction of
∇∇∇f(0, 1,−1), which is

v = 6 〈2,−1, 2〉
| 〈2,−1, 2〉 | = 〈4,−2, 4〉

The rate of change of g (per unit time) seen by the bird is

∇∇∇g(0, 1,−1) · v = 〈−1, 1,−1〉 · 〈4,−2, 4〉 = −10

(c) The direction of flight for the bat has to be perpendicular to both
∇∇∇f(0, 1,−1) = e−2 〈2,−1, 2〉 and ∇∇∇g(0, 1,−1) = 〈−1, 1,−1〉. Any vector
which is a non zero constant times

〈2,−1, 2〉 × 〈−1, 1,−1〉 = det

 ı̂ıı ̂ k̂
2 −1 2
−1 1 −1

 = 〈−1 , 0 , 1〉

is perpendicular to both ∇∇∇f(0, 1,−1) and ∇∇∇g(0, 1,−1). In addition, the
direction of flight for the bat must have a positive z-component. So any
vector which is a (strictly) positive constant times 〈−1 , 0 , 1〉 is fine.

2.7.2.16. ∗. Solution. (a) Let’s use v to denote the bee’s velocity vector
at time t = 2.

• The bee’s direction of motion is tangent to the curve. That tangent
is perpendicular to both the normal vector to 3z + x2 + y2 = 2 at
(1, 1, 0), which is

〈2x , 2y , 3〉
∣∣∣
(x,y,z)=(1,1,0)

= 〈2 , 2 , 3〉

and the normal vector to z = x2 − y2 at (1, 1, 0), which is

〈2x , −2y , −1〉
∣∣∣
(x,y,z)=(1,1,0)

= 〈2 , −2 , −1〉

So v has to be some constant times

〈2 , 2 , 3〉 × 〈2 , −2 , −1〉 = det

ı̂ıı ̂ k̂
2 2 3
2 −2 −1

 = 〈4 , 8 , −8〉

or, equivalently, some constant times 〈1 , 2 , −2〉.

• Since the z-component of v has to be positive, v has to be a positive
constant times 〈−1 , −2 , 2〉.

• Since the speed has to be 6, v has to have length 6.

As | 〈−1 , −2 , 2〉 | = 3

v = 2 〈−1 , −2 , 2〉 = 〈−2 , −4 , 4〉
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(b) Solution 1 : Suppose that the bee is at
(
x(t), y(t), z(t)

)
at time t.

Then the temperature that the bee feels at time t is

T
(
x(t), y(t), z(t), t

)
= x(t)y(t)− 3x(t) + 2y(t)t+ z(t)

Then the rate of change of temperature (per unit time) felt by the bee at
time t = 2 is

d
dtT

(
x(t), y(t), z(t), t

)∣∣∣
t=2

= x′(2)y(2) + x(2)y′(2)− 3x′(2) + 2y′(2)2 + 2y(2) + z′(2)

Recalling that, at time t = 2, the bee is at (1, 1, 0) and has velocity
〈−2 , −4 , 4〉

d
dtT

(
x(t), y(t), z(t), t

)∣∣∣
t=2

= (−2)(1) + (1)(−4)− 3(−2) + 2(−4)2 + 2(1) + 4
= −10

(b) Solution 2 : Suppose that the bee is at
(
x(t), y(t), z(t)

)
at time t.

Then the temperature that the bee feels at time t is

T
(
x(t), y(t), z(t), t

)
By the chain rule, the rate of change of temperature (per unit time) felt
by the bee at time t = 2 is

d
dtT

(
x(t), y(t), z(t), t

)∣∣∣
t=2

=
[
∂T

∂x

(
x(t), y(t), z(t), t

)
x′(t) + ∂T

∂y

(
x(t), y(t), z(t), t

)
y′(t)

+ ∂T

∂z

(
x(t), y(t), z(t), t

)
z′(t) + ∂T

∂t

(
x(t), y(t), z(t), t

)]
t=2

Recalling that T = xy − 3x+ 2yt+ z, we have

d
dtT

(
x(t), y(t), z(t), t

)∣∣∣
t=2

= [y(2)− 3]x′(2) + [x(2) + 2× 2]y′(2) + z′(2) + 2y(2)

Also recalling that, at time t = 2, the bee is at (1, 1, 0) and has velocity
〈−2 , −4 , 4〉

d
dtT

(
x(t), y(t), z(t), t

)∣∣∣
t=2

= [−2](−2) + [5](−4) + 4 + 2

= −10

2.7.2.17. ∗. Solution. (a) We are to find the rate of change of T (x, y, z)
at (1, 2,−1) in the direction 〈1, 1, 0〉 − 〈1, 2,−1〉 = 〈0,−1, 1〉. That rate of
change (per unit distance) is the directional derivative

D 〈0,−1,1〉√
2

T (1, 2,−1) =∇∇∇T (1, 2,−1) · 〈0,−1, 1〉√
2
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As

∂T

∂x
(x, y, z) = −20x e−2x2−y2−3z2 ∂T

∂x
(1, 2,−1) = −20 e−9

∂T

∂y
(x, y, z) = −10y e−2x2−y2−3z2 ∂T

∂y
(1, 2,−1) = −20 e−9

∂T

∂z
(x, y, z) = −30z e−2x2−y2−3z2 ∂T

∂z
(1, 2,−1) = 30 e−9

the directional derivative

D 〈0,−1,1〉√
2

T (1, 2,−1) = e−9 〈−20,−20, 30〉 · 〈0,−1, 1〉√
2

= 50√
2
e−9 = 25

√
2 e−9

(b) The direction of maximum rate of decrease is −∇∇∇T (1, 2,−1). A
unit vector in that direction is 〈2,2,−3〉√

17 .
(c) The maximum rate of decrease at P is−|∇∇∇T (1, 2,−1)| = −10e−9| 〈−2,−2, 3〉 | =

−10
√

17e−9.

2.7.2.18. ∗. Solution. Denote by 〈a , b , c〉 the gradient of the function
f at P . We are told

〈a , b , c〉 · 〈1 , 0 , 0〉 = 2

〈a , b , c〉 · 1√
2
〈1 , 1 , 0〉 = −

√
2

〈a , b , c〉 · 1√
3
〈1 , 1 , 1〉 = − 5√

3

Simplifying

a = 2
a+ b = −2

a+ b+ c = −5

From these equations we read off, in order, a = 2, b = −4 and c = −3.
The function f has maximum rate of change at P in the direction if the
gradient of f . The unit vector in that direction is

〈2 , −4 , −3〉
| 〈2 , −4 , −3〉 | = 〈2 , −4 , −3〉√

29

The maximum rate of change is the magnitude of the gradient, which is√
29.

2.7.2.19. ∗. Solution. We are told that the direction of fastest increase
for the function f(x, y) at the origin is given by the vector 〈1, 2〉. This
implies that ∇∇∇f(0, 0) is parallel to 〈1, 2〉. This in turn implies that 〈1, 2〉
is normal to the level curve of f(x, y) that passes through the origin. So
〈2,−1〉, being perpendicular to 〈1, 2〉, is tangent to the level curve of f(x, y)
that passes through the origin. The unit vectors that are parallel to 〈2,−1〉
are ± 1√

5 〈2,−1〉.

2.7.2.20. ∗. Solution. Write h(x, y) = 1000 − 0.02x2 − 0.01y2 so that
the hill is z = h(x, y).
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(a) The direction of steepest ascent at (0, 100, 900) is the direction of
maximum rate of increase of h(x, y) at (0, 100) which is ∇∇∇h(0, 100) =
〈0 , −0.01(2)(100)〉 = 〈0 , −2〉. In compass directions that is South.

(b) The slope of the hill there is

∇∇∇h(0, 100) · 〈0,−1〉 = −∂h
∂y

(0, 100) = 2

(c) Denote by
(
x(t), y(t), z(t)

)
your position at time t and suppose that

you are at (0, 100, 900) at time t = 0. Then we know

• z(t) = 1000− 0.02x(t)2− 0.01y(t)2, so that z′(t) = −0.04x(t)x′(t)−
0.02y(t)y′(t), since you are on the hill and

• x′(0) = 0 and y′(0) > 0 since you are going in the direction of steepest
descent and

• x′(0)2 + y′(0)2 + z′(0)2 = 25 since you are moving at speed 5.

Since x(0) and y(0) = 100, we have z′(0) = −0.02(100)y′(0) = −2y′(0). So

25 = x′(0)2 + y′(0)2 + z′(0)2 = 5 y′(0)2

=⇒ y′(0) =
√

5

=⇒ 〈x′(0) , y′(0) , z′(0)〉 =
〈

0 ,
√

5 , −2
√

5
〉

and your rate of change of altitude is

d
dth

(
x(t) , y(t)

)∣∣∣
t=0

=∇∇∇h(0, 100) · 〈x′(0) , y′(0)〉 = 〈0 , −2〉 ·
〈

0 ,
√

5
〉

= −2
√

5

2.7.2.21. ∗. Solution. Reading through the question as a whole we see
that we will need

• for part (a), the gradient of PT at (2t, t2 − 1, cos t)
∣∣∣
t=0

= (0,−1, 1)

• for part (b), the gradients of both P and T at (0,−1, 1) and

• for part (c), the gradient of T at (0,−1, 1) and the gradient of S =
z3 + xz + y2 at (0,−1, 1) (to get the normal vector to the surface at
that point).

So, by way of preparation, let’s compute all of these gradients.

∇∇∇P (x, y, z) = 2x
1 + z2 ı̂ıı+ 4y

1 + z2 ̂−
(x2 + 2y2)2z

(1 + z2)2 k̂

=⇒ ∇∇∇P (0,−1, 1) = −2 ̂− k̂
∇∇∇T (x, y, z) = y ı̂ıı+ x ̂− 2z k̂

=⇒ ∇∇∇T (0,−1, 1) = −ı̂ıı− 2k̂
∇∇∇S(x, y, z) = z ı̂ıı+ 2y ̂+ (x+ 3z2) k̂

=⇒ ∇∇∇S(0,−1, 1) = ı̂ıı− 2̂+ 3 k̂

To get the gradient of PT we use the product rule

∇∇∇(PT )(x, y, z) = T (x, y, z)∇∇∇P (x, y, z) + P (x, y, z)∇∇∇T (x, y, z)
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so that

∇∇∇(PT )(0,−1, 1) = T (0,−1, 1)∇∇∇P (0,−1, 1) + P (0,−1, 1)∇∇∇T (0,−1, 1)

= (5 + 0− 1)
(
− 2 ̂− k̂

)
+ 0 + 2

1 + 1
(
− ı̂ıı− 2k̂

)
= −ı̂ıı− 8 ̂− 6 k̂

(a) Since d
dt (PT )2 = 2(PT ) d

dt (PT ), and the velocity vector of the plane
at time 0 is

d
dt
〈
2t, t2 − 1, cos t

〉 ∣∣∣
t=0

= 〈2, 2t,− sin t〉
∣∣∣
t=0

= 〈2, 0, 0〉

we have
d
dt (PT )2

∣∣∣
t=0

= 2P (0,−1, 1)T (0,−1, 1) ∇∇∇(PT )(0,−1, 1) · 〈2, 0, 0〉

= 2 0 + 2
1 + 1 (5 + 0− 1) 〈−1,−8,−6〉 · 〈2, 0, 0〉

= −16

(b) The direction should be perpendicular to ∇∇∇P (0,−1, 1) (to keep P
constant) and should also be perpendicular to ∇∇∇T (0,−1, 1) (to keep T
constant). So any nonzero constant times

±∇∇∇P (0,−1, 1)×∇∇∇T (0,−1, 1) = ±〈0 , −2 , −1〉 × 〈−1 , 0 , −2〉

= ±det

ı̂ıı ̂ k̂
0 2 1
1 0 2


= ±〈4 , 1 , −2〉

are allowed directions.
(c) We want the direction to be as close as possible to ∇∇∇T (0,−1, 1) =

〈−1 , 0 , −2〉 while still being tangent to the surface, i.e. being perpen-
dicular to the normal vector ∇∇∇S(0,−1, 1) = 〈1 , −2 , 3〉. We can get
that optimal direction by subtracting from ∇∇∇T (0,−1, 1) the projection of
∇∇∇T (0,−1, 1) onto the normal vector.

∇S

tangent plane

∇T

proj∇S∇T

´proj∇S∇T
d

The projection of ∇∇∇T (0,−1, 1) onto the normal vector ∇∇∇S(0,−1, 1) is

proj∇∇∇S(0,−1,1)∇∇∇T (0,−1, 1) = ∇
∇∇T (0,−1, 1) · ∇∇∇S(0,−1, 1)

|∇∇∇S(0,−1, 1)|2 ∇∇∇S(0,−1, 1)
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= 〈−1 , 0 , −2〉 · 〈1 , −2 , 3〉
| 〈1 , −2 , 3〉 |2 〈1 , −2 , 3〉

= −7
14 〈1 , −2 , 3〉

So the optimal direction is

d =∇∇∇T (0,−1, 1)− proj∇∇∇S(0,−1,1)∇∇∇T (0,−1, 1)

= 〈−1 , 0 , −2〉 − −7
14 〈1 , −2 , 3〉

=
〈
−1

2 , −1 , −1
2

〉
So any positive non zero multiple of −〈1 , 2 , 1〉 will do. Note, as a check,
that−〈1 , 2 , 1〉 has dot product zero, i.e. is perpendicular to,∇∇∇S(0,−1, 1) =
〈1 , −2 , 3〉.

2.7.2.22. ∗. Solution. Write ∇∇∇f(a, b, c) = 〈F,G,H〉. We are told that

Duf = 1√
6
〈1, 1, 2〉 · 〈F,G,H〉 = 0

Dvf = 1√
3
〈1,−1,−1〉 · 〈F,G,H〉 = 0

Dwf = 1√
3
〈1, 1, 1〉 · 〈F,G,H〉 = 4

so that

F +G+ 2H = 0 (E1)
F −G−H = 0 (E2)
F +G+H = 4

√
3 (E3)

Adding (E2) and (E3) gives 2F = 4
√

3 or F = 2
√

3. Substituting F = 2
√

3
into (E1) and (E2) gives

G+ 2H = −2
√

3 (E1)
−G−H = −2

√
3 (E2)

Adding (E1) and (E2) gives H = −4
√

3 and substituting H = −4
√

3 back
into (E2) gives G = 6

√
3. All together

∇∇∇f(a, b, c) =
√

3 〈2, 6,−4〉

2.7.2.23. ∗. Solution. (a) The expression limt→0
f((1,1)+tu)−f(1,1)

t is the
directional derivative of f at (1, 1) in the direction u, which is Duf(1, 1) =
∇∇∇f(1, 1) · u. This is mazimized when u is parallel to ∇∇∇f(1, 1). Since

fx(x, y) = 2xy2e−x−y − x2y2e−x−y fy(x, y) = 2x2ye−x−y − x2y2e−x−y

we have
∇∇∇f(1, 1) = e−2 〈1, 1〉

so that the desired unit vector u is 1√
2 〈1, 1〉.

(b) In order to remain at elevation e−2, the ant must move so that
Duf(1, 1) = 0. This is the case if u ⊥ ∇∇∇f(1, 1). For example, we can
take u = 〈1,−1〉. When the ant moves in this direction, while remaining
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on the surface of the hill, its vertical component of velocity is zero. So
v = c 〈1,−1, 0〉 for any nonzero constant c.

(c) In order to maximize its instantaneous rate of level increase, the
ant must choose the x and y coordinates of its velocity vector in the same
direction as ∇∇∇f(1, 1). Namely u = c 〈1, 1〉 for any c > 0. To make u a unit
vector, we choose c = 1√

2 . The corresponding value of the z coordinate of
its velocity vector is the rate of change of f per unit horizontal distance
travelled, which is the directional derivative

Duf(1, 1) =∇∇∇f(1, 1) · u = e−2 〈1, 1〉 · 〈c, c〉 = 2ce−2

So v = 1√
2

〈
1, 1, 2e−2〉. Any positive multiple of this vector is also a correct

answer.
2.7.2.24. ∗. Solution. (a) The direction of motion at s = 1 is given by
the tangent vector

r′(s) =
〈
s2, 2, 2s

〉 ∣∣
s=1 = 〈1, 2, 2〉

Since the length of the velocity vector must be 3,

velocity = v = 3 〈1, 2, 2〉
| 〈1, 2, 2〉 | = 〈1, 2, 2〉

(b) The rate of change of temperature per unit distance felt by the
sparrow at s = 1 is ∇∇∇T

( 1
3 , 2, 1

)
· v
|v| . The rate of change of temperature

per unit time felt by the sparrow at s = 1 is

∇∇∇T
(

1
3 , 2, 1

)
· v
|v| |v| =∇

∇∇T
(

1
3 , 2, 1

)
· v = v · 〈6x, y, 4z〉

∣∣∣
( 1

3 ,2,1
)

= 〈1, 2, 2〉 · 〈2, 2, 4〉 = 14◦/s

(c) The temperature decreases at maximum rate in the direction op-
posite the temperature gradient, which is (any positive constant times)
−〈2, 2, 4〉.

(d) The eagle is moving at right angles to the direction of motion of
the sparrow, which is 〈1, 2, 2〉. As the eagle is also moving in a direction
for which the temperature remains constant, it must be moving perpendic-
ularly to the temperature gradient, 〈2, 2, 4〉. So the direction of the eagle
must be (a posiitve constant times) one of

±〈1, 2, 2〉 × 〈2, 2, 4〉 = ±det

ı̂ıı ̂ k̂
1 2 2
2 2 4

 = ±〈4, 0,−2〉

or equivalently, any positive constant times ±〈2, 0,−1〉.

2.7.2.25. ∗. Solution. (a) The moth is moving the direction of the
temperature gradient at (3, 4, 0), which is

∇∇∇T (3, 4, 0) = −200 2x̂ııı+ 2ŷ+ 2zk̂
(1 + x2 + y2 + z2)2

∣∣∣∣
(3,4,0)

= −400 3̂ııı+ 4̂
262

Since the speed of the moth is 1m/s its velocity vector is a vector of length
one in direction − 400

262 〈3, 4, 0〉 and hence is v = − 〈3,4,0〉|〈3,4,0〉| = −
〈 3

5 ,
4
5 , 0
〉
.

(b) The rate of change of temperature (per unit time) the moth feels
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at that time is

∇∇∇T (3, 4, 0) · v = 400
262 〈3, 4, 0〉 ·

〈
3
5 ,

4
5 , 0
〉

= 400× 25
262 × 5 = 500

169 ≈ 2.96◦/s

2.7.2.26. ∗. Solution. (a) We are told that T (x, y, z) = k
|〈x,y,z〉| =

k√
x2+y2+z2

for some constant k and that

120 = T (1, 2, 2) = k

| 〈1, 2, 2〉 | =⇒ k = 120×
√

1 + 22 + 22 = 360

(b) The (unit) direction from (1, 2, 2) to (2, 1, 3) is d = 〈2,1,3〉−〈1,2,2〉
|〈2,1,3〉−〈1,2,2〉| =

〈1,−1,1〉
|〈1,−1,1〉| = 1√

3 〈1,−1, 1〉. The desired rate of change of temperature is

DdT (1, 2, 2) =∇∇∇T (1, 2, 2) · d = −360 x̂ııı+ ŷ+ zk̂
(x2 + y2 + z2)3/2

∣∣∣
〈1,2,2〉

· d

= −360 〈1, 2, 2〉27 · 〈1,−1, 1〉√
3

= − 40
3
√

3
≈ −7.70

degrees per unit distance.
(c) At (x, y, z), the direction of greatest increase is in the direction of the

temperature gradient at (x, y, z), which is∇∇∇T (x, y, z) = −360 xı̂ıı+ŷ+zk̂
(x2+y2+z2)3/2

and which points opposite to the radius vector. That is, it points towards
the origin. This argument only fails at (x, y, z) = (0, 0, 0), where the gra-
dient, and indeed T (x, y, z), is not defined.

2.7.2.27. ∗. Solution. (a) The shoreline is f(x, y) = 0 or x2+4x+4y2 =
32 or (x+2)2+4y2 = 36, which is an ellipse centred on (−2, 0) with semiaxes
6 in the x-direction and 3 in the y-direction.

x

y

(b,c) The gradient of f at (−1, 1) is

∇∇∇f(−1, 1) =
[
(−2x− 4) ı̂ıı− 8y ̂

]
(−1,1) = −2 ı̂ıı− 8 ̂

To remain at constant depth, he should swim perpendicular to the depth
gradient. So he should swim in direction ± 1√

17 〈4,−1〉. To increase his
depth as rapidly as possible, he should swim in the direction of the depth
gradient, which is − 1√

17 〈1, 4〉.

2.7.2.28. Solution. (a) The curve on which the temperature is T0 is
x2 − 2y2 = T0. If T0 = 0, this is the pair of straight lines y = ± x√

2 . If
T0 > 0, it is a hyperbola on which x2 = 2y2 + T0 ≥ T0. If T0 < 0, it is a
hyperbola on which 2y2 = x2− T0 ≥ |T0|. Here is a sketch which show the
isotherms T = 0, 1, −1 as well as the branch of the T = 2 isotherm that
contains the ant’s location (2,−1).
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T“0

T“0

T “ ´1

T “ ´1

T“1 T “ 2T “ 1

p2,´1q

Note that the temperature gradient is ∇∇∇T (x, y) = 〈2x,−4y〉. In partic-
ular, the temperature gradient at (2,−1) is ∇∇∇T (2,−1) = 〈4, 4〉.

(b) To achieve maximum rate of cooling, the ant should move in the
direction opposite the temperature gradient at (2,−1). So the direction of
maximum rate of cooling is

−〈4, 4〉
4
√

2
= 〈−1,−1〉√

2

(c) If the ant moves in the direction of part (b), its rate of cooling per
unit distance is |∇∇∇T (2,−1)| = | 〈4, 4〉 | = 4

√
2. It the ant is moving at

speed v, its rate of cooling per unit time is 4
√

2 v.
(d) If the ant moves from (2,−1) in direction 〈−1,−2〉 its temperature

increases at the rate

D 〈−1,−2〉√
5

T (2,−1) = 〈4, 4〉 · 〈−1,−2〉√
5

= − 12√
5

per unit distance. So, if the ant is moving at speed v, its rate of decrease
of temperature per unit time is 12√

5 v

(e) Suppose that the ant moves along the curve y = y(x). For the ant to
always experience maximum rate of cooling (or maximum rate of heating),
the tangent to this curve must be parallel to ∇∇∇T (x, y) at every point of
the curve. A tangent to the curve at (x, y) is

〈
1, dy

dx (x)
〉
. This is parallel

to ∇∇∇T (x, y) = 〈2x,−4y〉 when

dy
dx
1 = −4y

2x =⇒ dy

y
= −2dx

x
=⇒ ln y = −2 ln x+ C =⇒ y = C ′x−2

To pass through (2,−1), we need C ′ = −4, so y = − 4
x2 .

2.7.2.29. ∗. Solution. The first order partial derivatives of f , both at
a general point (x, y, z) and at the point (1, 0, π/2), are

fx(x, y, z) = 2x fx(1, 0, π/2) = 2
fy(x, y, z) = −z sin(yz) fy(1, 0, π/2) = 0
fz(x, y, z) = −y sin(yz) fz(1, 0, π/2) = 0

(a) The rate of increase of f is largest in the direction of∇∇∇f(1, 0, π/2) =
〈2, 0, 0〉. A unit vector in that direction is ı̂ıı.

(b) The gradient vector ∇∇∇f(1, 0, π/2) = 〈2, 0, 0〉 is a normal vector to
the surface f = 1 at (1, 0, π/2). So the specified tangent plane is

〈2, 0, 0〉 · 〈x− 1 , y − 0 , z − π/2〉 = 0 or x = 1
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(c) The vector from the point (0, 1, 0) to the point (1, 1, 0), on T , is
〈1, 0, 0〉, which is perpendicular to T . So (1, 1, 0) is the point on T nearest
(0, 1, 0) and the distance from (0, 1, 0) to T is | 〈1, 0, 0〉 | = 1.

(d) The vector 〈1, 0, 1〉 is perpendicular to the plane x + z = 0. So
the angle between the planes T and x + z = 0 is the same as the angle θ
between the vectors 〈1, 0, 0〉 and 〈1, 0, 1〉, which obeys

| 〈1, 0, 0〉 | | 〈1, 0, 1〉 | cos θ = | 〈1, 0, 0〉 · 〈1, 0, 1〉 | = 1

=⇒ cos θ = 1√
2

=⇒ θ = π

4

2.7.2.30. ∗. Solution. (a) We are being asked for the directional
derivative of T in the direction of the unit vector from P = (2, 1, 1) to
Q = (3, 2, 2), which is 〈1,1,1〉√

3 . That directional derivative is

∇∇∇T (P ) · 〈1, 1, 1〉√
3

= 〈1, 2, 3〉 · 〈1, 1, 1〉√
3

= 2
√

3

(b) The linear approximation to T at P is

T (2 + ∆x , 1 + ∆y , 1 + ∆z) ≈ T (P ) + Tx(P ) ∆x+ Ty(P ) ∆y + Tz(P ) ∆z
= 5 + ∆x+ 2 ∆y + 3 ∆z

Applying this with ∆x = −0.1, ∆y = 0, ∆z = 0.2 gives

T (1.9 , 1 , 1.2) ≈ 5 + (−0.1) + 2 (0) + 3 (0.2) = 5.5

(c) For the rate of change of T to be zero, the direction of motion
must be perpendicular to ∇∇∇T (P ) = 〈1, 2, 3〉. For the rate of change of
S to also be zero, the direction of motion must also be perpendicular to
∇∇∇S(P ) = 〈1, 0, 1〉. The vector

〈1, 2, 3〉 × 〈1, 0, 1〉 = det

ı̂ıı ̂ k̂
1 2 3
1 0 1

 = 〈2, 2,−2〉

is perpendicular to both ∇∇∇T (P ) and ∇∇∇S(P ). So the desired unit vectors
are ± 〈1,1,−1〉√

3 .

2.7.2.31. ∗. Solution. We are going to need the gradients of both F
and G at (0, 1, 2). So we compute

∂F

∂x
(x, y, z) = y2 + z

∂F

∂y
(x, y, z) = 2xy ∂F

∂z
(x, y, z) = 3z2 + x

∂G

∂x
(x, y, z) = 3 ∂G

∂y
(x, y, z) = −1 ∂G

∂z
(x, y, z) = 4

and then

∇∇∇F (0, 1, 2) = 〈3, 0, 12〉 ∇∇∇G(0, 1, 2) = 〈3,−1, 4〉

(a) The linear approximation to F at (0, 1, 2) is

F (x, y, z) ≈ F (0, 1, 2)+Fx(0, 1, 2)x+Fy(0, 1, 2) (y−1)+Fz(0, 1, 2) (z−2)
= 8 + 3x+ 12(z − 2)

In particular

F (0.1 , 0.9 , 1.8)− F (0, 1, 2) ≈ 3(0.1) + 12(−0.2) = −2.1
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(b) The direction along whichG increases most rapidly at P is∇∇∇G(0, 1, 2) =
〈3,−1, 4〉. The directional derivative of F in that direction is

D 〈3,−1,4〉√
26

F (0, 1, 2) =∇∇∇F (0, 1, 2) · 〈3,−1, 4〉√
26

= 〈3, 0, 12〉 · 〈3,−1, 4〉√
26

> 0

So F increases.
(c) For the rate of change of F to be zero, 〈a , b , c〉 must be perpendic-

ular to ∇∇∇F (0, 1, 2) = 〈3, 0, 12〉.
For the rate of change of G to be zero, 〈a , b , c〉 must be perpendicular

to ∇∇∇G(0, 1, 2) = 〈3,−1, 4〉.
So any nonzero constant times

det

ı̂ıı ̂ k̂
3 0 12
3 −1 4

 = 〈12 , 24 , −3〉 = 3 〈4 , 8 , −1〉

is an allowed direction.
2.7.2.32. ∗. Solution. (a) Since

z = − 100
x2 + 2x+ 4y2 + 11 = − 100

(x+ 1)2 + 4y2 + 10

the bottom of the crater is at x = −1, y = 0 (where the denominator is
a minimum) and the contours (level curves) are ellipses having equations
(x+1)2+4y2 = C. In the sketch below, the filled dot represents the bottom
of the crater and the open dot represents the car park. The contours
sketched are (from inside out) z = −7.5,−5,−2.5,−1. Note that the trail
crosses the contour lines at right angles.

x

y

(b) The trail is to be parallel to

∇∇∇z = 100
(x2 + 2x+ 4y2 + 11)2 (2x+ 2, 8y)

At the car park ∇∇∇z(4, 5) ‖ 〈10, 40〉 ‖ 〈1, 4〉. To move towards the bottom
of the crater, we should leave in the direction −〈1, 4〉.

2.7.2.33. ∗. Solution. We have

∇∇∇h(x, y) = −200e−(x2+2y2) 〈x, 2y〉

and, in particular,
∇∇∇h(3, 2) = −200e−17 〈3, 4〉

(a) At (3, 2) the dune slopes downward the most steeply in the direction
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opposite ∇∇∇h(3, 2), which is (any positive multiple of) 〈3, 4〉.
(b) The rate is D̂h(3, 2) =∇∇∇h(3, 2) · ̂ = −800e−17.
(c) To remain at the same height, you should walk perpendicular to

∇∇∇h(3, 2). So you should walk in one of the directions ±
( 4

5 ,−
3
5
)
.

(d) Suppose that you are walking along a steepest descent curve. Then
the direction from (x, y) to (x+dx, y+dy), with (dx,dy) infinitesmal, must
be opposite to ∇∇∇h(x, y) = −200e−(x2+2y2)(x, 2y). Thus (dx,dy) must be
parallel to (x, 2y) so that the slope

dy
dx = 2y

x
=⇒ dy

y
= 2dx

x
=⇒ ln y = 2 ln x+ C

We must choose C to obey ln 2 = 2 ln 3 + C in order to pass through the
point (3, 2). Thus C = ln 2

9 and the curve is ln y = 2 ln x+ ln 2
9 or y = 2

9x
2.

2.7.2.34. ∗. Solution. (a) Denote ∇∇∇f(1, 2) = 〈a, b〉. We are told that

Duf(1, 2) = u · (a, b) = 3
5a+ 4

5b = 10

Dvf(1, 2) = v · (a, b) = 3
5a−

4
5b = 2

Adding these two equations gives 6
5a = 12, which forces a = 10, and

subtracting the two equations gives 8
5b = 8, which forces b = 5, as desired.

(b) The rate of change of f at (1, 2) in the direction of the vector ı̂ıı+ 2̂
is

ı̂ıı+ 2̂
|̂ııı+ 2̂| · ∇

∇∇f(1, 2) = 1√
5
〈1, 2〉 · 〈10, 5〉 = 4

√
5 ≈ 8.944

(c) Applying (2.6.1), which is

f
(
x0 + ∆x , y0 + ∆y

)
≈ f

(
x0 , y0

)
+ ∂f

∂x

(
x0 , y0

)
∆x+ ∂f

∂y

(
x0 , y0

)
∆y

with x0 = 1, ∆x = 0.01, y0 = 2, and ∆y = 0.05, gives

f(1.01, 2.05) ≈ f(1, 2) + fx(1, 2)× (1.01− 1) + fy(1, 2)× (2.05− 2)
= 7 + 10× 0.01 + 5× 0.05
= 7.35

2.8 · A First Look at Partial Differential Equa-
tions
2.8.3 · Exercises

2.8.3.1. Solution. We start by evaluating ut(x, t) and uxx(x, t)+u(x, t)
when u(x, t) = e−t−x

2 .

u(x, t) = e−t−x
2

ut(x, t) = −e−t−x
2

ux(x, t) = −2xe−t−x
2

uxx(x, t) = −2e−t−x
2

+ 4x2e−t−x
2

So

uxx(x, t) + u(x, t) =
[
− 2e−t−x

2
+ 4x2e−t−x

2]
+ e−t−x

2
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=
[
4x2 − 1]e−t−x

2

For this to equal g(x)ut(x, t) = −g(x) e−t−x2 , we need g(x) = 1− 4x2.

2.8.3.2. Solution. (a) Fix any y0 and set v(x) = u(x, y0). Then

dv
dx (x) = ∂u

∂x
(x, y0) = 0

So, for each fixed y0, v(x) = u(x, y0), which is a function of x, has to be a
constant. The constant may be different for each different choice of y0. So
u(x, y0) = C(y0) with C(y0) depending only on y0, not on x. Or, renaming
y0 back to y, u(x, y) = C(y) with C(y) being any function of the single
variable y.

(b) Fix any y0 and set v(x) = u(x, y0). Then

dv
dx (x) = ∂u

∂x
(x, y0) = f(x)

In words, v(x) has to have derivative f(x), i.e. be an antiderivative of
f(x). So if F (x) is any function whose derivative is f(x), i.e. if F (x) is any
antiderivative of f(x), then, for each fixed y0, v(x) = u(x, y0) = F (x) +C,
with C being a constant. The constant may be different for each different
choice of y0. So u(x, y0) = F (x) + C(y0) with C(y0) depending only on
y0, not on x. Or, renaming y0 back to y, u(x, y) = F (x) +C(y) with F (x)
being any antiderivative of f(x) and C(y) being any function of the single
variable y.

2.8.3.3. Solution. (a) If u(x, y) = x3 − 3xy2, then

ux = 3x2 − 3y2 uxx = 6x
uy = −6xy uyy = −6x

So uxx(x, y) + uyy(x, y) = 6x− 6x = 0 and x3 − 3xy2 is harmonic.
(b) If u(x, y) = x3 − y3, then

ux = 3x2 uxx = 6x
uy = −3y2 uyy = −6y

So uxx(x, y) +uyy(x, y) = 6x− 6y is not identically zero and x3− y3 is not
harmonic.

(c) If u(x, y) = sin(x) cos(y), then

ux = cos(x) cos(y) uxx = − sin(x) cos(y)
uy = − sin(x) sin(y) uyy = − sin(x) cos(y)

So uxx(x, y) + uyy(x, y) = −2 sin(x) cos(y) is not identically zero and
sin(x) cos(y) is not harmonic.

(d) If u(x, y) = e7x cos(7y), then

ux = 7 e7x cos(7y) uxx = 49 e7x cos(7y)
uy = −7 e7x sin(7y) uyy = −49 e7x cos(7y)

So uxx(x, y)+uyy(x, y) = 49 e7x cos(7y)−49 e7x cos(7y) = 0 and e7x cos(7y)
is harmonic.
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(e) If u(x, y) = ln(x2 + y2), then

ux = 2x
x2 + y2 uxx = 2

x2 + y2 −
4x2

(x2 + y2)2

uy = 2y
x2 + y2 uyy = 2

x2 + y2 −
4y2

(x2 + y2)2

So

uxx(x, y) + uyy(x, y) = 2
x2 + y2 −

4x2

(x2 + y2)2 + 2
x2 + y2 −

4y2

(x2 + y2)2

= 4
x2 + y2 − 4 x2 + y2

(x2 + y2)2

= 4
x2 + y2 −

4
x2 + y2

= 0

and ln(x2 + y2) is harmonic.

2.8.3.4. ∗. Solution. We evaluate both sides of the given PDE with
u = u(x, t) = et+ax + et−ax. Since

u(x, t) = et+ax + et−ax

ut(x, t) = et+ax + et−ax

ux(x, t) = aet+ax − aet−ax uxx(x, t) = a2et+ax + a2et−ax

the left hand side of the PDE is

5ut = 5et+ax + 5et−ax

and the right hand side of the PDE is

uxx + u =
(
a2et+ax + a2et−ax

)
+
(
et+ax + et−ax

)
= (a2 + 1)et+ax + (a2 + 1)et−ax

The left and right hand sides are equal if and only if

5 = (a2 + 1) ⇐⇒ a2 = 4 ⇐⇒ a = ±2

2.8.3.5. Solution. We evaluate uxx + uyy + uzz with u = u(x, y, z) =
e3x+4y sin(az). Since

u(x, y, z) = e3x+4y sin(az)
ux(x, y, z) = 3 e3x+4y sin(az) uxx(x, y, z) = 9 e3x+4y sin(az)
uy(x, y, z) = 4 e3x+4y sin(az) uyy(x, y, z) = 16 e3x+4y sin(az)
uz(x, y, z) = a e3x+4y cos(az) uzz(x, y, z) = −a2 e3x+4y sin(az)

We have
uxx + uyy + uzz =

(
9 + 16− a2)e3x+4y sin(az)

This is zero (for all x, y, z) if and only if

a2 = 9 + 16 = 25 ⇐⇒ a = ±5
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2.8.3.6. Solution. We evaluate both sides of the given PDE with u =
u(x, t) = sin(at) cos(bx). Since

u(x, t) = sin(at) cos(bx)
ut(x, t) = a cos(at) cos(bx) utt(x, t) = −a2 sin(at) cos(bx)
ux(x, t) = −b sin(at) sin(bx) uxx(x, t) = −b2 sin(at) cos(bx)

the left hand side of the PDE is

utt = −a2 sin(at) cos(bx)

and the right hand side of the PDE is

uxx = −b2 sin(at) cos(bx)

The left and right hand sides are equal if and only if

a2 = b2 ⇐⇒ a = ±b
2.8.3.7. Solution. We simply evaluate the two terms on the left hand
side when z = z(x, y) = F

(
x2 + y2). By the chain rule,

y
∂z

∂x
= y

∂

∂x
F
(
x2 + y2) = yF ′

(
x2 + y2) ∂

∂x

(
x2 + y2) = yF ′

(
x2 + y2) (2x)

= 2xy F ′
(
x2 + y2)

x
∂z

∂y
= x

∂

∂y
F
(
x2 + y2) = xF ′

(
x2 + y2) ∂

∂y

(
x2 + y2) = xF ′

(
x2 + y2) (2y)

= 2xyF ′
(
x2 + y2)

So
y
∂z

∂x
− x∂z

∂y
= 2xy F ′

(
x2 + y2)− 2xy F ′

(
x2 + y2) = 0

and z(x, y) = F
(
x2 + y2) really does solve the PDE y ∂z∂x −x

∂z
∂y = 0 for any

differentiable function F .
2.8.3.8. Solution. We evaluate both sides of the given PDE with u =
u(x, t) = f(t) cos(2x). Since

u(x, t) = f(t) cos(2x)
ut(x, t) = f ′(t) cos(2x)
ux(x, t) = −2 f(t) sin(2x) uxx(x, t) = −4 f(t) cos(2x)

the left hand side of the PDE is

ut(x, t) = f ′(t) cos(2x)

and the right hand side of the PDE is

uxx(x, t) = −4 f(t) cos(2x)

The left and right hand sides are equal if and only if

f ′(t) = −4f(t)

This is the type of ordinary differential equation that we studied in Section
3.3, on exponential growth and decay, in the CLP-1 text. We found in
Theorem 3.3.2 there that the general solution to this ODE is f(t) = Ce−4t

with C being an arbitrary constant.
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2.8.3.9. Solution. Let u1(x, t) and u2(x, t) obey ∂2

∂t2u1(x, t) = ∂2

∂x2u1(x, t)
and ∂2

∂t2u2(x, t) = ∂2

∂x2u2(x, t). Then u(x, t) = a1u1(x, t) + a2u2(t, x) obeys

utt(x, t) = ∂2

∂t2
[
a1u1(x, t) + a2u2(t, x)

]
= a1

∂2

∂t2
u1(x, t) + a2

∂2

∂t2
u2(x, t)

= a1
∂2

∂x2u1(x, t) + a2
∂2

∂x2u2(x, t)

= ∂2

∂x2

[
a1u1(x, t) + a2u2(t, x)

]
= uxx(x, t)

as desired.
2.8.3.10. Solution. We evaluate uxx+uyy with u(x, y) = v(ax+by , cx+
dy). Since, by the chain rule,

u(x, y) = v(ax+ by , cx+ dy)
ux(x, y) = a vx(ax+ by , cx+ dy) + c vy(ax+ by , cx+ dy)
uy(x, y) = b vx(ax+ by , cx+ dy) + d vy(ax+ by , cx+ dy)
uxx(x, y) = a2 vxx(ax+ by , cx+ dy) + ac vxy(ax+ by , cx+ dy)

+ ca vyx(ax+ by , cx+ dy) + c2 vyy(ax+ by , cx+ dy)
uyy(x, y) = b2 vxx(ax+ by , cx+ dy) + bd vxy(ax+ by , cx+ dy)

+ db vyx(ax+ by , cx+ dy) + d2 vyy(ax+ by , cx+ dy)

we have

uxx + uyy = (a2 + b2)vxx(ax+ by , cx+ dy) + (c2 + d2)vyy(ax+ by , cx+ dy)
+ 2(ac+ bd)vxy(ax+ by , cx+ dy)

• If a2 + b2 = c2 +d2, i.e. if 〈a, b〉 and 〈c, d〉 have the same length, then
the first line of the right hand side is zero, since vxx + vyy = 0.

• If 〈a, b〉 · 〈c, d〉 = ac + bd = 0, i.e. if 〈a, b〉 and 〈c, d〉 are mutally
perpendicular, then the second line of the right hand side is zero.

So if 〈a, b〉 and 〈c, d〉 have the same length and are mutally perpendicular,
then uxx + uyy = 0. The missing word is “perpendicular”.

2.8.3.11. Solution. In preparation for substituting into the PDE, we
compute uxx, uyy and uzz.

u(x, y, z) = r(x, y, z)n =
(
x2 + y2 + z2)n/2

ux(x, y, z) = n

2
(
x2 + y2 + z2)n/2−1 ∂

∂x

(
x2 + y2 + z2)

= nx
(
x2 + y2 + z2)n/2−1

uxx(x, y, z) = n
(
x2 + y2 + z2)n/2−1 + nx (n/2− 1)

(
x2 + y2 + z2)n/2−2(2x)

= n
(
x2 + y2 + z2)n/2−1 + n(n− 2)x2(x2 + y2 + z2)n/2−2
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uy(x, y, z) = n

2
(
x2 + y2 + z2)n/2−1 ∂

∂y

(
x2 + y2 + z2)

= ny
(
x2 + y2 + z2)n/2−1

uyy(x, y, z) = n
(
x2 + y2 + z2)n/2−1 + ny (n/2− 1)

(
x2 + y2 + z2)n/2−2(2y)

= n
(
x2 + y2 + z2)n/2−1 + n(n− 2)y2(x2 + y2 + z2)n/2−2

uz(x, y, z) = n

2
(
x2 + y2 + z2)n/2−1 ∂

∂z

(
x2 + y2 + z2)

= nz
(
x2 + y2 + z2)n/2−1

uzz(x, y, z) = n
(
x2 + y2 + z2)n/2−1 + nz (n/2− 1)

(
x2 + y2 + z2)n/2−2(2z)

= n
(
x2 + y2 + z2)n/2−1 + n(n− 2)z2(x2 + y2 + z2)n/2−2)

So

uxx + uyy + uzz = 3n
(
x2 + y2 + z2)n/2−1 + n(n− 2) (x2 + y2 + z2)

(
x2 + y2 + z2)n/2−2

= 3n
(
x2 + y2 + z2)n/2−1 + n(n− 2)

(
x2 + y2 + z2)n/2−1

= [3n+ n2 − 2n]
(
x2 + y2 + z2)n/2−1

This is zero if and only if

n+ n2 = n(1 + n) = 0 ⇐⇒ n = 0,−1

2.8.3.12. Solution. (a) Substituting u(x, t) = X(x)T (t) into the given
PDE yields

X(x)T ′(t) = ut = xux = xX ′(x)T (t)

Then dividing both sides by X(x)T (t) gives

T ′(t)
T (t) = x

X ′(x)
X(x)

as desired.
(b) The left hand side T ′(t)

T (t) is independent of x, and the right hand side
x X′(x)
X(x) is independent of t. The left and right hand sides are equal to each

other, so both are independent of both t and x, i.e. are constant. If we call
the constant λ, then

T ′(t)
T (t) = x

X ′(x)
X(x) = λ

=⇒ T ′(t) = λT (t), X ′(x) = λ

x
X(x)

(c) The equation T ′(t) = λT (t) is the type of ordinary differential
equation that we studied in Section 3.3, on exponential growth and decay,
in the CLP-1 text. We found in Theorem 3.3.2 there that the general
solution to this ODE is T (t) = Ceλt with C being an arbitrary constant,
which we require to be positive to make T > 0. The equation X ′(x) =
λ
xX(x) is a separable ODE. We studied such ODE’s in Section 2.4 in the
CLP-2 text. To solve it, we divide across by X(x), giving

X ′(x)
X(x) = λ

x
=⇒ d

dx lnX(x) = λ

x
assuming X,x > 0

=⇒ lnX(x) = λ ln x+K ′ with K ′ constant
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=⇒ X(x) = Kxλ with K = eK
′
> 0 constant

So

u(x, t) = X(x)T (t) = Deλt xλ with D = CK > 0 a constant

solves the PDE ut = xux for x > 0.

2.8.3.13. Solution. By the chain rule,

d
dtu

(
X(t), Y (t)

)
= ux

(
X(t), Y (t)

) dX
dt (t) + uy

(
X(t), Y (t)

) dY
dt (t)

= α
(
X(t), Y (t)

)
ux
(
X(t), Y (t)

)
+ β

(
X(t), Y (t)

)
uy
(
X(t), Y (t)

)
But evaluating α(x, y)ux(x, y)+β(x, y)uy(x, y) = 0 at x = X(t), y = Y (t)
gives

α
(
X(t), Y (t)

)
ux
(
X(t), Y (t)

)
+ β

(
X(t), Y (t)

)
uy
(
X(t), Y (t)

)
= 0

so
d
dtu

(
X(t), Y (t)

)
= 0

2.8.3.14. Solution. (a) Suppose that u(x, y) obeys the PDE

3ux(x, y) + 6uy(x, y) = u(x, y)

Define v(X,Y ) = u(X,Y + 2X). Then, by the chain rule,

vX(X,Y ) = ∂

∂X

[
u(X,Y + 2X)

]
= ux(X,Y + 2X) + 2uy(X,Y + 2X)

= 1
3
{

3ux(X,Y + 2X) + 6uy(X,Y + 2X)
}

= 1
3u(X,Y + 2X)

= 1
3v(X,Y )

(b) Define v(X,Y ) = u(X,XeY ). Then, by the chain rule,

vX(X,Y ) = ∂

∂X

[
u(X,XeY )

]
= ux(X,XeY ) + eY uy(X,XeY )

Now notice that if xux(x, y) + yuy(x, y) = u(x, y), then, evaluating at
x = X and y = XeY gives

Xux(X,XeY ) +XeY uy(X,XeY ) = u(X,XeY )

So

vX(X,Y ) = 1
X

{
Xux(X,XeY ) +XeY uy(X,XeY )

}
= 1
X
u(X,XeY )

= 1
X
v(X,Y )
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2.9 · Maximum and Minimum Values
2.9.4 · Exercises

2.9.4.1. ∗. Solution. a) (i) ∇∇∇f is zero at critical points. The point T is
a local maximum and the point U is a saddle point. The remaining points
P , R, S, are not critical points.

(a) (ii) Only U is a saddle point.
(a) (iii) We have fy(x, y) > 0 if f increases as you move vertically

upward through (x, y). Looking at the diagram, we see

fy(P ) < 0 fy(Q) < 0 fy(R) = 0
fy(S) > 0 fy(T ) = 0 fy(U) = 0

So only S works.
(a) (iv) The directional derivative of f in the direction 〈0,−1〉 is ∇∇∇f ·

〈0,−1〉 = −fy. It is negative if and only if fy > 0. So, again, only S works.
(b) (i) The function z = F (x, 2) is increasing at x = 1, because the

y = 2.0 graph in the diagram has positive slope at x = 1. So Fx(1, 2) > 0.
(b) (ii) The function z = F (x, 2) is also increasing (though slowly) at

x = 2, because the y = 2.0 graph in the diagram has positive slope at
x = 2. So Fx(2, 2) > 0. So F does not have a critical point at (2, 2).

(b) (iii) From the diagram the looks like Fx(1, 1.9) > Fx(1, 2.0) >
Fx(1, 2.1). That is, it looks like the slope of the y = 1.9 graph at x = 1 is
larger than the slope of the y = 2.0 graph at x = 1, which in turn is larger
than the slope of the y = 2.1 graph at x = 1. So it looks like Fx(1, y)
decreases as y increases through y = 2, and consequently Fxy(1, 2) < 0.

2.9.4.2. Solution. The height
√
x2 + y2 at (x, y) is the distance from

(x, y) to (0, 0). So the minimum height is zero at (0, 0, 0). The surface is
a cone. The cone has a point at (0, 0, 0) and the derivatives zx and zy do
not exist there. The maximum height is achieved when (x, y) is as far as
possible from (0, 0). The highest points are at (±1,±1,

√
2). There zx and

zy exist but are not zero. These points would not be the highest points if
it were not for the restriction |x|, |y| ≤ 1.

2.9.4.3. Solution. Define f(t) = g(a + td) and determine t0 by x0 =
a + t0d. Then f ′(t) = ∇∇∇g(a + td) · d. To see this, write a = 〈a1, a2, a3〉
and d = 〈d1, d2, d3〉. Then

f(t) = g(a1 + td1, a2 + td2, a3 + td3)

So, by the chain rule,

f ′(t) = ∂g

∂x
(a1 + td1, a2 + td2, a3 + td3) d1

+ ∂g

∂y
(a1 + td1, a2 + td2, a3 + td3) d2

+ ∂g

∂z
(a1 + td1, a2 + td2, a3 + td3) d3

=∇∇∇g(a + td) · d

Then x0 is a local max or min of the restriction of g to the specified line if
and only if t0 is a local max or min of f(t). If so, f ′(t0) necessarily vanishes.
So if x0 is a local max or min of the restriction of g to the specified line,
then ∇∇∇g(x0) · d = 0, i.e. ∇∇∇g(x0) ⊥ d, and x0 = a + t0d for some t0. The
second condition is to ensure that x0 lies on the line.
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2.9.4.4. ∗. Solution. (a)
• The level curve z = 0 is y2 − x2 = 0, which is the pair of 45◦ lines
y = ±x.

• When C > 0, the level curve z = C4 is (y2 − x2)2 = C4, which is the
pair of hyperbolae y2 − x2 = C2, y2 − x2 = −C2 or

y = ±
√
x2 + C2 x = ±

√
y2 + C2

The hyperbola y2 − x2 = C2 crosses the y--axis (i.e. the line x = 0)
at (0,±C). The hyperbola y2 − x2 = −C2 crosses the x--axis (i.e.
the line y = 0) at (±C, 0).

Here is a sketch showing the level curves z = 0, z = 1 (i.e. C = 1), and
z = 16 (i.e. C = 2).

x

y

f“0
f“1f“1

f“1

f“1

f“16f“16

f“16

f“16

3´3

3

´3

(b) As fx(x, y) = −4x(y2 − x2) and fy(x, y) = 4y(y2 − x2), we have
fx(0, 0) = fy(0, 0) = 0 so that (0, 0) is a critical point. Note that

• f(0, 0) = 0,

• f(x, y) ≥ 0 for all x and y.

So (0, 0) is a local (and also absolute) minimum.
(c) Note that

fxx(x, y) = −4y2 + 12x2 fxx(x, y) = 0
fyy(x, y) = 12y2 − 4x2 fyy(x, y) = 0
fxy(x, y) = −8xy fxx(x, y) = 0

As fxx(0, 0)fyy(0, 0)−fxy(0, 0)2 = 0, the Second Derivative Test (Theorem
2.9.16) tells us absolutely nothing.

2.9.4.5. ∗. Solution. Write f(x, y) = x2 + cxy + y2. Then

fx(x, y) = 2x+ cy fx(0, 0) = 0
fy(x, y) = cx+ 2y fy(0, 0) = 0
fxx(x, y) = 2
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fxy(x, y) = c

fyy(x, y) = 2

As fx(0, 0) = fy(0, 0) = 0, we have that (0, 0) is always a critical point for
f . According to the Second Derivative Test, (0, 0) is also a saddle point
for f if

fxx(0, 0)fyy(0, 0)− fxy(0, 0)2 < 0 ⇐⇒ 4− c2 < 0 ⇐⇒ |c| > 2

As a remark, the Second Derivative Test provides no information when
the expression fxx(0, 0)fyy(0, 0) − fxy(0, 0)2 = 0, i.e. when c = ±2. But
when c = ±2,

f(x, y) = x2 ± 2xy + y2 = (x± y)2

and f has a local minimum, not a saddle point, at (0, 0).

2.9.4.6. ∗. Solution. To find the critical points we will need the gradient
of f , and to apply the second derivative test of Theorem 2.9.16 we will need
all second order partial derivatives. So we need all partial derivatives of f
up to order two. Here they are.

f = x3 − y3 − 2xy + 6
fx = 3x2 − 2y fxx = 6x fxy = −2
fy = −3y2 − 2x fyy = −6y fyx = −2

The critical points are the solutions of

fx = 3x2 − 2y = 0 fy = −3y2 − 2x = 0

Substituting y = 3
2x

2, from the first equation, into the second equation
gives

−3
(

3
2x

2
)2
− 2x = 0 ⇐⇒ −2x

(
33

23x
3 + 1

)
= 0

⇐⇒ x = 0, −2
3

So there are two critical points: (0, 0),
(
− 2

3 ,
2
3
)
.

The classification is
critical
point fxxfyy − f2

xy fxx type
(0, 0) 0× 0− (−2)2 < 0 saddle point(
− 2

3 ,
2
3
)

(−4)× (−4)− (−2)2 > 0 −4 local max

2.9.4.7. ∗. Solution. To find the critical points we will need the gradient
of f , and to apply the second derivative test of Theorem 2.9.16 we will need
all second order partial derivatives. So we need all partial derivatives of f
up to order two. Here they are.

f = x3 + x2y + xy2 − 9x
fx = 3x2 + 2xy + y2 − 9 fxx = 6x+ 2y fxy = 2x+ 2y
fy = x2 + 2xy fyy = 2x fyx = 2x+ 2y

(Of course, fxy and fyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)
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The critical points are the solutions of

fx = 3x2 + 2xy + y2 − 9 = 0 (E1)
fy = x(x+ 2y) = 0 (E2)

Equation (E2) is satisfied if at least one of x = 0, x = −2y.

• If x = 0, equation (E1) reduces to y2 − 9 = 0, which is satisfied if
y = ±3.

• If x = −2y, equation (E1) reduces to

0 = 3(−2y)2 + 2(−2y)y + y2 − 9 = 9y2 − 9

which is satisfied if y = ±1.

So there are four critical points: (0, 3), (0,−3), (−2, 1) and (2,−1). The
classification is

critical
point fxxfyy − f2

xy fxx type
(0, 3) (6)× (0)− (6)2 < 0 saddle point
(0,−3) (−6)× (0)− (−6)2 < 0 saddle point
(−2, 1) (−10)× (−4)− (−2)2 > 0 −10 local max
(2,−1) (10)× (4)− (2)2 > 0 10 local min

2.9.4.8. ∗. Solution. The region of interest is

D =
{

(x, y, z)
∣∣ x ≥ 0, y ≥ 0, z ≥ 0, 2x+ y + z = 5

}
First observe that, on the boundary of this region, at least one of x, y and
z is zero. So f(x, y, z) = x2y2z is zero on the boundary. As f takes values
which are strictly bigger than zero at all points of D that are not on the
boundary, the minimum value of f is 0 on

∂D =
{

(x, y, z)
∣∣ x ≥ 0, y ≥ 0, z ≥ 0, 2x+ y + z = 5,

at least one of x, y, z zero
}

The maximum value of f will be taken at a critical point. On D

f = x2y2(5− 2x− y) = 5x2y2 − 2x3y2 − x2y3

So the critical points are the solutions of

0 = fx(x, y) = 10xy2 − 6x2y2 − 2xy3

0 = fy(x, y) = 10x2y − 4x3y − 3x2y2

or, dividing by the first equation by xy2 and the second equation by x2y,
(recall that x, y 6= 0)

10− 6x− 2y = 0 or 3x+ y = 5
10− 4x− 3y = 0 or 4x+ 3y = 10

Substituting y = 5− 3x, from the first equation, into the second equation
gives

4x+ 3(5− 3x) = 10 =⇒ −5x+ 15 = 10 =⇒ x = 1, y = 5− 3(1) = 2

So the maximum value of f is (1)2(2)2(5− 2− 2) = 4 at (1, 2, 1).
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2.9.4.9. Solution. To find the critical points we will need the gradient
of f , and to apply the second derivative test of Theorem 2.9.16 we will
need all second order partial derivatives. So we need all partial derivatives
of f up to order two. Here they are.

f = x2 + y2 + x2y + 4
fx = 2x+ 2xy fxx = 2 + 2y fxy = 2x
fy = 2y + x2 fyy = 2

The critical points are the solutions of

fx = 0 fy = 0
⇐⇒ 2x(1 + y) = 0 2y + x2 = 0
⇐⇒ x = 0 or y = −1 2y + x2 = 0

When x = 0, y must be 0. When y = −1, x2 must be 2. So, there are
three critical points: (0, 0),

(
±
√

2,−1
)
.

The classification is
critical
point fxxfyy − f2

xy fxx type
(0, 0) 2× 2− 02 > 0 2 > 0 local min

(
√

2,−1) 0× 2− (2
√

2)2 < 0 saddle point
(−
√

2,−1) 0× 2− (−2
√

2)2 < 0 saddle point

2.9.4.10. ∗. Solution. To find the critical points we will need the
gradient of f , and to apply the second derivative test of Theorem 2.9.16
we will need all second order partial derivatives. So we need all partial
derivatives of f up to order two. Here they are.

f = x3 + x2 − 2xy + y2 − x
fx = 3x2 + 2x− 2y − 1 fxx = 6x+ 2 fxy = −2
fy = −2x+ 2y fyy = 2 fyx = −2

(Of course, fxy and fyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)

The critical points are the solutions of

fx = 3x2 + 2x− 2y − 1 = 0 (E1)
fy = −2x+ 2y = 0 (E2)

Substituting y = x, from (E2), into (E1) gives

3x2 − 1 = 0 ⇐⇒ x = ± 1√
3

= 0

So there are two critical points: ±
( 1√

3 ,
1√
3

)
.

The classification is
critical
point fxxfyy − f2

xy fxx type( 1√
3 ,

1√
3

)
(2
√

3 + 2)× (2)− (−2)2 > 0 2
√

3 + 2 > 0 local min
−
( 1√

3 ,
1√
3

)
(−2
√

3 + 2)× (2)− (−2)2 < 0 saddle point

2.9.4.11. ∗. Solution. To find the critical points we will need the
gradient of f and to apply the second derivative test of Theorem 2.9.16
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we will need all second order partial derivatives. So we need all partial
derivatives of f up to order two. Here they are.

f = x3 + xy2 − 3x2 − 4y2 + 4
fx = 3x2 + y2 − 6x fxx = 6x− 6 fxy = 2y
fy = 2xy − 8y fyy = 2x− 8 fyx = 2y

(Of course, fxy and fyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)

The critical points are the solutions of

fx = 3x2 + y2 − 6x = 0 fy = 2(x− 4)y = 0

The second equation is satisfied if at least one of x = 4, y = 0 are satisfied.

• If x = 4, the first equation reduces to y2 = −24, which has no real
solutions.

• If y = 0, the first equation reduces to 3x(x−2) = 0, which is satisfied
if either x = 0 or x = 2.

So there are two critical points: (0, 0), (2, 0).
The classification is

critical
point fxxfyy − f2

xy fxx type
(0, 0) (−6)× (−8)− (0)2 > 0 −6 local max
(2, 0) 6× (−4)− (0)2 < 0 saddle point

2.9.4.12. Solution. The specified function and its first order derivatives
are

f(x, y) = xy − x3y2 fx(x, y) = y − 3x2y2 fy(x, y) = x− 2x3y

• First, we find the critical points.

fx = 0 ⇐⇒ y(1− 3x2y) = 0 ⇐⇒ y = 0 or 3x2y = 1
fy = 0 ⇐⇒ x(1− 2x2y) = 0 ⇐⇒ x = 0 or 2x2y = 1

◦ If y = 0, we cannot have 2x2y = 1, so we must have x = 0.
◦ If 3x2y = 1, we cannot have x = 0, so we must have 2x2y = 1.
Dividing gives 1 = 3x2y

2x2y = 3
2 which is impossible.

So the only critical point in the square is (0, 0). There f = 0.

• Next, we look at the part of the boundary with x = 0. There f = 0.

• Next, we look at the part of the boundary with y = 0. There f = 0.

• Next, we look at the part of the boundary with x = 1. There f =
y − y2. As d

dy (y − y2) = 1 − 2y, the max and min of y − y2 for
0 ≤ y ≤ 1 must occur either at y = 0, where f = 0, or at y = 1

2 ,
where f = 1

4 , or at y = 1, where f = 0.

• Next, we look at the part of the boundary with y = 1. There f =
x − x3. As d

dx (x − x3) = 1 − 3x2, the max and min of x − x3 for
0 ≤ x ≤ 1 must occur either at x = 0, where f = 0, or at x = 1√

3 ,
where f = 2

3
√

3 , or at x = 1, where f = 0.
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All together, we have the following candidates for max and min.

point (0, 0) x = 0 y = 0 (1, 0) (1, 1
2 ) (1, 1) (0, 1) ( 1√

3 , 1) (1, 1)
value of f 0 0 0 0 1

4 0 0 2
3
√

3 0
min min min min min min max min

The largest and smallest values of f in this table are

min = 0 max = 2
3
√

3
≈ 0.385

2.9.4.13. Solution. The specified temperature and its first order deriva-
tives are

T (x, y) = (x+ y)e−x
2−y2

Tx(x, y) = (1− 2x2 − 2xy)e−x
2−y2

Ty(x, y) = (1− 2xy − 2y2)e−x
2−y2

• First, we find the critical points.

Tx = 0 ⇐⇒ 2x(x+ y) = 1
Ty = 0 ⇐⇒ 2y(x+ y) = 1

As x+ y may not vanish, this forces x = y and then x = y = ± 1
2 . So

the only critical points are ( 1
2 ,

1
2 ) and (− 1

2 ,−
1
2 ).

• On the boundary x = cos θ and y = sin θ, so T = (cos θ + sin θ)e−1.
This is a periodic function and so takes its max and min at zeroes of
dT
dθ =

(
− sin θ + cos θ

)
e−1. That is, when sin θ = cos θ, which forces

sin θ = cos θ = ± 1√
2 .

All together, we have the following candidates for max and min.

point ( 1
2 ,

1
2 ) (− 1

2 ,−
1
2 ) ( 1√

2 ,
1√
2 ) (− 1√

2 ,−
1√
2 )

value of T 1√
e
≈ 0.61 − 1√

e

√
2
e ≈ 0.52 −

√
2
e

max min
The largest and smallest values of T in this table are

min = − 1√
e

max = 1√
e

2.9.4.14. ∗. Solution. Both of the functions f(x, y) =
√
x2 + y2 (i.e.

(ii)) and f(x, y) = x2 + y2 (i.e. (iv)) are invariant under rotations around
the (0, 0). So their level curves are circles centred on the origin. In polar
coordinates

√
x2 + y2 is r. So the sketched level curves of the function in

(ii) are r = 0, 0.1, 0.2, . . . , 1.9, 2. They are equally spaced. So at this point,
we know that the third picture goes with (iv) and the fourth picture goes
with (ii).

Notice that the lines x = y, x = −y and y = 0 are all level curves of
the function f(x, y) = y(x+ y)(x− y) + 1 (i.e. of (iii)) with f = 1. So the
first picture goes with (iii). And the second picture goes with (i).

Here are the pictures with critical points marked on them. There are
saddle points where level curves cross and there are local max’s or min’s
at “bull’s eyes”.
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(i)

(ii)

(iii)

(iv)

2.9.4.15. ∗. Solution. To find the critical points we will need the
gradient of f , and to apply the second derivative test of Theorem 2.9.16
we will need all second order partial derivatives. So we need all partial
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derivatives of f up to order two. Here they are.

f = x3 + 3xy + 3y2 − 6x− 3y − 6
fx = 3x2 + 3y − 6 fxx = 6x fxy = 3
fy = 3x+ 6y − 3 fyy = 6 fyx = 3

(Of course, fxy and fyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)

The critical points are the solutions of

fx = 3x2 + 3y − 6 = 0 (E1)
fy = 3x + 6y − 3 = 0 (E2)

Subtracting equation (E2) from twice equation (E1) gives

6x2 − 3x− 9 = 0 ⇐⇒ (2x− 3)(3x+ 3) = 0

So we must have either x = 3
2 or x = −1.

• If x = 3
2 , (E2) reduces to

9
2 + 6y − 3 = 0 so y = − 1

4 .

• If x = −1, (E2) reduces to −3 + 6y − 3 = 0 so y = 1.

So there are two critical points:
( 3

2 ,−
1
4
)
and (−1, 1).

The classification is
critical
point fxxfyy − f2

xy fxx type( 3
2 ,−

1
4
)

(9)× (6)− (3)2 > 0 9 local min
(−1, 1) (−6)× (6)− (3)2 < 0 saddle point

2.9.4.16. ∗. Solution. (a) To find the critical points we will need the
gradient of h and to apply the second derivative test of Theorem 2.9.16
we will need all second order partial derivatives. So we need all partial
derivatives of f up to order two. Here they are.

h = y(4− x2 − y2)
hx = −2xy hxx = −2y hxy = −2x
hy = 4− x2 − 3y2 hyy = −6y hyx = −2x

(Of course, hxy and hyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)

The critical points are the solutions of

hx = −2xy = 0 hy = 4− x2 − 3y2 = 0

The first equation is satisfied if at least one of x = 0, y = 0 are satisfied.

• If x = 0, the second equation reduces to 4−3y2 = 0, which is satisfied
if y = ± 2√

3 .

• If y = 0, the second equation reduces to 4− x2 = 0 which is satisfied
if x = ±2.

So there are four critical points:
(

0, 2√
3

)
,
(

0,− 2√
3

)
, (2, 0), (−2, 0).

The classification is
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critical
point hxxhyy − h2

xy hxx type(
0, 2√

3

) (
−4√

3

)
×
(
− 12√

3

)
− (0)2 > 0 −4√

3 local max(
0,− 2√

3

) (
4√
3

)
×
(

12√
3

)
− (0)2 > 0 4√

3 local min
(2, 0) 0× 0− (−4)2 < 0 saddle point

(−2, 0) 0× 0− (4)2 < 0 saddle point
(b) The absolute max and min can occur either in the interior of the

disk or on the boundary of the disk. The boundary of the disk is the circle
x2 + y2 = 1.

• Any absolute max or min in the interior of the disk must also be a
local max or min and, since there are no singular points, must also
be a critical point of h. We found all of the critical points of h in
part (a). Since 2 > 1 and 2√

3 > 1 none of the critical points are in
the disk.

• At each point of x2 + y2 = 1 we have h(x, y) = 3y with −1 ≤ y ≤ 1.
Clearly the maximum value is 3 (at (0, 1)) and the minimum value is
−3 (at (0,−1)).

So all together, the maximum and minimum values of h(x, y) in x2 +y2 ≤ 1
are 3 (at (0, 1)) and −3 (at (0,−1)), respectively.

2.9.4.17. ∗. Solution. The maximum and minimum must either occur
at a critical point or on the boundary of R.

• The critical points are the solutions of

0 = fx(x, y) = 2− 2x
0 = fy(x, y) = −8y

So the only critical point is (1, 0).

• On the side x = −1, −1 ≤ y ≤ 1 of the boundary of R

f(−1, y) = 2− 4y2

This function decreases as |y| increases. So its maximum value on
−1 ≤ y ≤ 1 is achieved at y = 0 and its minimum value is achieved
at y = ±1.

• On the side x = 3, −1 ≤ y ≤ 1 of the boundary of R

f(3, y) = 2− 4y2

This function decreases as |y| increases. So its maximum value on
−1 ≤ y ≤ 1 is achieved at y = 0 and its minimum value is achieved
at y = ±1.

• On both sides y = ±1, −1 ≤ x ≤ 3 of the boundary of R

f(x,±1) = 1 + 2x− x2 = 2− (x− 1)2

This function decreases as |x−1| increases. So its maximum value on
−1 ≤ x ≤ 3 is achieved at x = 1 and its minimum value is achieved
at x = 3 and x = −1 (both of whom are a distance 2 from x = 1).
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So we have the following candidates for the locations of the min and max

point (1, 0) (−1, 0) (1,±1) (−1,±1) (3, 0) (3,±1)
value of f 6 2 2 −2 2 −2

max min min
So the minimum is −2 and the maximum is 6.

2.9.4.18. ∗. Solution. Since ∇∇∇h = 〈−4 , −2〉 is never zero, h has no
critical points and the minimum of h on the disk x2 +y2 ≤ 1 must be taken
on the boundary, x2 + y2 = 1, of the disk. To find the minimum on the
boundary, we parametrize x2 + y2 ≤ 1 by x = cos θ, y = sin θ and find the
minimum of

H(θ) = −4 cos θ − 2 sin θ + 6

Since

0 = H ′(θ) = 4 sin θ − 2 cos θ =⇒ x = cos θ = 2 sin θ = 2y

So

1 = x2 + y2 = 4y2 + y2 = 5y2 =⇒ y = ± 1√
5
, x = ± 2√

5

At these two points

h = 6− 4x− 2y = 6− 10y = 6∓ 10√
5

= 6∓ 2
√

5

The minimum is 6− 2
√

5.

2.9.4.19. ∗. Solution. (a) Thinking a little way ahead, to find the
critical points we will need the gradient of f and to apply the second
derivative test of Theorem 2.9.16 we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = xy(x+ y − 3)
fx = 2xy + y2 − 3y fxx = 2y fxy = 2x+ 2y − 3
fy = x2 + 2xy − 3x fyy = 2x fyx = 2x+ 2y − 3

(Of course, fxy and fyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)

The critical points are the solutions of

fx = y(2x+ y − 3) = 0 fy = x(x+ 2y − 3) = 0

The first equation is satisfied if at least one of y = 0, y = 3 − 2x are
satisfied.

• If y = 0, the second equation reduces to x(x − 3) = 0, which is
satisfied if either x = 0 or x = 3.

• If y = 3 − 2x, the second equation reduces to x(x + 6 − 4x − 3) =
x(3− 3x) = 0 which is satisfied if x = 0 or x = 1.

So there are four critical points: (0, 0), (3, 0), (0, 3), (1, 1).
The classification is
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critical
point fxxfyy − f2

xy fxx type
(0, 0) 0× 0− (−3)2 < 0 saddle point
(3, 0) 0× 6− (3)2 < 0 saddle point
(0, 3) 6× 0− (3)2 < 0 saddle point
(1, 1) 2× 2− (1)2 > 0 2 local min

(b) The absolute max and min can occur either in the interior of the
triangle or on the boundary of the triangle. The boundary of the triangle
consists of the three line segments.

L1 =
{

(x, y)
∣∣ x = 0, 0 ≤ y ≤ 8

}
L2 =

{
(x, y)

∣∣ y = 0, 0 ≤ x ≤ 8
}

L3 =
{

(x, y)
∣∣ x+ y = 8, 0 ≤ x ≤ 8

}
• Any absolute max or min in the interior of the triangle must also be

a local max or min and, since there are no singular points, must also
be a critical point of f . We found all of the critical points of f in
part (a). Only one of them, namely (1, 1) is in the interior of the
triangle. (The other three critical points are all on the boundary of
the triangle.) We have f(1, 1) = −1.

• At each point of L1 we have x = 0 and so f(x, y) = 0.

• At each point of L2 we have y = 0 and so f(x, y) = 0.

• At each point of L3 we have f(x, y) = x(8 − x)(5) = 40x − 5x2 =
5[8x − x2] with 0 ≤ x ≤ 8. As d

dx
(
40x − 5x2) = 40 − 10x, the max

and min of 40x−5x2 on 0 ≤ x ≤ 8 must be one of 5
[
8x−x2]

x=0 = 0
or 5

[
8x− x2]

x=8 = 0 or 5
[
8x− x2]

x=4 = 80.

So all together, we have the following candidates for max and min, with
the max and min indicated.

point(s) (1, 1) L1 L2 (0, 8) (8, 0) (4, 4)
value of f −1 0 0 0 0 80

min max

x

y

p1, 1q

p4, 4q

p0, 8q

p8, 0q

L1

L2

L3

2.9.4.20. ∗. Solution. Thinking a little way ahead, to find the critical
points we will need the gradient of f , and to apply the second derivative
test of Theorem 2.9.16 we will need all second order partial derivatives. So
we need all partial derivatives of f up to order two. Here they are.

f = 3x2y + y3 − 3x2 − 3y2 + 4
fx = 6xy − 6x fxx = 6y − 6 fxy = 6x
fy = 3x2 + 3y2 − 6y fyy = 6y − 6 fyx = 6x
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(Of course, fxy and fyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)

The critical points are the solutions of

fx = 6x(y − 1) = 0 fy = 3x2 + 3y2 − 6y = 0

The first equation is satisfied if at least one of x = 0, y = 1 are satisfied.

• If x = 0, the second equation reduces to 3y2 − 6y = 0, which is
satisfied if either y = 0 or y = 2.

• If y = 1, the second equation reduces to 3x2−3 = 0 which is satisfied
if x = ±1.

So there are four critical points: (0, 0), (0, 2), (1, 1), (−1, 1).
The classification is

critical
point fxxfyy − f2

xy fxx type
(0, 0) (−6)× (−6)− (0)2 > 0 −6 local max
(0, 2) 6× 6− (0)2 > 0 6 local min
(1, 1) 0× 0− (6)2 < 0 saddle point

(−1, 1) 0× 0− (−6)2 < 0 saddle point

2.9.4.21. ∗. Solution. (a) Since

f = 2x3 − 6xy + y2 + 4y
fx = 6x2 − 6y fxx = 12x fxy= −6
fy = −6x+ 2y + 4 fyy = 2

the critical points are the solutions of

fx = 0 fy = 0
⇐⇒ y = x2 y − 3x+ 2 = 0
⇐⇒ y = x2 x2 − 3x+ 2 = 0
⇐⇒ y = x2 x = 1 or 2

So, there are two critical points: (1, 1), (2, 4).
critical
point fxxfyy − f2

xy fxx type
(1, 1) 12× 2− (−6)2 < 0 saddle point
(2, 4) 24× 2− (−6)2 > 0 24 local min

(b) There are no critical points in the interior of the allowed region, so
both the maximum and the minimum occur only on the boundary. The
boundary consists of the line segments (i) x = 1, 0 ≤ y ≤ 1, (ii) y = 1,
0 ≤ x ≤ 1 and (iii) y = 1− x, 0 ≤ x ≤ 1.

x

y

p1, 1q
p0, 1q

p1, 0q

• First, we look at the part of the boundary with x = 1. There f =
y2 − 2y + 2. As d

dy (y2 − 2y + 2) = 2y − 2 vanishes only at y = 1, the



APPENDIX D. SOLUTIONS TO EXERCISES 635

max and min of y2− 2y+ 2 for 0 ≤ y ≤ 1 must occur either at y = 0,
where f = 2, or at y = 1, where f = 1.

• Next, we look at the part of the boundary with y = 1. There f =
2x3 − 6x + 5. As d

dx (2x3 − 6x + 5) = 6x2 − 6, the max and min of
2x3 − 6x+ 5 for 0 ≤ x ≤ 1 must occur either at x = 0, where f = 5,
or at x = 1, where f = 1.

• Next, we look at the part of the boundary with y = 1− x. There

f = 2x3 − 6x(1− x) + (1− x)2 + 4(1− x) = 2x3 + 7x2 − 12x+ 5

As

d
dx (2x3 + 7x2 − 12x+ 5) = 6x2 + 14x− 12 = 2

(
3x2 + 7x− 6

)
= 2(3x− 2)(x+ 3)

the max and min of 2x3 + 7x2 − 12x + 5 for 0 ≤ x ≤ 1 must occur
either at x = 0, where f = 5, or at x = 1, where f = 2, or at x = 2

3 ,
where

f = 2( 8
27)− 6(2

3)(1
3) + 1

9 + 4
3 = 16− 36 + 3 + 36

27 = 19
27

So all together, we have the following candidates for max and min, with
the max and min indicated.

point (1, 0) (1, 1) (0, 1)
( 2

3 ,
1
3
)

value of f 2 1 5 19
27

max min

2.9.4.22. ∗. Solution. We have

f(x, y) = x4 + y4 − 4xy + 2 fx(x, y) = 4x3 − 4y fxx(x, y) = 12x2

fy(x, y) = 4y3 − 4x fyy(x, y) = 12y2

fxy(x, y) = −4

At a critical point

fx(x, y) = fy(x, y) = 0 ⇐⇒ y = x3 and x = y3

⇐⇒ x = x9 and y = x3

⇐⇒ x(x8 − 1) = 0, y = x3

⇐⇒ (x, y) = (0, 0) or (1, 1) or (−1,−1)

Here is a table giving the classification of each of the three critical points.
critical
point fxxfyy − f2

xy fxx type
(0, 0) 0× 0− (−4)2 < 0 saddle point
(1, 1) 12× 12− (−4)2 > 0 12 local min

(−1,−1) 12× 12− (−4)2 > 0 12 local min

2.9.4.23. ∗. Solution. (a) We have

f(x, y) = xy(x+ 2y − 6)
fx(x, y) = 2xy + 2y2 − 6y fxx(x, y) = 2y
fy(x, y) = x2 + 4xy − 6x fyy(x, y) = 4x
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fxy(x, y) = 2x+ 4y − 6

At a critical point

fx(x, y) = fy(x, y) = 0 ⇐⇒ 2y(x+ y − 3) = 0 and x(x+ 4y − 6) = 0
⇐⇒ {y = 0 or x+ y = 3} and {x = 0 or x+ 4y = 6}
⇐⇒ {x = y = 0} or {y = 0, x+ 4y = 6}

or {x+ y = 3, x = 0} or {x+ y = 3, x+ 4y = 6}
⇐⇒ (x, y) = (0, 0) or (6, 0) or (0, 3) or (2, 1)

Here is a table giving the classification of each of the four critical points.
critical
point fxxfyy − f2

xy fxx type
(0, 0) 0× 0− (−6)2 < 0 saddle point
(6, 0) 0× 24− 62 < 0 saddle point
(0, 3) 6× 0− 62 < 0 saddle point
(2, 1) 2× 8− 22 > 0 2 local min

(b) Observe that xy = 4 and x+ 2y = 6 intersect when x = 6− 2y and

(6− 2y)y = 4 ⇐⇒ 2y2 − 6y + 4 = 0 ⇐⇒ 2(y − 1)(y − 2) = 0
⇐⇒ (x, y) = (4, 1) or (2, 2)

The shaded region in the sketch below is D.

x

xy “ 4

x ` 2y “ 6

y

p4, 1q

p2, 2q

None of the critical points are in D. So the max and min must occur
at either (2, 2) or (4, 1) or on xy = 4, 2 < x < 4 (in which case F (x) =
f
(
x, 4

x

)
= 4
(
x+ 8

x − 6) obeys F ′(x) = 4− 32
x2 = 0 ⇐⇒ x = ±2

√
2) or on

x + 2y = 6, 2 < x < 4 (in which case f(x, y) is identically zero). So the
min and max must occur at one of

(x, y) f(x, y)
(2, 2) 2× 2(2 + 2× 2− 6) = 0
(4, 1) 4× 1(4 + 2× 1− 6) = 0

(2
√

2,
√

2) 4(2
√

2 + 2
√

2− 6) < 0

The maximum value is 0 and the minimum value is 4(4
√

2−6) ≈ −1.37.

2.9.4.24. ∗. Solution. We have

f(x, y) = x4 + y4 − 4xy fx(x, y) = 4x3 − 4y fxx(x, y) = 12x2

fy(x, y) = 4y3 − 4x fyy(x, y) = 12y2

fxy(x, y) = −4
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At a critical point

fx(x, y) = fy(x, y) = 0 ⇐⇒ y = x3 and x = y3 ⇐⇒ x = x9 and y = x3

⇐⇒ x(x8 − 1) = 0, y = x3

⇐⇒ (x, y) = (0, 0) or (1, 1) or (−1,−1)

Here is a table giving the classification of each of the three critical points.
critical
point fxxfyy − f2

xy fxx type
(0, 0) 0× 0− (−4)2 < 0 saddle point
(1, 1) 12× 12− (−4)2 > 0 12 local min

(−1,−1) 12× 12− (−4)2 > 0 12 local min

2.9.4.25. ∗. Solution. The coldest point must be either on the bound-
ary of the plate or in the interior of the plate.

• On the semi--circular part of the boundary 0 ≤ y ≤ 2 and x2 +y2 = 4
so that T = ln

(
1 + x2 + y2) − y = ln 5 − y. The smallest value of

ln 5− y is taken when y is as large as possible, i.e. when y = 2, and
is ln 5− 2 ≈ −0.391.

• On the flat part of the boundary, y = 0 and −2 ≤ x ≤ 2 so that
T = ln

(
1+x2+y2)−y = ln

(
1+x2). The smallest value of ln

(
1+x2)

is taken when x is as small as possible, i.e. when x = 0, and is 0.

• If the coldest point is in the interior of the plate, it must be at a
critical point of T (x, y). Since

Tx(x, y) = 2x
1 + x2 + y2 Ty(x, y) = 2y

1 + x2 + y2 − 1

a critical point must have x = 0 and 2y
1+x2+y2 − 1 = 0, which is the

case if and only if x = 0 and 2y − 1 − y2 = 0. So the only critical
point is x = 0, y = 1, where T = ln 2− 1 ≈ −0.307.

Since −0.391 < −0.307 < 0, the coldest temperture is −0.391 and the
coldest point is (0, 2).

2.9.4.26. ∗. Solution. We have

f(x, y) = x3 + xy2 − x fx(x, y) = 3x2 + y2 − 1 fxx(x, y) = 6x
fy(x, y) = 2xy fyy(x, y) = 2x

fxy(x, y) = 2y

At a critical point

fx(x, y) = fy(x, y) = 0 ⇐⇒ xy = 0 and 3x2 + y2 = 1
⇐⇒ {x = 0 or y = 0} and 3x2 + y2 = 1

⇐⇒ (x, y) = (0, 1) or (0,−1) or
(

1√
3
, 0
)

or
(
− 1√

3
, 0
)

Here is a table giving the classification of each of the four critical points.
critical
point fxxfyy − f2

xy fxx type
(0, 1) 0× 0− 22 < 0 saddle point

(0,−1) 0× 0− (−2)2 < 0 saddle point( 1√
3 , 0
)

2
√

3× 2√
3 − 02 > 0 2

√
3 local min(

− 1√
3 , 0
)
−2
√

3×
(
− 2√

3

)
− 02 > 0 −2

√
3 local max
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2.9.4.27. ∗. Solution. (a) We have

g(x, y) = x2 − 10y − y2 gx(x, y) = 2x gxx(x, y) = 2
gy(x, y) = −10− 2y gyy(x, y) = −2

gxy(x, y) = 0

At a critical point

gx(x, y) = gy(x, y) = 0 ⇐⇒ 2x = 0 and − 10− 2y = 0
⇐⇒ (x, y) = (0,−5)

Since gxx(0,−5)gyy(0,−5) − gxy(0,−5)2 = 2 × (−2) − 02 < 0, the critical
point is a saddle point.

(b) The extrema must be either on the boundary of the region or in the
interior of the region.

• On the semi-elliptical part of the boundary −2 ≤ y ≤ 0 and x2 +
4y2 = 16 so that g = x2−10y−y2 = 16−10y−5y2 = 21−5(y+ 1)2.
This has a minimum value of 16 (at y = 0,−2) and a maximum value
of 21 (at y = −1). You could also come to this conclusion by checking
the critical point of 16−10y−5y2 (i.e. solving d

dy (16−10y−5y2) = 0)
and checking the end points of the allowed interval (namely y = 0
and y = −2).

• On the flat part of the boundary y = 0 and −4 ≤ x ≤ 4 so that
g = x2. The smallest value is taken when x = 0 and is 0 and the
largest value is taken when x = ±4 and is 16.

• If an extremum is in the interior of the plate, it must be at a critical
point of g(x, y). The only critical point is not in the prescribed region.

Here is a table giving all candidates for extrema:

(x, y) g(x, y)
(0,−2) 16
(±4, 0) 16

(±
√

12,−1) 21
(0, 0) 0

From the table the smallest value of g is 0 at (0, 0) and the largest value
is 21 at (±2

√
3,−1).

2.9.4.28. ∗. Solution. We have

f(x, y) = x3 − 3xy2 − 3x2 − 3y2

fx(x, y) = 3x2 − 3y2 − 6x fxx(x, y) = 6x− 6
fy(x, y) = −6xy − 6y fyy(x, y) = −6x− 6

fxy(x, y) = −6y

At a critical point

fx(x, y) = fy(x, y) = 0 ⇐⇒ 3(x2 − y2 − 2x) = 0 and − 6y(x+ 1) = 0
⇐⇒ {x = −1 or y = 0} and x2 − y2 − 2x = 0
⇐⇒ (x, y) = (−1,

√
3) or (−1,−

√
3) or (0, 0) or (2, 0)

Here is a table giving the classification of each of the four critical points.
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critical
point fxxfyy − f2

xy fxx type
(0, 0) (−6)× (−6)− 02 > 0 −6 local max
(2, 0) 6× (−18)− 02 < 0 saddle point

(−1,
√

3) (−12)× 0− (−6
√

3)2 < 0 saddle point
(−1,−

√
3) (−12)× 0− (6

√
3)2 < 0 saddle point

2.9.4.29. ∗. Solution. The maximum must be either on the boundary
of D or in the interior of D.

• On the circular part of the boundary r = 2, 0 ≤ θ ≤ π
2 (in polar

coordinates) so that f = r2 cos θ sin θe−r2/2 = 2 sin(2θ)e−2. This has
a maximum value of 2e−2 at θ = π

4 or x = y =
√

2.

• On the two flat parts of the boundary x = 0 or y = 0 so that f = 0.

• If the maximum is in the interior of D, it must be at a critical point
of f(x, y). Since

fx(x, y) = e−(x2+y2)/2[y − x2y
]

fy(x, y) = e−(x2+y2)/2[x− xy2]
(x, y) is a critical point if and only if

y(1− x2) = 0 and x(1− y2) = 0
⇐⇒ {y = 0 or x = 1 or x = −1} and {x = 0 or y = 1 or y = −1}

There are two critical points with x, y ≥ 0, namely (0, 0) and (1, 1).
The first of these is on the boundary of D and the second is in the
interior of D.

Here is a table giving all candidates for the maximum:

(x, y) g(x, y)
(
√

2,
√

2) 2e−2 ≈ 0.271
(x, 0) 0
(0, y) 0
(1, 1) e−1 ≈ 0.368

Since e > 2, we have that 2e−2 = e−1 2
e < e−1 and the largest value is

e−1.
2.9.4.30. Solution. Suppose that the bends are made a distance x from
the ends of the fence and that the bends are through an angle θ. Here is a
sketch of the enclosure.

x sin θx x

100 ´ 2x

θθ

It consists of a rectangle, with side lengths 100−2x and x sin θ, together
with two triangles, each of height x sin θ and base length x cos θ. So the
enclosure has area

A(x, θ) = (100− 2x)x sin θ + 2 · 1
2 · x sin θ · x cos θ

= (100x− 2x2) sin θ + 1
2x

2 sin(2θ)
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The maximize the area, we need to solve

0 = Ax = (100− 4x) sin θ + x sin(2θ)
=⇒ (100− 4x) + 2x cos θ = 0

0 = Aθ = (100x− 2x2) cos θ + x2 cos(2θ)
=⇒ (100− 2x) cos θ + x cos(2θ) = 0

Here we have used that the fence of maximum area cannot have sin θ = 0 or
x = 0, because in either of these two cases, the area enclosed will be zero.
The first equation forces cos θ = − 100−4x

2x and hence cos(2θ) = 2 cos2 θ−1 =
(100−4x)2

2x2 − 1. Substituting these into the second equation gives

−(100− 2x)100− 4x
2x + x

[ (100− 4x)2

2x2 − 1
]

= 0

=⇒ −(100− 2x)(100− 4x) + (100− 4x)2 − 2x2 = 0
=⇒ 6x2 − 200x = 0

=⇒ x = 100
3 cos θ = −−100/3

200/3 = 1
2 θ = 60◦

A =
(

100100
3 − 21002

32

) √
3

2 + 1
2

1002

32

√
3

2 = 2500√
3

2.9.4.31. Solution. Suppose that the box has side lengths x, y and z.
Here is a sketch.

x
y

z

Because the box has to have volume V we need that V = xyz. We wish
to minimize the area A = xy + 2yz + 2xz of the four sides and bottom.
Substituting in z = V

xy ,

A = xy + 2V
x

+ 2V
y

Ax = y − 2 V
x2

Ay = x− 2 V
y2

To minimize, we want Ax = Ay = 0, which is the case when yx2 =
2V, xy2 = 2V . This forces yx2 = xy2. Since V = xyz is nonzero, nei-
ther x nor y may be zero. So x = y = (2V )1/3, z = 2−2/3V 1/3.

2.9.4.32. ∗. Solution. (a) The maximum and minimum can occur
either in the interior of the disk or on the boundary of the disk. The
boundary of the disk is the circle x2 + y2 = 4.

• Any absolute max or min in the interior of the disk must also be a
local max or min and, since there are no singular points, must also
be a critical point of h. Since Tx = −8x and Ty = −2y, the only
critical point is (x, y) = (0, 0), where T = 20. Since 4x2 + y2 ≥ 0,
we have T (x, y) = 20 − 4x2 − y2 ≤ 20. So the maximum value of T
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(even in R2) is 20.

• At each point of x2 + y2 = 4 we have T (x, y) = 20 − 4x2 − y2 =
20− 4x2− (4− x2) = 16− 3x2 with −2 ≤ x ≤ 2. So T is a minimum
when x2 is a maximum. Thus the minimum value of T on the disk
is 16− 3(±2)2 = 4.

So all together, the maximum and minimum values of T (x, y) in x2+y2 ≤ 4
are 20 (at (0, 0)) and 4 (at (±2, 0)), respectively.

(b) To increase its temperature as quickly as possible, the ant should
move in the direction of the temperature gradient∇∇∇T (1, 1) = 〈−8x,−2y〉

∣∣∣
(x,y)=(1,1)

=

〈−8,−2〉. A unit vector in that direction is 1√
17 〈−4,−1〉.

(c) The ant’s rate f increase of temperature (per unit time) is

∇∇∇T (1, 1) · 〈−2,−1〉 = 〈−8,−2〉 · 〈−2,−1〉 = 18

(d) We are being asked to find the (x, y) = (x, 2−x2) which maximizes

T
(
x, 2− x2) = 20− 4x2 −

(
2− x2)2 = 16− x4

The maximum of 16−x4 is obviously 16 at x = 0. So the ant should go to(
0, 2− 02) = (0, 2).

2.9.4.33. ∗. Solution. To find the critical points we will need the
gradient of f and to apply the second derivative test of Theorem 2.9.16
we will need all second order partial derivatives. So we need all partial
derivatives of f up to order two. Here they are.

f = 3kx2y + y3 − 3x2 − 3y2 + 4
fx = 6kxy − 6x fxx = 6ky − 6 fxy = 6kx
fy = 3kx2 + 3y2 − 6y fyy = 6y − 6 fyx = 6kx

(Of course, fxy and fyx have to be the same. It is still useful to compute
both, as a way to catch some mechanical errors.)

The critical points are the solutions of

fx = 6x(ky − 1) = 0 fy = 3kx2 + 3y2 − 6y = 0

The first equation is satisfied if at least one of x = 0, y = 1
k are satisfied.

(Recall that k > 0.)

• If x = 0, the second equation reduces to 3y(y − 2) = 0, which is
satisfied if either y = 0 or y = 2.

• If y = 1
k , the second equation reduces to 3kx2 + 3

k2 − 6
k = 3kx2 +

3
k2 (1− 2k) = 0.

Case k < 1
2 : If k < 1

2 , then
3
k2 (1 − 2k) > 0 and the equation 3kx2 +

3
k2 (1 − 2k) = 0 has no real solutions. In this case there are two critical
points: (0, 0), (0, 2) and the classification is

critical
point fxxfyy − f2

xy fxx type
(0, 0) (−6)× (−6)− (0)2 > 0 −6 local max
(0, 2) (12k − 6)× 6− (0)2 < 0 saddle point

Case k = 1
2 : If k = 1

2 , then
3
k2 (1 − 2k) = 0 and the equation 3kx2 +

3
k2 (1 − 2k) = 0 reduces to 3kx2 = 0 which has as its only solution x = 0.
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We have already seen this third critical point, x = 0, y = 1
k = 2. So there

are again two critical points: (0, 0), (0, 2) and the classification is
critical
point fxxfyy − f2

xy fxx type
(0, 0) (−6)× (−6)− (0)2 > 0 −6 local max
(0, 2) (12k − 6)× 6− (0)2 = 0 unknown

Case k > 1
2 : If k > 1

2 , then
3
k2 (1 − 2k) < 0 and the equation 3kx2 +

3
k2 (1 − 2k) = 0 reduces to 3kx2 = 3

k2 (2k − 1) which has two solutions,
namely x = ±

√
1
k3 (2k − 1). So there are four critical points: (0, 0), (0, 2),(√

1
k3 (2k − 1) , 1

k

)
and

(
−
√

1
k3 (2k − 1) , 1

k

)
and the classification is

critical
point fxxfyy − f2

xy fxx type
(0, 0) (−6)× (−6)− (0)2 > 0 −6 local max
(0, 2) (12k − 6)× 6− (0)2 > 0 12k − 6 > 0 local min(√

1
k3 (2k − 1) , 1

k

)
(6− 6)× ( 6

k − 6)− (> 0)2 < 0 saddle point(
−
√

1
k3 (2k − 1) , 1

k

)
(6− 6)× ( 6

k − 6)− (< 0)2 < 0 saddle point

2.9.4.34. ∗. Solution. (a) For x, y > 0,

fx = 2− 1
x2y

= 0 ⇐⇒ y = 1
2x2

fy = 4− 1
xy2 = 0

Substituting y = 1
2x2 , from the first equation, into the second gives 4 −

4x3 = 0 which forces x = 1, y = 1
2 . At x = 1, y = 1

2 ,

f
(
1, 1

2
)

= 2 + 2 + 2 = 6

(b) The second derivatives are

fxx(x, y) = 2
x3y

fxy(x, y) = 1
x2y2 fyy(x, y) = 2

xy3

In particular

fxx
(
1, 1

2
)

= 4 fxy
(
1, 1

2
)

= 4 fyy
(
1, 1

2
)

= 16

Since fxx
(
1, 1

2
)
fyy
(
1, 1

2
)
−fxy

(
1, 1

2
)2 = 4×16−42 = 48 > 0 and fxx

(
1, 1

2
)

=
4 > 0, the point

(
1, 1

2
)
is a local minimum.

(c) As x or y tends to infinity (with the other at least zero), 2x + 4y
tends to +∞. As (x, y) tends to any point on the first quadrant part of the
x- and y--axes, 1

xy tends to +∞. Hence as x or y tends to the boundary
of the first quadrant (counting infinity as part of the boundary), f(x, y)
tends to +∞. As a result

(
1, 1

2
)
is a global (and not just local) minimum

for f in the first quadrant. Hence f(x, y) ≥ f
(
1, 1

2
)

= 6 for all x, y > 0.

2.9.4.35. Solution. We wish to choose m and b so as to minimize the
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(square of the) rms error E(m, b) =
n∑
i=1

(mxi + b− yi)2.

0 = ∂E

∂m
=

n∑
i=1

2(mxi + b− yi)xi = m
[ n∑
i=1

2x2
i

]
+ b
[ n∑
i=1

2xi
]
−
[ n∑
i=1

2xiyi
]

0 = ∂E

∂b
=

n∑
i=1

2(mxi + b− yi) = m
[ n∑
i=1

2xi
]

+ b
[ n∑
i=1

2
]
−
[ n∑
i=1

2yi
]

There are a lot of symbols in those two equations. But remember that
only two of them, namely m and b, are unknowns. All of the xi’s and yi’s
are given data. We can make the equations look a lot less imposing if we
define Sx =

∑n
i=1 xi, Sy =

∑n
i=1 yi, Sx2 =

∑n
i=1 x

2
i and Sxy =

∑n
i=1 xiyi.

In terms of this notation, the two equations are (after dividing by two)

Sx2 m+ Sx b = Sxy (1)
Sxm+ n b = Sy (2)

This is a system of two linear equations in two unknowns. One way2 to
solve them, is to use one of the two equations to solve for one of the two
unknowns in terms of the other unknown. For example, equation (2) gives
that

b = 1
n

(
Sy − Sxm

)
If we now substitute this into equation (1) we get

Sx2 m+ Sx
n

(
Sy − Sxm

)
= Sxy =⇒

(
Sx2 − S2

x

n

)
m = Sxy −

SxSy
n

which is a single equation in the single unkown m. We can easily solve it
for m. It tells us that

m = nSxy − SxSy
nSx2 − S2

x

Then substituting this back into b = 1
n

(
Sy − Sxm

)
gives us

b = Sy
n
− Sx

n

(
nSxy − SxSy
nSx2 − S2

x

)
= SySx2 − SxSxy

nSx2 − S2
x

2.10 · Lagrange Multipliers
2.10.2 · Exercises

2.10.2.1. ∗. Solution. (a) f(x, y) = x2 +y2 is the square of the distance
from the point (x, y) to the origin. There are points on the curve xy = 1
that have either x or y arbitrarily large and so whose distance from the
origin is arbitrarily large. So f has no maximum on the curve. On the
other hand f will have a minimum, achieved at the points of xy = 1 that
are closest to the origin.

(b) On the curve xy = 1 we have y = 1
x and hence f = x2 + 1

x2 . As

d
dx

(
x2 + 1

x2

)
= 2x− 2

x3 = 2
x3 (x4 − 1)

and as no point of the curve has x = 0, the minimum is achieved when
x = ±1. So the minima are at ±(1, 1), where f takes the value 2.
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2.10.2.2. Solution. (a) As you leave (x0, y0, z0) walking in the direction
d 6= 0, f has to be decreasing, or at least not increasing, because f takes
its largest value on S at (x0, y0, z0). So the directional derivative

Dd/|d|f(x0, y0, z0) =∇∇∇f(x0, y0, z0) · d
|d| ≤ 0 (E1)

As you leave (x0, y0, z0) walking in the direction −d 6= 0, f also has to be
decreasing, or at least not increasing, because f still takes its largest value
on S at (x0, y0, z0). So the directional derivative

D−d/|d|f(x0, y0, z0) = −∇∇∇f(x0, y0, z0) · d
|d| ≤ 0 (E2)

(E1) and (E2) can both be true only if the directional derivative

Dd/|d|f(x0, y0, z0) =∇∇∇f(x0, y0, z0) · d
|d| = 0

(b) By Definition 2.7.5, the directional derivative is

Dd/|d|f(x0, y0, z0) =∇∇∇f(x0, y0, z0) · d
|d|

• As (x0, y0, z0) is a local maximum for f on S, the method of Lagrange
multipliers, Theorem 2.10.2, gives that∇∇∇f(x0, y0, z0) = λ∇∇∇g(x0, y0, z0)
for some λ.

• By Theorem 2.5.5, the vector ∇∇∇g(x0, y0, z0) is perpendicular to the
surface S at (x0, y0, z0), and, in particular, is perpendicular to the
vector d, which after all is tangent to the surface S at (x0, y0, z0).

So ∇∇∇g(x0, y0, z0) · d = 0 and the directional derivative

Dd/|d|f(x0, y0, z0) =∇∇∇f(x0, y0, z0) · d
|d| = 0

2.10.2.3. Solution. We are to find the maximum and minimum of
f(x, y, z) = x+y−z subject to the constraint g(x, y, z) = x2+y2+z2−1 = 0.
According to the method of Lagrange multipliers, we need to find all solu-
tions to

fx = 1 = 2λx = λgx =⇒ x = 1
2λ (E1)

fy = 1 = 2λy = λgy =⇒ y = 1
2λ (E2)

fz = −1 = 2λz = λgz =⇒ z = − 1
2λ (E3)

x2 + y2 + z2 = 1 =⇒ 3
(

1
2λ

)2
= 1 =⇒ λ = ±

√
3

2 (E4)

Thus the critical points are
(
− 1√

3 ,−
1√
3 ,

1√
3

)
, where f = −

√
3 and

( 1√
3 ,

1√
3 ,−

1√
3

)
,

where f =
√

3. So, the max is f =
√

3 and the min is f = −
√

3.

2.10.2.4. Solution. The ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 passes through
the point (1, 2, 1) if and only if 1

a2 + 4
b2 + 1

c2 = 1. We are to minimize
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f(a, b, c) = 4
3πabc subject to the constraint that g(a, b, c) = 1

a2 + 4
b2 + 1

c2 −
1 = 0. According to the method of Lagrange multipliers, we need to find
all solutions to

fa = 4
3πbc = −2λ

a3 = λga =⇒ 3
2πλ = −a3bc (E1)

fb = 4
3πac = −8λ

b3
= λgb =⇒ 3

2πλ = −1
4ab

3c (E2)

fc = 4
3πab = −2λ

c3
= λgc =⇒ 3

2πλ = −abc3 (E3)
1
a2 + 4

b2
+ 1
c2

= 1 (E4)

The equations − 3
2πλ = a3bc = 1

4ab
3c force b = 2a (since we want a, b, c >

0). The equations − 3
2πλ = a3bc = abc3 force a = c. Hence, by (E4),

1 = 1
a2 + 4

b2
+ 1
c2

= 3
a2 =⇒ a = c =

√
3, b = 2

√
3

2.10.2.5. ∗. Solution. So we are to minimize f(x, y) = x2 + y2 subject
to the constraint g(x, y) = x2y − 1 = 0. According to the method of
Lagrange multipliers, we need to find all solutions to

fx = 2x = 2λxy = λgx (E1)
fy = 2y = λx2 = λgy (E2)

x2y = 1 (E3)

• Equation (E1), 2x(1− λy) = 0, gives that either x = 0 or λy = 1.

• But substituting x = 0 in (E3) gives 0 = 1, which is impossible.

• Also note that λ = 0 is impossible, since substituting λ = 0 in (E1)
and (E2) gives x = y = 0, which violates (E3).

• So y = 1
λ .

• Substituting y = 1
λ into (E2) gives 2

λ = λx2 or x2 = 2
λ2 . So x = ±

√
2
λ .

• Substituting y = 1
λ , x = ±

√
2
λ into (E3) gives 2

λ3 = 1 or λ3 = 2 or
λ = 3
√

2.

• λ = 21/3 gives x = ±2 1
2−

1
3 = ±2 1

6 and y = 2− 1
3 .

So the two critical points are
(
2 1

6 , 2− 1
3
)
and

(
− 2 1

6 , 2− 1
3
)
. For both of

these critical points,

x2 + y2 = 2 1
3 + 2− 2

3 = 2 1
3 + 1

22 1
3 = 3

2
3
√

2 = 3
3
√

4

2.10.2.6. ∗. Solution. Let r and h denote the radius and height, re-
spectively, of the cylinder. We can always choose our coordinate system so
that the axis of the cylinder is parallel to the z--axis.

• If the axis of the cylinder does not lie exactly on the z--axis, we can
enlarge the cylinder sideways. (See the first figure below. It shows
the y = 0 cross--section of the cylinder.) So we can assume that the
axis of the cylinder lies on the z--axis
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• If the top and/or the bottom of the cylinder does not touch the
sphere x2 + y2 + z2 = 1, we can enlarge the cylinder vertically. (See
the second figure below.)

• So we may assume that the cylinder is{
(x, y, z)

∣∣ x2 + y2 ≤ r2, −h/2 ≤ z ≤ h/2
}

with r2 + (h/2)2 = 1. See the third figure below.

x

z

x

z

x

z

x2 ` y2 ` z2 “ 1

pr , 0 , h{2q

pr , 0 ,´h{2q

So we are to maximize the volume, f(r, h) = πr2h, of the cylinder
subject to the constraint g(r, h) = r2 + h2

4 − 1 = 0. According to the
method of Lagrange multipliers, we need to find all solutions to

fr = 2πrh = 2λr = λgr (E1)

fh = πr2 = λ
h

2 = λgh (E2)

r2 + h2

4 = 1 (E3)

Equation (E1), 2r(πh− λ) = 0, gives that either r = 0 or λ = πh. Clearly
r = 0 cannot give the maximum volume, so λ = πh. Substituting λ = πh
into (E2) gives

πr2 = 1
2πh

2 =⇒ r2 = h2

2
Substituting r2 = h2

2 into (E3) gives

h2

2 + h2

4 = 1 =⇒ h2 = 4
3

Clearly both r and h have to be positive, so h = 2√
3 and r =

√
2
3 .

2.10.2.7. ∗. Solution. For this problem the objective function is f(x, y) =
xy and the constraint function is g(x, y) = x2 + 2y2 − 1. To apply the
method of Lagrange multipliers we need ∇∇∇f and ∇∇∇g. So we start by com-
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puting the first order derivatives of these functions.

fx = y fy = x gx = 2x gy = 4y

So, according to the method of Lagrange multipliers, we need to find all
solutions to

y = λ(2x) (E1)
x = λ(4y) (E2)

x2 + 2y2 − 1 = 0 (E3)

First observe that none of x, y, λ can be zero, because if at least one of
them is zero, then (E1) and (E2) force x = y = 0, which violates (E3).
Dividing (E1) by (E2) gives y

x = x
2y so that x2 = 2y2 or x = ±

√
2 y. Then

(E3) gives

2y2 + 2y2 = 1 ⇐⇒ y = ±1
2

The method of Lagrange multipliers, Theorem 2.10.2, gives that the only
possible locations of the maximum and minimum of the function f are(
± 1√

2 ,±
1
2

)
. So the maximum and minimum values of f are 1

2
√

2 and
− 1

2
√

2 , respectively.

2.10.2.8. ∗. Solution. This is a constrained optimization problem with
the objective function being f(x, y) = x2 + y2 and the constraint function
being g(x, y) = x4 +y4−1. By Theorem 2.10.2, any minimum or maximum
(x, y) must obey the Lagrange multiplier equations

fx = 2x = 4λx3 = λgx (E1)
fy = 2y = 4λy3 = λgy (E2)
x4 + y4 = 1 (E3)

for some real number λ. By equation (E1), 2x(1 − 2λx2) = 0, which is
obeyed if and only if at least one of x = 0, 2λx2 = 1 is obeyed. Similarly,
by equation (E2), 2y(1− 2λy2) = 0, which is obeyed if and only if at least
one of y = 0, 2λy2 = 1 is obeyed.

• If x = 0, (E3) reduces to y4 = 1 or y = ±1. At both
(
0,±1

)
we have

f
(
0,±1

)
= 1.

• If y = 0, (E3) reduces to x4 = 1 or x = ±1. At both
(
± 1, 0

)
we

have f
(
± 1, 0

)
= 1.

• If both x and y are nonzero, we have x2 = 1
2λ = y2. Then (E3)

reduces to

2x4 = 1

so that x2 = y2 = 1√
2 and x = ±2−1/4, y = ±2−1/4. At all four of

these points, we have f =
√

2.

So the minimum value of f on x4 + y4 = 1 is 1 and the maximum value of
f on x4 + y4 = 1 is

√
2.
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2.10.2.9. ∗. Solution. The function f(x, y, z) = (x − 1)2 + (y + 2)2 +
(z−1)2 gives the square of the distance from the point (x, y, z) to the point
(1,−2, 1). So it suffices to find the (x, y, z) which minimizes f(x, y, z) =
(x−1)2 +(y+2)2 +(z−1)2 subject to the constraint g(x, y, z) = z2 +x2 +
y2 − 2y − 10 = 0. By Theorem 2.10.2, any local minimum or maximum
(x, y, z) must obey the Lagrange multiplier equations

fx = 2(x− 1) = 2λx = λgx (E1)
fy = 2(y + 2) = 2λ(y − 1) = λgy (E2)
fz = 2(z − 1) = 2λz = λgz (E3)

z2 + x2 + y2 − 2y = 10 (E4)

for some real number λ. Now

(E1) =⇒ x = 1
1− λ

(E2) =⇒ y = −2 + λ

1− λ

(E3) =⇒ z = 1
1− λ

(Note that λ cannot be 1, because if it were (E1) would reduce to −2 = 0.)
Substituting these into (E4), and using that

y − 2 = −2 + λ

1− λ −
2− 2λ
1− λ = −4− λ

1− λ

gives

1
(1− λ)2 + 1

(1− λ)2 + 2 + λ

1− λ
4− λ
1− λ = 10

⇐⇒ 2 + (2 + λ)(4− λ) = 10(1− λ)2

⇐⇒ 11λ2 − 22λ = 0
⇐⇒ λ = 0 or λ = 2

When λ = 0, we have (x, y, z) = (1,−2, 1) (nasty!), which gives dis-
tance zero and so is certainly the closest point. When λ = 2, we have
(x, y, z) = (−1, 4,−1), which does not give distance zero and so is cer-
tainly the farthest point.

2.10.2.10. ∗. Solution. We are to maximize and minimize f(x, y, z) =
x2 + y2 − 1

20z
2 subject to the constraints g(x, y, z) = x + 2y + z − 10 = 0

and h(x, y, z) = x2 + y2 − z = 0. By Theorem 2.10.8, any local minimum
or maximum (x, y, z) must obey the double Lagrange multiplier equations

fx = 2x = λ+ 2µx = λgx + µhx (E1)
fy = 2y = 2λ+ 2µy = λgy + µhy (E2)

fz = − z

10 = λ− µ = λgz + µhz (E3)

x+ 2y + z = 10 (E4)
x2 + y2 − z = 0 (E5)

for some real numbers λ and µ.
Equation (E1) gives 2(1−µ)x = λ and equation (E2) gives (1−µ)y = λ.
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So

2(1− µ)x = (1− µ)y =⇒ (1− µ)(2x− y) = 0

So at least one of µ = 1 and y = 2x must be true.

• If µ = 1, equations (E1) and (E2) both reduce to λ = 0 and then the
remaining equations reduce to

− z

10 = −1 (E3)

x+ 2y + z = 10 (E4)
x2 + y2 − z = 0 (E5)

Then (E3) implies z = 10, and (E4) in turn implies x+ 2y+ 10 = 10
so that x = −2y. Finally, substituting z = 10 and x = −2y into (E5)
gives

4y2 + y2 − 10 = 0 ⇐⇒ 5y2 = 10 ⇐⇒ y = ±
√

2

• If y = 2x, equations (E4) and (E5) reduce to

5x+ z = 10 (E4)
5x2 − z = 0 (E5)

Substituting z = 5x2, from (E5), into (E4) gives

5x2 + 5x− 10 = 0 ⇐⇒ x2 + x− 2 = 0 ⇐⇒ (x+ 2)(x− 1) = 0

So we have either x = −2, y = 2x = −4, z = 5x2 = 20 or x = 1,
y = 2x = 2, z = 5x2 = 5. (In both cases, we could now solve (E1)
and (E3) for λ and µ, but we don’t care what the values of λ and µ
are.)

So we have the following candidates for the locations of the min and max

point (−2
√

2,
√

2, 10) (2
√

2,−
√

2, 10) (−2,−4, 20) (1, 2, 5)
value of f 8 + 2− 5 8 + 2− 5 4 + 16− 20 1 + 4− 25

20
max max min

So the maximum is 5 and the minimum is 0.
2.10.2.11. ∗. Solution. The function f(x, y, z) = x2 + y2 + z2 gives the
square of the distance from the point (x, y, z) to the origin. So it suffices to
find the (x, y, z) (in the first octant) which minimizes f(x, y, z) = x2 +y2 +
z2 subject to the constraint g(x, y, z) = x3y2z − 6

√
3 = 0. To start, we’ll

find the minimizers in all of R3. By Theorem 2.10.2, any local minimum
or maximum (x, y, z) must obey the Lagrange multiplier equations

fx = 2x = 3λx2y2z = λgx (E1)
fy = 2y = 2λx3yz = λgy (E2)
fz = 2z = λx3y2 = λgz (E3)
x3y2z = 6

√
3 (E4)

for some real number λ.
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Multiplying (E1) by 2x, (E2) by 3y, and (E3) by 6z gives

4x2 = 6λx3y2z (E1’)
6y2 = 6λx3y2z (E2’)

12z2 = 6λx3y2z (E3’)

The three right hand sides are all identical. So the three left hand sides
must all be equal.

4x2 = 6y2 = 12z2 ⇐⇒ x = ±
√

3 z, y = ±
√

2 z

Equation (E4) forces x and z to have the same sign. So we must have
x =
√

3 z and y = ±
√

2 z. Substituting this into (E4) gives(√
3 z
)3(±√2 z

)2
z = 6

√
3 ⇐⇒ z6 = 1 ⇐⇒ z = ±1

So our minimizer (in all of R3) must be one of
(√

3 , ±
√

2 , 1
)
or
(
−√

3 , ±
√

2 , −1
)
. All of these points give exactly the same value of f

(namely 3 + 2 + 1 = 6). That is all four points are a distance
√

6 from the
origin and all other points on x3y2z = 6

√
3 have distance from the origin

strictly greater than
√

6. So the first octant point on x3y2z = 6
√

3 that is
closest to the origin is

(√
3 ,
√

2 , 1
)
.

2.10.2.12. ∗. Solution. This is a constrained optimization problem
with the objective function being

f(x, y, z) = xyz

and the constraint function being

G(x, y, z) = x2 + xy + y2 + 3z2 − 9

By Theorem 2.10.2, any local minimum or maximum (x, y, z) must obey
the Lagrange multiplier equations

fx = yz = λ(2x+ y) = λGx (E1)
fy = xz = λ(2y + x) = λGy (E2)
fz = xy = 6λz = λGz (E3)

x2 + xy + y2 + 3z2 = 9 (E4)

for some real number λ.
• If λ = 0, then, by (E1), yz = 0 so that f(x, y, z) = xyz = 0. This

cannot possibly be the maximum value of f because there are points
(x, y, z) on g(x, y, z) = 9 (for example x = y = 1, z =

√
2) with

f(x, y, z) > 0.

• If λ 6= 0, then multiplying (E1) by x, (E2) by y, and (E3) by z gives

xyz = λ(2x2 + xy) = λ(2y2 + xy) = 6λz2

=⇒ 2x2 + xy = 2y2 + xy = 6z2

=⇒ x = ±y, z2 = 1
6(2x2 + xy)

◦ If x = y, then z2 = x2

2 and, by (E4)

x2 + x2 + x2 + 3
2x

2 = 9 =⇒ x2 = 2
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=⇒ x = y = ±
√

2, z = ±1

For these points

f(x, y, z) = 2z =
{

2 if z = 1
−2 if z = −1

◦ If x = −y, then z2 = x2

6 and, by (E4)

x2 − x2 + x2 + x2

2 = 9 =⇒ x2 = 6

=⇒ x = −y = ±
√

6, z = ±1

For these points

f(x, y, z) = −6z =
{
−6 if z = 1
6 if z = −1

So the maximum is 6 and is achieved at
(√

6 , −
√

6 , −1
)
and

(
−
√

6 ,
√

6 , −1
)
.

2.10.2.13. ∗. Solution. In order for a sphere of radius r centred on the
origin to be enclosed in the ellipsoid, every point of the ellipsoid must be at
least a distance r from the origin. So the largest allowed r is the distance
from the origin to the nearest point on the ellipsoid.

We have to minimize f(x, y, z) = x2 + y2 + z2 subject to the constraint
g(x, y, z) = 2(x + 1)2 + y2 + 2(z − 1)2 − 8. By Theorem 2.10.2, any local
minimum or maximum (x, y, z) must obey the Lagrange multiplier equa-
tions

fx = 2x = 4λ(x+ 1) = λgx (E1)
fy = 2y = 2λy = λgy (E2)
fz = 2z = 4λ(z − 1) = λgz (E3)

2(x+ 1)2 + y2 + 2(z − 1)2 = 8 (E4)

for some real number λ.
By equation (E2), 2y(1−λ) = 0, which is obeyed if and only if at least

one of y = 0, λ = 1 is obeyed.

• If y = 0, the remaining equations reduce to

x = 2λ(x+ 1) (E1)
z = 2λ(z − 1) (E3)

(x+ 1)2 + (z − 1)2 = 4 (E4)

Note that 2λ cannot be 1 — if it were, (E1) would reduce to 0 = 1.
So equation (E1) gives

x = 2λ
1− 2λ or x+ 1 = 1

1− 2λ

Equation (E3) gives

z = − 2λ
1− 2λ or z − 1 = − 1

1− 2λ
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Substituting x+ 1 = 1
1−2λ and z − 1 = − 1

1−2λ into (E4) gives

1
(1− 2λ)2 + 1

(1− 2λ)2 = 4 ⇐⇒ 1
(1− 2λ)2 = 2

⇐⇒ 1
1− 2λ = ±

√
2

So we now have two candidates for the location of the max and min,
namely (x, y, z) =

(
− 1 +

√
2, 0, 1 −

√
2
)
and (x, y, z) =

(
− 1 −√

2, 0, 1 +
√

2
)
.

• If λ = 1, the remaining equations reduce to

x = 2(x+ 1) (E1)
z = 2(z − 1) (E3)

2(x+ 1)2 + y2 + 2(z − 1)2 = 8 (E4)

Equation (E1) gives x = −2 and equation (E3) gives z = 2. Substi-
tuting these into (E4) gives

2 + y2 + 2 = 8 ⇐⇒ y2 = 4 ⇐⇒ y = ±2

So we have the following candidates for the locations of the min and
max

point
(
− 1 +

√
2, 0, 1−

√
2
) (

− 1−
√

2, 0, 1 +
√

2
)

(−2, 2, 2) (−2,−2, 2)
value of f 2

(
3− 2

√
2
)

2
(
3 + 2

√
2
)

12 12
min max max

Recalling that f(x, y, z) is the square of the distance from (x, y, z) to the
origin, the maximum allowed radius for the enclosed sphere is

√
6− 4

√
2 ≈

0.59.
2.10.2.14. ∗. Solution. (a) We are to maximize f(x, y, z) = z subject to
the constraints g(x, y, z) = x+y+z−2 = 0 and h(x, y, z) = x2+y2+z2−2 =
0. By Theorem 2.10.8, any local minimum or maximum (x, y, z) must obey
the double Lagrange multiplier equations

fx = 0 = λ+ 2µx = λgx + µhx (E1)
fy = 0 = λ+ 2µy = λgy + µhy (E2)
fz = 1 = λ+ 2µz = λgz + µhz (E3)

x+ y + z = 2 (E4)
x2 + y2 + z2 = 2 (E5)

for some real numbers λ and µ. Subtracting (E2) from (E1) gives 2µ(x−
y) = 0. So at least one of µ = 0 and y = x must be true.

• If µ = 0, equations (E1) and (E3) reduce to λ = 0 and λ = 1, which
is impossible. So µ 6= 0.

• If y = x, equations (E2) through (E5) reduce to

λ+ 2µx = 0 (E2)
λ+ 2µz = 1 (E3)

2x+ z = 2 (E4)
2x2 + z2 = 2 (E5)
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By (E4), x = 2−z
2 . Substituting this into (E5) gives

2(2− z)2

4 + z2 = 2 ⇐⇒ (2− z)2 + 2z2 = 4 ⇐⇒ 3z2 − 4z = 0

⇐⇒ z = 0, 4
3

The maximum z is thus 4
3 .

(b) Presumably the “lowest point” is the point with the minimal z--
coordinate. By our work in part (a), we have that the minimal value of z
on C is 0. We have also already seen in part (a) that y = x. When z = 0,
(E4) reduces to 2x = 2. So the desired point is (1, 1).

2.10.2.15. ∗. Solution. (a) This is a constrained optimization problem
with the objective function being f(x, y, z) = (x− 2)2 + (y+ 2)2 + (z− 4)2

and the constraint function being g(x, y, z) = x2 +y2 +z2−6. By Theorem
2.10.2, any local minimum or maximum (x, y, z) must obey the Lagrange
multiplier equations

fx = 2(x− 2) = 2λx = λgx (E1)
fy = 2(y + 2) = 2λy = λgy (E2)
fz = 2(z − 4) = 2λz = λgz (E3)
x2 + y2 + z2 = 6 (E4)

for some real number λ. Simplifying

x− 2 = λx (E1)
y + 2 = λy (E2)
z − 4 = λz (E2)

x2 + y2 + z2 = 6 (E4)

Note that we cannot have λ = 1, because then (E1) would reduce to−2 = 0.
Substituting x = 2

1−λ , from (E1), and y = −2
1−λ , from (E2), and z = 4

1−λ ,
from (E3), into (E4) gives

4
(1− λ)2 + 4

(1− λ)2 + 16
(1− λ)2 = 6 ⇐⇒ (1− λ)2 = 4

⇐⇒ 1− λ = ±2

and hence
(x, y, z) = ± (2,−2, 4)

2 = ±(1,−1, 2)

So we have the following candidates for the locations of the min and max
point (1,−1, 2) −(1,−1, 2)
value of f 6 54

min max
So the minimum is 6 and the maximum is 54.
(b) f(x, y, z) is the square of the distance from (x, y, z) to (2,−2, 4). So

the point on the sphere x2 + y2 + z2 = 6 that is farthest from the point
(2,−2, 4) is the point from part (a) that maximizes f , which is (−1, 1,−2).

2.10.2.16. ∗. Solution. (a) This is a constrained optimization problem
with the objective function being f(x, y, z) = (x− 2)2 + (y − 1)2 + z2 and
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the constraint function being g(x, y, z) = x2 + y2 + z2 − 1. By Theorem
2.10.2, any local minimum or maximum (x, y, z) must obey the Lagrange
multiplier equations

fx = 2(x− 2) = 2λx = λgx (E1)
fy = 2(y − 1) = 2λy = λgy (E2)

fz = 2z = 2λz = λgz (E3)
x2 + y2 + z2 = 1 (E4)

for some real number λ. By equation (E3), 2z(1− λ) = 0, which is obeyed
if and only if at least one of z = 0, λ = 1 is obeyed.

• If z = 0 and λ 6= 1, the remaining equations reduce to

x− 2 = λx (E1)
y − 1 = λy (E2)

x2 + y2 = 1 (E4)

Substituting x = 2
1−λ , from (E1), and y = 1

1−λ , from (E2), into (E3)
gives

4
(1− λ)2 + 1

(1− λ)2 = 1 ⇐⇒ (1− λ)2 = 5 ⇐⇒ 1− λ = ±
√

5

and hence
(x, y, z) = ± 1√

5
(2, 1, 0)

To aid in the evaluation of f(x, y, z) at these points note that, at
these points,

x− 2 = λx = 2λ
1− λ, y − 1 = λy = λ

1− λ

=⇒ f(x, y, z) = 4λ2

(1−λ)2 + λ2

(1−λ)2 = 5λ2

(1−λ)2 = λ2 =
(
1∓
√

5
)2

• If λ = 1, the remaining equations reduce to

x− 2 = x (E1)
y − 1 = y (E2)

x2 + y2 + z2 = 1 (E4)

Since −2 6= 0 and −1 6= 0, neither (E1) nor (E2) has any solution.

So we have the following candidates for the locations of the min and max

point 1√
5 (2, 1, 0) − 1√

5 (2, 1, 0)
value of f

(
1−
√

5
)2 (

1 +
√

5
)2

min max

So the minimum is
(√

5− 1
)2 = 6− 2

√
5.

(b) The function f(x, y, z) = (x − 2)2 + (y − 1)2 + z2 is the square of
the distance from the point (x, y, z) to the point (2, 1, 0). So the minimum
of f subject to the constraint x2 + y2 + z2 = 1 is the square of the distance
from (2, 1, 0) to the point on the sphere x2 + y2 + z2 = 1 that is nearest
(2, 1, 0).
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2.10.2.17. ∗. Solution. For this problem the objective function is
f(x, y, z) = (x + z)ey and the constraint function is g(x, y, z) = x2 +
y2 + z2− 6. To apply the method of Lagrange multipliers we need ∇∇∇f and
∇∇∇g. So we start by computing the first order derivatives of these functions.

fx = ey fy = (x+z)ey fz = ey gx = 2x gy = 2y gz = 2z

So, according to the method of Lagrange multipliers, we need to find all
solutions to

ey = λ(2x) (E1)
(x+ z)ey = λ(2y) (E2)

ey = λ(2z) (E3)
x2 + y2 + z2 − 6 = 0 (E4)

First notice that, since ey 6= 0, equation (E1) guarantees that λ 6= 0 and
x 6= 0 and equation (E3) guarantees that z 6= 0 too.

• So dividing (E1) by (E3) gives x
z = 1 and hence x = z.

• Then subbing x = z into (E2) gives 2zey = λ(2y). Dividing this
equation by (E3) gives 2z = y

z or y = 2z2.

• Then subbing x = z and y = 2z2 into (E4) gives

z2 + 4z4 + z2 − 6 = 0 ⇐⇒ 4z4 + 2z2 − 6 = 0
⇐⇒ (2z2 + 3)(2z2 − 2) = 0

• As 2z2 + 3 > 0, we must have 2z2 − 2 = 0 or z = ±1.

Recalling that x = z and y = 2z2, the method of Lagrange multipliers,
Theorem 2.10.2, gives that the only possible locations of the maximum and
minimum of the function f are (1, 2, 1) and (−1, 2,−1). To complete the
problem, we only have to compute f at those points.

point (1, 2, 1) (−1, 2,−1)
value of f 2e2 −2e2

max min

Hence the maximum value of (x+ z)ey on x2 + y2 + z2 = 6 is 2e2 and
the minimum value is −2e2.
2.10.2.18. ∗. Solution. Let (x, y) be a point on 2x2 + 4xy + 5y2 = 30.
We wish to maximize and minimize x2 +y2 subject to 2x2 +4xy+5y2 = 30.
Define L(x, y, λ) = x2 + y2 − λ(2x2 + 4xy + 5y2 − 30). Then

0 = Lx = 2x− λ(4x+ 4y) =⇒ (1− 2λ)x− 2λy = 0 (1)
0 = Ly = 2y − λ(4x+ 10y) =⇒ −2λx+ (1− 5λ)y = 0 (2)
0 = Lλ = 2x2 + 4xy + 5y2 − 30

Note that λ cannot be zero because if it is, (1) forces x = 0 and (2) forces
y = 0, but (0, 0) is not on the ellipse. So equation (1) gives y = 1−2λ

2λ x.
Substituting this into equation (2) gives −2λx+ (1−5λ)(1−2λ)

2λ x = 0. To get
a nonzero (x, y) we need

− 2λ+ (1− 5λ)(1− 2λ)
2λ = 0
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⇐⇒ 0 = −4λ2 + (1− 5λ)(1− 2λ) = 6λ2 − 7λ+ 1 = (6λ− 1)(λ− 1)

So λ must be either 1 or 1
6 . Substituting these into either (1) or (2) gives

λ = 1 =⇒ −x− 2y = 0 =⇒ x = −2y =⇒ 8y2 − 8y2 + 5y2 = 30
=⇒ y = ±

√
6

λ = 1
6 =⇒ 2

3x−
1
3y= 0 =⇒ y = 2x =⇒ 2x2 + 8x2 + 20x2 = 30

=⇒ x = ±1

The farthest points are ±
√

6(−2, 1). The nearest points are ±(1, 2).

2.10.2.19. Solution. Let (x, y) be a point on 3x2− 2xy+ 3y2 = 4. This
point is at the end of a major axis when it maximizes its distance from
the centre, (0, 0), of the ellipse. It is at the end of a minor axis when it
minimizes its distance from (0, 0). So we wish to maximize and minimize
f(x, y) = x2 + y2 subject to the constraint g(x, y) = 3x2− 2xy+ 3y2− 4 =
0. According to the method of Lagrange multipliers, we need to find all
solutions to

fx = 2x = λ(6x− 2y) = λgx =⇒ (1− 3λ)x+ λy = 0 (E1)
fy = 2y = λ(−2x+ 6y) = λgy =⇒ λx+ (1− 3λ)y = 0 (E2)

3x2 − 2xy + 3y2 = 4 (E3)

To start, let’s concentrate on the first two equations. Pretend for a couple
of minutes, that we already know the value of λ and are trying to find x
and y. The system of equations (1 − 3λ)x + λy = 0, λx + (1 − 3λ)y = 0
has one obvious solution. Namely x = y = 0. But this solution is not
acceptable because it does not satisfy the equation of the ellipse. If you
have already taken a linear algebra course, you know that a system of two
linear homogeneous equations in two unknowns has a nonzero solution if
and only if the determinant of the matrix of coefficients is zero. (You use
this when you find eigenvalues and eigenvectors.) For the equations of
interest, this is

det
[
1− 3λ λ

λ 1− 3λ

]
= (1− 3λ)2 − λ2 = (1− 2λ)(1− 4λ) = 0

=⇒ λ = 1
2 ,

1
4

Even if you have not already taken a linear algebra course, you also come
to this conclusion directly when you try to solve the equations. Note that
λ cannot be zero because if it is, (E1) forces x = 0 and (E2) forces y = 0.
So equation (E1) gives y = − 1−3λ

λ x. Substituting this into equation (E2)
gives λx− (1−3λ)2

λ x = 0. To get a nonzero (x, y) we need

λ− (1− 3λ)2

λ
= 0 ⇐⇒ λ2 − (1− 3λ)2 = 0

By either of these two methods, we now know that λ must be either 1
2 or

1
4 . Substituting these into either (E1) or (E2) and then using (E3) gives

λ = 1
2 =⇒ −1

2x+ 1
2y = 0 =⇒ x = y =⇒ 3x2 − 2x2 + 3x2 = 4

=⇒ x = ±1
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λ = 1
4 =⇒ 1

4x+ 1
4y = 0 =⇒ x = −y =⇒ 3x2 + 2x2 + 3x2 = 4

=⇒ x = ± 1√
2

The ends of the minor axes are ±
( 1√

2 ,−
1√
2

)
. The ends of the major axes

are ±(1, 1).

2.10.2.20. ∗. Solution. Let the box have dimensions x × y × z. Use
units of money so that the sides and bottom cost one unit per square meter
and the top costs two units per square meter. Then the top costs 2xy, the
bottom costs xy and the four sides cost 2xz+ 2yz. We are to find the x, y
and z that minimize the cost f(x, y, z) = 2xy + xy + 2xz + 2yz subject to
the constraint that g(x, y, z) = xyz − 96 = 0. By the method of Lagrange
multipliers (Theorem 2.10.2), the minimizing x, y, z must obey

fx = 3y + 2z = λyz = λgx

fy = 3x+ 2z = λxz = λgy

fz = 2x+ 2y = λxy = λgz

xyz − 96 = 0

Multiplying the first equation by x, the second equation by y and the third
equation by z and then substituting in xyz = 96 gives

3xy + 2xz = 96λ
3xy + 2yz = 96λ
2xz + 2yz = 96λ

Subtracting the second equation from the first gives 2z(x − y) = 0. Since
z = 0 is impossible, we must have x = y. Substituting this in,

3x2 + 2xz = 96λ 4xz = 96λ

Subtracting,

3x2 − 2xz = 0 =⇒ z = 3
2x =⇒ 96 = xyz = 3

2x
3 =⇒ x3 = 64

=⇒ x = y = 4, z = 6 meters

2.10.2.21. ∗. Solution. We are to find the x, y and z that mini-
mize the temperature T (x, y, z) = 40xy2z subject to the constraint that
g(x, y, z) = x2 + y2 + z2 − 1 = 0. By the method of Lagrange multipliers
(Theorem 2.10.2), the minimizing x, y, z must obey

Tx = 40y2z = λ(2x) = λgx

Ty = 80xyz = λ(2y) = λgy

Tz = 40xy2 = λ(2z) = λgz

x2 + y2 + z2 − 1 = 0

Multiplying the first equation by x, the second equation by y/2 and the
third equation by z gives

40xy2z = 2x2λ

40xy2z = y2λ

40xy2z = 2z2λ
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Hence we must have
2x2λ = y2λ = 2z2λ

• If λ = 0, then 40y2z = 0, 80xyz = 0, 40xy2 = 0 which is possible
only if at least one of x, y, z is zero so that T (x, y, z) = 0.

• If λ 6= 0, then

2x2 = y2 = 2z2 =⇒ 1 = x2 + y2 + z2 = x2 + 2x2 + x2 = 4x2

=⇒ x = ±1
2 , y

2 = 1
2 , z = ±1

2
=⇒ T = 40

(
± 1

2)1
2
(
± 1

2) = ±5

(The sign of x and z need not be the same.) So the hottest temperature is
+5 and the coldest temperature is −5.

2.10.2.22. ∗. Solution. The optimal box will have vertices (±x,±y, 0),
(±x,±y, z) with x, y, z > 0 and z = 48− 4x2 − 3y2. (If the lower vertices
are not in the xy--plane, the volume of the box can be increased by lowering
the bottom of the box to the xy--plane. If any of the four upper vertices are
not on the hemisphere, the volume of the box can be increased by moving
the upper vertices outwards to the hemisphere.) The volume of this box
will be (2x)(2y)z. So we are to find the x, y and z that maximize the
volume f(x, y, z) = 4xyz subject to the constraint that g(x, y, z) = 48 −
4x2−3y2−z = 0. By the method of Lagrange multipliers (Theorem 2.10.2),
the minimizing x, y, z must obey

fx = 4yz = −8λx = λgx

fy = 4xz = −6λy = λgy

fz = 4xy = −λ = λgz

48− 4x2 − 3y2 − z = 0

Multiplying the first equation by x, the second equation by y and the third
equation by z gives

4xyz = −8λx2

4xyz = −6λy2

4xyz = −λz

This forces 8λx2 = 6λy2 = λz. Since λ cannot be zero (because that would
force 4xyz = 0), this in turn gives 8x2 = 6y2 = z. Substituting in to the
fourth equation gives

48− z

2 −
z

2 − z = 0 =⇒ 2z = 48 =⇒ z = 24, 8x2 = 24, 6y2 = 24

The dimensions of the box of biggest volume are 2x = 2
√

3 by 2y = 4 by
z = 24.
2.10.2.23. ∗. Solution. Use units of money for which cardboard costs
one unit per square meter. Then, if the bin has dimensions x × y × z, it
costs 3xy + 2xz + 2yz. We are to find the x, y and z that minimize the
cost f(x, y, z) = 3xy+ 2xz+ 2yz subject to the constraint that g(x, y, z) =
xyz − 12 = 0. By the method of Lagrange multipliers (Theorem 2.10.2),
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the minimizing x, y, z must obey

fx = 3y + 2z = λyz = λgx

fy = 3x+ 2z = λxz = λgy

fz = 2x+ 2y = λxy = λgz

xyz − 12 = 0

Multiplying the first equation by x, the second equation by y and the third
equation by z and then substituting in xyz = 12 gives

3xy + 2xz = 12λ
3xy + 2yz = 12λ
2xz + 2yz = 12λ

Subtracting the second equation from the first gives 2z(x − y) = 0. Since
z = 0 is impossible, we must have x = y. Substituting this in

3x2 + 2xz = 12λ 4xz = 12λ

Subtracting

3x2 − 2xz = 0 =⇒ z = 3
2x =⇒ 12 = xyz = 3

2x
3 =⇒ x3 = 8

=⇒ x = y = 2, z = 3 meters

2.10.2.24. ∗. Solution. If the box has dimensions x × y × z, it costs
24xy + 16xz + 16yz. We are to find the x, y and z that minimize the cost
f(x, y, z) = 24xy + 16xz + 16yz subject to the constraint that g(x, y, z) =
xyz−4 = 0. By the method of Lagrange multipliers (Theorem 2.10.2), the
minimizing x, y, z must obey

fx = 24y + 16z = λyz = λgx

fy = 24x+ 16z = λxz = λgy

fz = 16x+ 16y = λxy = λgz

xyz − 4 = 0

Multiplying the first equation by x, the second equation by y and the third
equation by z and then substituting in xyz = 4 gives

24xy + 16xz = 4λ
24xy + 16yz = 4λ
16xz + 16yz = 4λ

Subtracting the second equation from the first gives 16z(x− y) = 0. Since
z = 0 is impossible, we must have x = y. Subbing this in

24x2 + 16xz = 4λ 32xz = 4λ

Subtracting

24x2 − 16xz = 0 =⇒ z = 3
2x =⇒ 4 = xyz = 3

2x
3 =⇒ x3 = 8

3
=⇒ x = y = 2

3
√

3
, z = 32/3metres
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2.10.2.25. ∗. Solution. The vertices of the pyramid are (0, 0, 0),
( 1
a , 0, 0

)
,(

0, 1
b , 0
)
and

(
0, 0, 1

c

)
. So the base of the pyramid is a triangle of area 1

2
1
a

1
b

and the height of the pyramid is 1
c . So the volume of the pyramid is 1

6abc .
The plane passes through (1, 2, 3) if and only if a+ 2b+ 3c = 1. Thus we
are to find the a, b and c that maximize the volume f(a, b, c) = 1

6abc subject
to the constraint that g(a, b, c) = a + 2b + 3c − 1 = 0. By the method of
Lagrange multipliers (Theorem 2.10.2), the maximizing a, b, c must obey

fa = − 1
6a2bc

= λ = λga ⇐⇒ 6λa2bc = −1

fb = − 1
6ab2c = 2λ= λgb ⇐⇒ 6λab2c = −1

2
fc = − 1

6abc2 = 3λ= λgc ⇐⇒ 6λabc2 = −1
3

a+ 2b+ 3c = 1

Dividing the first two equations gives a
b = 2 and dividing the first equation

by the third gives a
c = 3. Substituting b = 1

2a and c = 1
3a in to the final

equation gives

a+ 2b+ 3c = 3a = 1 =⇒ a = 1
3 , b = 1

6 , c = 1
9

and the maximum volume is 3×6×9
6 = 27.

2.10.2.26. ∗. Solution. We’ll find the minimum distance2 and then
take the square root. That is, we’ll find the minimum of f(x, y, z) =
x2 + y2 + z2 subject to the constraints g(x, y, z) = x − z − 4 = 0 and
h(x, y, z) = x+ y + z − 3 = 0. By Theorem 2.10.8, any local minimum or
maximum (x, y, z) must obey the double Lagrange multiplier equations

fx = 2x = λ+ µ = λgx + µhx (E1)
fy = 2y = µ = λgy + µhy (E2)
fz = 2z = −λ+ µ = λgz + µhz (E3)
x− z = 4 (E4)

x+ y + z = 3 (E5)

for some real numbers λ and µ. Adding (E1)and (E3) and then subtracting
2 times (E2) gives

2x− 4y + 2z = 0 or x− 2y + z = 0 (E6)

Substituting x = 4 + z (from (E4)) into (E5) and (E6) gives

y + 2z = −1 (E5’)
−2y + 2z = −4 (E6’)

Substituing y = −1− 2z (from (E5’)) into (E6’) gives

6z = −6 =⇒ z = −1 =⇒ y = −1− 2(−1) = 1 =⇒ x = 4 + (−1) = 3

So the closest point is (3, 1,−1) and the minimum distance is
√

32 + 12 + (−1)2 =√
11.
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2.10.2.27. ∗. Solution 1. This is a constrained optimization problem
with objective function f(x, y, z) = 6x + y2 + xz and constraint function
g(x, y, z) = x2 + y2 + z2 − 36. By Theorem 2.10.2, any local minimum or
maximum (x, y, z) must obey the Lagrange multiplier equations

fx = 6 + z = 2λx = λgx (E1)
fy = 2y = 2λy = λgy (E2)
fz = x = 2λz = λgz (E3)

x2 + y2 + z2 = 36 (E4)

for some real number λ. By equation (E2), y(1− λ) = 0, which is obeyed
if and only if at least one of y = 0, λ = 1 is obeyed.

• If y = 0, the remaining equations reduce to

6 + z = 2λx (E1)
x = 2λz (E3)

x2 + z2 = 36 (E4)

Substituting (E3) into (E1) gives 6 + z = 4λ2z, which forces 4λ2 6= 1
(since 6 6= 0) and gives z = 6

4λ2−1 and then x = 12λ
4λ2−1 . Substituting

this into (E4) gives

144λ2

(4λ2 − 1)2 + 36
(4λ2 − 1)2 = 36

4λ2

(4λ2 − 1)2 + 1
(4λ2 − 1)2 = 1

4λ2 + 1 = (4λ2 − 1)2

Write µ = 4λ2. Then this last equation is

µ+ 1 = µ2 − 2µ+ 1 ⇐⇒ µ2 − 3µ = 0
⇐⇒ µ = 0, 3

When µ = 0, we have z = 6
µ−1 = −6 and x = 0 (by (E4)). When

µ = 3, we have z = 6
µ−1 = 3 and then x = ±

√
27 = ±3

√
3 (by (E4)).

• If λ = 1, the remaining equations reduce to

6 + z = 2x (E1)
x = 2z (E3)

x2 + y2 + z2 = 36 (E4)

Substituting (E3) into (E1) gives 6 + z = 4z and hence z = 2. Then
(E3) gives x = 4 and (E4) gives 42 + y2 + 22 = 36 or y2 = 16 or
y = ±4.

So we have the following candidates for the locations of the min and max

point (0, 0,−6) (3
√

3, 0, 3) (−3
√

3, 0, 3) (4, 4, 2) (4,−4, 2)
value of f 0 27

√
3 −27

√
3 48 48

min max max

Solution 2. On the sphere we have y2 = 36 − x2 − z2 and hence f =
36+6x+xz−x2−z2 and x2+z2 ≤ 36. So it suffices to find the max and min
of h(x, z) = 36 + 6x+ xz − x2 − z2 on the disk D = §et(x, z)x2 + z2 ≤ 36.
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• If a max or min occurs at an interior point (x, z) of D, then (x, z)
must be a critical point of h and hence must obey

hx = 6 + z − 2x = 0
hz = x− 2z = 0

Substituting x = 2z into the first equation gives 6−3z = 0 and hence
z = 2 and x = 4.

• If a max or min occurs a point (x, z) on the boundary of D, we
have x2 + z2 = 36 and hence x = ±

√
36− z2 and h = 6x + zx =

±(6 + z)
√

36− z2 with −6 ≤ z ≤ 6. So the max or min can occur
either when z = −6 or z = +6 or at a z obeying

0 = d
dz
[
(6 + z)

√
36− z2

]
=
√

36− z2 − z(6 + z)√
36− z2

or equivalently

36− z2 − z(6 + z) = 0
2z2 + 6z − 36 = 0
z2 + 3z − 18 = 0

(z + 6)(z − 3) = 0

So the max or min can occur either when z = ±6 or z = 3.

So we have the following candidates for the locations of the min and max

point (0, 0,±6) (3
√

3, 0, 3) (−3
√

3, 0, 3) (4, 4, 2) (4,−4, 2)
value of f 0 27

√
3 −27

√
3 48 48

min max max

2.10.2.28. ∗. Solution. By way of preparation, we have

∂T

∂x
(x, y) = 2x ey ∂T

∂y
(x, y) = ey

(
x2 + y2 + 2y

)
(a-i) For this problem the objective function is T (x, y) = ey

(
x2+y2) and

the constraint function is g(x, y) = x2 +y2−100. According to the method
of Lagrange multipliers, Theorem 2.10.2, we need to find all solutions to

Tx = 2x ey = λ(2x) = λgx (E1)
Ty = ey

(
x2 + y2 + 2y

)
= λ(2y) = λgy (E2)

x2 + y2 = 100 (E3)

(a-ii) According to equation (E1), 2x(ey − λ) = 0. This condition is
satisfied if and only if at least one of x = 0, λ = ey is obeyed.

• If x = 0, then equation (E3) reduces to y2 = 100, which is obeyed if
y = ±10. Equation (E2) then gives the corresponding values for λ,
which we don’t need.

• If λ = ey, then equation (E2) reduces to

ey
(
x2 + y2 + 2y

)
= (2y)ey ⇐⇒ ey

(
x2 + y2) = 0

which conflicts with (E3). So we can’t have λ = ey.
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So the only possible locations of the maximum and minimum of the function
T are (0, 10) and (0,−10). To complete the problem, we only have to
compute T at those points.

point (0, 10) (0,−10)
value of T 100e10 100e−10

max min

Hence the maximum value of T (x, y) = ey
(
x2 + y2) on x2 + y2 = 100

is 100e10 at (0, 10) and the minimum value is 100e−10 at (0,−10).
We remark that, on x2 + y2 = 100, the objective function T (x, y) =

ey
(
x2 + y2) = 100ey. So of course the maximum value of T is achieved

when y is a maximum, i.e. when y = 10, and the minimum value of T is
achieved when y is a minimum, i.e. when y = −10.

(b-i) By definition, the point (x, y) is a critical point of T (x, y) if ane
only if

Tx = 2x ey = 0 (E1)
Ty = ey

(
x2 + y2 + 2y

)
= 0 (E2)

(b-ii) Equation (E1) forces x = 0. When x = 0, equation (E2) reduces
to

ey
(
y2 + 2y

)
= 0 ⇐⇒ y(y + 2) = 0 ⇐⇒ y = 0 or y = −2

So there are two critical points, namely (0, 0) and (0,−2).
(c) Note that T (x, y) = ey

(
x2 + y2) ≥ 0 on all of R2. As T (x, y) = 0

only at (0, 0), it is obvious that (0, 0) is the coolest point.
In case you didn’t notice that, here is a more conventional solution.
The coolest point on the solid disc x2 + y2 ≤ 100 must either be on the

boundary, x2 + y2 = 100, of the disc or be in the interior, x2 + y2 < 100,
of the disc.

In part (a-ii) we found that the coolest point on the boundary is (0,−10),
where T = 100e−10.

If the coolest point is in the interior, it must be a critical point and so
must be either (0, 0), where T = 0, or (0,−2), where T = 4e−2.

So the coolest point is (0, 0).

2.10.2.29. ∗. Solution. (a) A normal vector to F (x, y, z) = 4x2 +
4y2 + z2 = 96 at (x0, y0, z0) is ∇∇∇F (x0, y0, z0) = 〈8x0, 8y0, 2z0〉. (Note that
this normal vector is never the zero vector because (0, 0, 0) is not on the
surface.) So the tangent plane to 4x2 + 4y2 + z2 = 96 at (x0, y0, z0) is

8x0(x− x0) + 8y0(y − y0) + 2z0(z − z0) = 0
or 8x0x+ 8y0y + 2z0z = 8x2

0 + 8y2
0 + 2z2

0

This plane is of the form x + y + z = c if and only if 8x0 = 8y0 = 2z0. A
point (x0, y0, z0) with 8x0 = 8y0 = 2z0 is on the surface 4x2 +4y2 +z2 = 96
if and only if

4x2
0 + 4y2

0 + z2
0 = 4x2

0 + 4x2
0 + (4x0)2 = 96 ⇐⇒ 24x2

0 = 96 ⇐⇒ x2
0 = 4

⇐⇒ x0 = ±2

When x0 = ±2, we have y0 = ±2 and z0 = ±8 (upper signs go together
and lower signs go together) so that the tangent plane 8x0x+8y0y+2z0z =
8x2

0 + 8y2
0 + 2z2

0 is

8(±2)x+ 8(±2)y + 2(±8)z = 8(±2)2 + 8(±2)2 + 2(±8)2



APPENDIX D. SOLUTIONS TO EXERCISES 664

or ± x± y ± z = 2 + 2 + 8
or x+ y + z = ∓12

=⇒ c = ±12

(b) We are to find the x, y and z that minimize or maximize f(x, y, z) =
x+y+z subject to the constraint that g(x, y, z) = 4x2 +4y2 +z2−96 = 0.
By the method of Lagrange multipliers (Theorem 2.10.2), the minimizing/
maximizing x, y, z must obey

fx = 1 = λ(8x) = λgx

fy = 1 = λ(8y) = λgy

fz = 1 = λ(2z) = λgz

4x2 + 4y2 + z2 − 96 = 0

The first three equations give

x = 1
8λ y = 1

8λ z = 1
2λ with λ 6= 0

Substituting this into the fourth equation gives

4
(

1
8λ

)2
+ 4

(
1

8λ

)2
+
(

1
2λ

)2
= 96 ⇐⇒

(
1
16 + 1

16 + 1
4

)
1
λ2 = 96

⇐⇒ λ2 = 3
8

1
96 = 1

8× 32

⇐⇒ λ = ± 1
16

Hence x = ±2, y = ±2 and z = ±8 so that the largest and smallest values
of x+ y + z on 4x2 + 4y2 + z2 − 96 are ±2± 2± 8 or ±12.

(c) The level surfaces of x + y + z are planes with equation of the
form x + y + z = c. To find the largest (smallest) value of x + y + z on
4x2 + 4y2 + z2 = 96 we keep increasing (decreasing) c until we get to the
largest (smallest) value of c for which the plane x + y + z = c intersects
4x2 + 4y2 + z2 = 96. For this value of c, x + y + z = c is tangent to
4x2 + 4y2 + z2 = 96.

2.10.2.30. Solution. Note that if (x, y) obeys g(x, y) = xy−1 = 0, then
x is necessarily nonzero. So we may assume that x 6= 0. Then

There is a λ such that (x, y, λ) obeys (E1)
⇐⇒ there is a λ such that fx(x, y) = λgx(x, y), fy(x, y) = λgy(x, y),

g(x, y) = 0
⇐⇒ there is a λ such that fx(x, y) = λy, fy(x, y) = λx, xy = 1

⇐⇒ there is a λ such that 1
y
fx(x, y) = 1

x
fy(x, y) = λ, xy = 1

⇐⇒ 1
y
fx(x, y) = 1

x
fy(x, y), xy = 1

⇐⇒ xfx

(
x,

1
x

)
= 1
x
fy

(
x,

1
x

)
, y = 1

x

⇐⇒ F ′(x) = d
dxf

(
x,

1
x

)
= fx

(
x,

1
x

)
− 1
x2 fy

(
x,

1
x

)
= 0, y = 1

x

3 · Multiple Integrals
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3.1 · Double Integrals
3.1.7 · Exercises

3.1.7.1. Solution. (a) The given double integral
∫ 3
−1
∫ 1
−4 dy dx =

∫∫
R

dx dy
where

R =
{

(x, y)
∣∣ − 1 ≤ x ≤ 3, −4 ≤ y ≤ 1

}
and so the integral is the area of a rectangle with sides of lengths 4 and 5.
Thus

∫ 3
−1
∫ 1
−4 dy dx = 4× 5 = 20.

(b) The given double integral
∫ 2

0

∫ √4−y2

0
dx dy =

∫∫
R

dx dy where

R =
{

(x, y)
∣∣ 0 ≤ y ≤ 2, 0 ≤ x ≤

√
4− y2

}
=
{

(x, y)
∣∣ x ≥ 0, y ≥ 0, y ≤ 2, x2 + y2 ≤ 4

}
So R is the first quadrant part of the circular disk of radius 2 centred on
(0, 0). The area of the full disk is π 22 = 4π. The given integral is one
quarter of that, which is π.

(c) The given double integral
∫ 3

−3

∫ √9−y2

0

√
9− x2 − y2 dxdy =

∫∫
R
z(x, y) dxdy

where z(x, y) =
√

9− x2 − y2 and

R =
{

(x, y)
∣∣ − 3 ≤ y ≤ 3, 0 ≤ x ≤

√
9− y2

}
=
{

(x, y)
∣∣ x ≥ 0, −3 ≤ y ≤ 3, x2 + y2 ≤ 9

}
So R is the right half of the circular disk of radius 3 centred on (0, 0). By
Equation (3.1.9), the given integral is the volume of the solid

V =
{

(x, y, z)
∣∣∣ (x, y) ∈ R, 0 ≤ z ≤

√
9− x2 − y2

}
=
{

(x, y, z)
∣∣∣ (x, y) ∈ R, z ≥ 0, x2 + y2 + z2 ≤ 9

}
Thus V is the one quarter of the spherical ball of radius 3 and centre (0, 0, 0)
with x ≥ 0 and z ≥ 0. So∫ 3

−3

∫ √9−y2

0

√
9− x2 − y2 dxdy = 1

4

(4
3π33

)
= 9π

3.1.7.2. Solution. (a) The integral with respect to x treats y as a
constant. So∫ 3

0
f(x, y) dx =

∫ 3

0
12x2y3 dx =

[
4x3y3

]x=3

x=0
= 108y3

(b) The integral with respect to y treats x as a constant. So∫ 2

0
f(x, y) dy =

∫ 2

0
12x2y3 dy =

[
3x2y4

]y=2

y=0
= 48x2

(c) By part (a)∫ 2

0

∫ 3

0
f(x, y) dxdy =

∫ 2

0

[∫ 3

0
f(x, y) dx

]
dy =

∫ 2

0
108y3 dy

=
[
27y4

]y=2

y=0
= 27× 16 = 432
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(d) By part (b)∫ 3

0

∫ 2

0
f(x, y) dy dx =

∫ 3

0

[∫ 2

0
f(x, y) dy

]
dx =

∫ 3

0
48x2 dy

=
[
16x3

]x=3

x=0
= 16× 27 = 432

(e) This time∫ 3

0

∫ 2

0
f(x, y) dxdy =

∫ 3

0

[∫ 2

0
12x2y3 dx

]
dy =

∫ 3

0

[
4x3y3]2

0 dy

=
∫ 3

0
32y3dy =

[
8y4
]3

0
= 8× 81 = 648

3.1.7.3. Solution. The following figures show the domains of integration
for the integrals in this problem.
(a)

x

y pa, bq (b)

x

y

pa, 0q

p0, bq ay ` bx “ ab

(c)

x

y

p1, 1q

y “ x2

x “ y2
(d)

x

y

p1, 0q

y “ 1 ´ x2

(e)

x

y

p1, 1q

y “ x2

y “ x

(f)

x

y p1, 1q

y “ x

∫∫
R

(x2 + y2) dxdy =
∫ a

0
dx
∫ b

0
dy (x2 + y2) (a)

=
∫ a

0
dx
(
x2b+ 1

3b
3
)

= 1
3
(
a3b+ ab3

)
∫∫

T

(x− 3y) dxdy =
∫ a

0
dx
∫ b(1− xa )

0
dy (x− 3y) (b)
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=
∫ a

0
dx
[
bx
(

1− x

a

)
− 3

2b
2
(

1− x

a

)2
]

=
[
b

2x
2 − b

3ax
3 + a

2 b
2
(

1− x

a

)3
]a

0

= a2b

2 −
a2b

3 −
ab2

2 = a2b

6 −
ab2

2∫∫
R

xy2 dxdy =
∫ 1

0
dx
∫ √x
x2

dy xy2 (c)

= 1
3

∫ 1

0
dx x

(
x3/2 − x6)

= 1
3

(
2
7 −

1
8

)
= 3

56∫∫
D

x cos y dxdy =
∫ 1

0
dx
∫ 1−x2

0
dy x cos y (d)

=
∫ 1

0
dx x sin(1− x2)

= 1
2

[
cos(1− x2)

]1
0

= 1
2(1− cos 1)∫∫

R

x

y
ey dxdy =

∫ 1

0
dy
∫ √y
y

dx x

y
ey =

∫ 1

0
dy y − y2

2y ey (e)

= 1
2

∫ 1

0
dy (1− y)ey

= 1
2

[
− yey + 2ey

]1
0

= 1
2(e− 2)∫∫

T

xy

1 + x4 dxdy =
∫ 1

0
dx
∫ 1

x

dy xy

1 + x4 (f)

= 1
2

∫ 1

0
dx x(1− x2)

1 + x4

= 1
4

∫ 1

0
dt 1− t

1 + t2
where t = x2

= 1
4

[
arctan t− 1

2 ln(1 + t2)
]1

0

= 1
4

(
π

4 −
1
2 ln 2

)
3.1.7.4. Solution. The following figures show the domains of integration
for the integrals in this problem.

(a)

x

y

20

1

y “ ex

x “ ln y

p2, e2q

(b)
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x

y

20´2

?
2

x2 ` 2y2 “ 4

(c)

x

y p1, 5q

p´2,´4q

y “ 3x ` 2

y “ x2 ` 4x

∫ 2

0
dx
∫ ex

1
dy =

∫ 2

0
dx
[
ex − 1

]
=
[
ex − x

]2
0 = e2 − 3 (a)∫ e2

1
dy
∫ 2

ln y
dx =

∫ e2

1
dy
[
2− ln y

]
=
[
2y − y ln y + y

]e2

1

= e2 − 3∫ √2

0
dy
∫ √4−2y2

−
√

4−2y2
dx y =

∫ √2

0
dy 2y

√
4− 2y2 (b)

= −1
3

[
(4− 2y2)3/2

]√2

0
= 8

3∫ 2

−2
dx
∫ √2− x2

2

0
dy y =

∫ 2

−2
dx

[
1− x2

4

]
= 2

∫ 2

0
dx

[
1− x2

4

]
= 2

[
x− x3

12

]2

0
= 8

3∫ 1

−2
dx
∫ 3x+2

x2+4x
dy =

∫ 1

−2
dx
[
− x2 − x+ 2

]
(c)

=
[
−x

3

3 −
x2

2 + 2x
]1

−2
= 9

2∫ 5

−4
dy
∫ −2+

√
4+y

y−2
3

dx =
∫ 5

−4
dy
[
−4

3 −
y

3 +
√

4 + y

]
=
[
−4y

3 −
y2

6 + 2
3(4 + y)

3
2

]5

−4
= 9

2

In part (c), we used that the equation y = x2 + 4x is equivalent to y+ 4 =
(x+ 2)2 and hence to x = −2±

√
y + 4.

3.1.7.5. ∗. Solution. In the given integrals
• y runs for 0 to 2, and

• for each fixed y between 0 and 1, x runs from 0 to y and
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• for each fixed y between 1 and 2, x runs from 0 to 2− y

The figure on the left below contains a sketch of that region together with
the generic horizontal slices that were used to set up the given integrals.

x

y

x “ 2 ´ y

x “ y

y “ 1 p1,1q

p0,2q

x

y

y “ 2 ´ x

y “ x

p1,1q

p0,2q

To reverse the order of integration, we switch to vertical, rather than
horizontal, slices, as in the figure on the right above. Looking at that
figure, we see that

• x runs for 0 to 1, and

• for each fixed x in that range, y runs from x to 2− x.

So the desired integral is∫ x=1

x=0

∫ y=2−x

y=x
f(x, y) dy dx

3.1.7.6. ∗. Solution. (a) In the given integral
• x runs from 0 to 1 and

• for each fixed x between 0 and 1, y runs from x to 1

So the domain of integration is

D =
{

(x, y)
∣∣ 0 ≤ x ≤ 1, x ≤ y ≤ 1

}
It is sketched in the figure on the left below.

x

y

1

1

x “ y

y “ 1

x

y

1

1

x “ y

y “ 1

(b) The given integral decomposed the domain of integration into ver-
tical strips like the blue strip in the figure on the right above. To reverse
the order of integration, we instead use horizontal strips. Looking at the
pink strip in the figure on the right above, we see that this entails
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• having y run from 0 to 1 and

• for each fixed y between 0 and 1, having x run from 0 to y

This gives∫ 1

0
dy
∫ y

0
dx ex/y =

∫ 1

0
dy
[
yex/y

]y
0

=
∫ 1

0
dy y(e− 1) = 1

2(e− 1)

3.1.7.7. ∗. Solution. (a) On R
• y runs from 1 to 4 (from 1 to

√
2 in the first integral and from

√
2 to

4 in the second).

• For each fixed y between 1 and
√

2, x runs from 1
y to √y and

• for each fixed y between
√

2 and 4, x runs from y
2 to √y.

The figure on the left below is a sketch of R, together with generic hori-
zontal strips as were used in setting up the integral.

x

y

x “ ?
y

x “ y{2
x “ 1{y

y “ ?
2

p2,4q

p1,1q
p 1?

2
,
?
2q

x

y

y “ x2

y “ 2x

y “ 1{x

x “ 1

p2,4q

p1,1q
p 1?

2
,
?
2q

(b) To reverse the order of integration we use vertical strips as in the
figure on the right above. Looking at that figure, we see that, on R,

• x runs from 1/
√

2 to 2.

• For each fixed x between 1/
√

2 and 1, y runs from 1
x to 2x and

• for each fixed x between 1 and 2, y runs from x2 to 2x.

So

I =
∫ 1

1/
√

2

∫ 2x

1/x
f(x, y) dy dx+

∫ 2

1

∫ 2x

x2
f(x, y) dy dx

(c) When f(x, y) = x
y ,

I =
∫ √2

1

∫ √y
1/y

x

y
dxdy +

∫ 4

√
2

∫ √y
y/2

x

y
dxdy

=
∫ √2

1

1
y

[
y

2 −
1

2y2

]
dy +

∫ 4

√
2

1
y

[
y

2 −
y2

8

]
dy

=
[
y

2 + 1
4y2

]√2

1
+
[
y

2 −
y2

16

]4

√
2
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= 1√
2

+ 1
8 −

1
2 −

1
4 + 2− 1− 1√

2
+ 1

8

= 1
2

3.1.7.8. ∗. Solution. (a) When f(x, y) = x,∫ x=3

x=−1

[∫ y=2x+3

y=x2
xdy

]
dx =

∫ x=3

x=−1

[
x(2x+ 3− x2)

]
dx

=
[

2x3

3 + 3x2

2 − x4

4

]3

−1

= 18 + 27
2 −

81
4 + 2

3 −
3
2 + 1

4
= 18 + 12− 20 + 2

3 = 32
3

(b) On the region E

• x runs from −1 to 3 and

• for each x in that range, y runs from x2 to 2x+ 3

Here are two sketches of E, with the left one including a generic vertical
strip as was used in setting up the given integral.

x

y

y “ 2x ` 3

y “ x2p´1,1q

p3,9q

x

y

x“py´3q{2

x “ ?
y

x “ ´?
y

y “ 1p´1,1q

p3,9q

(c) To reverse the order of integration we use horizontal strips as in the
figure on the right above. Looking at that figure, we see that, on the region
E,

• y runs from 0 to 9 and

• for each y between 0 and 1, x runs from −√y to √y

• for each y between 1 and 9, x runs from (y − 3)/2 to √y

So

I =
∫ 1

0
dy
∫ √y
−√y

dx x+
∫ 9

1
dy
∫ √y

(y−3)/2
dx x

3.1.7.9. ∗. Solution. The antiderivative of the function sin(y2) cannot
be expressed in terms of familiar functions. So we do not want the inside
integral to be over y. So we’ll use horizontal slices as in the figure
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x

y x “ y{2x “ ´y

y “ 4p2.4qp´4.4q

On the domain of integration

• y runs from 0 to 4, and

• for each fixed y in that range, x runs from −y to y/2

The given integral∫∫
D

sin(y2) dA =
∫ 4

0
dy
∫ y/2

−y
dx sin(y2)

=
∫ 4

0
dy 3

2y sin(y2)

=
[
−3

4 cos(y2)
]4

0

= 3
4
[
1− cos(16)

]
3.1.7.10. ∗. Solution. (a) On the domain of integration

• y runs from 0 to 1 and

• for each fixed y in that range, x runs from √y to 1.

The figure on the left below is a sketch of that domain, together with a
generic horizontal strip as was used in setting up the integral.

x

y

x “ 1x “ ?
y

p1,1q

x

y

y “ x2

p1,1q

(b) The inside integral,
∫ 1√

y
sin(πx2)

x dx, in the given form of I looks
really nasty. So let’s try exchanging the order of integration. Looking at
the figure on the right above, we see that, on the domain of integration,

• x runs from 0 to 1 and

• for each fixed x in that range, y runs from 0 to x2.

So

I =
∫ 1

0
dx
∫ x2

0
dy sin(πx2)

x
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=
∫ 1

0
dx x sin(πx2)

=
[
−cos(πx2)

2π

]1

0
(Looks pretty rigged!)

= 1
π

3.1.7.11. ∗. Solution. (a) Let’s call the triangle T . Here are two
sketches of T , one including a generic vertical strip and one including a
generic horizontal strip. Notice that the equation of the line through (0, 0)
and (1, 1) is y = x.

x

y

y “ x

T

p1,1qp0,1q

x

y

x “ yT

p1,1qp0,1q

First, we’ll set up the integral using vertical strips. Looking at the
figure on the left above, we see that, on T ,

• x runs from 0 to 1 and

• for each x in that range, y runs from x to 1.

So the integral

I =
∫ 1

0
dx
∫ 1

x

dy y2 sin xy

Next, we’ll set up the integral using horizontal strips. Looking at the
figure on the right above, we see that, on T ,

• y runs from 0 to 1 and

• for each y in that range, x runs from 0 to y.

So the integral

I =
∫ 1

0
dy
∫ y

0
dx y2 sin xy

(b) To evaluate the inside integral,
∫ 1
x

dy y2 sin xy, of the vertical strip
version, will require two integration by parts to get rid of the y2. So we’ll
use the horizontal strip version.

I =
∫ 1

0
dy
∫ y

0
dx y2 sin xy

=
∫ 1

0
dy
[
− y cosxy

]y
0

=
∫ 1

0
dy
[
y − y cos y2]
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=
[
y2

2 −
sin y2

2

]1

0
(Look’s pretty rigged!)

= 1− sin 1
2

3.1.7.12. ∗. Solution. If we call the triangular base region T , then the
volume is

V =
∫∫
T
f(x, y) dA =

∫∫
T
e−x

2
dxdy

If we set up the integral using horizontal slices, so that the inside integral
is the x--integral, there will be a big problem — the integrand e−x2 does
not have an obvious anti--derivative. (In fact its antiderivative cannot be
expressed in terms of familiar functions.) So let’s try vertical slices as in
the sketch

x

y

x “ 1y “ x

T

p1,1q

Looking at that sketch we see that

• x runs from 0 to 1, and

• for each x in that range, y runs from 0 to x.

So the integral is

V =
∫ 1

0
dx
∫ x

0
dy e−x

2

=
∫ 1

0
dx xe−x

2

=
[
−1

2e
−x2
]1

0

= 1− e−1

2
3.1.7.13. ∗. Solution. (a) On the domain of integration

• y runs from 0 to 1 and

• for each y in that range x runs from y to 2− y. So the left hand side
of the domain is the line x = y and the right hand side of the domain
is x = 2− y.

The figure on the left below is a sketch of that domain, together with a
generic horizontal strip as was used in setting up the integral.
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x

y

x “ 2 ´ yx “ y

p1,1q

p2,0q x

y

y “ 2 ´ xy “ x

x “ 1

p1,1q

p2,0q

(b) To reverse the order of integration we use vertical, rather than
horizontal, strips. Looking at the figure on the right above, we see that, in
the domain of integration

• x runs from 0 to 2 and

• for each x between 0 and 1, y runs from 0 to x, while

• for each x between 1 and 2, y runs from 0 to 2− x.

So the integral

I =
∫ 1

0
dx
∫ x

0
dy y

x
+
∫ 2

1
dx
∫ 2−x

0
dy y

x

(c) Using the answer to part (b)

I =
∫ 1

0
dx
∫ x

0
dy y

x
+
∫ 2

1
dx
∫ 2−x

0
dy y

x

= 1
2

∫ 1

0
dx x+ 1

2

∫ 2

1
dx (2− x)2

x

= 1
4 + 1

2

∫ 2

1
dx

(
4
x
− 4 + x

)
= 1

4 + 1
2

[
4 ln 2− 4 + 4− 1

2

]
= 2 ln 2− 1

3.1.7.14. ∗. Solution. (a) On the domain of integration,
• x runs from 0 to 1, and

• for each fixed x in that range, y runs from
√
x to 1. We may rewrite

y =
√
x as x = y2, which is a rightward opening parabola.

Here are two sketches of the domain of integration, which we call D. The
left hand sketch also shows a vertical slice, as was used in setting up the
integral.

x

y

y “ 1

y “ ?
x

p1,1q

x

y

x “ y2

p1,1q
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(b) The inside integral,
∫ 1√

x

√
1 + y3 dy, of the given integral looks

pretty nasty. So let’s reverse the order of integration, by using horizontal,
rather than vertical, slices. Looking at the figure on the right above, we
see that

• y runs from 0 to 1, and

• for each fixed y in that range x runs from 0 to y2.

So

I =
∫ 1

0
dy
∫ y2

0
dx
√

1 + y3

=
∫ 1

0
dy y2

√
1 + y3

=
∫ 2

1

du
3
√
u with u = 1 + y3, du = 3y2 dy. Looks pretty rigged!

= 1
3

[
u3/2

3/2

]2

1

=
2
(
2
√

2− 1
)

9
3.1.7.15. ∗. Solution. (a) Observe that the parabola y2 = x and the
line y = x− 2 meet when x = y + 2 and

y2 = y + 2 ⇐⇒ y2 − y − 2 = 0 ⇐⇒ (y − 2)(y + 1) = 0

So the points of intersection of x = y2 and y = x− 2 are (1,−1) and (4, 2).
Here is a sketch of D.

x

y

x “ y2

x “ y ` 2D

p1,´1q

p4,2q

To evaluate J , we’ll use horizontal slices as in the figure above. (If we
were to use vertical slices we would have to split the integral in two, with
0 ≤ x ≤ 1 in one part and 1 ≤ x ≤ 4 in the other.) From the figure, we see
that, on D,

• y runs from −1 to 2 and

• for each fixed y in that range, x runs from y2 to y + 2.

Hence

J =
∫∫

D

3y dA =
∫ 2

−1
dy
∫ y+2

y2
dx 3y
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= 3
∫ 2

−1
dy y(y + 2− y2)

= 3
[
y3

3 + y2 − y4

4

]2

−1

= 3
[

8
3 + 4− 4 + 1

3 − 1 + 1
4

]
= 27

4

(b) On the domain of integration,

• x runs from 0 to 4 and

• for each fixed x in that range, y runs from 1
2
√
x to 1.

The figure on the left below is a sketch of that domain, together with a
generic vertical strip as was used in setting up the integral.

x

y

y “ 1
2

?
x

y “ 1
p4,1q

x

y

x “ 4y2

y “ 1
p4,1q

The inside integral, over y, looks pretty nasty because ey3 does not have
an obvious antiderivative. So let’s reverse the order of integration. That
is, let’s use horizontal, rather than vertical, strips. From the figure on the
right above, we see that, on the domain of integration

• y runs from 0 to 1 and

• for each fixed y in that range, x runs from 0 to 4y2.

So

I =
∫ 1

0
dy
∫ 4y2

0
dx ey

3

=
∫ 1

0
dy 4y2ey

3

= 4
3

∫ 1

0
du eu with u = y3, du = 3y2 dy (Looks rigged!)

= 4
3
[
e− 1

]
3.1.7.16. ∗. Solution. (a) On the domain of integration

• y runs from −4 to 0 and

• for each y in that range, x runs from
√
−y (when y = −x2) to 2.

The figure on the left below provides a sketch of the domain of integration.
It also shows the generic horizontal slice that was used to set up the given
iterated integral.
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x

y

x“?´y

p2,0q

p2,´4q

x

y

y“´x2

p2,0q

p2,´4q

(b) The inside integral,
∫ 2√
−y cos(x3) dx looks nasty. So let’s reverse the

order of integration and use vertical, rather than horizontal, slices. From
the figure on the right above, on the domain of integration,

• x runs from 0 to 2 and

• for each x in that range, y runs from −x2 to 0.

So the integral∫ 0

−4

∫ 2

√
−y

cos(x3) dxdy =
∫ 2

0
dx
∫ 0

−x2
dy cos(x3)

=
∫ 2

0
dx x2 cos(x3) =

[
sin(x3)

3

]2

0

= sin(8)
3

3.1.7.17. ∗. Solution. (a) On the domain of integration
• y runs from 0 to 4 and

• for each y in the range 0 ≤ y ≤ 1, x runs from −√y to √y and

• for each y in the range 1 ≤ y ≤ 4, x runs from y − 2 to √y.

Both figures below provide sketches of the domain of integration.

x

y

x“?
y

x“´?
y

x“y´2

p´1,1q

p2,4q

x

y

y“x2

y“x`2

p´1,1q

p2,4q

To reverse the order of integration observe, from the figure on the right
above that, on the domain of integration,

• x runs from −1 to 2 and
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• for each x in that range, y runs from x2 to x+ 2.

So the integral

I =
∫ 2

−1

∫ x+2

x2
f(x, y) dy dx

(b) We’ll use the integral with the order of integration reversed that we
found in part (a). When f(x, y) = ex

2−x

I =
∫ 2

−1

∫ x+2

x2

ex

2− x dy dx

=
∫ 2

−1
(x+ 2− x2) ex

2− x dx = −
∫ 2

−1
(x− 2)(x+ 1) ex

2− x dx

=
∫ 2

−1
(x+ 1)ex dx

=
[
xex
]2
−1

= 2e2 + 1
e

3.1.7.18. ∗. Solution. On the domain of integration
• y runs from 0 to 4. In inequalities, 0 ≤ y ≤ 4.

• For each fixed y in that range, x runs from √y to
√

8− y. In inequal-
ities, that is √y ≤ x ≤

√
8− y, or y ≤ x2 ≤ 8− y.

Here are two sketchs of the domain of integration.

x

y

x“?
y x“?

8´y

y “ 4p2,4q

p?
8,0q

x

y

y“x2 y“8´x2

y “ 4p2,4q

p?
8,0q

(b) To reverse the order we observe, from the figure on the right above,
that, on the domain of integration,

• x runs from 0 to
√

8. In inequalities, 0 ≤ x ≤
√

8.

• For each fixed x between 0 and 2, y runs from 0 to x2. In inequalities,
that is 0 ≤ y ≤ x2.

• For each fixed x between 2 and
√

8, y runs from 0 to 8 − x2. In
inequalities, that is 0 ≤ y ≤ 8− x2.

So the integral is∫ 2

0

∫ x2

0
f(x, y) dy dx+

∫ √8

2

∫ 8−x2

0
f(x, y) dy dx



APPENDIX D. SOLUTIONS TO EXERCISES 680

(c) We’ll use the form of part (b).∫ 2

0

∫ x2

0

1
(1 + y)2 dy dx+

∫ √8

2

∫ 8−x2

0

1
(1 + y)2 dy dx

= −
∫ 2

0

[
1

1 + y

]x2

0
dx−

∫ √8

2

[
1

1 + y

]8−x2

0
dx

=
∫ 2

0

[
1− 1

1 + x2

]
dx+

∫ √8

2

[
1− 1

9− x2

]
dx

=
√

8− arctan x
∣∣∣∣2
0
− 1

6

∫ √8

2

[
1

3 + x
+ 1

3− x

]
dx

=
√

8− arctan 2− 1
6

[
ln(3 + x)− ln(3− x)

]√8

2

=
√

8− arctan 2− 1
6

[
ln 3 +

√
8

3−
√

8
− ln 5

]
3.1.7.19. ∗. Solution. The antiderivative of the function e−y2 cannot be
expressed in terms of elementary functions. So the inside integral

∫ 2x
−2 e

y2 dy
cannot be evaluated using standard calculus 2 techniques. The trick for
dealing with this integral is to reverse the order of integration. On the
domain of integration

• x runs from −1 to 0. In inequalities, −1 ≤ x ≤ 0.

• For each fixed x in that range, y runs from −2 to 2x. In inequalities,
−2 ≤ y ≤ 2x.

The domain of integration, namely{
(x, y)

∣∣ − 1 ≤ x ≤ 0, −2 ≤ y ≤ 2x
}

is sketched in the figure on the left below.

x

y

y “ ´2

y “ 2x

p´1,´2q

x

y

y “ ´2

x “ y{2

p´1,´2q

Looking at the figure on the right above, we see that we can also express
the domain of integration as{

(x, y)
∣∣ − 2 ≤ y ≤ 0, y/2 ≤ x ≤ 0

}
So the integral ∫ 0

−1

∫ 2x

−2
ey

2
dy dx =

∫ 0

−2

∫ 0

y/2
ey

2
dx dy

= −1
2

∫ 0

−2
yey

2
dy
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= −1
2

[
1
2e

y2
]0

−2

= 1
4
[
e4 − 1

]
3.1.7.20. ∗. Solution. We first have to get a picture of the domain of
integration. The first integral has domain of integration{

(x, y)
∣∣ 0 ≤ x ≤ 2, 0 ≤ y ≤ x

}
and the second integral has domain of integration{

(x, y)
∣∣ 2 ≤ x ≤ 6, 0 ≤ y ≤

√
6− x

}
Here is a sketch. The domain of integration for the first integral is the
shaded triangular region to the left of x = 2 and the domain of integration
for the second integral is the shaded region to the right of x = 2.

x

y
x “ 2 y “ x

y “ ?
6 ´ x

p2,2q

p6,0q

To exchange the order of integration, we use horizontal slices as in the
figure below.

x

y
x “ 2 x “ y

x “ 6 ´ y2
p2,2q

p6,0q

The bottom slice has y = 0 and the top slice has y = 2. On the slice at
height y, x runs from y to 6− y2. So

I =
∫ 2

0

∫ 6−y2

y

f(x, y) dx dy

3.1.7.21. ∗. Solution. (a), (b) Looking at the figure on the left below,
we see that we can write the domain

D =
{

(x, y)
∣∣ 0 ≤ y ≤ 1, −

√
1− y ≤ x ≤

√
1− y

}
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So∫∫
D

f(x, y) dA =
∫ 1

0
dy
∫ √1−y

−
√

1−y
dx f(x, y) =

∫ 1

0

∫ √1−y

−
√

1−y
f(x, y) dxdy

p´1, 0q

p0, 1q

p1, 0q
x

y

x “ ´?
1 ´ y x “ `?

1 ´ y
D

p´1, 0q

p0, 1q

p1, 0q

dx

dy

x

y

y “ 1 ´ x2

D

Looking at the figure on the right above, we see that we can write the
domain

D =
{

(x, y)
∣∣ − 1 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2 }

So∫∫
D

f(x, y) dA =
∫ 1

−1
dx
∫ 1−x2

0
dy f(x, y) =

∫ 1

−1

∫ 1−x2

0
f(x, y) dy dx

(c) Using the second form from part (b),∫∫
D

ex−(x3/3) dA =
∫ 1

−1
dx
∫ 1−x2

0
dy ex−(x3/3)

=
∫ 1

−1
(1− x2)ex−(x3/3) dx

=
∫ 2/3

−2/3
eu du with u = x− x3

3 , du =
(
1− x2) dx

= e2/3 − e−2/3

3.1.7.22. ∗. Solution. (a) On the domain of integration,
• x runs from 0 to 1 and

• for each fixed x in that range, y runs from x2 to 1.

The figure on the left below is a sketch of that domain, together with a
generic vertical strip as was used in setting up the integral.

x

y

y “ 1

y “ x2

p1,1q

x

y

y “ 1

x “ ?
y

p1,1q

(b) As it stands, the inside integral, over y, looks pretty nasty because
sin(y3) does not have an obvious antiderivative. So let’s reverse the order
of integration. The given integral was set up using vertical strips. So, to
reverse the order of integration, we use horizontal strips as in the figure
on the right above. Looking at that figure we see that, on the domain of
integration,
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• y runs from 0 to 1 and

• for each fixed y in that range, x runs from 0 to √y.

So

I =
∫ 1

0
dy
∫ √y

0
dx x3 sin(y3)

=
∫ 1

0
dy sin(y3)

[
x4

4

]√y
0

= 1
4

∫ 1

0
dy y2 sin(y3)

= 1
4

[
−cos(y3)

3

]1

0

= 1− cos(1)
12

3.1.7.23. ∗. Solution. (a) The solid is the set of all (x, y, z) obeying
0 ≤ x ≤ 3, 0 ≤ y ≤ 3 and 0 ≤ z ≤ 6−xy. The base of this region is the set
of all (x, y) for which there is a z such that (x, y, z) is in the solid. So the
base is the set of all (x, y) obeying 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 and 6 − xy ≥ 0,
i.e. xy ≤ 6. This region is sketched in the figure on the left below.

x

y “ 3

xy “ 6

y x “ 3

2

x

y “ 3

xy “ 6

y x “ 3

p2,3q

(b) We’ll deompose the base region into vertical strips as in the figure
on the right above. Observe that the line y = 3 intersects the curve xy = 6
at the point (2, 3) and that on the base

• x runs from 0 to 3 and that

• for each fixed x between 0 and 2, y runs from 0 to 3, while

• for each fixed x between 2 and 3, y runs from 0 to 6/x

and that, for each (x, y) in the base, z runs from 0 to 6− xy. So the

Volume =
∫ 2

0
dx
∫ 3

0
dy (6− xy) +

∫ 3

2
dx
∫ 6/x

0
dy (6− xy)

=
∫ 2

0
dx

[
6y − 1

2xy
2
]3

0
+
∫ 3

2
dx

[
6y − 1

2xy
2
]6/x

0

=
∫ 2

0
dx

[
18− 9

2x
]

+
∫ 3

2
dx

[
36
x
− 18

x

]
=
[
18x− 9

4x
2
]2

0
+
[
18 ln x

]3
2

= 27 + 18 ln 3
2 ≈ 34.30
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3.1.7.24. ∗. Solution. In the given integral
• x runs from −2 to 2 and

• for each fixed x between −2 and 2, y runs from x2 to 4

So the domain of integration is

D =
{

(x, y)
∣∣ − 2 ≤ x ≤ 2, x2 ≤ y ≤ 4

}
This is sketched below.

x

y

y “ 4

y “ x2

x “ 2x “ ´2

The inside integral,
∫ 4
x2 cos

(
y3/2) dy, in the given integral looks really

nasty. So let’s try exchanging the order of integration. The given integral
was formed by decomposing the domain of integration D into horizontal
strips, like the blue strip in the figure above. To exchange the order of
integration we instead decompose the domain of integration D into vertical
strips, like the pink strip in the figure above. To do so, we observe that,
on D,

• y runs from 0 to 4 and

• for each fixed y between 0 and 4, x runs from −√y to √y.

That is, we reexpress the domain of integration as

D =
{

(x, y)
∣∣ 0 ≤ y ≤ 4, −√y ≤ x ≤ √y

}
and the given integral as∫ 2

−2

∫ 4

x2
cos
(
y3/2) dy dx =

∫ 4

0
dy
∫ √y
−√y

dx cos
(
y3/2)

=
∫ 4

0
dy 2√y cos

(
y3/2)

= 4
3

∫ 8

0
dt cos t where t = y3/2, dt = 3

2
√
y dy

= 4
3 sin t

∣∣∣8
0

= 4
3 sin 8 ≈ 1.319

3.1.7.25. ∗. Solution. (a) We may rewrite the equation x2 +y2 = 2y of
the cylinder as x2 + (y − 1)2 = 1. We are (in part (c)) to find the volume
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of the set

V =
{

(x, y, z)
∣∣ x2 + (y − 1)2 ≤ 1, 0 ≤ z ≤ 8 + 2xy

}
When we look at this solid from far above (so that we can’t see z) we see
the set of points (x, y) that obey x2 +(y−1)2 ≤ 1 and 8+2xy ≥ 0 (so that
there is at least one allowed z for that (x, y)). All points in x2+(y−1)2 ≤ 1
have −1 ≤ x ≤ 1 and 0 ≤ y ≤ 2 and hence −2 ≤ xy ≤ 2 and 8 + 2xy ≥ 0.
So the domain of integration consists of the full disk

D =
{

(x, y)
∣∣ x2 + (y − 1)2 ≤ 1

}
The volume is

I =
∫∫

D

(8 + 2xy) dxdy

(b) We can express the double integral over D as iterated integrals
by decomposing D into horizontal strips, like the pink strip in the figure
below, and also by decomposing D into blue strips, like the blue strip in
the figure below.

x

y

x2 ` y2 “ 2yD

For horizontal strips, we use that, on D

• y runs from 0 to 2 and,

• for each fixed y between 0 and 2, x runs from −
√

2y − y2 to
√

2y − y2

so that

D =
{

(x, y)
∣∣ 0 ≤ y ≤ 2, −

√
2y − y2 ≤ x ≤

√
2y − y2

}
For vertical strips, we use that, on D

• x runs from −1 to 1 and,

• for each fixed x between −1 and 1, y runs from 1 −
√

1− x2 to
1 +
√

1− x2

so that

D =
{

(x, y)
∣∣ − 1 ≤ x ≤ 1, 1−

√
1− x2 ≤ x ≤ 1 +

√
1− x2

}
Thus

I =
∫ 2

0
dy
∫ √2y−y2

−
√

2y−y2
dx (8 + 2xy)
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=
∫ 1

−1
dx
∫ 1+

√
1−x2

1−
√

1−x2
dy (8 + 2xy)

(c) Since
∫∫
D

8 dxdy is just 8 times the area of D, which is π,

Volume = 8π +
∫ 2

0
dy
∫ √2y−y2

−
√

2y−y2
dx 2xy = 8π + 2

∫ 2

0
dy y

∫ √2y−y2

−
√

2y−y2
dx x

= 8π

because
∫√2y−y2

−
√

2y−y2
dx x = 0 for all y, because the integrand is odd and the

domain of integration is even.
3.1.7.26. ∗. Solution. In the given integral

• y runs from 0 to 9 and

• for each fixed y between 0 and 9, x runs from √y to 3
So the domain of integration is

D =
{

(x, y)
∣∣ 0 ≤ y ≤ 9, √y ≤ x ≤ 3

}
This is sketched below.

x

y

x “ 3

x “ ?
y

p3, 9q

The inside integral,
∫ 3√

y
sin
(
πx3) dx, in the given integral looks really

nasty. So let’s try exchanging the order of integration. The given integral
was formed by decomposing the domain of integration D into horizontal
strips, like the blue strip in the figure above. To exchange the order of
integration we instead decompose the domain of integration D into vertical
strips, like the pink strip in the figure above. To do so, we observe that,
on D,

• x runs from 0 to 3 and

• for each fixed x between 0 and 3, y runs from 0 to x2.
That is, we reexpress the domain of integration as

D =
{

(x, y)
∣∣ 0 ≤ x ≤ 3, 0 ≤ y ≤ x2 }

and the given integral as∫ 9

0

∫ 3

√
y

sin(πx3) dxdy =
∫ 3

0
dx
∫ x2

0
dy sin(πx3)
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=
∫ 3

0
dx x2 sin(πx3)

= 1
3π

∫ 27π

0
dt sin t where t = πx3, dt = 3πx2 dx

= − 1
3π cos t

∣∣∣27π

0
= − 1

3π cos t
∣∣∣π
0

= 2
3π ≈ 0.212

3.1.7.27. ∗. Solution. (a) In the given integral
• x runs from 0 to 1, and

• for each fixed x between 0 and 1, y runs from −
√
x to

√
x.

So the region

R =
{

(x, y)
∣∣ 0 ≤ x ≤ 1, −

√
x ≤ y ≤

√
x
}

It is sketched below.

x

y
x “ y2

x “ 1

(b) The given integral was formed by decomposing the domain of in-
tegration R into vertical strips, like the pink strip in the figure above. To
exchange the order of integration we instead decompose the domain of in-
tegration R into horizontal strips, like the blue strip in the figure above.
To do so, we observe that, on R,

• y runs from −1 to 1, and

• for each fixed y between −1 and 1, x runs from y2 to 1.

So
I =

∫ 1

−1

[ ∫ 1

y2
sin
(
y3 − 3y

)
dx
]

dy

(c) The easy way to evaluate I is to observe that, since sin
(
y3 − 3y

)
is

odd under y → −y, the integral∫ √x
−
√
x

sin
(
y3 − 3y

)
dy = 0

for all x. Hence I = 0. The hard way is

I =
∫ 1

−1

[ ∫ 1

y2
sin
(
y3 − 3y

)
dx
]

dy
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=
∫ 1

−1
(1− y2) sin

(
y3 − 3y

)
dy

=
∫ −2

2
sin t dt

−3 where t = y3 − 3y, dt = 3(y2 − 1) dy

= 1
3 cos t

∣∣∣−2

2
= 0

again, since cos is even.

3.1.7.28. ∗. Solution. The parabola y2 = 2x+ 6 and the line y = x− 1
meet when x = y+1 with y2 = 2(y+1)+6 or y2−2y−8 = (y−4)(y+2) = 0.
So they meet at (−1,−2) and (5, 4). The domain of integration is sketched
below.

x

y

p´1,´2q

p5, 4q y “ x ´ 1

y2 “ 2x ` 6
On this domain

• y runs from −2 to 4, and

• for each fixed y between −2 and 4, x runs from y2

2 − 3 to y + 1.

So the integral is∫ 4

−2
dy
∫ y+1

y2/2−3
dx xy =

∫ 4

−2
dy 1

2x
2y

∣∣∣∣y+1

y2/2−3

= 1
2

∫ 4

−2
dy
[
y3 + 2y2 + y − 1

4y
5 + 3y3 − 9y

]
= 1

2

∫ 4

−2
dy
[
−8y + 2y2 + 4y3 − 1

4y
5
]

=
[
−2y2 + 1

3y
3 + 1

2y
4 − 1

48y
6
]4

−2

= −2(16− 4) + 1
3(64 + 8) + 1

2(256− 16)− 1
48(4096− 64)

= −24 + 24 + 120− 84 = 36

3.1.7.29. Solution. Looking down from the top, we see the cylinder
x2 + 2y2 ≤ 8. That gives the base region. The top of the solid, above
any fixed (x, y) in the base region, is at z = 8 − x (this is always positive
because x never gets bigger than

√
8) . The bottom of the solid, below

any fixed (x, y) in the base region, is at z = y − 4 (this is always negative
because y is always smaller than 2). So the height of the solid at any (x, y)
is

ztop − zbottom = (8− x)− (y − 4) = 12− x− y
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The volume is ∫ 2

−2
dy
∫ √8−2y2

−
√

8−2y2
dx (12− x− y)

Recall, from Theorem 1.2.11 in the CLP-2 text, that if f(x) is an odd
function (meaning that f(−x) = −f(x) for all x), then

∫ a
−a f(x) dx =

0 (because the two integrals
∫ a

0 f(x) dx and
∫ 0
−a f(x) dx have the same

magnitude but opposite signs). Applying this twice gives

∫ √8−2y2

−
√

8−2y2
dx x = 0 and

∫ 2

−2
dy
∫ √8−2y2

−
√

8−2y2
dx y =

∫ 2

−2
dy 2y

√
8− 2y2 = 0

since x and y
√

8− 2y2 are both odd. Thus

∫ 2

−2
dy
∫ √8−2y2

−
√

8−2y2
dx (−x− y) = 0 =⇒ Volume =

∫ 2

−2
dy
∫ √8−2y2

−
√

8−2y2
dx 12

so that the volume is just 12 times the area of the ellipse x2 + 2y2 = 8,
which is

12
(
π
√

8 2
)

= 48
√

2π

3.2 · Double Integrals in Polar Coordinates
3.2.5 · Exercises

3.2.5.1. Solution. The first hand sketch below contains the points,
(x1, y1), (x3, y3), (x5, y5), that are on the axes. The second hand sketch
below contains the points, (x2, y2), (x4, y4), that are not on the axes.

x

y

π
2π (3, 0)

(0, 1)

(−2, 0)

x

y
(1, 1)

√
2

(−1, 1)

π
4

3π
4

Recall that the polar coordinates r, θ are related to the cartesian coor-
dinates x, y, by x = r cos θ, y = r sin θ. So r =

√
x2 + y2 and tan θ = y

x
(assuming that x 6= 0 and r > 0) and

(x1, y1) = (3, 0) =⇒ r1 = 3, tan θ1 = 0
=⇒ θ1 = 0 as (x1, y1) is on the positive x-axis

(x2, y2) = (1, 1) =⇒ r2 =
√

2, tan θ2 = 1

=⇒ θ2 = π

4 as (x2, y2) is in the first octant

(x3, y3) = (0, 1) =⇒ r3 = 1, cos θ3 = 0

=⇒ θ3 = π

2 as (x3, y3) is on the positive y-axis
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(x4, y4) = (−1, 1) =⇒ r4 =
√

2, tan θ4 = −1

=⇒ θ4 = 3π
4 as (x4, y4) is in the third octant

(x5, y5) = (−2, 0) =⇒ r5 = 2, tan θ5 = 0
=⇒ θ5 = π as (x5, y5) is on the negative x-axis

3.2.5.2. Solution. In this solution, we’ll supress the subscripts. That
is, we’ll write r in place of ri and θ in place of θi. Note that the distance
from the point

(
r cos θ , r sin θ

)
to the origin is√

r2 cos2 θ + r2 sin2 θ =
√
r2 = |r|

Thus r can be either the distance to the origin or minus the distance to
the origin.

(a) The distance from (−2, 0) to the origin is 2. So either r = 2 or
r = −2.

• If r = 2, then θ must obey

(−2, 0) =
(
2 cos θ , 2 sin θ

)
⇐⇒ sin θ = 0, cos θ = −1
⇐⇒ θ = nπ, n integer , cos θ = −1
⇐⇒ θ = nπ, n odd integer

• If r = −2, then θ must obey

(−2, 0) =
(
− 2 cos θ , −2 sin θ

)
⇐⇒ sin θ = 0, cos θ = 1
⇐⇒ θ = nπ, n integer , cos θ = 1
⇐⇒ θ = nπ, n even integer

In particular,
(
r = −2 , θ = 0

)
has r < 0 and 0 ≤ θ < 2π.

In the figure on the left below, the blue half-line is the set of all points
with polar coordinates θ = π, r > 0 and the orange half-line is the set
of all points with polar coordinates θ = π, r < 0. In the figure on the
right below, the blue half-line is the set of all points with polar coordinates
θ = 0, r > 0 and the orange half-line is the set of all points with polar
coordinates θ = 0, r < 0.

x

y

πp´2, 0q
r “ 2, θ “ π

p2, 0q
r “ ´2, θ “ π

x

y

p´2, 0q
r “ ´2, θ “ 0

p2, 0q
r “ 2, θ “ 0

(b) The distance from (1, 1) to the origin is
√

2. So either r =
√

2 or
r = −

√
2.

• If r =
√

2, then θ must obey

(1, 1) =
(√

2 cos θ ,
√

2 sin θ
)
⇐⇒ sin θ = cos θ = 1√

2
⇐⇒ θ = π

4 + 2nπ, n integer

• If r = −
√

2, then θ must obey

(1, 1) =
(
−
√

2 cos θ , −
√

2 sin θ
)
⇐⇒ sin θ = cos θ = − 1√

2

⇐⇒ θ = 5π
4 + 2nπ, n integer
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In particular,
(
r = −

√
2 , θ = 5π

4
)
has r < 0 and 0 ≤ θ < 2π.

In the figure on the left below, the blue half-line is the set of all points
with polar coordinates θ = π

4 , r > 0 and the orange half-line is the set
of all points with polar coordinates θ = π

4 , r < 0. In the figure on the
right below, the blue half-line is the set of all points with polar coordinates
θ = 5π

4 , r > 0 and the orange half-line is the set of all points with polar
coordinates θ = 5π

4 , r < 0.

x

y

p1, 1q
r “ ?

2, θ “ π
4

?
2

p´1,´1q
r “ ´?

2, θ “ π
4

π
4

x

y

p1, 1q
r “ ´?

2, θ “ 5π
4

?
2

p´1,´1q
r “ ?

2, θ “ 5π
4

5π
4

(c) The distance from (−1,−1) to the origin is
√

2. So either r =
√

2
or r = −

√
2.

• If r =
√

2, then θ must obey

(−1,−1) =
(√

2 cos θ ,
√

2 sin θ
)
⇐⇒ sin θ = cos θ = − 1√

2

⇐⇒ θ = 5π
4 + 2nπ, n integer

• If r = −
√

2, then θ must obey

(−1,−1) =
(
−
√

2 cos θ , −
√

2 sin θ
)
⇐⇒ sin θ = cos θ = 1√

2
⇐⇒ θ = π

4 + 2nπ, n integer

In particular,
(
r = −

√
2 , θ = π

4
)
has r < 0 and 0 ≤ θ < 2π.

In the figure on the left below, the blue half-line is the set of all points
with polar coordinates θ = 5π

4 , r > 0 and the orange half-line is the set
of all points with polar coordinates θ = 5π

4 , r < 0. In the figure on the
right below, the blue half-line is the set of all points with polar coordinates
θ = π

4 , r > 0 and the orange half-line is the set of all points with polar
coordinates θ = π

4 , r < 0.

x

y

p1, 1q
r “ ´?

2, θ “ 5π
4

?
2

p´1,´1q
r “ ?

2, θ “ 5π
4

5π
4

x

y

p1, 1q
r “ ?

2, θ “ π
4

?
2

p´1,´1q
r “ ´?

2, θ “ π
4

π
4

(d) The distance from (3, 0) to the origin is 3. So either r = 3 or r = −3.

• If r = 3, then θ must obey

(3, 0) =
(
3 cos θ , 3 sin θ

)
⇐⇒ sin θ = 0, cos θ = 1
⇐⇒ θ = 0 + 2nπ, n integer

• If r = −3, then θ must obey

(3, 0) =
(
− 3 cos θ , −3 sin θ

)
⇐⇒ sin θ = 0, cos θ = −1
⇐⇒ θ = π + 2nπ, n integer
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In particular,
(
r = −3 , θ = π

)
has r < 0 and 0 ≤ θ < 2π.

In the figure on the left below, the blue half-line is the set of all points
with polar coordinates θ = π, r > 0 and the orange half-line is the set
of all points with polar coordinates θ = π, r < 0. In the figure on the
right below, the blue half-line is the set of all points with polar coordinates
θ = 0, r > 0 and the orange half-line is the set of all points with polar
coordinates θ = 0, r < 0.

x

y

π p3, 0q
r “ ´3, θ “ π

p´3, 0q
r “ 3, θ “ π

x

y

p3, 0q
r “ 3, θ “ 0

p´3, 0q
r “ ´3, θ “ 0

(e) The distance from (0, 1) to the origin is 1. So either r = 1 or r = −1.

• If r = 1, then θ must obey

(0, 1) =
(

cos θ , sin θ
)
⇐⇒ cos θ = 0, sin θ = 1

⇐⇒ θ = π

2 + 2nπ, n integer

• If r = −1, then θ must obey

(0, 1) =
(
− cos θ , − sin θ

)
⇐⇒ cos θ = 0, sin θ = −1

⇐⇒ θ = 3π
2 + 2nπ, n integer

In particular,
(
r = −1 , θ = 3π

2
)
has r < 0 and 0 ≤ θ < 2π.

In the figure on the left below, the blue half-line is the set of all points
with polar coordinates θ = 3π

2 , r > 0 and the orange half-line is the set
of all points with polar coordinates θ = 3π

2 , r < 0. In the figure on the
right below, the blue half-line is the set of all points with polar coordinates
θ = π

2 , r > 0 and the orange half-line is the set of all points with polar
coordinates θ = π

2 , r < 0.

x

y

3π
2

p0, 1q r “ ´1, θ “ 3π
2

p0,´1qr “ 1, θ “ 3π
2

x

y

π
2

p0, 1q r “ 1, θ “ π
2

p0,´1qr “ ´1, θ “ π
2

3.2.5.3. Solution. (a) The lengths are

|er(θ)| =
√

cos2 θ + sin2 θ = 1

|eθ(θ)| =
√

(− sin θ)2 + cos2 θ = 1

As
er(θ) · eθ(θ) = (cos θ)(− sin θ) + (sin θ)(cos θ) = 0

the two vectors are perpendicular and the angle between them is π
2 . The
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cross product is

er(θ)× eθ(θ) = det

 ı̂ıı ̂ k̂
cos θ sin θ 0
− sin θ cos θ 0

 = k̂

(b) Note that for θ determined by x = r cos θ, y = r sin θ,

• the vector er(θ) is a unit vector in the same direction as the vector
from (0, 0) to (x, y) and

• the vector eθ(θ) is a unit vector that is perpendicular to er(θ).

• The y-component of eθ(θ) has the same sign as the x-component of
er(θ). The x-component of eθ(θ) has opposite sign to that of the
y-component of er(θ).

Here is a sketch of (xi, yi), er(θi), eθ(θi) for i = 1, 3, 5 (the points on the
axes)

x

y

(3, 0)

(0, 1)

(−2, 0) er(0)

eθ(0)

er(
π
2
)

eθ(
π
2
)

er(π)

eθ(π)

and here is a sketch (to a different scale) of (xi, yi), er(θi), eθ(θi) for
i = 2, 4 (the points off the axes).

x

y

(1, 1)(−1, 1)

er(
π
4
)eθ(

π
4
)er(

3π
4
)

eθ(
3π
4
) π

4

3π
4

3.2.5.4. Solution. Here is a sketch of 〈a, b〉 and 〈A,B〉.

r

〈a, b〉r

〈A,B〉

x

y

θ
ϕ
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(a) From the sketch,

a = r cos θ
b = r sin θ

(b) The length of the vector 〈A,B〉 is again r and the angle between
〈A,B〉 and the x-axis is θ + ϕ. So

A = r cos(θ + ϕ) = r cos θ cosϕ− r sin θ sinϕ = a cosϕ− b sinϕ
B = r sin(θ + ϕ) = r sin θ cosϕ+ r cos θ sinϕ = b cosϕ+ a sinϕ

3.2.5.5. Solution. (a) The region

R =
{

(x, y)
∣∣ 0 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x

}
In polar coordinates,

• the circle x2 + y2 = 4 becomes r2 = 4 or r = 2 and

• the line y = x becomes r sin θ = r cos θ or tan θ = 1 or θ = π
4 .

Thus the domain of integration is

R =
{

(r cos θ, r sin θ)
∣∣ 0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4
}

On this domain,

• θ runs from 0 to π
4 .

• For each fixed θ in that range, r runs from 0 to 2, as in the figure on
the left below.

In polar coordinates dxdy = r dr dθ, so that∫∫
R
f(x, y) dxdy =

∫ π
4

0
dθ
∫ 2

0
dr r f(r cos θ, r sin θ)

x

y

r “ 2

θ “ π
4

x

y

r “ 2

θ “ π
4

Alternatively, on R,

• r runs from 0 to 2.

• For each fixed r in that range, θ runs from 0 to π
4 , as in the figure on

the right above.

So ∫∫
R
f(x, y) dxdy =

∫ 2

0
dr
∫ π

4

0
dθ r f(r cos θ, r sin θ)

(b) The region

R =
{

(x, y)
∣∣ 1 ≤ x2 + y2 ≤ 4, x ≥ 0, y ≥ 0

}
In polar coordinates,
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• the circle x2 + y2 = 1 becomes r2 = 1 or r = 1 and

• the circle x2 + y2 = 4 becomes r2 = 4 or r = 2 and

• the positive x-axis, x ≥ 0, y = 0, becomes θ = 0 and

• the positive y-axis, x = 0, y ≥ 0, becomes θ = π
2 .

Thus the domain of integration is

R =
{

(r cos θ, r sin θ)
∣∣ 1 ≤ r ≤ 2, 0 ≤ θ ≤ π

2
}

On this domain,

• θ runs from 0 to π
2 .

• For each fixed θ in that range, r runs from 1 to 2, as in the figure on
the left below.

In polar coordinates dxdy = r dr dθ, so that∫∫
R
f(x, y) dxdy =

∫ π
2

0
dθ
∫ 2

1
dr r f(r cos θ, r sin θ)

x

y
r“2

r“1
x

y
r“2

r“1

Alternatively, on R,

• r runs from 1 to 2.

• For each fixed r in that range, θ runs from 0 to π
2 , as in the figure on

the right above.

So ∫∫
R
f(x, y) dxdy =

∫ 2

1
dr
∫ π

2

0
dθ r f(r cos θ, r sin θ)

(c) The region

R =
{

(x, y)
∣∣ (x− 1)2 + y2 ≤ 1, y ≥ 0

}
In polar coordinates, the circle (x − 1)2 + y2 = 1, or x2 − 2x + y2 = 0, is
r2 − 2r cos θ = 0 or r = 2 cos θ. Note that, on r = 2 cos θ,

• when θ = 0, r = 2 and

• as θ increases from 0 towards π
2 , r decreases but remains strictly

bigger than 0 (look at the figure below), until

• when θ = π
2 , r = 0.
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x

y

r“2 cos θ

θ

r

Thus the domain of integration is

R =
{

(r cos θ, r sin θ)
∣∣ 0 ≤ θ ≤ π

2 , 0 ≤ r ≤ 2 cos θ
}

On this domain,

• θ runs from 0 to π
2 .

• For each fixed θ in that range, r runs from 0 to 2 cos θ, as in the figure
on the left below.

In polar coordinates dxdy = r dr dθ, so that∫∫
R
f(x, y) dxdy =

∫ π
2

0
dθ
∫ 2 cos θ

0
dr r f(r cos θ, r sin θ)

x

y

r“2 cos θ

x

y

r“2 cos θ

p2, 0q
Alternatively, on R,

• r runs from 0 (at the point (0, 0)) to 2 (at the point (2, 0)).

• For each fixed r in that range, θ runs from 0 to arccos r2 (which was
gotten by solving r = 2 cos θ for θ as a function of r), as in the figure
on the right above.

So ∫∫
R
f(x, y) dxdy =

∫ 2

0
dr
∫ arccos r2

0
dθ r f(r cos θ, r sin θ)

(d) The region

R =
{

(x, y)
∣∣ 0 ≤ y ≤ 2, 0 ≤ x ≤ y

}
In polar coordinates,

• the line y = 2 becomes r sin θ = 2 and

• the positive y-axis, x = 0, y ≥ 0, becomes θ = π
2 and

• the line y = x becomes r sin θ = r cos θ or tan θ = 1 or θ = π
4 .

Thus the domain of integration is

R =
{

(r cos θ, r sin θ)
∣∣ π

4 ≤ θ ≤
π
2 , 0 ≤ r sin θ ≤ 2

}
On this domain,



APPENDIX D. SOLUTIONS TO EXERCISES 697

• θ runs from π
4 to π

2 .

• For each fixed θ in that range, r runs from 0 to 2
sin θ , as in the first

figure below.

In polar coordinates dxdy = r dr dθ, so that∫∫
R
f(x, y) dxdy =

∫ π
2

π
4

dθ
∫ 2

sin θ

0
dr r f(r cos θ, r sin θ)

x

y θ “ π
4

r sin θ “ 2

x

y y “ x

y “ 2

r “ 2

p2, 2q

x

y θ “ π
4

r sin θ “ 2

r “ 2

p2, 2q

Alternatively, on R,

• r runs from 0 (at the point (0, 0)) to 2
√

2 (at the point (2, 2)).

• For each fixed r between 0 and 2, θ runs from π
4 to π

2 , as in the second
figure above.

• For each fixed r between 2 and 2
√

2, θ runs from π
4 to arcsin 2

r (which
was gotten by solving r sin θ = 2 for θ as a function of r), as in the
third figure above.

So∫∫
R
f(x, y) dx dy =

∫ 2

0
dr
∫ π

2

π
4

dθ r f(r cos θ, r sin θ)

+
∫ 2
√

2

2
dr
∫ arcsin 2

r

π
4

dθ r f(r cos θ, r sin θ)

3.2.5.6. Solution. (a) Let D denote the domain of integration. The

symbols
∫ 2

1
dr
∫ π

4

−π4
dθ say that, on D,

• r runs from 1 to 2 and

• for each r in that range, θ runs from −π4 to π
4 .

In Cartesian coordinates

• r = 1 is the circle x2 + y2 = 1 and
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• r = 2 is the circle x2 + y2 = 4 and

• θ = π
4 is the ray y = x, x ≥ 0 and

• θ = −π4 is the ray y = −x, x ≥ 0.

So

D =
{

(x, y)
∣∣ 1 ≤ x2 + y2 ≤ 4, −x ≤ y ≤ x, x ≥ 0

}
Here are two sketches. D is the shaded region in the sketch on the right.

x

y

r “ 2

r“1

θ “ π{4

θ “ ´π{4

x

y

x2 ` y2 “ 4
x2 ` y2 “ 1

y “ x

y “ ´x

(b) LetD denote the domain of integration. The symbols
∫ π

4
0 dθ

∫ 2
sin θ+cos θ

0 dr
say that, on D,

• θ runs from 0 to π
4 and

• for each θ in that range, r runs from 0 to 2
sin θ+cos θ .

In Cartesian coordinates

• θ = 0 is the positive x-axis and

• θ = π
4 is the ray y = x, x ≥ 0 and

• r = 2
sin θ+cos θ , or equivalently r cos θ+r sin θ = 2, is the line x+y = 2.

Looking at the sketch on the left below, we see that, since the lines y = x
and x+ y = 2 cross at (1, 1),

D =
{

(x, y)
∣∣ 0 ≤ y ≤ 1, y ≤ x ≤ 2− y

}
D is the shaded region in the sketch on the right.

x

y
θ “ π{4

y “ x y “ 2 ´ x
p1, 1q

x

y

y “ x y “ 2 ´ x

(c) LetD denote the domain of integration. The symbols
∫ 2π

0 dθ
∫ 3√

cos2 θ+9 sin2 θ
0 dr

say that, on D,

• θ runs all the way from 0 to 2π and
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• for each θ, r runs from 0 to 3√
cos2 θ+9 sin2 θ

.

In Cartesian coordinates

• r = 3√
cos2 θ+9 sin2 θ

, or equivalently r2 cos2 θ + 9r2 sin2 θ = 9, is the
ellipse x2 + 9y2 = 9.

So D is the interior of the ellipse x2 + 9y2 = 9 and D is the shaded region
in the lower sketch.

x

y
x2`9y2“9

x

y
x2`9y2“9

3.2.5.7. Solution. (a) In polar coordinates, the domain of integration,
x2 + y2 ≤ a2, 0 ≤ y ≤

√
3x, becomes

r ≤ a, 0 ≤ r sin θ ≤
√

3r cos θ or r ≤ a, 0 ≤ θ ≤ arctan
√

3 = π

3

The integral is∫∫
S

(x+ y)dx dy =
∫ a

0
dr
∫ π

3

0
dθ r (r cos θ + r sin θ)

=
∫ a

0
dr r2

[
sin θ − cos θ

]π
3

0
= a3

3

[√
3

2 −
1
2 + 1

]
= a3

6
[√

3 + 1
]

(b) In polar coordinates, the domain of integration, x2 + y2 ≤ 2, x ≥ 1,

x

y p1, 1q

x “ 1

r “ ?
2

becomes

r ≤
√

2, r cos θ ≥ 1 or 1
cos θ ≤ r ≤

√
2
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For 1
cos θ ≤ r ≤

√
2 to be nonempty, we need cos θ ≤ 1√

2 or |θ| ≤ π
4 . By

symmetry under y → −y, the integral is∫∫
S

x dxdy = 2
∫ π

4

0
dθ
∫ √2

1
cos θ

dr r (r cos θ)

= 2
∫ π

4

0
dθ cos θ r

3

3

∣∣∣∣
√

2

1
cos θ

= 2
3

∫ π
4

0
dθ
[
23/2 cos θ − 1

cos2 θ

]
= 2

3

[
23/2 sin θ − tan θ

]π
4

0
= 2

3
[
23/2 1√

2
− 1
]

= 2
3

(c) In polar coordinates, the triangle with vertices (0, 0), (1, 0) and (1, 1)
has sides θ = 0, θ = π

4 and r = 1
cos θ (which is the polar coordinates version

of x = 1). The integral is∫∫
T

(x2 + y2) dx dy =
∫ π

4

0
dθ
∫ 1

cos θ

0
dr r(r2)

=
∫ π

4

0
dθ r

4

4

∣∣∣∣ 1
cos θ

0
= 1

4

∫ π
4

0
dθ 1

cos4 θ

= 1
4

∫ π
4

0
dθ sec4 θ

= 1
4

∫ π
4

0
dθ sec2 θ

(
1 + tan2 θ

)
= 1

4

∫ 1

0
dt
(
1 + t2

)
where t = tan θ

= 1
4

[
t+ t3

3

]1

0
= 1

4
4
3 = 1

3

(d) In polar coordinates, the domain of integration, x2+y2 ≤ 1, becomes
r ≤ 1, 0 ≤ θ ≤ 2π. So∫∫

x2+y2≤1
ln(x2 + y2) dx dy =

∫ 2π

0
dθ
∫ 1

0
dr r ln r2 = 2π

∫ 1

0
dr r ln r2

= π

∫ 1

0
ds ln s where s = r2

= π
[
s ln s− s

]1
0

= −π

To be picky, ln s tends to −∞ as s tends to 0. So
∫ 1

0 ds ln s is an improper
integral. The careful way to evaluate it is∫ 1

0
ds ln s = lim

ε→0+

∫ 1

ε

ds ln s = lim
ε→0+

[
s ln s− s

]1
ε

= lim
ε→0+

[
− 1− ε ln ε+ ε

]
= −1

That lim
ε→0+

ε ln ε = 0 was shown in Example 3.7.15 of the CLP-1 text.

3.2.5.8. Solution. The top surface x2 + y2 + z2 = 2 meets the bottom
surface z = x2 + y2 when z obeys x2 + y2 = z = 2 − z2. That is, when
0 = z2 + z − 2 = (z − 1)(z + 2). The root z = −2 is inconsistent with
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z = x2 + y2 ≥ 0. So the top and bottom surfaces meet at the circle z = 1,
x2 + y2 = 1.

In polar coordinates, the top surface is z2 = 2 − r2, or equivalently
z =

√
2− r2, and the bottom surface is z = r2. So the height of the

volume above the point with polar coordinates (r, θ) is
√

2− r2 − r2 and

Volume =
∫ 1

0
dr
∫ 2π

0
dθ r

[√
2− r2 − r2] = 2π

∫ 1

0
dr r

[√
2− r2 − r2]

= 2π
[
−1

3(2− r2)3/2 − r4

4

]1

0
= 2π

[
−1

3 −
1
4 + 1

323/2
]

= π

[
4
3
√

2− 7
6

]
≈ 2.26

In Cartesian coordinates

Volume = 4
∫ 1

0
dx
∫ √1−x2

0
dy
[√

2− x2 − y2 − x2 − y2]
The y integral can be done using the substitution y =

√
2− x2 cos t, but it

is easier to use polar coordinates.

3.2.5.9. Solution. For this region x and y run over the interior of the
cylinder x2 + (y−a)2 = a2. For each (x, y) inside the cylinder, z runs from
−
√
x2 + y2 to

√
x2 + y2. As x2+(y−a)2 = a2 if and only if x2+y2−2ay =

0, the cylinder has equation r2 = 2ar sin θ, or equivalently, r = 2a sin θ, in
polar coordinates.

x

y

r “ 2a sin θ

Thus (r, θ) runs over 0 ≤ θ ≤ π, 0 ≤ r ≤ 2a sin θ and for each (r, θ) in
this region z runs from −r to r. By symmetry under x→ −x, the volume
is

Volume = 2
∫ π

2

0
dθ
∫ 2a sin θ

0
dr r

[
r − (−r)

]
= 4

∫ π
2

0
dθ
∫ 2a sin θ

0
dr r2

= 4
3

∫ π
2

0
dθ (2a sin θ)3

= 32
3 a

3
∫ π

2

0
dθ sin θ(1− cos2 θ)

= −32
3 a

3
∫ 0

1
dt (1− t2) where t = cos θ

= −32
3 a

3
[
t− t3

3

]0

1
= 64

9 a
3

3.2.5.10. Solution. The figure below shows the top view of the specified
solid. (x, y) runs over the interior of the circle x2+y2 = 2ax. For each fixed
(x, y) in this disk, z runs from −

√
2ax to +

√
2ax. In polar coordinates,

the circle is r2 = 2ar cos θ or r = 2a cos θ.



APPENDIX D. SOLUTIONS TO EXERCISES 702

x

y r “ 2a cos θ

The solid is symmetric under y → −y and z → −z, so we can restrict
to y ≥ 0, z ≥ 0 and multiply by 4. The volume is

Volume = 4
∫ π

2

0
dθ
∫ 2a cos θ

0
dr r
√

2ar cos θ

= 4
∫ π

2

0
dθ
√

2a cos θ 2
5 r5/2

∣∣∣∣2a cos θ

0

= 8
5

∫ π
2

0
dθ
(
2a cos θ

)3 = 64
5 a

3
∫ π

2

0
dθ cos θ

(
1− sin2 θ

)
= 64

5 a
3
∫ 1

0
dt
(
1− t2

)
where t = sin θ

= 64
5 a

3
[
t− t3

3

]1

0
= 128

15 a
3

3.2.5.11. ∗. Solution. (a)
• The equation x2+y2 ≤ 2y is equivalent to the equation x2+(y−1)2 =

1, which is the equation of the cylinder whose z = z0 cross--section
is the horizontal circle of radius 1, centred on x = 0, y = 1, z = z0.
The part of this cylinder in the first octant is sketched in the first
figure below.

• z ≤
√
x2 + y2 is the equation of the cone with vertex (0, 0, 0), and

axis the positive z--axis, whose radius at height z = 2 is 2. The part
of this cone in the first octant is sketched in the second figure below.

z

y

x

x2 ` y2 “ 2y

p0, 0, 2q
p0, 2, 2q

p1, 1, 0q

p0, 1, 2q
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z

y

x

z “ a
x2 ` y2

p0, 0, 2q
p0, 2, 2q

p2, 0, 2q

The region E is the part of the cylinder that is above the xy--plane
(since z ≥ 0) outside the cone (since z ≤

√
x2 + y2). The part of E that is

in the first octant is outlined in red in the figure below. Both x2 + y2 ≤ 2y
and 0 ≤ z ≤

√
x2 + y2 are invariant under x→ −x. So E is also invariant

under x→ −x. That is, E is symmetric about the yz--plane and contains,
in the octant x ≤ 0, y ≥ 0, z ≥ 0, a mirror image of the first octant part
of E.

z

y

x

p0, 2, 0q

p0, 2, 2q

p1, 1, 0q

(b) In polar coordinates, x2 + y2 ≤ 2y becomes

r2 ≤ 2r sin θ ⇐⇒ r ≤ 2 sin θ

Let us denote by D the base region of the part of E in the first octant (i.e.
the shaded region in the figure above). Think of D as being part of the
xy--plane. In polar coordinates, on D

• θ runs from 0 to π
2 . (Recall that D is contained in the first quadrant.)

• For each θ in that range, r runs from 0 to 2 sin θ.

Because

• in polar coordinates dA = r dr dθ, and

• the height of E above each point (x, y) in D is
√
x2 + y2, or, in polar

coordinates, r, and

• the volume of E is twice the volume of the part of E in the first
octant,
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we have

Volume(E) = 2
∫ π

2

0
dθ
∫ 2 sin θ

0
dr r2

= 16
3

∫ π
2

0
dθ sin3 θ = 16

3

∫ π
2

0
dθ sin θ

(
1− cos2 θ

)
= −16

3

∫ 0

1
du
(
1− u2) with u = cos θ, du = − sin θ dθ

= 16
3

[
1− 1

3

]
= 32

9
3.2.5.12. ∗. Solution. On the domain of integration

• x runs for 0 to 2, and

• for each fixed x in that range, y runs from 0 to
√

4− x2. The equation
y =
√

4− x2 is equivalent to x2 + y2 = 4, y ≥ 0.

This domain is sketched in the figure on the left below.

x

y

y “ ?
4 ´ x2

p0,2q x

y

r “ 2

Considering that

• the integrand, (x2 + y2)
3
2 , is invariant under rotations about the ori-

gin and

• the outer curve, x2 + y2 = 4, is invariant under rotations about the
origin

we’ll use polar coordinates. In polar coordinates,

• the outer curve, x2 + y2 = 4, is r = 2, and

• the integrand, (x2 + y2)
3
2 is r3, and

• dA = r dr dθ

Looking at the figure on the right above, we see that the given integral is,
in polar coordinates,∫ π/2

0
dθ
∫ 2

0
dr r(r3) = π

2
25

5 = 16π
5

3.2.5.13. ∗. Solution. (a) The region L is sketched in the figure on the
left below.
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x

z

x2`y2“4

x2`y2“2

y “ x

L

x

z

r “ 2

r “ ?
2

θ “ π
4

(b) In polar coordinates

• the circle x2 + y2 = 2 is r2 = 2 or r =
√

2, and

• the circle x2 + y2 = 4 is r2 = 4 or r = 2, and

• the line y = x is r sin θ = r cos θ, or tan θ = 1, or (for the part in the
first quadrant) θ = π

4 , and

• the positive x--axis (y = 0, x ≥ 0) is θ = 0

Looking at the figure on the right above, we see that, in L,

• θ runs from 0 to π
4 , and

• for each fixed θ in that range, r runs from
√

2 to 2.

• dA is r dr dθ

So

M =
∫ π/4

0
dθ
∫ 2

√
2

dr r ρ(r cos θ , r sin θ)

(c) When

ρ = 2xy
x2 + y2 = 2r2 cos θ sin θ

r2 = sin(2θ)

we have

M =
∫ π/4

0
dθ
∫ 2

√
2

dr r sin(2θ)

=
[∫ π/4

0
sin(2θ) dθ

][∫ 2

√
2
r dr

]

=
[
−1

2 cos(2θ)
]π/4

0

[
r2

2

]2

√
2

= 1
2

4− 2
2

= 1
2

3.2.5.14. ∗. Solution. We’ll use polar coordinates. The domain of
integration is

R2 =
{

(r cos θ , r sin θ)
∣∣ 0 ≤ r <∞, 0 ≤ θ ≤ 2π

}
The given integral is improper, so we’ll start by integrating r from 0 to
an arbitrary R > 0, and then we’ll take the limit R → ∞. In polar
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coordinates, the integrand 1
(1+x2+y2)2 = 1

(1+r2)2 , and dA = r dr dθ, so

∫∫
R2

1
(1 + x2 + y2)2 dA = lim

R→∞

∫ 2π

0
dθ
∫ R

0
dr r

(1 + r2)2

= lim
R→∞

∫ 2π

0
dθ
[
− 1

2(1 + r2)

]R
0

= lim
R→∞

2π
[

1
2 −

1
2(1 +R2)

]
= π

3.2.5.15. ∗. Solution. Let’s switch to polar coordinates. In polar
coordinates, the circle x2 + y2 = 2 is r =

√
2 and the line y = x is θ = π

4 .

x

y

x2 ` y2 “ 2

y “ x

In polar coordinates dA = r dr dθ, so the integral

∫∫
D

y
√
x2 + y2 dA =

∫ π/4

0
dθ
∫ √2

0
dr r

y︷ ︸︸ ︷
r sin θ

√
x2+y2︷︸︸︷
r

=
∫ π/4

0
dθ sin θ

[
r4

4

]√2

0

=
[
− cos θ

]π/4
0

= 1− 1√
2

3.2.5.16. ∗. Solution. (a) On the domain of integration
• y runs from 0 to 1. In inequalities, 0 ≤ y ≤ 1.

• For each fixed y in that range, x runs from
√

3 y to
√

4− y2. In
inequalities, that is

√
3 y ≤ x ≤

√
4− y2. Note that the inequalities

x ≤
√

4− y2, x ≥ 0 are equivalent to x2 + y2 ≤ 4, x ≥ 0.

Note that the line x =
√

3 y and the circle x2 + y2 ≤ 4 intersect when
3y2 + y2 = 4, i.e. y = ±1. Here is a sketch.
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x

y

x2 ` y2 “ 4

π{6

x “ ?
3 y

p?
3,1q

(b) In polar coordinates, the circle x2 + y2 = 4 is r = 2 and the line
x =

√
3 y, i.e. y

x = 1√
3 , is tan θ = 1√

3 or θ = π
6 . As dx dy = r dr dθ, the

domain of integration is{
(r cos θ, r sin θ)

∣∣ 0 ≤ θ ≤ π

6 , 0 ≤ r ≤ 2
}

and∫ 1

0

∫ √4−y2

√
3y

ln
(
1 + x2 + y2) dxdy =

∫ 2

0
dr
∫ π/6

0
dθ r ln(1 + r2)

= π

6

∫ 2

0
dr r ln(1 + r2)

= π

12

∫ 5

1
du ln(u)

with u = 1 + r2, du = 2r dr

= π

12

[
u ln(u)− u

]5
1

= π

12
[
5 ln(5)− 4

]
3.2.5.17. ∗. Solution. Here is a sketch of D.

x

y

x2 ` y2 “ 16

π{3
2

4
D

x “ 2

We’ll use polar coordinates. In polar coordinates the circle x2 +y2 = 16
is r = 4 and the line x = 2 is r cos θ = 2. So

D =
{

(r cos θ , r sin θ)
∣∣∣∣ −π3 ≤ θ ≤ π

3 ,
2

cos θ ≤ r ≤ 4
}
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and, as dA = r dr dθ, the specified integral is∫∫
D

(
x2 + y2)−3/2 dA =

∫ π/3

−π/3
dθ
∫ 4

2/ cos θ
dr r 1

r3

=
∫ π/3

−π/3
dθ
[
−1
r

]4

2/ cos θ

=
∫ π/3

−π/3
dθ
[

cos θ
2 − 1

4

]
=
[

sin θ
2 − θ

4

]π/3
−π/3

=
√

3
2 −

π

6
3.2.5.18. ∗. Solution. (a) The inequality x2 + y2 ≤ 2x is equivalent to
(x − 1)2 + y2 ≤ 1 and says that (x, y) is to be inside the disk of radius 1
centred on (1, 0). Here is a sketch.

x

y

px ´ 1q2 ` y2 “ 1

y “ x

D

p1,0q

1

In polar coordinates, x = r cos θ, y = r sin θ so that the line y = x is
θ = π

4 and the circle x2 + y2 = 2x is

r2 = 2r cos θ or r = 2 cos θ

Consequently

D =
{

(r cos θ , r sin θ)
∣∣ − π

2 ≤ θ ≤
π

4 , 0 ≤ r ≤ 2 cos θ
}

(b) The solid has height z = r above the point in D with polar coordi-
nates r, θ. So the

Volume =
∫∫

D

r dA =
∫∫

D

r2 dr dθ =
∫ π/4

−π/2
dθ
∫ 2 cos θ

0
dr r2

= 8
3

∫ π/4

−π/2
dθ cos3 θ = 8

3

∫ π/4

−π/2
dθ cos θ

[
1− sin2 θ

]
= 8

3

[
sin θ − sin3 θ

3

]π/4
−π/2

= 8
3

[(
1√
2
− 1

6
√

2

)
−
(
−1 + 1

3

)]
= 40

18
√

2
+ 16

9
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3.2.5.19. ∗. Solution. We’ll use polar coordinates. In D
• θ runs from 0 to π

2 and

• for each fixed θ between 0 and π
2 , r runs from 1 to 1 + cos(θ).

So the area of D is

area = A =
∫ π/2

0
dθ
∫ 1+cos θ

1
dr r =

∫ π/2

0
dθ 1

2r
2
∣∣∣∣1+cos θ

1

=
∫ π/2

0
dθ
[

1
2 cos2 θ + cos θ

]
We are interested in the average value of r on D, which is

ave dist = 1
A

∫ π/2

0
dθ
∫ 1+cos θ

1
dr r2 = 1

A

∫ π/2

0
dθ 1

3r
3
∣∣∣∣1+cos θ

1

= 1
A

∫ π/2

0
dθ
[

1
3 cos3 θ + cos2 θ + cos θ

]
Now we evaluate the integrals of the various powers of cosine.∫ π/2

0
cos θ dθ = sin θ

∣∣∣∣π/2
0

= 1∫ π/2

0
cos2 θ dθ = cos θ sin θ

2

∣∣∣∣π/2
0

+ 1
2

∫ π/2

0
dθ = π

4∫ π/2

0
cos3 θ dθ = cos2 θ sin θ

3

∣∣∣∣π/2
0

+ 2
3

∫ π/2

0
cos θ dθ = 2

3

So A = π
8 + 1 and

ave dist = 8
π + 8

[
2
9 + π

4 + 1
]

= 2π + 44/9
π + 8 ≈ 1.442

3.2.5.20. ∗. Solution. (a) Observe that
• the condition x2 + y2 ≤ 1 restricts G to the interior of the circle of

radius 1 centred on the origin, and

• the conditions 0 ≤ x ≤ 2y restricts G to x ≥ 0, y ≥ 0, i.e. to the first
quadrant, and

• the conditions x ≤ 2y and y ≤ 2x restrict x
2 ≤ y ≤ 2x. So G lies

below the (steep) line y = 2x and lies above the (not steep) line
y = x

2 .

Here is a sketch of G
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x

y

x2 ` y2 “ 1

y “ x{2

y “ 2x

´
2?
5
, 1?

5

¯

´
1?
5
, 2?

5

¯

G

(b) Observe that the line y = 2x crosses the circle x2 + y2 = 1 at a
point (x, y) obeying

x2 + (2x)2 = x2 + y2 = 1 =⇒ 5x2 = 1

and that the line x = 2y crosses the circle x2 + y2 = 1 at a point (x, y)
obeying

(2y)2 + y2 = x2 + y2 = 1 =⇒ 5y2 = 1

So the intersection point of y = 2x and x2 + y2 = 1 in the first octant is(
1√
5 ,

2√
5

)
and the intersection point of x = 2y and x2 + y2 = 1 in the first

octant is
(

2√
5 ,

1√
5

)
.

We’ll set up the iterated integral using horizontal strips as in the sketch

x

y

x “ a
1 ´ y2

x “ 2y

x “ y{2

y “ 1{?
5 ´

2?
5
, 1?

5

¯

´
1?
5
, 2?

5

¯

Looking at that sketch, we see that, on G,

• y runs from 0 to 2√
5 , and

• for each fixed y between 0 and 1√
5 , x runs from y

2 to 2y, and

• for each fixed y between 1√
5 and 2√

5 x runs from y
2 to

√
1− y2.

So∫∫
G

f(x, y) dA =
∫ 1√

5

0
dy
∫ 2y

y/2
dx f(x, y) +

∫ 2√
5

1√
5

dy
∫ √1−y2

y/2
dx f(x, y)

(b) In polar coordinates
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• the equation x2 + y2 = 1 becomes r = 1, and

• the equation y = x/2 becomes r sin θ = r
2 cos θ or tan θ = 1

2 , and

• the equation y = 2x becomes r sin θ = 2r cos θ or tan θ = 2.

Looking at the sketch

x

y

r “ 1
θ “ arctan 1

2

θ “ arctan 2

we see that, on G,

• θ runs from arctan 1
2 to arctan 2, and

• for each fixed θ in that range, r runs from 0 to 1.

As dA = r dr dθ, and x = r cos θ, y = r sin θ,∫∫
G

f(x, y) dA =
∫ arctan 2

arctan 1
2

dθ
∫ 1

0
dr r f(r cos θ, r sin θ)

3.2.5.21. ∗. Solution. (a) On the domain of integration
• y runs from 0 to

√
2 and

• for each y in that range, x runs from y to
√

4− y2. We can rewrite
x =

√
4− y2 in the more familiar form x2 + y2 = 4, x ≥ 0.

The figure on the left below provides a sketch of the domain of integration.
It also shows the generic horizontal slice that was used to set up the given
iterated integral.

x

y

x “ a
4 ´ y2

x “ y

p?
2,

?
2q

p2,0q

x

y

y “ ?
4 ´ x2

y “ x

p?
2,

?
2q

p2,0q

(b) To reverse the order of integration observe, we use vertical, rather
than horizontal slices. From the figure on the right above that, on the
domain of integration,

• x runs from 0 to 2 and

• for each x in the range 0 ≤ x ≤
√

2, y runs from 0 to x.

• for each x in the range
√

2 ≤ x ≤ 2, y runs from 0 to
√

4− x2.
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So the integral

J =
∫ √2

0

∫ x

0

y

x
ex

2+y2
dy dx+

∫ 2

√
2

∫ √4−x2

0

y

x
ex

2+y2
dy dx

(c) In polar coordinates, the line y = x is θ = π
4 , the circle x2 + y2 = 4

is r = 2, and dxdy = r dr dθ. So

J =
∫ π/4

0
dθ
∫ 2

0
dr r

y
x︷ ︸︸ ︷

r sin θ
r cos θ e

r2

=
∫ π/4

0
dθ sin θ

cos θ

[
1
2e

r2
]2

0

= −1
2
[
e4 − 1

] ∫ 1/
√

2

1
du 1

u
with u = cos θ, du = − sin θ dθ

= −1
2
[
e4 − 1

] [
ln |u|

]1/√2

1

= 1
4
[
e4 − 1

]
ln 2

3.2.5.22. Solution. The paraboloid hits the xy--plane at x2

a2 + y2

b2 = 1.

Volume =
∫ a

0
dx
∫ b
√

1− x2
a2

0
dy
(

1− x2

a2 −
y2

b2

)

= b

∫ a

0
dx
∫ √1− x2

a2

0
dv
(

1− x2

a2 − v
2
)

where y = bv

Think of this integral as being of the form

b

∫ a

0
dx g(x) with g(x) =

∫ √1− x2
a2

0
dv
(

1− x2

a2 − v
2
)

Then, substituting x = au,

Volume = ab

∫ 1

0
du
∫ √1−u2

0
dv
(
1− u2 − v2)

= ab

∫∫
u2+v2≤1
u,v≥0

dudv
(
1− u2 − v2)

Now switch to polar coordinates using u = r cos θ, v = r sin θ.

Volume = ab

∫ 1

0
dr
∫ π

2

0
dθ r

(
1− r2) = ab

π

2

[
r2

2 −
r4

4

]1

0
= π

8 ab

3.2.5.23. Solution. Let r(z) be the radius of the urn at height z above
its middle. Because the bounding surface of the urn is parabolic, r(z) must
be a quadratic function of z that varies between 3 at z = 0 and 2 at z = ±6.
That is, r(z) must be of the form r(z) = az2 + bz + c. The condition that
r(0) = 3 tells us that c = 3. The conditions that r(±6) = 2 tells us that

62a+ 6b+ 3 = 2
62a− 6b+ 3 = 2
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So b = 0 and 62a = −1 so that a = − 1
62 . All together r(z) = 3−

(
z
6
)2.

Slice the urn into horzontal slices, with the slice at height z a disk of
radius r(z) and thickness dz and hence of volume πr(z)2dz. The volume
to height z0 is

V (z) =
∫ z0

−6
dz πr(z)2 =

∫ z0

−6
dz π

[
3− z2

36

]2

= π

[
9z − z3

18 + z5

5× 362

]z0

−6

We are told that the mark is to be at the 6 cup level and that the urn
holds 24 cups. So the mark is to be at the height z0 for which the volume,
V (z0), is one quarter of the total volume, V (6). That is, we are to choose
z0 so that V (z0) = 1

4V (6) or

π

[
9z − z3

18 + z5

5× 362

]z0

−6
= π

4

[
9z − z3

18 + z5

5× 362

]6

−6

= π

2

[
9× 6− 63

18 + 65

5× 362

]
or

9z0 −
z3

0
18 + z5

0
5× 362 = −1

2

[
9× 6− 63

18 + 65

5× 362

]
= −21.60

Since
[
9z0− z3

0
18 + z5

0
6480

]
z0=−2.495

= −21.61 and
[
9z0− z3

0
18 + z5

0
6480

]
z0=−2.490

=
−21.57, there is a solution z0 = −2.49 (to two decimal places). The mark
should be about 3.5’’ above the bottom.
3.2.5.24. ∗. Solution. (a) In polar coordinates, the base region x2 +
y2 ≤ 9 is r ≤ 3, 0 ≤ θ ≤ 2π. So the

Volume =
∫∫

x2+y2≤9
ex

2+y2
dxdy =

∫ 3

0
dr
∫ 2π

0
dθ rer

2
= 2π

∫ 3

0
dr rer

2

= πer
2
∣∣∣3
0

= π
(
e9 − 1

)
≈ 25, 453

(b) The two integrals have domains{
(x, y)

∣∣ 0 ≤ y ≤ 1, 0 ≤ x ≤ y
} {

(x, y)
∣∣ 1 ≤ y ≤ 2, 0 ≤ x ≤ 2− y

}
The union of those two domains (as well as horizontal strips that were used
in setting up the two given integrals) is sketched in the figure on the left
below.
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1

2

1
x

y

x “ y

x “ 2 ´ y

1

2

1
x

y

y “ x

y “ 2 ´ x

To reverse the order of integration, we decompose the domain using
vertical strips as in the figure on the right above. As

• x runs from 0 to 1 and

• for each fixed x between 0 and 1, y runs from x to 2− x.

we have that the

Volume =
∫ 1

0
dx
∫ 2−x

x

dy ex
2+y2

3.3 · Applications of Double Integrals
3.3.4 · Exercises

3.3.4.1. Solution. (a)
∫∫
D
x dxdy = 0 because x is odd under x→ −x,

i.e. under reflection about the y--axis, while the domain of integration is
symmetric about the y--axis.

∫∫
D

3 dx dy is the three times the area of a
half disc of radius 2. So,

∫∫
D

(x+ 3)dxdy = 3× 1
2 × π22 = 6π.

(s)
∫∫
R
x dxdy/

∫∫
R

dx dy is the average value of x in the rectangle R,
namely a

2 . Similarly,
∫∫
R
y dxdy/

∫∫
R

dx dy is the average value of y in
the rectangle R, namely b

2 .
∫∫
R

dxdy is area of the rectangle R, namely
ab. So,

•
∫∫
R
x dxdy = a

2
∫∫
R

dxdy = a
2ab and

•
∫∫

R

y dxdy = b

2

∫∫
R

dx dy = b

2ab

and
∫∫
R

(x+ y)dx dy = 1
2ab(a+ b).

3.3.4.2. ∗. Solution. Here is a sketch of D.
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x

y

y “ 1

y “ x2

p´1,1q p1,1q

By definition, the centre of mass is (x̄, ȳ), with x̄ and ȳ being the
weighted averages of the x and y--coordinates, respectively, over D. That
is,

x̄ =
∫∫
D
x ρ(x, y) dA∫∫
D
ρ(x, y) dA

ȳ =
∫∫
D
y ρ(x, y) dA∫∫
D
ρ(x, y) dA

By symmetry under reflection in the y--axis, we have x̄ = 0. So we just
have to determine ȳ. We’ll evaluate the integrals using vertical strips as in
the figure above. Looking at that figure, we see that

• x runs from −1 to 1, and

• for each fixed x in that range, y runs from x2 to 1.

So the denominator is∫∫
D

ρ(x, y) dA =
∫ 1

−1
dx
∫ 1

x2
dy

ρ(x,y)︷︸︸︷
y

= 1
2

∫ 1

−1
dx (1− x4) =

∫ 1

0
dx (1− x4)

= 4
5

and the numerator of ȳ is

∫∫
D

y ρ(x, y) dA =
∫ 1

−1
dx
∫ 1

x2
dy y

ρ(x,y)︷︸︸︷
y

= 1
3

∫ 1

−1
dx (1− x6) = 2

3

∫ 1

0
dx (1− x6)

= 2
3

6
7 = 4

7

All together, x̄ = 0 and

ȳ =
4
7
4
5

= 5
7

3.3.4.3. ∗. Solution. (a) Here is a sketch of R.
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x

y

R

x2 ` y2 “ 4

x “ 1

(b) Considering that

• ρ(x, y) is invariant under rotations about the origin and

• the outer curve x2 + y2 = 4 is invariant under rotations about the
origin and

• the given hint involves a θ integral

we’ll use polar coordinates.
Observe that the line x = 1 and the circle x2 + y2 = 4 intersect when

1 + y2 = 4 ⇐⇒ y = ±
√

3

and that the polar coordinates of the point (x, y) =
(
1,
√

3
)
are r =√

x2 + y2 = 2 and θ = arctan y
x = arctan

√
3 = π

3 . Looking at the sketch

x

y

θ

R

r “ 2

r cos θ “ 1

p1,?3q, r“2, θ“π
3

we see that, on R,

• θ runs from −π3 to π
3 and

• for each fixed θ in that range, r runs from 1
cos θ = sec θ to 2.

• In polar coordinates, dA = r dr dθ, and

• the density ρ = 1√
x2+y2

= 1
r

So the mass is

M =
∫∫

R

ρ(x, y) dA =
∫ π/3

−π/3
dθ
∫ 2

sec θ
dr r

r
=
∫ π/3

−π/3
dθ
[
2− sec θ

]
= 2

∫ π/3

0
dθ
[
2− sec θ

]
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= 2
[
2θ − ln

(
sec θ + tan θ

)]π/3
0

= 2
[

2π
3 − ln

(
2 +
√

3
)

+ ln
(
1 + 0

)]
= 4π

3 − 2 ln
(
2 +
√

3
)

(c) By definition, the centre of mass is (x̄, ȳ), with x̄ and ȳ being the
weighted averages of the x and y--coordinates, respectively, over R. That
is,

x̄ =
∫∫
R
x ρ(x, y) dA∫∫
R
ρ(x, y) dA

ȳ =
∫∫
R
y ρ(x, y) dA∫∫
R
ρ(x, y) dA

By symmetry under reflection in the x--axis, we have ȳ = 0. So we just
have to determine x̄. The numerator is∫∫

R

x ρ(x, y) dA =
∫ π/3

−π/3
dθ
∫ 2

sec θ
dr r

r

x︷ ︸︸ ︷
r cos θ

= 1
2

∫ π/3

−π/3
dθ
[
4− sec2 θ

]
cos θ =

∫ π/3

0
dθ
[
4 cos θ − sec θ

]
=
[
4 sin θ − ln

(
sec θ + tan θ

)]π/3
0

=
[
4
√

3
2 − ln

(
2 +
√

3
)

+ ln
(
1 + 0

)]
= 2
√

3− ln
(
2 +
√

3
)

All together, ȳ = 0 and

x̄ =
2
√

3− ln
(
2 +
√

3
)

4π
3 − 2 ln

(
2 +
√

3
) ≈ 1.38

3.3.4.4. ∗. Solution. Let’s call the plate P. By definition, the x--
coordinate of its centre of mass is

x̄ =
∫∫
P x dA∫∫
P dA

Here is a sketch of the plate.

x

y

θ

P
r “ 1 ` sin θ

The cardiod is given to us in polar coordinates, so let’s evaluate the
integrals in polar coordinates. Looking at the sketch above, we see that,
on P,

• θ runs from 0 to π/2 and
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• for each fixed θ in that range, r runs from 0 to 1 + sin θ.

• In polar coordinates dA = r dr dθ

So the two integrals of interest are∫∫
P

dA =
∫ π/2

0
dθ
∫ 1+sin θ

0
dr r

= 1
2

∫ π/2

0
dθ
(
1 + 2 sin θ + sin2 θ

)
= 1

2
π

2 +
[
− cos θ

]π/2
0

+ 1
2

∫ π/2

0
dθ 1− cos(2θ)

2

= π

4 + 1 + 1
4

[
θ − sin(2θ)

2

]π/2
0

= 3π
8 + 1

and ∫∫
P
x dA =

∫ π/2

0
dθ
∫ 1+sin θ

0
dr r

x︷ ︸︸ ︷
(r cos θ)

= 1
3

∫ π/2

0
dθ
(
1 + sin θ

)3 cos θ

= 1
3

∫ 2

1
du u3 with u = 1 + sin θ, du = cos θ dθ

= 1
12
[
24 − 14]

= 5
4

All together

x̄ =
5
4

3π
8 + 1

= 10
3π + 8 ≈ 0.57

For an efficient, sneaky, way to evaluate
∫ π/2

0 sin2 θ dθ, see Remark 3.3.5.

3.3.4.5. ∗. Solution. Call the plate P . By definition, the centre of
mass is (x̄, ȳ), with x̄ and ȳ being the weighted averages of the x and
y--coordinates, respectively, over P . That is,

x̄ =
∫∫
P
x ρ(x, y) dA∫∫
P
ρ(x, y) dA

ȳ =
∫∫
P
y ρ(x, y) dA∫∫
P
ρ(x, y) dA

with ρ(x, y) = k. Here is a sketch of P .
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x

y

r “ 1

P

By symmetry under reflection in the line y = x, we have ȳ = x̄. So we
just have to determine

x̄ =
∫∫
P
x dA∫∫
P

dA

The denominator is just one quarter of the area of circular disk of radius 1.
That is,

∫∫
P

dA = π
4 . We’ll evaluate the numerator using polar coordinates

as in the figure above. Looking at that figure, we see that

• θ runs from 0 to π
2 , and

• for each fixed θ in that range, r runs from 0 to 1.

As dA = r dr dθ, and x = r cos θ, the numerator∫∫
P

x dA =
∫ π/2

0
dθ
∫ 1

0
dr r

x︷ ︸︸ ︷
r cos θ =

[∫ π/2

0
dθ cos θ

] [∫ 1

0
dr r2

]

=
[

sin θ
]π/2

0

[
r3

3

]1

0

= 1
3

All together

x̄ = ȳ = 1/3
π/4 = 4

3π

3.3.4.6. ∗. Solution. Here is a sketch of R.

x

y

Rx “ 2´y
2

x “ 2 ´ y

p2,0qp1,0q

p0,2q

Note that

• the equation of the straight line through (2, 0) and (0, 2) is y = 2−x,
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or x = 2− y. (As a check note that both points (2, 0) and (0, 2) are
on x = 2− y.

• The equation of the straight line through (1, 0) and (0, 2) is y = 2−2x,
or x = 2−y

2 . (As a check note that both points (0, 2) and (1, 0) are
on x = 2−y

2 .

By definition, the y--coordinate of the center of mass of R is the weighted
average of y over R, which is

ȳ =
∫∫
R
y ρ(x, y) dA∫∫
R
ρ(x, y) dA

=
∫∫
R
y3 dA∫∫

R
y2 dA

On R,

• y runs from 0 to 2. That is, 0 ≤ y ≤ 2.

• For each fixed y in that range, x runs from 2−y
2 to 2− y. In inequal-

ities, that is 2−y
2 ≤ x ≤ 2− y.

Thus
R =

{
(x, y)

∣∣∣∣ 0 ≤ y ≤ 2, 2− y
2 ≤ x ≤ 2− y

}
For both n = 2 and n = 3, we have∫∫

R

yn dA =
∫ 2

0
dy
∫ 2−y

2−y
2

dx yn

=
∫ 2

0
dy yn 2− y

2

= 1
2

[
2yn+1

n+ 1 −
yn+2

n+ 2

]2

0

= 1
2

[
2n+2

n+ 1 −
2n+2

n+ 2

]
= 2n+1

(n+ 1)(n+ 2)

So

ȳ =
∫∫
R
y3 dA∫∫

R
y2 dA

=
24

(4)(5)
23

(3)(4)
= 6

5

3.3.4.7. ∗. Solution. By the definition given in the statement with
(a, b) = (0, 0), the average is

1
A(D)

∫∫
D

√
x2 + y2 dxdy

The denominator A(D) = π. We’ll use polar coordinates to evaluate the
numerator.∫∫

D

√
x2 + y2 dxdy =

∫ 2π

0
dθ
∫ 1

0
dr r

√
r2 cos2 θ + r2 sin2 θ

=
∫ 2π

0
dθ
∫ 1

0
dr r2 =

∫ 2π

0
dθ 1

3



APPENDIX D. SOLUTIONS TO EXERCISES 721

= 2π
3

So the average is
2π
3
π

= 2
3

3.3.4.8. ∗. Solution. Note that x2 + y2 = x is equivalent to
(
x− 1

2
)2 +

y2 = 1
4 , which is the circle of radius 1

2 centred on
( 1

2 , 0
)
. Let’s call the

crescent C and write

D =
{

(x, y)
∣∣ x2 + y2 ≤ 1

}
H =

{
(x, y)

∣∣ (x− 1
2
)2 + y2 ≤ 1

4
}

so that
C = D \H

meaning that C is the disk D with the “hole” H removed. Here is a sketch.

C
H

x

y

p1,0q

(a) As D is a disk of radius 1, it has area π. As H is a disk of radius
1
2 , it has area

π
4 . As C has density 1,

Mass(C) =
∫∫
C

dA =
∫∫

D

dA−
∫∫

H

dA

= π − π

4
= 3π

4

(b) Recall that, by definition, the x--coordinate of the centre of mass
of C is the average value of x over C, which is

x̄ =
∫∫
C x dA∫∫
C dA

We have already found that
∫∫
C dA = 3π

4 . So we have to determine the
numerator ∫∫

C
x dA =

∫∫
D

xdA−
∫∫

H

xdA

As x is an odd function and D is invariant under x → −x,
∫∫
D
xdA = 0.

So we just have to determine
∫∫
H
xdA. To do so we’ll work in polar

coordinates, so that dA = r dr dθ. In polar coordinates x2 + y2 = x is
r2 = r cos θ or r = cos θ. So, looking at the figure above (just before the
solution to part (a)), on the domain of integration,

• θ runs from −π2 to π
2 .
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• For each fixed θ in that range, r runs from 0 to cos θ.

So the integral is

∫∫
H

xdA =
∫ π/2

−π/2
dθ
∫ cos θ

0
dr r

x︷ ︸︸ ︷
(r cos θ)

=
∫ π/2

−π/2
dθ cos4 θ

3

= π

8

So all together

x̄ =
∫∫
C x dA∫∫
C dA

=
∫∫
D
xdA−

∫∫
H
x dA∫∫

C dA
=

0− π
8

3π
4

= −1
6

3.3.4.9. ∗. Solution. The domain is pictured below.

x

y

x2 ` py ´ 1q2 “ 1

x2 ` y2 “ 2

The two circles intersect when x2 + y2 = 2 and

x2 + (y − 1)2 = 2− y2 + (y − 1)2 = 1 ⇐⇒ −2y + 3 = 1
⇐⇒ y = 1

and x = ±1. In polar coordinates x2 +y2 = 2 is r =
√

2 and x2 +(y−1)2 =
x2 + y2 − 2y + 1 = 1 is r2 − 2r sin θ = 0 or r = 2 sin θ. The two curves
intersect when r =

√
2 and

√
2 = 2 sin θ so that θ = π

4 or 3
4π. So

D =
{

(r cos θ, r sin θ)
∣∣ 1

4π ≤ θ ≤
3
4π,
√

2 ≤ r ≤ 2 sin θ
}

and, as the density is 2
r ,

mass =
∫ 3π/4

π/4
dθ
∫ 2 sin θ

√
2

dr r2
r

= 2
∫ 3π/4

π/4
dθ
[
2 sin θ −

√
2
]

= 4
∫ π/2

π/4
dθ
[
2 sin θ −

√
2
]

= 4
[
− 2 cos θ −

√
2θ
]π/2
π/4

= 4
√

2−
√

2π ≈ 1.214

3.3.4.10. ∗. Solution. (a) The side of the triangle from (−a, 0) to
(0, c) is straight line that passes through those two points. As y = 0 when
x = −a, the line must have an equation of the form y = K(x+ a) for some



APPENDIX D. SOLUTIONS TO EXERCISES 723

constant K. Since y = c when x = 0, the constant K = c
a . So that the

equation is y = c
a (x+ a). has equation cx− ay = −ac. Similarly the side

of the triangle from (b, 0) to (0, c) has equation y = c
b (b− x). The triangle

has area A = 1
2 (a+ b)c. It has centre of mass (x̄, ȳ) with

x̄ = 1
A

∫∫
T

x dxdy ȳ = 1
A

∫∫
T

y dxdy

To evaluate the integrals we’ll decompose the triangle into vertical strips
as in the figure

y “ cp1 ` x{aq y “ cp1 ´ x{bq

p´a, 0q pb, 0q

p0, cq

x

y

x̄ = 1
A

∫∫
T

x dxdy

= 1
A

(∫ 0

−a
dx
∫ c+ c

ax

0
dy x+

∫ b

0
dx
∫ c− cbx

0
dy x

)
= 1
A

(∫ 0

−a
dx x

(
c+ c

a
x
)

+
∫ b

0
dx x

(
c− c

b
x
))

= 1
A

([
1
2cx

2 + c

3ax
3
]0

−a
+
[

1
2cx

2 − c

3bx
3
]b

0

)

= 2
1
2c(b

2 − a2) + c
3 (a2 − b2)

(a+ b)c = 1
3(b− a)

ȳ = 1
A

∫∫
T

y dxdy

= 1
A

(∫ 0

−a
dx
∫ c+ c

ax

0
dy y +

∫ b

0
dx
∫ c− cbx

0
dy y

)
= 1
A

(∫ 0

−a
dx 1

2

(
c+ c

a
x
)2

+
∫ b

0
dx 1

2

(
c− c

b
x
)2
)

= 1
A

(
a

6c

[
c+ c

a
x
]3 ∣∣∣∣0
−a
− b

6c

(
c− c

b
x
)3
∣∣∣∣b
0

)

= 2
ac2

6 + bc2

6
(a+ b)c = c

3

(b) The midpoint of the side opposite (−a, 0) is 1
2
[
(b, 0) + (0, c)

]
=

1
2 (b, c). The vector from (−a, 0) to 1

2 (b, c) is 1
2 〈b, c〉− 〈−a, 0〉 =

〈
a+ b

2 ,
c
2
〉
.

So the line joining these two points has vector parametric equation

r(t) = 〈−a, 0〉+ t

〈
a+ 1

2b ,
1
2c
〉
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p´a, 0q pb, 0q

pb{2, c{2q
p0, cq

x

y

The point (x̄, ȳ) lies on this line since

r
(

2
3

)
=
(

1
3(b− a) , c3

)
= (x̄, ȳ)

Similarly, the midpoint of the side opposite (b, 0) is 1
2 (−a, c). The line

joining these two points has vector parametric equation

r(t) = 〈b, 0〉+ t

〈
−b− 1

2a ,
1
2c
〉

The point (x̄, ȳ) lies on this line too, since

r
(

2
3

)
=
(

1
3(b− a), c3

)
= (x̄, ȳ)

It is not really necessary to check that (x̄, ȳ) lies on the third median, but
let’s do it anyway. The midpoint of the side opposite (0, c) is 1

2 (b − a, 0).
The line joining these two points has vector parametric equation

r(t) = 〈0, c〉+ t

〈
b

2 −
a

2 ,−c
〉

The point (x̄, ȳ) lies on this median too, since

r
(

2
3

)
=
(

1
3(b− a), c3

)
= (x̄, ȳ)

3.4 · Surface Area
3.4.1 · Exercises

3.4.1.1. Solution. (a) S is the part of the plane z = y tan θ that
lies above the rectangle in the xy-plane with vertices (0, 0), (a, 0), (0, b),
(a, b). So S is the rectangle with vertices (0, 0, 0), (a, 0, 0), (0, b, b tan θ),
(a, b, b tan θ). So it has side lengths

| 〈a, 0, 0〉 − 〈0, 0, 0〉 | = a

| 〈0, b, b tan θ〉 − 〈0, 0, 0〉 | =
√
b2 + b2 tan2 θ

and hence area ab
√

1 + tan2 θ = ab sec θ.
(b) S is the part of the surface z = f(x, y) with f(x, y) = y tan θ and

with (x, y) running over

D =
{

(x, y)
∣∣ 0 ≤ x ≤ a, 0 ≤ y ≤ b

}
Hence by Theorem 3.4.2

Area(S) =
∫∫
D

√
1 + fx(x, y)2 + fy(x, y)2 dxdy
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=
∫ a

0
dx
∫ b

0
dy
√

1 + 02 + tan2 θ

= ab
√

1 + tan2 θ = ab sec θ

3.4.1.2. Solution. S is the part of the surface z = f(x, y) with f(x, y) =
d−ax−by

c and with (x, y) running over D. Hence by Theorem 3.4.2

Area(S) =
∫∫

D

√
1 + fx(x, y)2 + fy(x, y)2 dx dy

=
∫∫

D

√
1 + a2

c2
+ b2

c2

=
√
a2 + b2 + c2

c
A(D)

3.4.1.3. Solution. Note that all three vertices (a, 0, 0), (0, b, 0) and
(0, 0, c) lie on the plane x

a + y
b + z

c = 1. So the triangle is part of that
plane.

Method 1. S is the part of the surface z = f(x, y) with f(x, y) =
c
(
1− x

a −
y
b

)
and with (x, y) running over the triangle Txy in the xy-plane

with vertices (0, 0, 0) (a, 0, 0) and (0, b, 0). Hence by part a of Theorem
3.4.2

Area(S) =
∫∫

Txy

√
1 + fx(x, y)2 + fy(x, y)2 dxdy

=
∫∫

Txy

√
1 + c2

a2 + c2

b2
dxdy

=
√

1 + c2

a2 + c2

b2
A(Txy)

where A(Txy) is the area of Txy. Since the triangle Txy has base a and
height b (see the figure below), it has area 1

2ab. So

Area(S) = 1
2

√
1 + c2

a2 + c2

b2
ab = 1

2
√
a2b2 + a2c2 + b2c2

y

z

x

Txy

pa, 0, 0q

p0, b, 0q

p0, 0, cq

Method 2. S is the part of the surface x = g(y, z) with g(y, z) =
a
(
1− y

b −
z
c

)
and with (y, z) running over the triangle Tyz in the yz-plane

with vertices (0, 0, 0) (0, b, 0) and (0, 0, c). Hence by part b of Theorem
3.4.2

Area(S) =
∫∫

Tyz

√
1 + gy(y, z)2 + gz(y, z)2 dy dz

=
∫∫

Tyz

√
1 + a2

b2
+ a2

c2
dy dz
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=
√

1 + a2

b2
+ a2

c2
A(Tyz)

where A(Tyz) is the area of Tyz. Since Tyz has base b and height c, it has
area 1

2bc. So

Area(S) = 1
2

√
1 + a2

b2
+ a2

c2
bc = 1

2
√
a2b2 + a2c2 + b2c2

Method 3. S is the part of the surface y = h(x, z) with h(x, z) =
b
(
1− x

a −
z
c

)
and with (x, z) running over the triangle Txz in the xz-plane

with vertices (0, 0, 0) (a, 0, 0) and (0, 0, c). Hence by part c of Theorem
3.4.2

Area(S) =
∫∫

Txz

√
1 + hx(x, z)2 + hz(x, z)2 dx dz

=
∫∫

Txz

√
1 + b2

a2 + b2

c2
dx dz

=
√

1 + b2

a2 + b2

c2
A(Txz)

where A(Txz) is the area of Txz. Since Txz has base a and height c, it has
area 1

2ac. So

Area(S) = 1
2

√
1 + b2

a2 + b2

c2
bc = 1

2
√
a2b2 + a2c2 + b2c2

(b) We have already seen in the solution to part (a) that

Area(Txy) = ab

2 Area(Txz) = ac

2 Area(Tyz) = bc

2

Hence

Area(S) =
√
a2b2

4 + a2c2

4 + b2c2

4
=
√
Area(Txy)2 + Area(Txz)2 + Area(Tyz)2

3.4.1.4. ∗. Solution. For the surface z = f(x, y) = y3/2,

dS =
√

1 + f2
x + f2

y dxdy =
√

1 +
(3

2
√
y
)2

dxdy =
√

1 + 9
4y dxdy

by Theorem 3.4.2.a, So the area is∫ 1

0
dx
∫ 1

0
dy
√

1 + 9
4y =

∫ 1

0
dx 8

27

[(
1 + 9

4y
)3/2]1

0

=
∫ 1

0
dx 8

27

[(13
4

)3/2
− 1
]

= 8
27

[(
13
4

)3/2
− 1
]
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3.4.1.5. ∗. Solution. First observe that any point (x, y, z) on the
paraboliod lies above the xy-plane if and only if

0 ≤ z = a2 − x2 − y2 ⇐⇒ x2 + y2 ≤ a2

That is, if and only if (x, y) lies in the circular disk of radius a centred on
the origin. The equation of the paraboloid is of the form z = f(x, y) with
f(x, y) = a2 − x2 − y2. So, by Theorem 3.4.2.a,

Surface area =
∫∫

x2+y2≤a2

√
1 + fx(x, y)2 + fy(x, y)2 dx dy

=
∫∫

x2+y2≤a2

√
1 + 4x2 + 4y2 dxdy

Switching to polar coordinates,

Surface area =
∫ a

0
dr
∫ 2π

0
dθ r

√
1 + 4r2

= 2π
∫ a

0
dr r

√
1 + 4r2

= 2π
∫ 1+4a2

1

ds
8
√
s with s = 1 + 4r2,ds = 8r dr

= π

4
2
3s

3/2
∣∣∣∣s=1+4a2

s=1

= π

6
[
(1 + 4a2)3/2 − 1

]
3.4.1.6. ∗. Solution. First observe that any point (x, y, z) on the cone
lies between the planes z = 2 and z = 3 if and only if 4 ≤ x2 + y2 ≤ 9.

The equation of the cone can be rewritten in the form z = f(x, y) with
f(x, y) =

√
x2 + y2. Note that

fx(x, y) = x√
x2 + y2

fy(x, y) = y√
x2 + y2

So, by Theorem 3.4.2.a,

Surface area =
∫∫

4≤x2+y2≤9

√
1 + fx(x, y)2 + fy(x, y)2 dxdy

=
∫∫

4≤x2+y2≤9

√
1 + x2

x2 + y2 + y2

x2 + y2 dx dy

=
√

2
∫∫

4≤x2+y2≤9
dxdy

Now the domain of integration is a circular washer with outside radius 3
and inside radius 2 and hence of area π(32− 22) = 5π. So the surface area
is 5
√

2π.

3.4.1.7. ∗. Solution. The equation of the surface is of the form z =
f(x, y) with f(x, y) = 2

3
(
x3/2 + y3/2). Note that

fx(x, y) =
√
x fy(x, y) = √y
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So, by Theorem 3.4.2.a,

Surface area =
∫ 1

0
dx
∫ 1

0
dy
√

1 + fx(x, y)2 + fy(x, y)2

=
∫ 1

0
dx
∫ 1

0
dy
√

1 + x+ y

=
∫ 1

0
dx
[2

3(1 + x+ y)3/2
]y=1

y=0

= 2
3

∫ 1

0
dx
[
(2 + x)3/2 − (1 + x)3/2]

= 2
3

2
5

[
(2 + x)5/2 − (1 + x)5/2

]x=1

x=0

= 4
15
[
35/2 − 25/2 − 25/2 + 15/2]

= 4
15
[
9
√

3− 8
√

2 + 1
]

3.4.1.8. ∗. Solution. (a) By Theorem 3.4.2.a, F (x, y) =
√

1 + fx(x, y)2 + fy(x, y)2.
(b) (i) The “dimple” to be painted is part of the upper sphere x2 +y2 +(

z− 2
√

3
)2 = 4. It is on the bottom half of the sphere and so has equation

z = f(x, y) = 2
√

3−
√

4− x2 − y2. Note that

fx(x, y) = x√
4− x2 − y2

fy(x, y) = y√
4− x2 − y2

The point on the dimple with the largest value of x is (1, 0,
√

3). (It is
marked by a dot in the figure above.) The dimple is invariant under rota-
tions around the z--axis and so has (x, y) running over x2 + y2 ≤ 1. So, by
Theorem 3.4.2.a,

Surface area =
∫∫

x2+y2≤1

√
1 + fx(x, y)2 + fy(x, y)2 dx dy

=
∫∫

x2+y2≤1

√
1 + x2

4− x2 − y2 + y2

4− x2 − y2 dxdy

=
∫∫

x2+y2≤1

2√
4− x2 − y2

dxdy

Switching to polar coordinates,

Surface area =
∫ 2π

0
dθ
∫ 1

0
dr 2r√

4− r2

(b) (ii) Observe that if we flip the dimple up by reflecting it in the plane
z =
√

3, as in the figure below, the “Death Star” becomes a perfect ball of
radius 2.
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x

z

z “ ?
3 p1, 0,?

3q

2
?
3

2

π
6

The area of the pink dimple in the figure above is identical to the area
of the blue cap in that figure. So the total surface area of the Death Star
is exactly the surface area of a sphere of radius a = 2 and so (see Example
3.4.5) is 4πa2 = 4π22 = 16π.

3.4.1.9. ∗. Solution. On the upper half of the cone

z = f(x, y) =
√
x2 + y2 fx(x, y) = x√

x2 + y2
fy(x, y) = y√

x2 + y2

so that

dS =
√

1 + fx(x, y)2 + fy(x, y)2 dxdy

=

√
1 + x2

x2 + y2 + y2

x2 + y2 dxdy

=
√

2 dx dy

and

Area =
∫∫

1≤x2+y2≤162

√
2 dxdy

=
√

2
[
area of

{
(x, y)

∣∣ x2 + y2 ≤ 162 }− area of
{

(x, y)
∣∣ x2 + y2 ≤ 1

}]
=
√

2
[
π162 − π12] = 255

√
2π ≈ 1132.9

3.4.1.10. ∗. Solution. We are to find the surface area of part of a
hemisphere. On the hemisphere

z = f(x, y) =
√
a2 − x2 − y2

fx(x, y) = − x√
a2 − x2 − y2

fy(x, y) = − y√
a2 − x2 − y2

so that

dS =
√

1 + fx(x, y)2 + fy(x, y)2 dxdy

=

√
1 + x2

a2 − x2 − y2 + y2

a2 − x2 − y2 dx dy
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=

√
a2

a2 − x2 − y2 dxdy

In polar coordinates, this is dS = a√
a2−r2 r dr dθ. We are to find the surface

area of the part of the hemisphere that is inside the cylinder, x2−ax+y2 =
0, which is polar coordinates is becomes r2 − ar cos θ = 0 or r = a cos θ.
The top half of the domain of integration is sketched below.

x

y

pa{2, 0q

r “ a cos θ

So the

Surface Area = 2
∫ π/2

0
dθ
∫ a cos θ

0
dr r a√

a2 − r2

= 2a
∫ π/2

0
dθ
[
−
√
a2 − r2

]a cos θ

0

= 2a
∫ π/2

0
dθ
[
a− a sin θ

]
= 2a2

[
θ + cos θ

]π/2
0

= a2[π − 2]

3.5 · Triple Integrals
3.5.1 · Exercises

3.5.1.1. Solution.
∫∫
R

√
b2 − y2 dx dy =

∫∫∫
V

dxdy dz, where

V =
{

(x, y, z)
∣∣ 0 ≤ z ≤

√
b2 − y2, 0 ≤ x ≤ a, 0 ≤ y ≤ b

}
=
{

(x, y, z)
∣∣ y2 + z2 ≤ b2, 0 ≤ x ≤ a, y ≥ 0, z ≥ 0

}
Now y2 + z2 ≤ b2 is a cylinder of radius b centered on the x--axis and the
part of y2 + z2 ≤ b2, with y ≥ 0, z ≥ 0 is one quarter of this cylinder.
It has cross--sectional area 1

4πb
2. V is the part of this quarter--cylinder

with 0 ≤ x ≤ a. It has length a and cross--sectional area 1
4πb

2. So,∫∫
R

√
b2 − y2 dxdy = 1

4πab
2.

3.5.1.2. ∗. Solution. The mass is∫ 1

0
dx
∫ 2

0
dy
∫ 3

0
dz x = 6

∫ 1

0
dx x = 3

3.5.1.3. Solution. The domain of integration is

V =
{

(x, y, z)
∣∣ x, y, z ≥ 0, x

a + y
b + z

c ≤ 1
}

• In V , zc ≤ 1 − x
a −

y
b and x, y ≥ 0, so the biggest value of z in V is

achieved when x = y = 0 and is c. Thus, in V , z runs from 0 to c.
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• For each fixed 0 ≤ z ≤ c, (x, y) takes all values in

Dz =
{

(x, y)
∣∣ x, y ≥ 0, x

a + y
b ≤ 1− z

c

}
The biggest value of y on Dz is achieved when x = 0 and is b

(
1− z

c

)
.

Thus, on Dz, y runs from 0 to b
(
1− z

c

)
.

• For each fixed 0 ≤ z ≤ c and 0 ≤ y ≤ b
(
1− z

c

)
, x runs over

Dy,z =
{
x
∣∣ 0 ≤ x ≤ a

(
1− y

b −
z
c

) }
This is pictured in the second figure below.

y

z

x

z “ z0

pa, 0, 0q

p0, b, 0q

p0, 0, cq

x

y
`
0, bp1 ´ z

c
q˘

`
ap1 ´ y

b
´ z

c
q, y˘

So the specified integral is∫∫∫
R

x dV =
∫ c

0
dz
∫∫

Dz

dxdy x =
∫ c

0
dz
∫ b(1− zc )

0
dy
∫
Dy,z

dx x

=
∫ c

0
dz
∫ b(1− zc )

0
dy
∫ a(1− yb−

z
c )

0
dx x

=
∫ c

0
dz
∫ b(1− zc )

0
dy a2

2

(
1− y

b
− z

c

)2

=
∫ c

0
dz
[
−a

2b

6

(
1− y

b
− z

c

)3
]b(1− zc )

0

=
∫ c

0
dz a

2b

6

(
1− z

c

)3

=
[
−a

2bc

24

(
1− z

c

)4
]c

0
= a2bc

24

3.5.1.4. Solution. The domain of integration is

R =
{

(x, y, z)
∣∣ 0 ≤ x, y, z ≤ 1, z ≥ 1− y, z ≤ 2− x− y

}
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In the figure on the below, the more darkly shaded region is part of z = 1−y
and the more lightly shaded region is part of z = 2− x− y.

y

z

x

• In R, z runs from 0 (for example (0, 1, 0) is in R) to 1 (for example
(0, 0, 1) is in R).

• For each fixed 0 ≤ z ≤ 1, (x, y) runs over

Dz =
{

(x, y)
∣∣ 0 ≤ x, y ≤ 1, y ≥ 1− z, x+ y ≤ 2− z

}
Here is a sketch of a top view of Dz.

y

x

y “ 1 ´ z

x ` y “ 2 ´ z

x “ 1
y “ 1

Dz

On Dz, y runs from 1− z to 1.

• For each fixed 0 ≤ z ≤ 1 and 1−z ≤ y ≤ 1, x runs from 0 to 2−y−z.

So the specified integral is∫∫∫
R

y dV =
∫ 1

0
dz
∫∫

Dz

dxdy y =
∫ 1

0
dz
∫ 1

1−z
dy
∫ 2−y−z

0
dx y

=
∫ 1

0
dz
∫ 1

1−z
dy y(2− y − z)

= −
∫ 1

0
dz
∫ 0

z

du (1− u)(1 + u− z) where u = 1− y

=
∫ 1

0
dz
∫ z

0
du (1− u2 − z + uz)

=
∫ 1

0
dz
(
z − z3

3 − z
2 + z3

2 )

= 1
2 −

1
12 −

1
3 + 1

8 = 5
24

3.5.1.5. Solution. (a) The domain of integration is

V =
{

(x, y, z)
∣∣ 0 ≤ z ≤ 1, 0 ≤ y ≤ 1− z, 0 ≤ x ≤ 1− z

}
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=
{

(x, y, z)
∣∣ x, y, z ≥ 0, x+ z ≤ 1, y + z ≤ 1

}
This is sketched in the figure below. The front face is x + z = 1 and the
lightly shaded right face is y + z = 1.

y

z

x

z “ z0

p1, 1, 0q
In V ,

• x takes all values between 0 and 1.

• For each fixed 0 ≤ x ≤ 1, (y, z) takes all values in

Dx =
{

(y, z)
∣∣ y, z ≥ 0, z ≤ 1− x, y + z ≤ 1

}
Here is a sketch of Dx.

y

z “ 1 ´ x

z

z “ 1 ´ yy “ x

py “ x, z “ 1 ´ xq

py “ 1, z “ 0q
Dx

• Looking at the sketch above, we see that, on Dx, y runs from 0 to 1
and

◦ for each fixed y between 0 and x, z runs from 0 to 1− x and
◦ for each fixed y between x and 1, z runs from 0 to 1− y

So the integral is, in the new order,∫∫∫
V

f(x, y, z) dV =
∫ 1

0
dx
∫∫

Dx

dy dz f(x, y, z)

=
∫ 1

0
dx
∫ x

0
dy
∫ 1−x

0
dz f(x, y, z)

+
∫ 1

0
dx
∫ 1

x

dy
∫ 1−y

0
dz f(x, y, z)

(b) The domain of integration is

V =
{

(x, y, z)
∣∣ 0 ≤ z ≤ 1,

√
z ≤ y ≤ 1, 0 ≤ x ≤ y

}
=
{

(x, y, z)
∣∣ 0 ≤ z ≤ y2, 0 ≤ x ≤ y ≤ 1

}
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In this region, x takes all values between 0 and 1. For each fixed x between
0 and 1, (y, z) takes all values in

Dx =
{

(y, z)
∣∣ 0 ≤ z ≤ y2, x ≤ y ≤ 1

}
Here is a sketch of Dx.

y

z
z “ y2

y “ x y “ 1

Dx

In the new order, the integral is∫ 1

0
dx
∫∫

Dx

dy dz f(x, y, z) =
∫ 1

0
dx
∫ 1

x

dy
∫ y2

0
dz f(x, y, z)

3.5.1.6. ∗. Solution. (a) In the domain of integration for the given
integral

• y runs from −1 to 1, and

• for each fixed y in that range z runs from 0 to 1− y2, and

• for each fixed y and z as above, x runs from 0 to 2− y − z.

That is,

E =
{

(x, y, z)
∣∣ − 1 ≤ y ≤ 1, 0 ≤ z ≤ 1− y2, 0 ≤ x ≤ 2− y − z

}
• Each constant x cross--section of the surface z = 1− y2 is an upside

down parabola. So the surface z = 1 − y2 consists of a bunch of
copies of the parabola z = 1 − y2 stacked front to back. The top
figure below provides a sketch of z = 1− y2.

• The surface x = 2− y− z, or equivalenty, x+ y+ z = 2 is a plane. It
passes through the points (2, 0, 0), (0, 2, 0) and (0, 0, 2). It is sketched
in the bottom figure below. We know that our domain of integration
extends to y = −1, so we have chosen to include in the sketch the
part of the plane in x ≥ 0, y ≥ −1, z ≥ 0.
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z

y

x

z “ 1 ´ y2

p0,1,0q
p0,´1,0q

p0,0,1q

p3,1,0q
p3,´1,0q

z

y

x

p0,2,0q

p0,0,2q

p2,0,0q

p0,´1,3q

p3,´1,0q

x ` y ` z “ 2

The domain E is constructed by using the plane x+ y + z = 2 to chop
the front off of the “tunnel” 0 ≤ z ≤ 1 − y2. It is outlined in red in the
figure below.
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z

y

x

p0,1,0q
p0,´1,0q

p0,0,1q

p1,1,0q
p2,0,0q

p3,´1,0q

p1,0,1q

(b) We are to change the order of integration so that the outside integral
is over y (the same as the given integral), the middle integral is over x, and
the inside integral is over over z.

• We still have y running from −1 to 1.

• For each fixed y in that range, (x, z) runs over

Ey =
{

(x, z)
∣∣ 0 ≤ z ≤ 1− y2, 0 ≤ x+ z ≤ 2− y

}
• The biggest value of x in Ey is 2− y. It is achieved when z = 0. You

can also see this in the figure below. The shaded region in that figure
is Ey.

• For each fixed x and y as above, z runs over

Ex,y =
{
z
∣∣ 0 ≤ z ≤ 1− y2, 0 ≤ z ≤ 2− x− y

}
That is, z runs from 0 to the smaller of 1 − y2 and 2 − x − y. Note
that 1− y2 ≤ 2− x− y if and only if x ≤ 1 + y2 − y.

• So if 0 ≤ x ≤ 1 + y2 − y, z runs from 0 to 1− y2 and if 1 + y2 − y ≤
x ≤ 2− y, z runs from 0 to 2− x− y.

z

y

x

p0,1,0q
p0,´1,0q

p0 , y , 1´y2q

p1,1,0q
p2´y , y , 0q

p3,´1,0q

p1`y2´y , y , 1´y2q
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So the integral is∫ y=1

y=−1

∫ x=1+y2−y

x=0

∫ z=1−y2

z=0
f(x, y, z) dz dxdy

+
∫ y=1

y=−1

∫ x=2−y

x=1+y2−y

∫ z=2−x−y

z=0
f(x, y, z) dz dx dy

3.5.1.7. ∗. Solution. (a) In the given integral J ,
• x runs from 0 to 1,

• for each fixed x in that range, z runs from 0 to 1− x
2 , and

• for each fixed x and z as above, y runs from 0 to 4− 2x− 4z.

So

E =
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x

2 , 0 ≤ y ≤ 4− 2x− 4z
}

Notice that the condition y ≤ 4−2x−4z can be rewritten as z ≤ 1− x
2 −

y
4 .

When y ≥ 0, this implies that z ≤ 1− x
2 , so that we can drop the condition

z ≤ 1− x
2 from our description of E:

E =
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 4− 2x− 4z, z ≥ 0

}
First, we figure out what E looks like. The plane 2x + y + 4z = 4

intersects the x--, y-- and z--axes at (2, 0, 0), (0, 4, 0) and (0, 0, 1), respec-
tively. That plane is shown in the first sketch below. The set of points{

(x, y, z)
∣∣ x, y, z ≥ 0, y ≤ 4− 2x− 4z

}
is outlined with heavy lines.

z

y

x 2x ` y ` 4z “ 4

p0,0,1q

p0,4,0qp2,0,0q

z

y

x

x “ 1

2x`y`4z“4

p0,0,1q

p0,4,0qp2,0,0q

p1,0,1{2q

p1,2,0q

So it only remains to impose the condtion x ≤ 1, which chops off the
front bit of the tetrahedron. This is done in the second sketch above. Here
is a cleaned up sketch of E.
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z

y

x x“1

2x`y`4z“4

p0,0,1q

p0,4,0qp1,0,0q

p1,0,1{2q

p1,2,0q
(b) We are to reorder the integration so that the outside integral is over

y, the middle integral is over x, and the inside integral is over z. Looking
at the figure below,

z

y

x x“1

z“p4´2x´yq{4
p0,0,1q

p0,4,0qp1,0,0q

p1,0,1{2q

p1,2,0qp1,y,0q p p4´yq{2 , y , 0q
we see that

• y runs from 0 to 4, and

• for each fixed y in that range, (x, z) runs over{
(x, z)

∣∣ 0 ≤ x ≤ 1, 2x+ 4z ≤ 4− y, z ≥ 0
}

• for each fixed y between 0 and 2 (as in the left hand shaded bit in
the figure above)

◦ x runs from 0 to 1, and then
◦ for each fixed x in that range, z runs from 0 to 4−2x−y

4 .

• for each fixed y between 2 and 4 (as in the right hand shaded bit in
the figure above)

◦ x runs from 0 to 4−y
2 (the line of intersection of the plane 2x+

y + 4z = 4 and the xy--plane is z = 0, 2x+ y = 4), and then
◦ for each fixed x in that range, z runs from 0 to 4−2x−y

4 .

So the integral

J =
∫ y=2

y=0

∫ x=1

x=0

∫ z= 4−2x−y
4

z=0
f(x, y, z) dz dxdy

+
∫ y=4

y=2

∫ x= 4−y
2

x=0

∫ z= 4−2x−y
4

z=0
f(x, y, z) dz dx dy

3.5.1.8. ∗. Solution. Let’s use V to denote the domain of integration
for the given integral. On V

• x runs from 0 to 1, and

• for each fixed x in that range, y runs from
√
x to 1. In particular
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0 ≤ y ≤ 1. We can rewrite y =
√
x as x = y2 (with y ≥ 0).

• For each fixed x and y as above, z runs from 0 to 1− y.

So

V =
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1,

√
x ≤ y ≤ 1, 0 ≤ z ≤ 1− y

}
=
{

(x, y, z)
∣∣ x, z ≥ 0, x ≤ 1, y ≥

√
x, y ≤ 1, z ≤ 1− y

}
Outside integral is with respect to x: We have already seen that 0 ≤

x ≤ 1 and that, for each fixed x in that range, (y, z) runs over

Vx =
{

(y, z)
∣∣ √x ≤ y ≤ 1, 0 ≤ z ≤ 1− y

}
Here are two sketches of Vx. The sketch on the left shows a vertical strip as
was used in setting up the integral given in the statement of this problem.

y

z
z “ 1 ´ y

y “ ?
x y “ 1

y

z
y “ 1 ´ z

y “ ?
x y “ 1

y “ ?
x

z “ 1 ´ ?
x

To reverse the order of the y-- and z--integrals we use horizontal strips
as in the figure on the right above. Looking at that figure, we see that, on
Vx,

• z runs from 0 to 1−
√
x, and

• for each fixed z in that range, y runs from
√
x to 1− z.

So

I =
∫ 1

0
dx
∫ 1−

√
x

0
dz
∫ 1−z

√
x

dy f(x, y, z)

=
∫ 1

0

∫ 1−
√
x

0

∫ 1−z

√
x

f(x, y, z) dy dz dx

Outside integral is with respect to y: Looking at the figures above we
see that, for each 0 ≤ x ≤ 1, y runs from

√
x to 1 on Vx. As x runs from

0 to 1 in V , we have that
√
x also runs from 0 to 1 on V , so that y runs

from 0 to 1 on V . Reviewing the definition of V , we see that, for each fixed
0 ≤ y ≤ 1, (x, z) runs over

Vy =
{

(x, z)
∣∣ 0 ≤ x ≤ y2, 0 ≤ z ≤ 1− y

}
Here are two sketches of Vy.
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x

z x “ y2

z “ 1 ´ y
x “ y2

z “ 1 ´ y

x

z x “ y2

x “ y2

z “ 1 ´ y

Looking at the figure on the left (with the vertical strip), we see that,
on Vy,

• x runs from 0 to y2, and

• for each fixed x in that range, z runs from 0 to 1− y.

So

I =
∫ 1

0
dy
∫ y2

0
dx
∫ 1−y

0
dz f(x, y, z) =

∫ 1

0

∫ y2

0

∫ 1−y

0
f(x, y, z) dz dx dy

Looking at the figure on the right above (with the horizontal strip), we see
that, on Vy,

• z runs from 0 to 1− y.

• for each fixed z in that range, x runs from 0 to y2.

So

I =
∫ 1

0
dy
∫ 1−y

0
dz
∫ y2

0
dx f(x, y, z) =

∫ 1

0

∫ 1−y

0

∫ y2

0
f(x, y, z) dxdz dy

Outside integral is with respect to z: Looking at the sketches of Vx above
we see that, for each 0 ≤ x ≤ 1, z runs from 0 to 1−

√
x on Vx. As x runs

from 0 to 1 in V , 1 −
√
x also runs between 0 to 1 on V , so that z runs

from 0 to 1 on V . Reviewing the definition of V , we see that, for each fixed
0 ≤ z ≤ 1, (x, y) runs over

Vz =
{

(x, y)
∣∣ 0 ≤ x ≤ y2,

√
x ≤ y ≤ 1− z

}
Here are two sketches of Vz.

x

y

y “ 1 ´ z

y “ ?
x

x “ p1 ´ zq2
y “ 1 ´ z

x

y

y “ 1 ´ z

x “ y2

x “ p1 ´ zq2
y “ 1 ´ z

Looking at the figure on the left (with the vertical strip), we see that,
on Vz,
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• x runs from 0 to (1− z)2, and

• for each fixed x in that range, y runs from
√
x to 1− z.

So

I =
∫ 1

0
dz
∫ (1−z)2

0
dx
∫ 1−z

√
x

dy f(x, y, z)

=
∫ 1

0

∫ (1−z)2

0

∫ 1−z

√
x

f(x, y, z) dy dxdz

Looking at the figure on the right above (with the horizontal strip), we see
that, on Vz,

• y runs from 0 to 1− z.

• for each fixed y in that range, x runs from 0 to y2.

So

I =
∫ 1

0
dz
∫ 1−z

0
dy
∫ y2

0
dx f(x, y, z) =

∫ 1

0

∫ 1−z

0

∫ y2

0
f(x, y, z) dxdy dz

Summary: We have found that

I =
∫ 1

0

∫ 1

√
x

∫ 1−y

0
f(x, y, z) dz dy dx =

∫ 1

0

∫ 1−
√
x

0

∫ 1−z

√
x

f(x, y, z) dy dz dx

=
∫ 1

0

∫ y2

0

∫ 1−y

0
f(x, y, z) dz dxdy =

∫ 1

0

∫ 1−y

0

∫ y2

0
f(x, y, z) dxdz dy

=
∫ 1

0

∫ (1−z)2

0

∫ 1−z

√
x

f(x, y, z) dy dx dz =
∫ 1

0

∫ 1−z

0

∫ y2

0
f(x, y, z)dxdy dz

3.5.1.9. ∗. Solution. First we have to get some idea as to what E looks
like. Here is a sketch. z

yx

p0, 0, 3q

p´1, 0, 0qp0,´2, 0q

We are going to need the equation of the plane that contains the points
(−1, 0, 0), (0,−2, 0) and (0, 0, 3). This plane does not contain the origin
and so has an equation of the form ax+ by + cz = 1.

• (−1, 0, 0) lies on the plane ax + by + cz = 1 if and only if a(−1) +
b(0) + c(0) = 1. So a = −1.

• (0,−2, 0) lies on the plane ax + by + cz = 1 if and only if a(0) +
b(−2) + c(0) = 1. So b = − 1

2 .

• (0, 0, 3) lies on the plane ax+ by+ cz = 1 if and only if a(0) + b(0) +
c(3) = 1. So c = 1

3 .
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So the plane that contains the points (−1, 0, 0), (0,−2, 0) and (0, 0, 3) is
−x− y

2 + z
3 = 1.

We can now get a detailed mathematical description of E. A point
(x, y, z) is in E if and only if

• (x, y, z) lies above the xy--plane, i.e. z ≥ 0, and

• (x, y, z) lies to the left of the xz--plane, i.e. y ≤ 0, and

• (x, y, z) lies behind the yz--plane, i.e. x ≤ 0, and

• (x, y, z) lies on the same side of the plane −x − y
2 + z

3 = 1 as the
origin. That is −x − y

2 + z
3 ≤ 1. (Go ahead and check that (0, 0, 0)

obeys this inequality.)

So
E =

{
(x, y, z)

∣∣ x ≤ 0, y ≤ 0, z ≥ 0, −x− y
2 + z

3 ≤ 1
}

(a) Note that we want the outside integral to be the x--integral. On E

• x runs from −1 to 0 and

• for each fixed x in that range (y, z) runs over

Ex =
{

(y, z)
∣∣ y ≤ 0, z ≥ 0, −y2 + z

3 ≤ 1 + x
}

Here is a sketch of Ex.

y

z

´y
2

` z
3

“ 1 ` x

Ex

y“´2p1`xq
z“0

y“0, z“3p1`xq

• On Ex, y runs from −2(1 + x) to 0 and

• for each fixed such y, z runs from 0 to 3(1 + x+ y/2)

So

I =
∫ x=0

x=−1

∫ y=0

y=−2(1+x)

∫ z=3(1+x+y/2)

z=0
f(x, y, z) dz dy dx

(b) This time we want the outside integral to be the z--integral. Looking
back at the sketch of E, we see that, on E,

• z runs from 0 to 3 and

• for each fixed z in that range (x, y) runs over

Ez =
{

(x, y)
∣∣ x ≤ 0, y ≤ 0, −x− y

2 ≤ 1− z
3
}

Here is a sketch of Ez.
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x

y

´x ´ y
2

“ 1 ´ z
3

Ez
x“´p1´z{3q

y“0

x“0, y“´2p1´z{3q

• On Ez, x runs from −(1− z/3) to 0 and

• for each fixed such x, y runs from −2(1 + x− z/3) to 0

So

I =
∫ z=3

z=0

∫ x=0

x=−(1−z/3)

∫ y=0

y=−2(1+x−z/3)
f(x, y, z) dy dxdz

3.5.1.10. ∗. Solution. The plane x+y+z = 1 intersects the coordinate
plane z = 0 along the line x+ y = 1, z = 0. So

T =
{

(x, y, z)
∣∣ x ≥ 0, y ≥ 0, x+ y ≤ 1, 0 ≤ z ≤ 1− x− y

}
=
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, 0 ≤ z ≤ 1− x− y

}
z

y
x

p0, 0, 1q

p1, 0, 0q p0, 1, 0q

z “ 1 ´ x ´ y

and

K =
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz 1

(1 + x+ y + z)4

=
∫ 1

0
dx
∫ 1−x

0
dy
[
− 1

3(1 + x+ y + z)3

]z=1−x−y

z=0

= 1
3

∫ 1

0
dx
∫ 1−x

0
dy
[

1
(1 + x+ y)3 −

1
23

]
= 1

3

∫ 1

0
dx

[
− 1

2(1 + x+ y)2 −
y

2(4)

]y=1−x

y=0

= 1
6

∫ 1

0
dx

[
1

(1 + x)2 −
1
22 −

1− x
4

]
= 1

6

∫ 1

0
dx

[
1

(1 + x)2 −
1
2 + x

4

]
= 1

6

[
− 1

1 + x
− x

2 + x2

8

]x=1

x=0
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= 1
6

[
1− 1

2 −
1
2 + 1

8

]
= 1

48
3.5.1.11. ∗. Solution. Note that the planes z = x + y and z = 2
intersect along the line x+ y = 2, z = 2.

z

y
x

p0, 2, 2q
p2, 0, 2q

z “ 2

z “ x ` y

So

E =
{

(x, y, z)
∣∣ x ≥ 0, y ≥ 0, x+ y ≤ 2, x+ y ≤ z ≤ 2

}
=
{

(x, y, z)
∣∣ 0 ≤ x ≤ 2, 0 ≤ y ≤ 2− x, x+ y ≤ z ≤ 2

}
and the mass of E is∫∫∫

E

ρ(x, y, z) dV =
∫ 2

0
dx
∫ 2−x

0
dy
∫ 2

x+y
dz z

= 1
2

∫ 2

0
dx
∫ 2−x

0
dy
[
4− (x+ y)2]

= 1
2

∫ 2

0
dx

[
4(2− x)−

(
x+ (2− x)

)3 − x3

3

]

= 1
2

[
4(2)(2)− 2(2)2 − 8

3(2) + 24

12

]
= 1

2

[
8− 16

3 + 4
3

]
= 2

3.5.1.12. ∗. Solution. First, we need to develop an understanding of
what E looks like. Here are sketches of the parabolic cylinder y = x2, on
the left, and the plane y + z = 1, on the right.
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z

y

x

y “ x2

z

y

x

y ` z “ 1

E is constructed by using the plane y+ z = 1 to chop the top off of the
parabolic cylinder y = x2. Here is a sketch.

z

y

x

y “ x2

z “ 1 ´ y

y “ 1, z “ 0

p1, 1, 0q
So

E =
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1, x2 ≤ y ≤ 1, 0 ≤ z ≤ 1− y

}
and the integral ∫∫∫

E

x dV =
∫ 1

0
dx
∫ 1

x2
dy
∫ 1−y

0
dz x

=
∫ 1

0
dx
∫ 1

x2
dy x(1− y)

=
∫ 1

0
dx x

[
y − y2

2

]1

x2

=
∫ 1

0
dx

[
x

2 − x
3 + x5

2

]
= 1

4 −
1
4 + 1

12
= 1

12
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3.5.1.13. ∗. Solution. First, we need to develop an understanding of
what E looks like. Here are sketches of the plane x + y = 1, on the left,
and of the “tower” bounded by the coordinate planes x = 0, y = 0, z = 0
and the plane x+ y = 1, on the right.

z

y

x

x ` y “ 1

z

y

x

x ` y “ 1

Now here is the parabolic cylinder z = y2 on the left. E is constructed
by using the parabolic cylinder z = y2 to chop the top off of the tower
x ≥ 0, y ≥ 0, z ≥ 0, x+ y ≤ 1. The figure on the right is a sketch.

z

y

x

z “ y2

z

y

x

p0, 1, 1q

p1, 0, 0q

y “ 1 ´ x

z “ y2

So

E =
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, 0 ≤ z ≤ y2 }

and the integral ∫∫∫
E

z dV =
∫ 1

0
dx
∫ 1−x

0
dy
∫ y2

0
dz z

=
∫ 1

0
dx
∫ 1−x

0
dy y4

2

=
∫ 1

0
dx (1− x)5

10

=
[
− (1− x)6

60

]1

0

= 1
60
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3.5.1.14. ∗. Solution. The integral∫∫∫
R

yz2e−xyz dV =
∫ 3

0
dz
∫ 2

0
dy
∫ 1

0
dx yz2e−xyz

=
∫ 3

0
dz
∫ 2

0
dy
[
− ze−xyz

]x=1

x=0

=
∫ 3

0
dz
∫ 2

0
dy
[
z − ze−yz

]
=
∫ 3

0
dz
[
zy + e−yz

]y=2

y=0

=
∫ 3

0
dz
[
2z + e−2z − 1

]
=
[
z2 − 1

2e
−2z − z

]3

0
= 13

2 −
e−6

2

3.5.1.15. ∗. Solution. (a) Each constant y cross section of z = 1 − x2

is an upside down parabola. So the surface is a bunch of upside down
parabolas stacked side by side. The figure on the left below is a sketch of
the part of the surface with y ≥ 0 and z ≥ 0 (both of which conditions will
be required in part (b)).

z

y

x

z

y

x

z “ y

(b) The figure on the right above is a sketch of the plane y = z. It
intersects the surface z = 1−x2 in the solid blue sloped parabolic curve in
the figure below.

z

y

x

p1, 0, 0q

z “ 1´x2

z “ y “ 1 ´ x2

y “ 1 ´ x2, z “ 0

Observe that, on the curve z = 1 − x2, z = y, we have y = 1 − x2. So
that when one looks at the solid E from high on the z--axis, one sees{

(x, y)
∣∣ 0 ≤ y ≤ 1− x2 }

The y = 1 − x2 boundary of that region is the dashed blue line in the
xy--plane in the figure above. So

E =
{

(x, y, z)
∣∣ − 1 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2, y ≤ z ≤ 1− x2 }
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and the integral∫∫∫
E

f(x, y, z) dV =
∫ 1

−1
dx
∫ 1−x2

0
dy
∫ 1−x2

y

dz f(x, y, z)

3.5.1.16. ∗. Solution. In the integral J ,
• x runs from 0 to 1. In inequalities, 0 ≤ x ≤ 1.

• Then, for each fixed x in that range, y runs from 0 to x. In inequal-
ities, 0 ≤ y ≤ x.

• Then, for each fixed x and y in those ranges, z runs from 0 to y. In
inequalities, 0 ≤ z ≤ y.

These inequalties can be combined into

0 ≤ z ≤ y ≤ x ≤ 1 (∗)

We wish to reverse the order of integration so that the z--integral is on the
outside, the y--integral is in the middle and the x--integral is on the inside.

• The smallest z compatible with (∗) is z = 0 and the largest z com-
patible with (∗) is z = 1 (when x = y = z = 1). So 0 ≤ z ≤ 1.

• Then, for each fixed z in that range, (x, y) run over z ≤ y ≤ x ≤ 1.
In particular, the smallest allowed y is y = z and the largest allowed
y is y = 1 (when x = y = 1). So z ≤ y ≤ 1.

• Then, for each fixed y and z in those ranges, x runs over y ≤ x ≤ 1.

So
J =

∫ 1

0

∫ 1

z

∫ 1

y

f(x, y, z) dxdy dz

3.5.1.17. ∗. Solution. The hard part of this problem is figuring out
what E looks like. First here are separate sketches of the plane x = 3 and
the plane z = 2x followed by a sketch of the two planes together.

z

y

x
x “ 3
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z

y

x

z “ 2x

z

y

x
x “ 3

z “ 2x

Next for the parabolic cylinder z = y2. It is a bunch of parabolas z = y2

stacked side by side along the x--axis. Here is a sketch of the part of z = y2

in the first octant.

z

y

x

z “ y2
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Finally, here is a sketch of the part of E in the first octant. E does
have a second half gotten from the sketch by reflecting it in the xz--plane,
i.e. by replacing y → −y.

z

y

x
x “ 3

z “ 2x
z “ y2

x“3, z“6 p3,?6,6q

So3

E =
{

(x, y, z)
∣∣ x ≤ 3, −

√
6 ≤ y ≤

√
6, y2 ≤ z ≤ 2x

}
Order dz dxdy: On E, y runs from −

√
6 to

√
6. For each fixed y in

this range (x, z) runs over Ey =
{

(x, z)
∣∣ x ≤ 3, y2 ≤ z ≤ 2x

}
. Here is a

sketch of Ey.

x

z

z “ y2

x “ 3

z “ 2x

p3,y2q

p3,6q

py2{2,y2q

From the sketch

Ey =
{

(x, z)
∣∣ y2/2 ≤ x ≤ 3, y2 ≤ z ≤ 2x

}
and the integral is∫ y=

√
6

y=−
√

6

∫ x=3

x=y2/2

∫ z=2x

z=y2
f(x, y, z) dz dxdy

Order dxdz dy: Also from the sketch of Ey above

Ey =
{

(x, z)
∣∣ y2 ≤ z ≤ 6, z/2 ≤ x ≤ 3

}
and the integral is∫ y=

√
6

y=−
√

6

∫ z=6

z=y2

∫ x=3

x=z/2
f(x, y, z) dx dz dy
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Order dy dx dz: From the sketch of the part of E in the first octant,
we see that, on E, z runs from 0 to 6. For each fixed z in this range (x, y)
runs over

Ez =
{

(x, y)
∣∣ x ≤ 3, −

√
6 ≤ y ≤

√
6, y2 ≤ z ≤ 2x

}
=
{

(x, y)
∣∣ z/2 ≤ x ≤ 3, y2 ≤ z

}
=
{

(x, y)
∣∣ z/2 ≤ x ≤ 3, −

√
z ≤ y ≤

√
z
}

So the integral is ∫ z=6

z=0

∫ x=3

x=z/2

∫ y=
√
z

y=−
√
z

f(x, y, z) dy dxdz

3.5.1.18. ∗. Solution. (a) The region E is

E =
{

(x, y, z)
∣∣ x2 + y2 ≤ 1, −1 ≤ z ≤ y

}
Here is are sketches, one without axes and one with axes, of the front half
of E, outlined in red.

x2 ` y2 “ 1

y “ z

p0,´1,´1q

p0, 1, 1q

z

y

x

p0,´1,´1q
p0, 1, 1q

The integral∫∫∫
E

f(x, y, z) dV =
∫
x2+y2≤1

dx dy
∫ y

−1
dz f(x, y, z)

=
∫ 1

−1
dy
∫ √1−y2

−
√

1−y2
dx
∫ y

−1
dz f(x, y, z)

=
∫ 1

−1

∫ √1−y2

−
√

1−y2

∫ y

−1
f(x, y, z) dz dxdy

(b) Here is a sketch of (the front half of) a constant z slice of E.
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x2 ` y2 “ 1p0,´1,´1q

p0, 1, 1q
p0, z, zq

p0, 1, zqp?
1 ´ z2, z, zq

Note that
• in E, z runs from −1 to 1.

• Once z has been fixed, x and y must obey x2 + y2 ≤ 1, z ≤ y ≤ 1
So

E =
{

(x, y, z)
∣∣ − 1 ≤ z ≤ 1, z ≤ y ≤ 1, −

√
1− y2 ≤ x ≤

√
1− y2

}
and ∫∫∫

E

f(x, y, z) dV =
∫ 1

−1
dz
∫ 1

z

dy
∫ √1−y2

−
√

1−y2
dx f(x, y, z)

=
∫ 1

−1

∫ 1

z

∫ √1−y2

−
√

1−y2
f(x, y, z) dx dy dz

(c) Here is a sketch of a constant x slice of E.

x2 ` y2 “ 1p0,´1,´1q

p0, 1, 1q

px,´?
1 ´ x2,´1q px,?

1 ´ x2,´1q

px,?
1 ´ x2,

?
1 ´ x2q

px,´?
1 ´ x2,´?

1 ´ x2q

Note that
• in E, x runs from −1 to 1.

• Once x has been fixed, y and z must obey

−
√

1− x2 ≤ y ≤
√

1− x2 − 1 ≤ z ≤ y

Here is a sketch.

y “ ?
1 ´ x2

y “ ´?
1 ´ x2

z “ y

z “ ´1

z “ ?
1 ´ x2

z “ ´?
1 ´ x2

y

z

Note that
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• z runs from −1 to
√

1− x2.

• For each z between −1 and −
√

1− x2, y runs from −
√

1− x2 to√
1− x2, while

• for each z between −
√

1− x2 and
√

1− x2, y runs from z to
√

1− x2.

So∫∫∫
E

f(x, y, z) dV =
∫ 1

−1
dx
∫ −√1−x2

−1
dz
∫ √1−x2

−
√

1−x2
dy f(x, y, z)

+
∫ 1

−1
dx
∫ √1−x2

−
√

1−x2
dz
∫ √1−x2

z

dy f(x, y, z)

or∫∫∫
E

f(x, y, z) dV =
∫ 1

−1

∫ −√1−x2

−1

∫ √1−x2

−
√

1−x2
f(x, y, z) dy dz dx

+
∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ √1−x2

z

f(x, y, z) dy dz dx

3.5.1.19. ∗. Solution. First, we need to develop an understanding of
what E looks like. Note that all of the equations y = 0, y = 2, y + z = 3
and z = x2 are invariant under x→ −x. So E is invariant under x→ −x,
i.e. is symmetric about the yz--plane. We’ll sketch the first octant (i.e.
x, y, z ≥ 0) part of E. There is also a x ≤ 0, y ≥ 0, z ≥ 0 part.

Here are sketches of the plane y = 2, on top, the plane y + z = 3 in
the middle and of the “tunnel” bounded by the coordinate planes x = 0,
y = 0, z = 0 and the planes y = 2, y + z = 3, on the bottom.

z

y

x
y “ 2
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z

y

x

y ` z “ 3

z

y

x

y ` z “ 3

y “ 2

Now here is the parabolic cylinder z = x2 on the top. E is constructed
by using the parabolic cylinder z = x2 to chop the front off of the tunnel
x ≥ 0, 0 ≤ y ≤ 2, z ≥ 0, y + z ≤ 3. The figure on the bottom is a sketch.

z

y
x

z “ x2
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z

y
x

z “ x2

y ` z “ 3

y “ 2

p?
3, 0, 3q

p0, 0, 3q

p0, 2, 1q

p1, 2, 1q
So

E =
{

(x, y, z)
∣∣ 0 ≤ y ≤ 2, x2 ≤ z ≤ 3− y

}
(a) On E

• y runs from 0 to 2.

• For each fixed y in that range, (x, z) runs over
{

(x, z)
∣∣ x2 ≤ z ≤

3− y
}
.

• In particular, the largest x2 is 3 − y (when z = 3 − y). So x runs
from −

√
3− y to

√
3− y.

• For fixed y and x as above, z runs from x2 to 3− y.

so that

I =
∫∫∫

E

f(x, y, z) dV =
∫ 2

0

∫ √3−y

−
√

3−y

∫ 3−y

x2
f(x, y, z) dz dxdy

(b) On E

• z runs from 0 to 3.

• For each fixed z in that range, (x, y) runs over{
(x, y)

∣∣ 0 ≤ y ≤ 2, x2 ≤ z ≤ 3− y
}

=
{

(x, y)
∣∣ 0 ≤ y ≤ 2, y ≤ 3− z, x2 ≤ z

}
In particular, y runs from 0 to the minimum of 2 and 3− z.

• So if 0 ≤ z ≤ 1 (so that 3− z ≥ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤

2, x2 ≤ z
}
, while

• if 1 ≤ z ≤ 3, (so that 3 − z ≤ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤

3− z, x2 ≤ z
}
,

so that

I =
∫ 1

0

∫ 2

0

∫ √z
−
√
z

f(x, y, z) dx dy dz +
∫ 3

1

∫ 3−z

0

∫ √z
−
√
z

f(x, y, z) dxdy dz

(c) On E

• z runs from 0 to 3.
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• For each fixed z in that range, (x, y) runs over{
(x, y)

∣∣ 0 ≤ y ≤ 2, x2 ≤ z ≤ 3− y
}

In particular, y runs from 0 to the minimum of 2 and 3− z.

• So if 0 ≤ z ≤ 1 (so that 3− z ≥ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤

2, x2 ≤ z
}
, while

• if 1 ≤ z ≤ 3, (so that 3 − z ≤ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤

3− z, x2 ≤ z
}
,

so that

I =
∫ 1

0

∫ √z
−
√
z

∫ 2

0
f(x, y, z) dy dxdz +

∫ 3

1

∫ √z
−
√
z

∫ 3−z

0
f(x, y, z) dy dxdz

3.5.1.20. ∗. Solution. The cylinder y2 + z2 = 1 is centred on the x
axis. The part of the cylinder in the first octant intersects the plane z = 0
in the line y = 1, intersects to plane y = 0 in the line z = 1 and intersects
the plane x = 0 in the quarter circle y2 + z2 = 1, x = 0, y, z ≥ 0. Here is
a sketch of E.

z

y

x

x ` y “ 2

y2 ` z2 “ 1

Viewed from above, the region E is bounded by the lines x = 0, y = 0,
x+ y = 2 and y = 1. This base region is pictured below.

x

y

x ` y “ 2

y “ 1

To set up the domain of integration, let’s decompose the base region
into horizontal strips as in the figure above. On the base region

• y runs from 0 to 1 and
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• for each fixed y between 0 and 1, x runs from 0 to 2− y.

• For each fixed (x, y) in the base region z runs from 0 to
√

1− y2

So

E =
{

(x, y, z)
∣∣ 0 ≤ y ≤ 1, 0 ≤ x ≤ 2− y, 0 ≤ z ≤

√
1− y2

}
and∫∫∫

E

z dV =
∫ 1

0
dy
∫ 2−y

0
dx
∫ √1−y2

0
dz z

=
∫ 1

0
dy
∫ 2−y

0
dx 1

2z
2
∣∣∣√1−y2

0

=
∫ 1

0
dy
∫ 2−y

0
dx 1

2(1− y2)

=
∫ 1

0
dy 1

2(1− y2)(2− y) = 1
2

∫ 1

0
dy
(
2− y − 2y2 + y3)

= 1
2

[
2− 1

2 −
2
3 + 1

4

]
= 13

24 ≈ 0.5417

3.5.1.21. ∗. Solution. The planes x = 1, y = 1, z = 1, and x+y+z = 2
and the region D are sketched below.

z

y

x

x ` y ` z “ 2

x “ 1

y “ 1

z “ 1

And here is a sketch of D without the planes cluttering up the figure.

z

y

x

On D

• z runs from 0 to 1 and
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• for each fixed z, between 0 and 1, (x, y) runs over the triangle Tz
bounded by x = 1, y = 1 and x+y = 2−z. Observe that when z = 0,
this triangle is just a point (the bottom vertex of the tetrahedron).
As z increases, the triangle grows, reaching its maximum size when
z = 1.

Here is a sketch of Tz.

p1 ´ z, 1q x “ 1

y “ 1

x ` y “ 2 ´ z

Tz

x

y

In setting up the domain of integration, we’ll decompose, for each 0 ≤
z ≤ 1, Tz into vertical strips as in the figure above. On Tz

• x runs from 1− z to 1 and

• for each fixed x between 1− z and 1, y runs from 2− x− z to 1

so that∫∫∫
D

x dV =
∫ 1

0
dz
∫∫

Tz

dxdy x =
∫ 1

0
dz
∫ 1

1−z
dx
∫ 1

2−x−z
dy x

=
∫ 1

0
dz
∫ 1

1−z
dx x(x+ z − 1)

=
∫ 1

0
dz
[

1
3x

3 + 1
2x

2(z − 1)
]1

1−z

=
∫ 1

0
dz
[

1
3 + 1

2(z − 1)− 1
3(1− z)3 − 1

2(1− z)2(z − 1)
]

=
∫ 1

0
dz
[

1
3 + 1

2(z − 1)− 1
6(z − 1)3

]
=
[

1
3z + 1

4(z − 1)2 − 1
24(z − 1)4

]1

0
= 1

3 −
1
4 + 1

24 = 3
24

= 1
8 = 0.125

3.5.1.22. ∗. Solution. (a) Here is a 3d sketch of the region. The
coordinates of the labelled corners are

a = (0, 0, 1) b = (0, 0, 0) c = (1, 0, 0)
d = (0, 1, 1) f = (0, 2, 0) g = (1, 1, 0)
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z

y

x

a

b
c

d

f

g

x ` y ` z “ 2

z “ 1 ´ x2

(b) Here is a sketch of the side view of T , looking down the y axis.

x

z

z “ 1 ´ x2

We’ll set up the limits of integration by using it as the base region. We
decompose the base region into vertical strips as in the figure above. On
the base region

• x runs from 0 to 1 and

• for each fixed x between 0 and 1, z runs from 0 to 1− x2.

• In T , for each fixed (x, y) in the base region, y runs from 0 to 2−x−z.

So ∫∫∫
T

xdV =
∫ 1

0
dx
∫ 1−x2

0
dz
∫ 2−x−z

0
dy x

=
∫ 1

0
dx
∫ 1−x2

0
dz (2− x− z)x

=
∫ 1

0
dx

[
x(2− x)(1− x2)− 1

2x(1− x2)2
]

=
∫ 1

0
dx

[
2x− x2 − 2x3 + x4 − 1

2x+ x3 − 1
2x

5
]

=
∫ 1

0
dx

[
3
2x− x

2 − x3 + x4 − 1
2x

5
]

=
[

3
4x

2 − 1
3x

3 − 1
4x

4 + 1
5x

5 − 1
12x

6
]1

0

= 3
4 −

1
3 −

1
4 + 1

5 −
1
12 = 17

60
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3.6 · Triple Integrals in Cylindrical Coordinates
3.6.4 · Exercises

3.6.4.1. Solution. (a), (b) Since the cylindrical coordinate r(x, y, z) of
a point (x, y, z) is the distance,

√
x2 + y2, from (x, y, z) to the z-axis, the

sets{
(x, y, z)

∣∣ r(x, y, z) = 0
}

=
{

(x, y, z)
∣∣ x2 + y2 = 0

}
=
{

(x, y, z)
∣∣ x = y = 0

}
= the z-axis{

(x, y, z)
∣∣ r(x, y, z) = 1

}
=
{

(x, y, z)
∣∣ x2 + y2 = 1

}
= the cylinder of radius 1 centred on the z-axis

y

z

x

r “ 0

y

z

x

1

r “ 1

(c), (d) Since the cylindrical coordinate θ(x, y, z) of a point (x, y, z) is
the angle between the positive x-axis and the line from (0, 0, 0) to (x, y, 0),
the sets{

(x, y, z)
∣∣ θ(x, y, z) = 0

}
= the half of the xz-plane with x > 0{

(x, y, z)
∣∣ θ(x, y, z) = π

4
}

= the half of the plane y = x with x > 0

y

z

x
θ “ 0

y

z

x

θ “ π{4

3.6.4.2. Solution. The sketch is below. To help build up this sketch, it
is useful to recall the following facts.

• The cylindrical coordinate r is the distance of the point from the
z-axis. In particular all points with r = 0 lie on the z-axis (for all
values of θ).

• The cylindrical coordinate z is the distance of the point from the
xy-plane. In particular all points with z = 0 lie on the xy-plane.
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z

y

x

π
4

r“1, θ“0, z“0

1

r“1, θ“π
4
, z“0

1

r“1, θ“π
2
, z“0

1

r“1, θ“π
4
, z“1

1

r“0, θ“π, z“1

1

3.6.4.3. Solution. (a) When θ = 0, sin θ = 0 and cos θ = 1, so that
the polar coordinates r = 1, θ = 0, z = 0 correspond to the Cartesian
coordinates

(x, y, z) = (r cos θ, r sin θ, z) = (1× cos 0, 1× sin 0, 0) = (1, 0, 0)

(b) When θ = π
4 , sin θ = cos θ = 1√

2 , so that the polar coordinates
r = 1, θ = π

4 , z = 0 correspond to the Cartesian coordinates

(x, y, z) = (r cos θ, r sin θ, z) =
(

1× cos π4 , 1× sin π4 , 0
)

=
(

1√
2
,

1√
2
, 0
)

(c) When θ = π
2 , sin θ = 1 and cos θ = 0, so that the polar coordinates

r = 1, θ = π
2 , z = 0 correspond to the Cartesian coordinates

(x, y, z) = (r cos θ, r sin θ, z) =
(

1× cos π2 , 1× sin π2 , 0
)

= (0, 1, 0)

(d) When θ = π, sin θ = 0 and cos θ = −1, so that the polar coordinates
r = 0, θ = π, z = 1 correspond to the Cartesian coordinates

(x, y, z) = (r cos θ, r sin θ, z) = (0× cosπ, 0× sin π, 1) = (0, 0, 1)

(e) When θ = π
4 , sin θ = cos θ = 1√

2 , so that the polar coordinates
r = 1, θ = π

4 , z = 1 correspond to the Cartesian coordinates

(x, y, z) = (r cos θ, r sin θ, z)

=
(

1× cos π4 , 1× sin π4 , 1
)

=
(

1√
2
,

1√
2
, 1
)

3.6.4.4. Solution. (a) The cylindrical coordinates must obey

1 = x = r cos θ 1 = y = r sin θ 2 = z

So z = 2, r =
√

12 + 12 =
√

2 and tan θ = y
x = 1

1 = 1. Recall that
tan

(
π
4 + kπ

)
= 1 for all integers k. As (x, y) = (1, 1) lies in the first

quadrant, 0 ≤ θ ≤ π
2 . So θ = π

4 (plus possibly any integer multiple of 2π).
(b) The cylindrical coordinates must obey

−1 = x = r cos θ − 1 = y = r sin θ 2 = z
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So z = 2, r =
√

(−1)2 + (−1)2 =
√

2 and tan θ = y
x = −1

−1 = 1. Recall that
tan

(
π
4 + kπ

)
= 1 for all integers k. As (x, y) = (−1,−1) lies in the third

quadrant, π ≤ θ ≤ 3π
2 . So θ = 5π

4 (plus possibly any integer multiple of
2π).

(c) The cylindrical coordinates must obey

−1 = x = r cos θ
√

3 = y = r sin θ 0 = z

So z = 0, r =
√

(−1)2 +
(√

3
)2 = 2 and tan θ = y

x =
√

3
−1 = −

√
3. Recall

that tan
( 2π

3 + kπ
)

= −
√

3 for all integers k. As (x, y) = (−1,
√

3) lies in
the second quadrant, π

2 ≤ θ ≤ π. So θ = 2π
3 (plus possibly any integer

multiple of 2π).
(d) The cylindrical coordinates must obey

0 = x = r cos θ 0 = y = r sin θ 1 = z

So z = 0, r =
√

02 + 02 = 0 and θ is completely arbitrary.

3.6.4.5. Solution. (a) As x = r cos θ and y = r sin θ,

z = 2xy ⇐⇒ z = 2r2 cos θ sin θ = r2 sin(2θ)

(b) As x = r cos θ and y = r sin θ,

x2 + y2 + z2 = 1 ⇐⇒ r2 cos2 θ + r2 sin2 θ + z2 = 1 ⇐⇒ r2 + z2 = 1

(c) As x = r cos θ and y = r sin θ,

(x− 1)2 + y2 = 1 ⇐⇒ (r cos θ − 1)2 + (r sin θ)2 = 1
⇐⇒ r2 cos2 θ − 2r cos θ + 1 + r2 sin2 θ = 1
⇐⇒ r2 = 2r cos θ ⇐⇒ r = 2 cos θ or r = 0
⇐⇒ r = 2 cos θ

Note that the solution r = 0 is included in r = 2 cos θ — just choose θ = π
2 .

3.6.4.6. Solution. (a) In cylindrical coordinates, the cone z = 2a −√
x2 + y2 is z = 2a − r and the cylinder x2 + y2 = 2ay is r2 = 2ar sin θ

or r = 2a sin θ. The figures below show the parts of the cone, the cylinder
and the intersection, respectively, that are in the first octant.

y

z

x

r “ 2a ´ z

r “ 2a
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y

z

x r “ 2a sin θ

y

z

x

r “ 2a ´ z

r “ 2a sin θ
r “ 2a

The specified region is

V =
{

(r cos θ , r sin θ , z)
∣∣ 0 ≤ θ ≤ π, r ≤ 2a sin θ, 0 ≤ z ≤ 2a− r

}
By symmetry under x → −x, the full volume is twice the volume in the
first octant.

So the

Volume = 2
∫ π

2

0
dθ
∫ 2a sin θ

0
dr r

∫ 2a−r

0
dz

= 2
∫ π

2

0
dθ
∫ 2a sin θ

0
dr r(2a− r)

= 2
∫ π

2

0
dθ
[
4a3 sin2 θ − 8a3

3 sin3 θ

]
= 8a3

[∫ π
2

0
dθ 1− cos(2θ)

2 + 2
3

∫ 0

1
dt
(
1− t2

)]
where t = cos θ

= 8a3
[
π

4 −
2
3

(
1− 1

3

)]
= a3(2π − 32

9
)

For an efficient, sneaky, way to evaluate
∫ π

2
0 dθ sin2 θ, see Remark 3.3.5.

(b) The domain of integration is

V =
{

(x, y, z)
∣∣ − x ≤ y ≤ √3x, 0 ≤ z ≤ 1− x2 − y2 }

Recall that in polar coordinates y
x = tan θ. So the boundaries of the

wedge −x ≤ y ≤
√

3x, or equivalently −1 ≤ y
x ≤
√

3, correspond, in polar
coordinates, to θ = tan−1(−1) = −π4 and θ = tan−1√3 = π

3 . In cylindrical
coordinates, the paraboloid z = 1 − x2 − y2 becomes z = 1 − r2. There
are z’s that obey 0 ≤ z ≤ 1 − r2 if and only if r ≤ 1. So, in cylindrical
coordinates,

V =
{

(r cos θ, r sin θ, z)
∣∣ − π

4 ≤ θ ≤
π
3 , 0 ≤ r ≤ 1, 0 ≤ z ≤ 1− r2 }
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and

Volume =
∫ π

3

−π4
dθ
∫ 1

0
dr r

∫ 1−r2

0
dz =

(π
3 + π

4

)∫ 1

0
dr r(1− r2)

= 7
12π

(
1
2 −

1
4

)
= 7

48π

(c) The region is

V =
{

(x, y, z)
∣∣ x2 + y2 ≤ z ≤ 2y

}
There are z’s that obey x2 + y2 ≤ z ≤ 2y if and only if

x2 + y2 ≤ 2y ⇐⇒ x2 + y2 − 2y ≤ 0 ⇐⇒ x2 + (y − 1)2 ≤ 1

This disk is sketched in the figure

p0, 1q

x

y

r “ 2 sin θ

In cylindrical coordinates,

• the bottom, z = x2 + y2, is z = r2,

• the top, z = 2y, is z = 2r sin θ, and

• the disk x2 + y2 ≤ 2y is r2 ≤ 2r sin θ, or equivalently r ≤ 2 sin θ,

so that, looking at the figure above,

V =
{

(r cos θ, r sin θ, z)
∣∣ 0 ≤ θ ≤ π, 0 ≤ r ≤ 2 sin θ, r2 ≤ z ≤ 2r sin θ

}
By symmetry under x → −x, the full volume is twice the volume in the
first octant so that

Volume = 2
∫ π

2

0
dθ
∫ 2 sin θ

0
dr r

∫ 2r sin θ

r2
dz

= 2
∫ π

2

0
dθ
∫ 2 sin θ

0
dr r(2r sin θ − r2)

= 2
∫ π

2

0
dθ
(

24

3 −
24

4

)
sin4 θ

To integrate4 sin4 θ, we use the double angle formulae sin2 x = 1−cos(2x)
2

and cos2 x = 1+cos(2x)
2 to write

sin4 θ =
[

1− cos(2θ)
2

]2

= 1
4 −

1
2 cos(2θ) + 1

4 cos2(2θ)

= 1
4 −

1
2 cos(2θ) + 1

8 (1 + cos(4θ))
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= 3
8 −

1
2 cos(2θ) + 1

8 cos(4θ)

So

Volume = 2 24

12

[
3
8θ −

1
4 sin(2θ) + 1

32 sin(4θ)
]π

2

0
= 2 24

12
3
16π = π

2

3.6.4.7. ∗. Solution. Note that the paraboloids z = x2 + y2 and z =
2−x2−y2 intersect when z = x2+y2 = 1. We’ll use cylindrical coordinates.
Then x2 + y2 = r2, dV = r dr dθ dz, and

E =
{

(r cos θ , r sin θ , z))
∣∣ 0 ≤ r ≤ 1, r2 ≤ z ≤ 2− r2, 0 ≤ θ ≤ 2π

}
so that

∫∫∫
E

f(x, y, z) dV =
∫ 1

0
dr
∫ 2−r2

r2
dz
∫ 2π

0
dθ r

f︷︸︸︷
r3

= 2π
∫ 1

0
dr r4(2− r2 − r2)

= 2π
[
215

5 − 217

7

]
= 8π

35
3.6.4.8. ∗. Solution. Observe that both the sphere x2 +y2 +z2 = 2 and
the paraboloid z = x2 + y2 are invariant under rotations around the z--
axis. So E is invariant under rotations around the z--axis and the centroid
(centre of mass) of E will lie on the z--axis. Thus x̄ = ȳ = 0 and we just
have to find

z̄ =
∫∫∫

E
z dV∫∫∫
E

dV

The surfaces z = x2 + y2 and x2 + y2 + z2 = 2 intersect when z = x2 + y2

and
z + z2 = 2 ⇐⇒ z2 + z − 2 = 0 ⇐⇒ (z + 2)(z − 1) = 0

Since z = x2+y2 ≥ 0, the surfaces intersect on the circle z = 1, x2+y2 = 2.
So

E =
{

(x, y, z)
∣∣ x2 + y2 ≤ 1, x2 + y2 ≤ z ≤

√
2− x2 − y2

}
Here is a sketch of the y = 0 cross section of E.

x

z

z “ 1

x2 ` y2 ` z2 “ 2

z “ x2 ` y2

p1,0,1q

Let’s use cylindrical coordinates to do the two integrals. In cylindrical
coordinates

• E =
{

(r cos θ, r sin θ, z)
∣∣ 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, r2 ≤ z ≤√

2− r2
}
, and
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• dV is r dr dθ dz

so, for n = 0, 1 (we’ll try to do both integrals at the same time)∫∫∫
E

zn dV =
∫ 1

0
dr
∫ 2π

0
dθ
∫ √2−r2

r2
dz r zn

= 2π
∫ 1

0
dr r

{√
2− r2 − r2 if n = 0

1
2
(
2− r2 − r4) if n = 1

Since ∫ 1

0
dr r

√
2− r2 =

[
−1

3(2− r2)3/2
]1

0
= 1

3
(
2
√

2− 1
)

we have ∫∫∫
E

zn dV = 2π
{

1
3 (2
√

2− 1)− 1
4 if n = 0

1
2 −

1
8 −

1
12 if n = 1

}

= 2π
{

2
3
√

2− 7
12 if n = 0

7
24 if n = 1

and x̄ = ȳ = 0 and

z̄ =
∫∫∫

E
z dV∫∫∫
E

dV
=

7
24

2
3
√

2− 7
12

= 7
16
√

2− 14
≈ 0.811

3.6.4.9. ∗. Solution. Note that both surfaces are invariant under ro-
tations about the z--axis. Here is a sketch of the y = 0 cross section of
E.

x

z

z “ 2

x2 ` y2 ` z2 “ 6

z “ x2 ` y2

p?
2,0,2q

The surfaces z = x2 +y2 and x2 +y2 +z2 = 6 intersect when z = x2 +y2

and
z + z2 = 6 ⇐⇒ z2 + z − 6 = 0 ⇐⇒ (z + 3)(z − 2) = 0

Since z = x2+y2 ≥ 0, the surfaces intersect on the circle z = 2, x2+y2 = 2.
So

E =
{

(x, y, z)
∣∣ x2 + y2 ≤ 2, x2 + y2 ≤ z ≤

√
6− x2 − y2

}
Let’s use cylindrical coordinates to do the integral. In cylindrical coordi-
nates

• E =
{

(r cos θ, r sin θ, z)
∣∣ r ≤ √2, 0 ≤ θ ≤ 2π, r2 ≤ z ≤

√
6− r2

}
,

and
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• dV is r dr dθ dz

so∫∫∫
E

(x2 + y2) dV =
∫ √2

0
dr
∫ 2π

0
dθ
∫ √6−r2

r2
dz r r2

= 2π
∫ √2

0
dr r3(√6− r2 − r2)

= 2π
∫ √2

0
dr r r2

√
6− r2 − 2π

∫ √2

0
dr r5

= 2π
∫ 4

6

du
−2 (6− u)

√
u− 2π 23

6
with u = 6− r2, du = −2r dr

= −π
[
6u

3/2

3/2 −
u5/2

5/2

]4

6
− 8π

3

= −π
[
4
(
8− 6

√
6
)
− 2

5
(
32− 36

√
6
)]
− 8π

3

= π

[
64
5 − 32− 8

3 +
(

24− 72
5

)√
6
]

= π

[
48
5
√

6− 328
15

]
≈ 1.65π

3.6.4.10. ∗. Solution. We’ll use cylindrical coordinates. In cylindrical
coordinates

• the sphere x2 + y2 + z2 = a2 becomes r2 + z2 = a2 and

• the circular cylinder x2 + y2 = ax (or equivalently (x− a/2)2 + y2 =
a2/4) becomes r2 = ar cos θ or r = a cos θ.

Here is a sketch of the top view of the solid.

x

y

x2 ` y2 “ ax

pa{2,0q

The solid is{
(r cos θ , r sin θ , z)

∣∣ − π

2 ≤ θ ≤
π

2 , 0 ≤ r ≤ a cos θ ,

−
√
a2 − r2 ≤ z ≤

√
a2 − r2

}
By symmetry, the volume of the specified solid is four times the volume of
the solid{

(r cos θ , r sin θ , z)
∣∣ 0 ≤ θ ≤ π

2 , 0 ≤ r ≤ a cos θ , 0 ≤ z ≤
√
a2 − r2

}
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Since dV = r dr dθ dz, the volume of the solid is

4
∫ π/2

0
dθ
∫ a cos θ

0
dr
∫ √a2−r2

0
dz r = 4

∫ π/2

0
dθ
∫ a cos θ

0
dr r

√
a2 − r2

= −4
3

∫ π/2

0
dθ
(
a2 − r2)3/2∣∣∣a cos θ

0

= 4
3

∫ π/2

0
dθ
[
a3 −

(
a2 − a2 cos2 θ

)3/2]
= 4a3

3

∫ π/2

0
dθ
[
1− sin3 θ

]
= 4a3

3

[
θ − 1

12 cos(3θ) + 3
4 cos θ

]π/2
0

= 4a3

3

[
π

2 + 1
12 −

3
4

]
= 4a3

3

[
π

2 −
2
3

]
3.6.4.11. ∗. Solution. Note that the surfaces meet when z = y2 = 4−x2

and then (x, y) runs over the circle x2+y2 = 4. So the domain of integration
is

E =
{

(x, y, z)
∣∣ x2 + y2 ≤ 4, y2 ≤ z ≤ 4− x2 }

Let’s switch to cylindrical coordinates. Then

E =
{

(r cos θ, r sin θ, z)
∣∣ 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π,

r2 sin2 θ ≤ z ≤ 4− r2 cos2 θ
}

and, since dV = r dr dθ dz,

∫∫∫
E

y2 dV =
∫ 2

0
dr
∫ 2π

0
dθ
∫ 4−r2 cos2 θ

r2 sin2 θ

dz r

y2︷ ︸︸ ︷
r2 sin2 θ

=
∫ 2

0
dr
∫ 2π

0
dθ r3 sin2 θ

[
4− r2 cos2 θ − r2 sin2 θ

]
=
∫ 2

0
dr
[
4r3 − r5] ∫ 2π

0
dθ 1− cos(2θ)

2

= 1
2

∫ 2

0
dr
[
4r3 − r5] [θ − sin(2θ)

2

]2π

0

= π

[
r4 − r6

6

]2

0

= 16π
3

For an efficient, sneaky, way to evaluate
∫ 2π

0 sin2 θ dθ, see Remark 3.3.5.

3.6.4.12. Solution. By symmetry, x̄ = ȳ = z̄, so it suffices to compute,
for example, z̄. The mass of the body is the density, ρ, times its volume,
which is one eighth of the volume of a sphere. So

M = ρ

8
4
3πa

3

In cylindrical coordinates, the equation of the spherical surface of the body
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is r2 + z2 = a2. The part of the body at height z above the xy--plane is
one quarter of a disk of radius

√
a2 − z2. The numerator of z̄ is∫∫∫

B

zρ dV = ρ

∫ a

0
dz
∫ π/2

0
dθ

∫ √a2−z2

0
dr r z

= ρ

∫ a

0
dz
∫ π/2

0
dθ z

r2

2

∣∣∣∣
√
a2−z2

0

= ρ

2

∫ a

0
dz
∫ π/2

0
dθ z(a2 − z2)

= π

4 ρ
∫ a

0
dz z(a2 − z2)

= π

4 ρ
[
a2 z

2

2 −
z4

4

]a
0

= π

16ρa
4

Dividing by M = π
6 ρa

3 gives x̄ = ȳ = z̄ = 3
8a.

3.6.4.13. ∗. Solution. (a) In cylindrical coordinates the equation of
a sphere of radius 2 centred on the origin is r2 + z2 = 22. Since dV =
r dr dθ dz and dm = 5√

3 (z2 + 1)r dr dθ dz and the hole has radius 1/2, the
integral is

mass =
∫ 2

1/2
dr
∫ √4−r2

−
√

4−r2
dz
∫ 2π

0
dθ 5√

3
(z2 + 1)r

(b) By part (a)

mass =
∫ 2

1/2
dr
∫ √4−r2

−
√

4−r2
dz
∫ 2π

0
dθ 5√

3
(z2 + 1)r

= 4π 5√
3

∫ 2

1/2
dr r

∫ √4−r2

0
dz (z2 + 1)

= 4π 5√
3

∫ 2

1/2
dr r

[
z3

3 + z

]√4−r2

0

= 4π 5√
3

∫ 2

1/2
dr r

[
1
3(4− r2)3/2 + (4− r2)1/2

]
Make the change of variables s = 4− r2, ds = −2r dr. This gives

mass = 4π 5√
3

∫ 0

15/4

ds
−2

[
1
3s

3/2 + s1/2
]

= −2π 5√
3

[
2
15s

5/2 + 2
3s

3/2
]0

15/4

= 2π 5√
3

[
2
15

155/2

32 + 2
3

153/2

8

]
= 2π 5√

3

[
1
16 + 1

12

]
153/2 = 525

24
√

5π ≈ 153.7kg

3.6.4.14. ∗. Solution. (a) The solid consists of all (x, y, z) with
• (x, y) running over the disk x2 + y2 ≤ 4 and

• for each fixed (x, y) obeying x2 +y2 ≤ 4, z running from 0 to e−x2−y2

On the disk x2 + y2 ≤ 4,
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• x runs from −2 to 2 and

• for each fixed x obeying −2 ≤ x ≤ 2, y runs from −
√

4− x2 to√
4− x2

So

Volume =
∫ 2

−2
dx
∫ √4−x2

−
√

4−x2
dy
∫ e−x

2−y2

0
dz

(b) Switching to cylindrical coordinates

Volume =
∫ 2

0
dr
∫ 2π

0
dθ
∫ e−r

2

0
dz r =

∫ 2

0
dr
∫ 2π

0
dθ re−r

2
=
∫ 2

0
dr 2π re−r

2

= −πe−r
2
∣∣∣2
0

= π
[
1− e−4] ≈ 3.084

3.6.4.15. ∗. Solution. The solid consists of the set of all points (x, y, z)
such that x2 + y2 ≤ 4 and 0 ≤ z ≤ y

2 . In particular y ≥ 0. When we look
at the solid from above, we see all (x, y) with x2 + y2 ≤ 4 and y ≥ 0. This
is sketched in the figure on the left below.

x

y

x2 ` y2 “ 4

z

y

x

2z “ y

x2 ` y2 “ 4

We’ll use cylindrical coordinates. In the base region (the shaded region
in the figure on the left above)

• θ runs from 0 to π and

• for each fixed θ between 0 and π, r runs from 0 to 2.

• For each fixed point (x, y) = (r cos θ, r sin θ) in the base region, z
runs from 0) to y

2 = r sin θ
2 .

So the volume is∫ π

0
dθ
∫ 2

0
dr
∫ r sin θ/2

0
dz r =

∫ π

0
dθ
∫ 2

0
dr 1

2r
2 sin θ =

∫ π

0
dθ r

3

6 sin θ
∣∣∣∣2
0

= 4
3

∫ π

0
dθ sin θ

= −4
3 cos θ

∣∣∣∣π
0

= 8
3

3.6.4.16. ∗. Solution. (a) The direction of maximum rate of increase
is ∇∇∇ρ(1, 0,−1). As

∂ρ

∂x
(x, y, z) = 4x

1 + x2 + y2 −
2x(z + 2x2)

(1 + x2 + y2)2
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∂ρ

∂x
(1, 0,−1) = 4

2 −
2(−1 + 2)

(2)2 = 3
2

∂ρ

∂y
(x, y, z) = − 2y(z + 2x2)

(1 + x2 + y2)2

∂ρ

∂y
(1, 0,−1) = 0

∂ρ

∂z
(x, y, z) = 1

1 + x2 + y2

∂ρ

∂z
(1, 0,−1) = 1

2

So∇∇∇ρ(1, 0,−1) = 1
2 (3, 0, 1). The unit vector in this direction is 1√

10 (3, 0, 1).
(b) The region swept by the space craft is, in cylindrical coordinates,

V =
{

(r cos θ , r sin θ , z)
∣∣ 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 2

}
and the amount of hydrogen collected is∫∫∫

V

ρ dV =
∫∫∫

V

z + 2r2 cos2 θ

1 + r2 rdr dθ dz

=
∫ 2

0
dz
∫ 2π

0
dθ
∫ 1

0
dr zr + (2 cos2 θ)r3

1 + r2

=
∫ 2

0
dz
∫ 2π

0
dθ
∫ 1

0
dr
[
z

r

1 + r2 + 2r cos2 θ − cos2 θ
2r

1 + r2

]
since r3

1 + r2 = r + r3 − r
1 + r2 = r − r

1 + r2

=
∫ 2

0
dz
∫ 2π

0
dθ
[z

2 ln(1 + r2) + r2 cos2 θ − ln(1 + r2) cos2 θ
]1

0

=
∫ 2

0
dz
∫ 2π

0
dθ
[

ln 2
2 z + cos2 θ − ln(2) cos2 θ

]
=
∫ 2

0
dz [(π ln 2)z + π − π ln 2]

= 2π ln 2 + 2π − 2π ln 2
= 2π

3.6.4.17. Solution. We may choose our coordinate axes so that the
torus is constructed by rotating the circle (x − b)2 + z2 = a2 (viewed as
lying in the xz--plane) about the z--axis. On this circle, x runs from b− a
to b+ a.

x

z

a

r

pb,0,0q

In cylindrical coordinates, the torus has equation (r − b)2 + z2 = a2.
(Recall that the cylindrical coordinate r of a point is its distance from the
z--axis.) On this torus,
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• r runs from b− a to b+ a.

• For each fixed r, z runs from −
√
a2 − (r − b)2 to

√
a2 − (r − b)2.

As the torus is symmetric about the xy--plane, its volume is twice that of
the volume of the part with z ≥ 0.

Volume = 2
∫ 2π

0
dθ

∫ b+a

b−a
dr r

∫ √a2−(r−b)2

0
dz

= 2
∫ 2π

0
dθ

∫ b+a

b−a
dr r

√
a2 − (r − b)2

= 4π
∫ a

−a
ds (s+ b)

√
a2 − s2 where s = r − b

As s
√
a2 − s2 is odd under s→ −s,

∫ a
−a ds s

√
a2 − s2 = 0. Also,

∫ a
−a ds

√
a2 − s2

is precisely the area of the top half of a circle of radius a. So

Volume = 4bπ
∫ a

−a
ds
√
a2 − s2 = 2π2a2b

So the mass density of the torus is M
2π2a2b and dm = M

2π2a2b dV = M
2π2a2b r dr dθ dz

and

moment of inertia = 2
∫ 2π

0
dθ

∫ b+a

b−a
dr r

∫ √a2−(r−b)2

0
dz M

2π2a2b
r2

= M

π2a2b

∫ 2π

0
dθ

∫ b+a

b−a
dr r3

√
a2 − (r − b)2

= 2M
πa2b

∫ a

−a
ds (s+ b)3

√
a2 − s2 where s = r − b

= 2M
πa2b

∫ a

−a
ds (s3 + 3s2b+ 3sb+ b3)

√
a2 − s2

Again, by oddness, the s3 and 3sb integrals are zero. For the others,
substitute in s = a sin t, ds = a cos t.

moment = 2M
πa2b

∫ π
2

−π2
(a cos tdt) (3a2b sin2 t+ b3)a cos t

= 2M
π

∫ π
2

−π2
dt (3a2 sin2 t+ b2) cos2 t

= 4M
π

∫ π
2

0
dt (3a2 cos2 t− 3a2 cos4 t+ b2 cos2 t)

since sin2 t = 1− cos2 t

To integrate5 cos2 t and cos4 t, we use the double angle formulae sin2 x =
1−cos(2x)

2 and cos2 x = 1+cos(2x)
2 to write

cos2 t = 1 + cos(2t)
2

and

cos4 t =
[

1 + cos(2t)
2

]2
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= 1
4 + 1

2 cos(2t) + 1
4 cos2(2t)

= 1
4 + 1

2 cos(2t) + 1
8 (1 + cos(4t))

= 3
8 + 1

2 cos(2t) + 1
8 cos(4t)

So

moment = 4M
π

[
3a2

(
t

2 + sin(2t)
4

)
−3a2

(
3t
8 + 1

4 sin(2t)+ 1
32 sin(4t)

)
+ b2

(
t

2 + sin(2t)
4

)]π
2

0

= 4M
π

[
3a2π

4 − 3a2 3π
16 + b2

π

4

]
= M

(
3
4a

2 + b2
)

3.7 · Triple Integrals in Spherical Coordinates
3.7.5 · Exercises

3.7.5.1. Solution. Since the spherical coordinate ϕ(x, y, z) of a point
(x, y, z) is the angle between the positive z-axis and the radius vector from
(0, 0, 0) to (x, y, z), the sets{

(x, y, z)
∣∣ ϕ(x, y, z) = 0

}
= the positive z-axis{

(x, y, z)
∣∣ ϕ(x, y, z) = π

2
}

= the xy-plane{
(x, y, z)

∣∣ ϕ(x, y, z) = π
}

= the negative z-axis

Alternatively, tanϕ(x, y, z) = z√
x2+y2

, so that, for any 0 < Φ < π,{
(x, y, z)

∣∣ ϕ(x, y, z) = Φ
}

=
{

(x, y, z)
∣∣ z = tan Φ

√
x2 + y2

}
= the cone that makes the angle Φ with the positive z-axis

z

y

x

ϕ “ 0

z

y

x

π
4

ϕ “ π
4

z

y

x

ϕ “ π
2

z

y

x

3π
4

ϕ “ 3π
4
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z

y

x
ϕ “ π

3.7.5.2. Solution. The sketch is below. To help build up this sketch, it
is useful to recall the following facts.

• The spherical coordinate ρ is the distance of the point from the origin
(0, 0, 0). In particular if ρ = 0, then the point is the origin (regardless
of the values of θ and ϕ). If ρ = 1 then the point lies on the sphere
of radius 1 centred on the origin.

• The spherical coordinate ϕ is the angle between the positive z-axis
and the radial line segment from the origin to (x, y, z). In particular,
all points with ϕ = 0 lie on the positive z-axis (regardless of the value
of θ). All points with ϕ = π

2 lie in the xy-plane.

z

y

x

π
3

π
6

ρ“1, θ“π
3
, ϕ“π

2

ρ“1, θ“π
2
, ϕ“π

2

ρ“1, θ“0, ϕ“π
2

ρ“0, θ“0.1π, ϕ“0.7π

ρ“1, θ“0.3π, ϕ“0

ρ“1, θ“π
3
, ϕ“π

6

1

1

1

1

1

3.7.5.3. Solution. (a) The point (−2, 0, 0)
• lies in the xy-plane (i.e. has z = ρ cosϕ = 0) and so has ϕ = π

2 and

• lies on the negative x-axis and so has θ = π and

• is a distance 2 from the origin and so has ρ = 2.

(b) The point (0, 3, 0)

• lies in the xy-plane (i.e. has z = ρ cosϕ = 0) and so has ϕ = π
2 and

• lies on the positive y-axis and so has θ = π
2 and

• is a distance 3 from the origin and so has ρ = 3.
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(c) The point (0, 0,−4)

• lies on the negative z-axis and so has ϕ = π and θ arbitrary and

• is a distance 4 from the origin and so has ρ = 4.

(d) The point
(
− 1√

2 ,
1√
2 ,
√

3
)

• has ρ =
√
x2 + y2 + z2 =

√(
− 1√

2

)2
+
(

1√
2

)2
+
(√

3
)2 =

√
4 = 2

and

• has
√

3 = z = ρ cosϕ = 2 cosϕ so that cosϕ =
√

3
2 and ϕ = π

6 and

• has − 1√
2 = x = ρ sinϕ cos θ = 2

( 1
2
)

cos θ so that cos θ = − 1√
2 . As(

− 1√
2 ,

1√
2

)
is in the second quadrant, we have π

2 ≤ θ ≤ π and so
θ = 3π

4 .

3.7.5.4. Solution. (a) The Cartesian coordinates corresponding to ρ =
1, θ = π

3 , ϕ = π
6 are

x = ρ sinϕ cos θ = sin π6 cos π3 =
(

1
2

)(
1
2

)
= 1

4

y = ρ sinϕ sin θ = sin π6 sin π3 =
(

1
2

)(√
3

2

)
=
√

3
4

z = ρ cosϕ = cos π6 =
√

3
2

(b) The Cartesian coordinates corresponding to ρ = 2, θ = π
2 , ϕ = π

2
are

x = ρ sinϕ cos θ = 2 sin π2 cos π2 = 0

y = ρ sinϕ sin θ = 2 sin π2 sin π2 = 2

z = ρ cosϕ = 2 cos π2 = 0

Alternatively, we could just observe that

• as ϕ = π
2 the point lies in the xy-plane and so has z = 0 and

• as ρ = 2, θ = π
2 the point lies on the positive y-axis and is a distance

2 from the origin and so is (0, 2, 0).

3.7.5.5. Solution. (a) In spherical coordinates

z2 = 3x2 + 3y2 ⇐⇒ ρ2 cos2 ϕ = 3ρ2 sin2 ϕ cos2 θ + 3ρ2 sin2 ϕ sin2 θ

= 3ρ2 sin2 ϕ

⇐⇒ tan2 ϕ = 1
3

⇐⇒ tanϕ = ± 1√
3

⇐⇒ ϕ = π

6 or 5π
6

The surface z2 = 3x2 + 3y2 is a cone. The upper half of the cone, i.e. the
part with z ≥ 0, is ϕ = π

6 . The lower half of the cone, i.e. the part with
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z ≤ 0, is ϕ = π − π
6 = 5π

6 .
(b) In spherical coordinates

x2 + y2 + (z − 1)2 = 1

⇐⇒ ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ +
(
ρ cosϕ− 1

)2 = 1
⇐⇒ ρ2 sin2 ϕ+ ρ2 cos2 ϕ− 2ρ cosϕ = 0
⇐⇒ ρ2 − 2ρ cosϕ = 0
⇐⇒ ρ = 2 cosϕ

(c) In spherical coordinates

x2 + y2 = 4 ⇐⇒ ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ = 4
⇐⇒ ρ2 sin2 ϕ = 4
⇐⇒ ρ sinϕ = 2

since ρ ≥ 0 and 0 ≤ ϕ ≤ π so that sinϕ ≥ 0.

3.7.5.6. ∗. Solution. In spherical coordinates, the sphere in question is

B =
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣ 0 ≤ ρ ≤ 1 , 0 ≤ ϕ ≤ π ,

0 ≤ θ ≤ 2π
}

As dV = ρ2 sinϕ dρdϕdθ,

Volume(S) =
∫∫∫

B

dV =
∫ 2π

0
dθ
∫ π

0
dϕ
∫ 1

0
dρ ρ2 sinϕ

=
[∫ 2π

0
dθ
] [∫ π

0
dϕ sinϕ

] [∫ 1

0
dρ ρ2

]
= 2π

[
− cosϕ

]π
0

[
ρ3

3

]1

0
= (2π)(2)

(
1
3

)
= 4π

3

3.7.5.7. ∗. Solution. (a) First observe that both boundaries of E,
namely ρ = 1 and ρ = 1+cosϕ, are independent of the spherical coordinate
θ. So E is invariant under rotations about the z-axis. To sketch E we

• first sketch the part of the boundary of E with θ = 0 (i.e. in the half
of the xz-plane with x > 0), and then

• rotate about the z-axis.

The part of the boundary of E with θ = 0 (i.e. in the half-plane y = 0,
x ≥ 0), consists of two curves.

• ρ = 1 + cosϕ, θ = 0:

◦ When ϕ = 0 (i.e. on the positive z-axis), We have cosϕ = 1
and hence ρ = 2. So this curve starts at (0, 0, 2).
◦ As ϕ increases cosϕ, and hence ρ, decreases.
◦ When ϕ is π

2 (i.e. in the xy-plane), we have cosϕ = 0 and hence
ρ = 1.
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◦ When π
2 < ϕ ≤ π, we have cosϕ < 0 and hence ρ < 1. All

points in E are required to obey ρ ≥ 1. So this part of the
boundary stops at the point (1, 0, 0) in the xy-plane.
◦ The curve ρ = 1 + cosϕ, θ = 0, 0 ≤ ϕ ≤ π

2 is sketched in the
figure on the left below. It is the outer curve from (0, 0, 2) to
(1, 0, 0).

• ρ = 1, θ = 0:

◦ The surface ρ = 1 is the sphere of radius 1 centred on the origin.
◦ As we observed above, the conditions 1 ≤ ρ ≤ 1 + cosϕ force

0 ≤ ϕ ≤ π
2 , i.e. z ≥ 0.

◦ The sphere ρ = 1 intersects the quarter plane y = 0, x ≥ 0,
z ≥ 0, in the quarter circle centred on the origin that starts at
(0, 0, 1) on the z-axis and ends at (1, 0, 0) in the xy-plane.
◦ The curve ρ = 1, θ = 0, 0 ≤ ϕ ≤ π

2 is sketched in the figure on
the left below. It is the inner curve from (0, 0, 1) to (1, 0, 0).

To get E, rotate the shaded region in the figure on the left below
about the z-axis. The part of E in the first octant is sketched in the
figure on the right below. The part of E in the xz-plane (with x ≥ 0)
is lightly shaded and the part of E in the yz-plane (with y ≥ 0) is
shaded a little more darkly.

y

z

x

p1,0,0q

p0,0,1q

p0,0,2q

y

z

x

p1,0,0q p0,1,0q

p0,0,1q

p0,0,2q

(b) In E

• ϕ runs from 0 (i.e. the positive z-axis) to π
2 (i.e. the xy-plane).

• For each ϕ in that range ρ runs from 1 to 1 + cosϕ and θ runs from
0 to 2π.

• In spherical coordinates dV = ρ2 sinϕdρ dθ dϕ.

So

Volume(E) =
∫ π/2

0
dϕ
∫ 1+cosϕ

1
dρ
∫ 2π

0
dθ ρ2 sinϕ

= 2π
∫ π/2

0
dϕ sinϕ (1 + cosϕ)3 − 13

3

= −2π
3

∫ 1

2

(
u3 − 1

)
du with u = 1 + cosϕ, du = − sinϕdϕ

= −2π
3

[
u4

4 − u
]1

2
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= −2π
3

[
1
4 − 1− 4 + 2

]
= 11π

6
3.7.5.8. ∗. Solution. Recall that in spherical coordinates,

x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ

x2 + y2 = ρ2 sin2 ϕ

so that x2 + y2 + z2 = 4 becomes ρ = 2, and
√
x2 + y2 = z becomes

ρ sinϕ = ρ cosϕ ⇐⇒ tanϕ = 1 ⇐⇒ ϕ = π

4

Here is a sketch of the y = 0 cross-section of D.

x

z

π
4

x2 ` y2 ` z2 “ 4

z “ a
x2 ` y2

Looking at the figure above, we see that, on D

• ϕ runs from 0 (the positive z-axis) to π
4 (on the cone), and

• for each ϕ is that range, ρ runs from 0 to 2 and θ runs from 0 to 2π.

So

D =
{

(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)
∣∣ 0 ≤ ϕ ≤ π

4 , 0 ≤ θ ≤ 2π, ρ ≤ 2
}

and, as dV = ρ2 sinϕdρdθ dϕ,

I =
∫ π/4

0
dϕ
∫ 2π

0
dθ
∫ 2

0
dρ ρ2 sinϕ

z︷ ︸︸ ︷
ρ cosϕ

=
∫ π/4

0
dϕ
∫ 2π

0
dθ
∫ 2

0
dρ ρ3 sinϕ cosϕ

= 2π 24

4

∫ π/4

0
dϕ sinϕ cosϕ

= 2π 24

4

[
sin2 ϕ

2

]π/4
0

= 2π

3.7.5.9. Solution. (a) Recall that in spherical coordinates,

x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
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z = ρ cosϕ
x2 + y2 = ρ2 sin2 ϕ

so that x2 + y2 + z2 = a2 becomes ρ = a, and
√
x2 + y2 = z becomes

ρ sinϕ = ρ cosϕ ⇐⇒ tanϕ = 1 ⇐⇒ ϕ = π

4
Here is a sketch of the y = 0 cross-section of the specified region.

x

z

π
4

x2 ` y2 ` z2 “ a2

z “ a
x2 ` y2

Looking at the figure above, we see that, on that region,

• ϕ runs from 0 (the positive z-axis) to π
4 (on the cone), and

• for each ϕ is that range, ρ runs from 0 to a and θ runs from 0 to 2π.

so that

Volume =
∫ a

0
dρ
∫ 2π

0
dθ
∫ π

4

0
dϕ ρ2 sinϕ

=
{∫ a

0
dρ ρ2

}{∫ 2π

0
dθ
}{∫ π

4

0
dϕ sinϕ

}
= a3

3 2π
[
− cosϕ

]π
4

0
= 2πa

3

3

(
1− 1√

2

)
(b) The part of the sphere in question is

R =
{

(x, y, z)
∣∣ x2 + y2 + z2 ≤ a2, x ≥ 0, y ≥ 0, z ≥ 0

}
=
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣ ρ ≤ a, 0 ≤ ϕ ≤ π

2 , 0 ≤ θ ≤ π
2
}

By symmetry, the two specified integrals are equal, and are∫ a

0
dρ ρ2

∫ π
2

0
dϕ sinϕ

∫ π
2

0
dθ

z︷ ︸︸ ︷
ρ cosϕ = a4

4
π

2

∫ π
2

0
dϕ sinϕ cosϕ

= πa4

8

∫ 1

0
dt t

where t = sinϕ,dt = cosϕdϕ

= πa4

16
(c) The planet in question is

P =
{

(x, y, z)
∣∣ x2 + y2 + z2 ≤ a2 }

=
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣ ρ ≤ a, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π

}
So the

mass =
∫ a

0
dρ ρ2

∫ π

0
dϕ sinϕ

∫ 2π

0
dθ

density︷ ︸︸ ︷
A

B + ρ2
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= 2πA
{∫ π

0
dϕ sinϕ

}{∫ a

0
dρ ρ2

B + ρ2

}
= 4πA

∫ a

0
dρ
(

1− B

B + ρ2

)
= 4πAa− 4πA

√
B

∫ a/
√
B

0
ds 1

1 + s2 where ρ =
√
B s,dρ =

√
B ds

= 4πA
(
a−
√
B tan−1 a√

B

)
(d) Observe that

• when ϕ = 0 (i.e. on the positive z-axis), cosϕ = 1 so that ρ =
a(1− cosϕ) = 0 and

• as ϕ increases from 0 to π
2 , cosϕ decreases so that ρ = a(1 − cosϕ)

increases and

• when ϕ = π
2 (i.e. on the xy-plane), cosϕ = 0 so that ρ = a(1 −

cosϕ) = a and

• as ϕ increases from π
2 to π, cosϕ continues to decrease so that ρ =

a(1− cosϕ) increases still more and

• when ϕ = π (i.e. on the negative z-axis), cosϕ = −1 so that ρ =
a(1− cosϕ) = 2a

So we have the following sketch of the intersection of the specified volume
with the right half of the yz-plane.

ρ “ ap1 ´ cosϕq

z

y

The volume in question is invariant under rotations about the z-axis so
that

Volume =
∫ 2π

0
dθ
∫ π

0
dϕ sinϕ

∫ a(1−cosϕ)

0
dρ ρ2

= 2πa
3

3

∫ π

0
dϕ sinϕ(1− cosϕ)3

= 2πa
3

3

∫ 2

0
dt t3 where t = 1− cosϕ,dt = sinϕdϕ

= 2π a3

3
24

4 = 8
3πa

3

3.7.5.10. ∗. Solution. Let’s use H to denote the hemispherical shell.
On that shell, the spherical coordinate ϕ runs from 0 (on the z-axis) to
π/2 (on the xy-plane, z = 0) and the spherical coordinate ρ runs from 2,
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on x2 + y2 + z2 = 4, to 3, on x2 + y2 + z2 = 9. So, in spherical coordinates,

H =
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣ 2 ≤ ρ ≤ 3, 0 ≤ ϕ ≤ π/2,

0 ≤ θ ≤ 2π
}

(a) In spherical coordinates dV = ρ2 sinϕ dρdϕdθ, so that, as the
density is the constant D,

Mass(H) =
∫ 3

2
dρ
∫ 2π

0
dθ
∫ π/2

0
dϕ D ρ2 sinϕ

= D

[∫ 3

2
dρ ρ2

] [∫ 2π

0
dθ
] [∫ π/2

0
dϕ sinϕ

]

= D

[
33

3 −
23

3

] [
2π
] [

cos 0− cos(π/2)
]

= 38
3 πD

We could have gotten the same result by expressing the mass as

• one half, times

• the density D, times

• the difference between the volume of a sphere of radius 3 and a sphere
of radius 2.

That is

Mass(H) = 1
2D

[
4
3π33 − 4

3π23
]

= 38
3 πD

(b) By definition, the centre of mass is (x̄, ȳ, z̄) where x̄, ȳ and z̄ are
the weighted averages of x, y and z, respectively, over H. That is

x̄ =
∫∫∫

H
xD dV∫∫∫

H
D dV

ȳ =
∫∫∫

H
y D dV∫∫∫

H
D dV

z̄ =
∫∫∫

H
z D dV∫∫∫

H
D dV

As H is invariant under reflection in the yz-plane (i.e. under x→ −x) we
have x̄ = 0. As H is also invariant under reflection in the xz-plane (i.e.
under y → −y) we have ȳ = 0. So we just have to find z̄. We have already
found the denominator in part (a), so we just have evaluate the numerator∫∫∫

H

z D dV =
∫ 3

2
dρ
∫ 2π

0
dθ
∫ π/2

0
dϕ D ρ2 sinϕ

z︷ ︸︸ ︷
ρ cosϕ

= D

[∫ 3

2
dρ ρ3

] [∫ 2π

0
dθ
] [∫ π/2

0
dϕ sinϕ cosϕ

]

= D

[
34

4 −
24

4

] [
2π
] [1

2 sin2 π

2 −
1
2 sin2 0

]
= 81− 16

4 πD = 65
4 πD

All together

x̄ = ȳ = 0 z̄ =
65
4 πD
38
3 πD

= 195
152 ≈ 1.28



APPENDIX D. SOLUTIONS TO EXERCISES 782

3.7.5.11. ∗. Solution. (a) Here is a sketch
z

y
x

ρ “ 1

(b) On T ,

• the spherical coordinate ϕ runs from 0 (the positive z-xis) to π
2 (the

xy-plane), and

• for each fixed ϕ in that range, θ runs from 0 to π
2 , and

• for each fixed ϕ and θ, the spherical coordinate ρ runs from 0 to 1.

• In spherical coordinates dV = ρ2 sinϕdρ dθ dϕ and

xz =
(
ρ sinϕ cos θ

)(
ρ cosϕ

)
= ρ2 sinϕ cosϕ cos θ

So

I =
∫ π/2

0
dϕ
∫ π/2

0
dθ
∫ 1

0
dρ ρ4 sin2 ϕ cosϕ cos θ

(c) In spherical coordinates,

I =
[∫ π/2

0
dϕ sin2 ϕ cosϕ

][∫ π/2

0
dθ cos θ

] [∫ 1

0
dρ ρ4

]

=
[

sin3 ϕ

3

]π/2
0

[sin θ]π/20

[
ρ5

5

]1

0

= 1
15

3.7.5.12. ∗. Solution. We’ll use spherical coordinates. On Q,
• the spherical coordinate ϕ runs from 0 (the positive z-axis) to π

2 (the
xy-plane),

• the spherical coordinate θ runs from 0 (the half of the xz-plane with
x ≥ 0) to π

2 (the half of the yz-plane with y ≥ 0) and

• the spherical coordinate ρ runs from 0 to 3.

As dV = ρ2 sinϕdρdθ dϕ,

W =
∫∫∫

Q

xz dV =
∫ 3

0
dρ
∫ π/2

0
dθ
∫ π/2

0
dϕ ρ2 sinϕ

x︷ ︸︸ ︷
ρ sinϕ cos θ

z︷ ︸︸ ︷
ρ cosϕ

=
∫ 3

0
dρ
∫ π/2

0
dθ ρ4 cos θ

[
sin3 ϕ

3

]ϕ=π/2

ϕ=0

= 1
3

∫ 3

0
dρ ρ4

[
sin θ

]π/2
0
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= 35

15 = 81
5

3.7.5.13. ∗. Solution. Let’s use spherical coordinates. This is an im-
proper integral. So, to be picky, we’ll take the limit as R → ∞ of the
integral over 0 ≤ ρ ≤ R.∫∫∫

R3

[
1 + (x2 + y2 + z2)3]−1

dV

= lim
R→∞

∫ R

0
dρ
∫ 2π

0
dθ
∫ π

0
dϕ ρ2 sinϕ 1

1 + ρ6

= lim
R→∞

∫ R

0
dρ
∫ 2π

0
dθ ρ2

1 + ρ6

[
− cosϕ

]π
0

= 4π lim
R→∞

∫ R

0
dρ ρ2

1 + ρ6

= 4π
3 lim

R→∞

∫ R3

0
du 1

1 + u2 with u = ρ3, du = 3ρ2 dρ

= 4π
3 lim

R→∞

[
arctan u

]R3

0

= 2π2

3 since lim
R→∞

arctanR3 = π

2
3.7.5.14. ∗. Solution. On the domain of integration

• x runs from −1 to 1.

• For each fixed x in that range, y runs from −
√

1− x2 to
√

1− x2. In
inequalities, that is −

√
1− x2 ≤ y ≤

√
1− x2, which is equivalent to

x2 + y2 ≤ 1.

• For each fixed (x, y) obeying x2+y2 ≤ 1, z runs from 1−
√

1− x2 − y2

to 1 +
√

1− x2 − y2. In inequalities, that is 1−
√

1− x2 − y2 ≤ z ≤
1 +

√
1− x2 − y2, which is equivalent to x2 + y2 + (z − 1)2 ≤ 1.

So the domain of integration is

V =
{

(x, y, z)
∣∣ x2 + y2 + (z − 1)2 ≤ 1

}
In spherical coordinates, the condition x2 + y2 + (z − 1)2 ≤ 1 is

(ρ sinϕ cos θ)2 + (ρ sinϕ sin θ)2 + (ρ cosϕ− 1)2 ≤ 1
⇐⇒ ρ2 sin2 ϕ+ (ρ cosϕ− 1)2 ≤ 1
⇐⇒ ρ2 sin2 ϕ+ ρ2 cos2 ϕ− 2ρ cosϕ+ 1 ≤ 1
⇐⇒ ρ2 ≤ 2ρ cosϕ
⇐⇒ ρ ≤ 2 cosϕ

Note that V is contained in the upper half, z ≥ 0, of R3 and that the xy-
plane in tangent to V . So as (x, y, z) runs over V , the spherical coordinate
ϕ runs from 0 (the positive z-axis) to π

2 (the xy-plane). Here is a sketch
of the side view of V .
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V

y

z

ϕ

As dV = ρ2 sinϕ dρdϕdθ and
(
x2 + y2 + z2)5/2 = ρ5, the integral is

∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 1+
√

1−x2−y2

1−
√

1−x2−y2
(x2 + y2 + z2)5/2 dz dy dx

=
∫ 2π

0
dθ
∫ π/2

0
dϕ
∫ 2 cosϕ

0
dρ ρ2 sinϕ ρ5

=
∫ 2π

0
dθ
∫ π/2

0
dϕ 28 cos8 ϕ

8 sinϕ

= 32
∫ 2π

0
dθ
[
−cos9 ϕ

9

]π/2
0

= 32
9 (2π) = 64π

9
3.7.5.15. Solution. The top of the cylinder has equation z = h, i.e.
ρ cosϕ = h. The side of the cylinder has equation x2 + y2 = a2, i.e.
ρ sinϕ = a. The bottom of the cylinder has equation z = 0, i.e. ϕ = π

2 .

y

z

x

ϕ

ϕ “ tan´1 a
h

a

h

y

z

x

ϕ

ϕ ă tan´1 a
h

ρ “ h
cosϕ

y

z

x

ϕ

ϕ ą tan´1 a
h

ρ “ a
sinϕ

For each fixed ϕ, θ runs from 0 to 2π and ρ runs from 0 to either h
cosϕ

(at the top of the can, when ϕ < tan−1 a
h ) or

a
sinϕ (at the side of the can,

when ϕ > tan−1 a
h ). So the

Volume =
∫ tan−1 a

h

0
dϕ
∫ 2π

0
dθ
∫ h/ cosϕ

0
dρ ρ2 sinϕ

+
∫ π

2

tan−1 a
h

dϕ
∫ 2π

0
dθ
∫ a/ sinϕ

0
dρ ρ2 sinϕ

= 2π
∫ tan−1 a

h

0
dϕ h3 sinϕ

3 cos3 ϕ
+ 2π

∫ π
2

tan−1 a
h

dϕ a3 sinϕ
3 sin3 ϕ

= 2π
{∫ a

h

0
dt h

3

3 t−
∫ 0

h
a

ds a
3

3

}
where t = tanϕ,dt = sec2 ϕdϕ, s = cotϕ,ds = − csc2 ϕdϕ
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= 2π
{
h3

3
1
2

(a
h

)2
+ a3

3
h

a

}
= 2π

{
ah2

6 + a2h

3

}
= πa2h

3.7.5.16. ∗. Solution. In spherical coordinates,

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ

so that the sphere x2 + y2 + z2 = 4 is ρ2 = 4 or ρ = 2 and the cone
x2 + y2 = z2 is ρ2 sin2 ϕ = ρ2 cos2 ϕ or tanϕ = ±1 or ϕ = π

4 ,
3π
4 . So

moment =
∫ 2

0
dρ
∫ π/4

0
dϕ
∫ 2π

0
dθ ρ2 sinϕ (ρ cosϕ)2

= 2π
∫ 2

0
dρ ρ4

∫ π/4

0
dϕ sinϕ cos2 ϕ

= 2π
[
ρ5

5

]2

0

[
−1

3 cos3 ϕ

]π/4
0

= 64
15π

(
1− 1

2
√

2

)
≈ 8.665

3.7.5.17. ∗. Solution. (a) In spherical coordinates,

x = ρ sinφ cos θ y = ρ sinφ sin θ z = ρ cosφ

so that
• the sphere x2 + y2 + z2 = 1 is ρ = 1,

• the xy-plane, z = 0, is φ = π
2 ,

• the positive half of the xz-plane, y = 0, x > 0, is θ = 0 and

• the positive half of the yz-plane, x = 0, y > 0, is θ = π
2 .

So ∫∫∫
Ω
z dV =

∫ 1

0
dρ
∫ π/2

0
dφ

∫ π/2

0
dθ ρ2 sinφ

z︷ ︸︸ ︷
(ρ cosφ)

= π

2

∫ 1

0
dρ
∫ π/2

0
dφ ρ3 sinφ cosφ

= π

2

∫ 1

0
dρ ρ3 1

2 sin2 φ
∣∣∣π/2
0

= π

4

∫ 1

0
dρ ρ3 = π

16

(b) The hemispherical ball given by z ≥ 0, x2 + y2 + z2 ≤ 1 (call it H)
has centroid (x̄, ȳ, z̄) with x̄ = ȳ = 0 (by symmetry) and

z̄ =
∫∫∫

H
z dV∫∫∫

H
dV

=
4
∫∫∫

Ω z dV
1
2 ×

4
3π

=
π
4

2π
3

= 3
8

3.7.5.18. ∗. Solution. (a) In spherical coordinates,

x = ρ sinφ cos θ y = ρ sinφ sin θ z = ρ cosφ

the sphere x2 + y2 + z2 = 4 is ρ2 = 4 or ρ = 2 and the xy-plane is φ = π
2 .

So

mass =
∫ 2

0
dρ

∫ π/2

0
dφ

∫ 2π

0
dθ ρ2 sinφ

density︷ ︸︸ ︷
(9ρ cosφ)
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(b) The mass of the half ball is

9
∫ 2

0
dρ

∫ π/2

0
dφ

∫ 2π

0
dθ ρ3 sinφ cosφ

= 9
[ ∫ 2

0
dρ ρ3

][ ∫ π/2

0
dφ sinφ cosφ

][ ∫ 2π

0
dθ

]
In spherical coordinates, the cone x2 + y2 = z2 is ρ2 sin2 φ = ρ2 cos2 φ or
tanφ = ±1 or φ = π

4 ,
3π
4 . So the mass of the part that is inside the cone

is

9
∫ 2

0
dρ

∫ π/4

0
dφ

∫ 2π

0
dθ ρ3 sinφ cosφ

= 9
[ ∫ 2

0
dρ ρ3

][ ∫ π/4

0
dφ sinφ cosφ

][ ∫ 2π

0
dθ

]
The fraction inside the cone is∫ π/4

0 dφ sinφ cosφ∫ π/2
0 dφ sinφ cosφ

=
1
2 sin2 φ

∣∣π/4
0

1
2 sin2 φ

∣∣π/2
0

= 1
2

3.7.5.19. ∗. Solution. In spherical coordinates, x = ρ sinϕ cos θ, y =
ρ sinϕ sin θ, z = ρ cosϕ so that

ρ2 sin2 ϕ cos θ sin θ + ρ3 sinϕ sin θ cos2 ϕ+ ρ3 sinϕ cos2 ϕ

ρ2 sin2 ϕ+ ρ4 cos4 ϕ

= sin2 ϕ cos θ sin θ + ρ sinϕ sin θ cos2 ϕ+ ρ sinϕ cos θ cos2 ϕ

sin2 ϕ+ ρ2 cos4 ϕ

As (x, y, z) → (0, 0, 0), the radius ρ → 0 and the second and third terms
in the numerator and the second term in the denominator converge to 0.
But that leaves

sin2 ϕ cos θ sin θ
sin2 ϕ

= cos θ sin θ

which takes many different values. In particular, if we send (x, y, z) →
(0, 0, 0) along either the x- or y-axis, that is with z = 0 and either x = 0
or y = 0, then

xy + yz2 + xz2

x2 + y2 + z4

∣∣∣∣
x=0 or y=0

z=0

= 0

converges to 0. But, if we send (x, y, z) → (0, 0, 0) along the line y = x,
z = 0

xy + yz2 + xz2

x2 + y2 + z4

∣∣∣∣
y=x
z=0

= x2

2x2 = 1
2

converges to 1/2. So xy+yz2+xz2

x2+y2+z4 does not approach a single value as
(x, y, z)→ (0, 0, 0) and the limit does not exist.

3.7.5.20. ∗. Solution. The disk of radius 2 centred at the origin in the
xy-plane is x2 + y2 ≤ 4. So

V =
{

(x, y, z)
∣∣ x2 + y2 ≤ 4, 0 ≤ z ≤ 2

}
The cone with vertex at the origin that contains the top edge, x+ y2 = 4,
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z = 2, of U is x2 + y2 = z2. So

U =
{

(x, y, z)
∣∣ x2 + y2 ≤ 4, 0 ≤ z ≤ 2, x2 + y2 ≥ z2 }

Here are sketches of the y = 0 cross-section of V , on top, and U , on the
bottom.

x

z

x2 ` y2 “ 4V

p2,0,2q

x

z

x2 ` y2 “ 4

x2 ` y2 “ z2

U

p2,0,2q

(a) In cylindrical coordinates, x2 +y2 ≤ 4 becomes r ≤ 2 and x2 +y2 ≥
z2 is r ≥ |z|, and the density is

√
x2 + y2 = r. So

U =
{

(r cos θ, r sin θ, z)
∣∣ r ≤ 2, 0 ≤ z ≤ 2, r ≥ z

}
Looking at the figure below, we see that, on U

• z runs from 0 to 2, and

• for each z is that range, r runs from z to 2 and θ runs from 0 to 2π.

• dV = r dr dθ dz

So

Mass =
∫ 2

0
dz
∫ 2π

0
dθ
∫ 2

z

dr r
density︷︸︸︷
r =

∫ 2

0
dz
∫ 2π

0
dθ
∫ 2

z

dr r2

x

z

r “ 2

r “ z

U

r“2, z“2

(b) Recall that in spherical coordinates,

x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ

x2 + y2 = ρ2 sin2 ϕ
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so that x2 + y2 ≤ 4 becomes ρ sinϕ ≤ 2, and x2 + y2 ≥ z2 becomes

ρ sinϕ ≥ ρ cosϕ ⇐⇒ tanϕ ≥ 1 ⇐⇒ ϕ ≥ π

4

and the density
√
x2 + y2 = ρ sinϕ. So

U =
{

(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)
∣∣ π

4 ≤ ϕ ≤
π

2 , 0 ≤ θ ≤ 2π,

ρ sinϕ ≤ 2
}

Looking at the figure below, we see that, on U

• ϕ runs from π
4 (on the cone) to π

2 (on the xy-plane), and

• for each ϕ is that range, ρ runs from 0 to 2
sinϕ and θ runs from 0 to

2π.

• dV = ρ2 sinϕdρ dθ dϕ

So

Mass =
∫ π/2

π/4
dϕ
∫ 2π

0
dθ
∫ 2/ sinϕ

0
dρ ρ2 sinϕ

density︷ ︸︸ ︷
ρ sinϕ

=
∫ π/2

π/4
dϕ
∫ 2π

0
dθ
∫ 2/ sinϕ

0
dρ ρ3 sin2 ϕ

x

z

ρ sinϕ “ 2

ϕ “ π
4

U

(c) We’ll use the cylindrical form.

Mass =
∫ 2

0
dz
∫ 2π

0
dθ
∫ 2

z

dr r2

= 2π
∫ 2

0
dz 8− z3

3

= 2π
3

[
16− 24

4

]
= 8π

3.7.5.21. ∗. Solution. (a) Call the solid V . In cylindrical coordinates
• x2 + y2 + z2 ≤ 2 is r2 + z2 ≤ 2 and

•
√
x2 + y2 ≤ z is r ≤ z and

• the density δ = r2, and

• dV is r dr dθ dz

Observe that r2 + z2 = 2 and r = z intersect when 2r2 = 2 so that
r = z = 1. Here is a sketch of the y = 0 cross-section of E.
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x

z

x2 ` y2 ` z2 “ 2

z “ a
x2 ` y2

p1 , 0 , 1q

So

V =
{

(r cos θ , r sin θ , z)
∣∣ 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, r ≤ z ≤

√
2− r2

}
and

M =
∫∫∫

V

ρ(x, y, z) dV =
∫ 1

0
dr
∫ 2π

0
dθ
∫ √2−r2

r

dz r
δ︷︸︸︷

(r2)

=
∫ 1

0
dr
∫ 2π

0
dθ
∫ √2−r2

r

dz r3

(b)
In spherical coordinates

• x2 + y2 + z2 ≤ 2 is ρ ≤
√

2, and

•
√
x2 + y2 ≤ z is ρ sinϕ ≤ ρ cosϕ, or tanϕ ≤ 1 or ϕ ≤ π

4 , and

• the density x2 + y2 = ρ2 sin2 ϕ, and

• dV is ρ2 sinϕdρdθ dϕ

So

V =
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣ 0 ≤ ρ ≤

√
2, 0 ≤ θ ≤ 2π,

0 ≤ ϕ ≤ π

4
}

and, since the integrand x2 + y2 = ρ2 sin2 ϕ,

M =
∫∫∫

V

(
x2 + y2) dV =

∫ √2

0
dρ
∫ 2π

0
dθ
∫ π/4

0
dϕ ρ2 sinϕ ρ2 sin2 ϕ

=
∫ √2

0
dρ
∫ 2π

0
dθ
∫ π/4

0
dϕ ρ4 sin3 ϕ

(c) We’ll use the spherical coordinate form.

M =
∫ √2

0
dρ
∫ 2π

0
dθ
∫ π/4

0
dϕ ρ4 sin3 ϕ

=
∫ √2

0
dρ
∫ 2π

0
dθ
∫ π/4

0
dϕ ρ4 sinϕ

[
1− cos2 ϕ

]
= 2π

∫ √2

0
dρ ρ4

[
− cosϕ+ cos3 ϕ

3

]π/4
0

= 2π
[

2
3 −

5
6
√

2

] ∫ √2

0
dρ ρ4

= 2π 4
√

2
5

[
2
3 −

5
6
√

2

]
= π

[
16
√

2
15 − 4

3

]
≈ 0.5503
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3.7.5.22. ∗. Solution. (a) On E,
• the spherical coordinate ϕ runs from 0 (the positive z-xis) to π

2 (the
xy-plane), and

• for each fixed ϕ in that range, θ runs from 0 to π
2 , and

• for each fixed ϕ and θ, the spherical coordinate ρ runs from 0 to 1.

• In spherical coordinates dV = ρ2 sinϕdρ dθ dϕ and

xz =
(
ρ sinϕ cos θ

)(
ρ cosϕ

)
= ρ2 sinϕ cosϕ cos θ

So

I =
∫ π/2

0
dϕ
∫ π/2

0
dθ
∫ 1

0
dρ ρ4 sin2 ϕ cosϕ cos θ

(b) In cylindrical coordinates, the condition x2 + y2 + z2 ≤ 1 becomes
r2 + z2 ≤ 1. So, on E

• the cylindrical coordinate z runs from 0 (in the xy-plane) to 1 (at
(0, 0, 1)) and

• for each fixed z in that range, θ runs from 0 to π/2 and

• for each such fixed z and θ, the cylindrical coordinate r runs from 0
to
√

1− z2 (recall that r2 + z2 ≤ 1).

• In cylindrical coordinates dV = r dr dθ dz and

xz =
(
r cos θ

)(
z
)

= r z cos θ

So

I =
∫ 1

0
dz
∫ π/2

0
dθ
∫ √1−z2

0
dr r2 z cos θ

(c) Both spherical and cylindrical integrals are straight forward to eval-
uate. Here are both. First, in spherical coordinates,

I =
[∫ π/2

0
dϕ sin2 ϕ cosϕ

][∫ π/2

0
dθ cos θ

] [∫ 1

0
dρ ρ4

]

=
[

sin3 ϕ

3

]π/2
0

[sin θ]π/20

[
ρ5

5

]1

0

= 1
15

Now in cylindrical coordinates

I =
∫ 1

0
dz
∫ π/2

0
dθ
∫ √1−z2

0
dr r2 z cos θ

= 1
3

∫ 1

0
dz
∫ π/2

0
dθ z(1− z2)3/2 cos θ

= 1
3

∫ 1

0
dz z(1− z2)3/2

= 1
3

[
−1

2
(1− z2)5/2

5/2

]1

0

= 1
15
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3.7.5.23. ∗. Solution. (a) Recall that in spherical coordinates

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ

so that
• x2 + y2 + z2 ≤ 9 is ρ ≤ 3, and

•
√

3x2 + 3y2 ≤ z is
√

3ρ sinϕ ≤ ρ cosϕ, or tanϕ ≤ 1√
3 or ϕ ≤ π

6 , and

• the integrand x2 + y2 = ρ2 sin2 ϕ, and

• dV is ρ2 sinϕdρdθ dϕ

So

T =
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣ 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π,

0 ≤ ϕ ≤ π

6
}

and,

I =
∫∫∫

T

(
x2 + y2) dV =

∫ 3

0
dρ
∫ 2π

0
dθ
∫ π/6

0
dϕ ρ2 sinϕ

x2+y2︷ ︸︸ ︷
ρ2 sin2 ϕ

=
∫ 3

0
dρ
∫ 2π

0
dθ
∫ π/6

0
dϕ ρ4 sin3 ϕ

(b) In cylindrical coordinates

• x2 + y2 + z2 ≤ 9 is r2 + z2 ≤ 9 and

•
√

3x2 + 3y2 ≤ z is
√

3 r ≤ z and

• the integand x2 + y2 = r2, and

• dV is r dr dθ dz

Observe that r2 + z2 = 9 and
√

3 r = z intersect when r2 + 3r2 = 9 so that
r = 3

2 and z = 3
√

3
2 . Here is a sketch of the y = 0 cross-section of T .

x

z

r2 ` z2 “ 9

z “ ?
3 r

r“ 3
2
, z“ 3

?
3

2

So

T =
{

(r cos θ , r sin θ , z)
∣∣ 0 ≤ r ≤ 3

2 , 0 ≤ θ ≤ 2π,
√

3 r ≤ z ≤
√

9− r2
}

and

I =
∫∫∫

V

(x2 + y2) dV =
∫ 3/2

0
dr
∫ 2π

0
dθ
∫ √9−r2

√
3 r

dz r

x2+y2︷︸︸︷
(r2)
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=
∫ 3/2

0
dr
∫ 2π

0
dθ
∫ √9−r2

√
3 r

dz r3

(c) We’ll use the spherical coordinate form.

I =
∫ 3

0
dρ
∫ 2π

0
dθ
∫ π/6

0
dϕ ρ4 sin3 ϕ

=
∫ 3

0
dρ
∫ 2π

0
dθ
∫ π/6

0
dϕ ρ4 sinϕ

[
1− cos2 ϕ

]
= 2π

∫ 3

0
dρ ρ4

[
− cosϕ+ cos3 ϕ

3

]π/6
0

= 2π
[
−
√

3
2 +

√
3

8 + 1− 1
3

] ∫ 3

0
dρ ρ4

= 2π 35

5

[
2
3 −

3
√

3
8

]
=

34︷︸︸︷
81 π

[
4
5 −

9
√

3
20

]
≈ 5.24

3.7.5.24. ∗. Solution. (a) In cylindrical coordinates
• x2 + y2 + z2 ≤ 1 is r2 + z2 ≤ 1 and

• x2 + y2 ≤ z2 is r2 ≤ z2 and

• dV is r dr dθ dz

Observe that r2 + z2 = 1 and r2 = z2 intersect when r2 = z2 = 1
2 . Here is

a sketch of the y = 0 cross-section of E.

x

z

x2 ` y2 ` z2 “ 1

z2 “ x2 ` y2

p1{?
2 , 0 , 1{?

2q

So

E =
{

(r cos θ , r sin θ , z)
∣∣ 0 ≤ r ≤ 1√

2
, 0 ≤ θ ≤ 2π, r ≤ z ≤

√
1− r2

}
and

J =
∫∫∫

E

√
x2 + y2 + z2 dV =

∫ 1/
√

2

0
dr
∫ 2π

0
dθ
∫ √1−r2

r

dz r
√
r2 + z2

(b) In spherical coordinates

• x2 + y2 + z2 ≤ 1 is ρ ≤ 1 and

• x2 + y2 ≤ z2 is ρ2 sin2 ϕ ≤ ρ2 cos2 ϕ, or tanϕ ≤ 1 or ϕ ≤ π
4 , and

• dV is ρ2 sinϕdρdθ dϕ
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So

E =
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣ 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π,

0 ≤ ϕ ≤ π

4
}

and, since the integrand
√
x2 + y2 + z2 = ρ,

J =
∫∫∫

E

√
x2 + y2 + z2 dV =

∫ 1

0
dρ
∫ 2π

0
dθ
∫ π/4

0
dϕ ρ2 sinϕ ρ

=
∫ 1

0
dρ
∫ 2π

0
dθ
∫ π/4

0
dϕ ρ3 sinϕ

(c) We’ll use the spherical coordinate form to evaluate

J =
∫ 1

0
dρ
∫ 2π

0
dθ
∫ π/4

0
dϕ ρ3 sinϕ

= 2π
∫ 1

0
dρ ρ3

[
− cosϕ

]π/4
0

= 2π 1
4

[
1− 1√

2

]
= π

2

[
1− 1√

2

]
3.7.5.25. ∗. Solution. (a) As a check, the body of the snow man has
radius

√
12 = 2

√
3 ≈ 3.46, which is between 2 (the low point of the head)

and 4 (the center of the head). Here is a sketch of a side view of the
snowman.

x

z

z “ 3

x2 ` y2 ` pz ´ 4q2 “ 4

x2 ` y2 ` z2 “ 12

We want to determine the volume of the intersection of the body and
the head, whose side view is the darker shaded region in the sketch.

• The outer boundary of the body and the outer boundary of the head
intersect when both x2 + y2 + z2 = 12 and x2 + y2 + (z − 4)2 = 4.
Subtracting the second equation from the first gives

z2 − (z − 4)2 = 12− 4 ⇐⇒ 8z − 16 = 8 ⇐⇒ z = 3

Then substituting z = 3 into either equation gives x2 + y2 = 3. So
the intersection of the outer boundaries of the head and body (i.e.
the neck) is the circle x2 + y2 = 3, z = 3.

• The top boundary of the intersection is part of the top half of the
snowman’s body and so has equation z = +

√
12− x2 − y2.
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• The bottom boundary of the intersection is part of the bottom half
of the snowman’s head, and so has equation z = 4−

√
4− x2 − y2

The intersection of the head and body is thus

V =
{

(x, y, z
∣∣ x2 + y2 ≤ 3, 4−

√
4− x2 − y2 ≤ z ≤

√
12− x2 − y2

}
We’ll compute the volume of V using cylindrical coordinates

Volume(V) =
∫ √3

0
dr
∫ 2π

0
dθ
∫ √12−r2

4−
√

4−r2
dz r

=
∫ √3

0
dr 2π r

[√
12− r2 − 4 +

√
4− r2

]
= 2π

[
−1

3
(
12− r2)3/2 − 2r2 − 1

3
(
4− r2)3/2]√3

0

= 2π
[
−1

3
(
9
)3/2 − 2(3)− 1

3
(
1
)3/2 + 1

3
(
12
)3/2 + 2(0)2 + 1

3
(
4
)3/2]

= 2π
[
−9− 6− 1

3 + 1
3
(
12
)3/2 + 8

3

]
= 2π

[
1
3
(
12
)3/2 − 38

3

]
So the volume of the snowman is

4π
3
(
12
)3/2 + 4π

3 23 − 2π
[

1
3
(
12
)3/2 − 38

3

]
= 2π

3

[(
12
)3/2 + 54

]
(b) The top figure below is another side view of the snowman. This

time it is divided into a lighter gray top part, a darker gray middle part
and a lighter gray bottom part. The bottom figure below is an enlarged
view of the central part of the figure on the left.

x

z

z “ 3

x2 ` y2 ` pz ´ 4q2 “ 4

x2 ` y2 ` z2 “ 12
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p0,0,0q

p0,0,4q

p?
3,0,3q

2π{3

π{3

?
3

2

2
?
3

i. The top part is the Pac-Man

p0,0,4q

p?
3,0,3q

2π{3

?
3

2

part of the snowman’s head. It is the part of the sphere

x2 + y2 + (z − 4)2 ≤ 4

that is above the cone

z − 4 = −
√
x2 + y2

3
(which contains the points (0, 0, 4) and (

√
3, 0, 3)).

ii. The middle part is the diamond shaped
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p0,0,0q

p0,0,4q

p?
3,0,3q

2

2
?
3

part of the snowman’s head and body. It is bounded on the top by the
cone

z − 4 = −
√
x2 + y2

3
(which contains the points (0, 0, 4) and (

√
3, 0, 3)) and is bounded on the

bottom by the cone
z =

√
3(x2 + y2)

(which contains the points (0, 0, 0) and (
√

3, 0, 3)).
iii. The bottom part is the Pac-Man

p0,0,0q

p?
3,0,3q

π{3

?
3

2
?
3

part of the snowman’s body. It is the part of the sphere

x2 + y2 + z2 ≤ 12

that is below the cone
z =

√
3(x2 + y2)

(which contains the points (0, 0, 0) and (
√

3, 0, 3)).
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3.7.5.26. ∗. Solution. (a) Recall that, in spherical coordinates, ϕ runs
from 0 (that’s the positive z-axis) to π (that’s the negative z-axis), θ runs
from 0 to 2π (θ is the regular polar or cylindrical coordinate) and dV =
ρ2 sinϕ dρ dθ dϕ. So

Volume =
∫ π

0
dϕ
∫ 2π

0
dθ
∫ 8 sinϕ

0
dρ ρ2 sinϕ

=
∫ π

0
dϕ
∫ 2π

0
dθ (8 sinϕ)3

3 sinϕ

= 2(83)π
3

∫ π

0
dϕ sin4 ϕ

= 2(83)π
3

[
1
32
(
12ϕ− 8 sin(2ϕ) + sin(4ϕ)

)]π
0

= 2(83)π
3

12π
32 = 128π2

(b) Fix any ϕ between 0 and π. If ρ = 8 sinϕ, then as θ runs from 0 to
2π,

(x, y, z) =
(
ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ

)
=
(
8 sin2 ϕ cos θ , 8 sin2 ϕ sin θ , 8 sinϕ cosϕ

)
=
(
R cos θ , R sin θ , Z

)
with R = 8 sin2 ϕ, Z = 8 sinϕ cosϕ

sweeps out a circle of radius R = 8 sin2 ϕ contained in the plane z =
Z = 8 sinϕ cosϕ and centred on

(
0, 0, Z = 8 sinϕ cosϕ

)
. So the surface

is a bunch of circles stacked one on top of the other. It is a surface of
revolution. We can sketch it by

• first sketching the θ = 0 section of the surface (that’s the part of the
surface in the right half of the xz-plane)

• and then rotate the result about the z-axis.

The θ = 0 part of the surface is{
(x, y, z)

∣∣ x = 8 sin2 ϕ, y = 0, z = 8 sinϕ cosϕ, 0 ≤ ϕ ≤ π
}

=
{

(x, y, z)
∣∣ x = 4− 4 cos(2ϕ), y = 0, z = 4 sin(2ϕ), 0 ≤ ϕ ≤ π

}
It’s a circle of radius 4, contained in the xz-plane (i.e. y = 0) and centred
on (4, 0, 0)! The figure on the left below is a sketch of the top half of the
circle. When we rotate the circle about the z-axis we get a torus (a donut)
but with the hole in the centre shrunk to a point. The figure on the right
below is a sketch of the part of the torus in the first octant.

y

z

x

y

z

x
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3.7.5.27. ∗. Solution. (a) In cylindrical coordinates 0 ≤ z ≤
√
x2 + y2

becomes 0 ≤ z ≤ r, and x2 + y2 ≤ 1 becomes 0 ≤ r ≤ 1. So

E =
{

(r cos θ , r sin θ , z)
∣∣ 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ r

}
and, since dV = r dr dθ dz,

I =
∫∫∫

E

z
√
x2 + y2 + z2 dV =

∫ 1

0
dr
∫ 2π

0
dθ
∫ r

0
dz r z

√
r2 + z2︸ ︷︷ ︸
x2+y2+z2

(b) Here is a sketch of a constant θ section of E.

r

z

π
4

E

r “ 1 z “ r

Recall that the spherical coordinate ϕ is the angle between the z-axis
and the radius vector. So, in spherical coordinates z = r (which makes an
angle π

4 with the z axis) becomes ϕ = π
4 , and the plane z = 0, i.e. the

xy-plane, becomes ϕ = π
2 , and r = 1 becomes ρ sinϕ = 1. So

E =
{

(ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ)
∣∣∣ π4 ≤ ϕ ≤ π

2 , 0 ≤ θ ≤ 2π,

0 ≤ ρ ≤ 1
sinϕ

}
and, since dV = ρ2 sinϕdρdθ dϕ,

I =
∫∫∫

E

z
√
x2 + y2 + z2 dV

=
∫ π/2

π/4
dϕ
∫ 2π

0
dθ
∫ 1/ sinϕ

0
dρ ρ2 sinϕ

z︷ ︸︸ ︷
ρ cosϕ ρ

=
∫ π/2

π/4
dϕ
∫ 2π

0
dθ
∫ 1/ sinϕ

0
dρ ρ4 sinϕ cosϕ

(c) We’ll integrate using the spherical coordinate version.

I =
∫ π/2

π/4
dϕ
∫ 2π

0
dθ
∫ 1/ sinϕ

0
dρ ρ4 sinϕ cosϕ

=
∫ π/2

π/4
dϕ
∫ 2π

0
dθ 1

5 sin5 ϕ
sinϕ cosϕ

= 2π
5

∫ π/2

π/4
dϕ cosϕ

sin4 ϕ

= 2π
5

∫ 1

1/
√

2

du
u4 with u = sinϕ, du = cosϕdϕ

= 2π
5

[
u−3

−3

]1

1/
√

2

= 2(2
√

2− 1)π
15
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3.7.5.28. ∗. Solution. The main step is to figure out what the domain
of integration looks like.

• The outside integral says that x runs from −a to 0.

• The middle integrals says that, for each x in that range, y runs from
−
√
a2 − x2 to 0. We can rewrite y = −

√
a2 − x2 in the more familiar

form x2 +y2 = a2, y ≤ 0. So (x, y) runs over the third quadrant part
of the disk of radius a, centred on the origin.

x

y

x2 ` y2 “ a2

p´a,0q

• Finally, the inside integral says that, for each (x, y) in the quarter
disk, z runs from 0 to

√
a2 − x2 − y2. We can also rewrite z =√

a2 − x2 − y2 in the more familiar form x2 + y2 + z2 = a2, z ≥ 0.

So the domain of integration is the part of the interior of the sphere of
radius a, centred on the origin, that lies in the octant x ≤ 0, y ≤ 0, z ≥ 0.

V =
{

(x, y, z)
∣∣∣ − a ≤ x ≤ 0, −

√
a2 − x2 ≤ y ≤ 0,

0 ≤ z ≤
√
a2 − x2 − y2

}
=
{

(x, y, z)
∣∣ x2 + y2 + z2 ≤ a2, x ≤ 0, y ≤ 0, z ≥ 0

}
z

y
x

x2 ` y2 ` z2 “ a2

(a) Note that, in V , (x, y) is restricted to the third quadrant, which in
cylindrical coordinates is π ≤ θ ≤ 3π

2 . So, in cylindrical coordinates,

V =
{

(r cos θ, r sin θ, z)
∣∣∣ r2 + z2 ≤ a2, π ≤ θ ≤ 3π

2 , z ≥ 0
}

=
{

(r cos θ, r sin θ, z)
∣∣∣ 0 ≤ z ≤ a, π ≤ θ ≤ 3π

2 , 0 ≤ r ≤
√
a2 − z2

}
and

I =
∫∫∫

V

(
x2 + y2 + z2)2014 dV =

∫∫∫
V

(
r2 + z2)2014

r dr dθ dz

=
∫ a

0
dz
∫ 3π/2

π

dθ
∫ √a2−z2

0
dr r

(
r2 + z2)2014
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(b) The spherical coordinate ϕ runs from 0 (when the radius vector is
along the positive z-axis) to π

2 (when the radius vector lies in the xy-plane)
so that

I =
∫∫∫

V

(
x2 + y2 + z2)2014 dV =

∫∫∫
V

ρ2×2014 ρ2 sinϕ dρdθ dϕ

=
∫ π/2

0
dϕ
∫ 3π/2

π

dθ
∫ a

0
dρ ρ4030 sinϕ

(c) Using the spherical coordinate version

I =
∫ π/2

0
dϕ
∫ 3π/2

π

dθ
∫ a

0
dρ ρ4030 sinϕ

= a4031

4031

∫ π/2

0
dϕ
∫ 3π/2

π

dθ sinϕ

= a4031π

8062

∫ π/2

0
dϕ sinϕ

= a4031π

8062
3.7.5.29. ∗. Solution. (a) In cylindrical coordinates, the paraboloid is
z = r2 and the cone is z = r. The two meet when r2 = r. That is, when
r = 0 and when r = 1. So, in cylindrical coordinates

I =
∫ 1

0
dr r

∫ 2π

0
dθ
∫ r

r2
dz z(r2 + z2)

(b) In spherical coordinates, the paraboloid is

ρ cosϕ = ρ2 sin2 ϕ or ρ = cosϕ
sin2 ϕ

and the cone is

ρ cosϕ = ρ sinϕ or tanϕ = 1 or ϕ = π

4
The figure below shows a constant θ cross-section of E. Looking at that
figure, we see that ϕ runs from π

4 (i.e. the cone) to π
2 (i.e. the xy-plane).

z

r

ϕ

z “ r2

z “ r

So, is spherical coordinates,

I =
∫ π/2

π/4
dϕ
∫ 2π

0
dθ
∫ cosϕ/ sin2 ϕ

0
dρ ρ2 sinϕ

z︷ ︸︸ ︷
ρ cosϕ

x2+y2+z2︷︸︸︷
ρ2

=
∫ π/2

π/4
dϕ
∫ 2π

0
dθ
∫ cosϕ/ sin2 ϕ

0
dρ ρ5 sinϕ cosϕ
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(c) The cylindrical coordinates integral looks easier.

I =
∫ 1

0
dr r

∫ 2π

0
dθ
∫ r

r2
dz z(r2 + z2)

=
∫ 1

0
dr r

∫ 2π

0
dθ
[
r2 z

2

2 + z4

4

]r
r2

= 2π
∫ 1

0
dr r

[
r2 r

2

2 + r4

4 − r
2 r

4

2 −
r8

4

]
= 2π

[
1
12 + 1

24 −
1
16 −

1
40

]
= π

2

[
1
3 + 1

6 −
1
4 −

1
10

]
= 3π

40
3.7.5.30. ∗. Solution. Note that both the sphere x2 + y2 + (z− 1)2 = 1
and the cone z =

√
x2 + y2 are invariant under rotations around the z-axis.

The sphere x2 + y2 + (z − 1)2 = 1 and the cone z =
√
x2 + y2 intersect

when z =
√
x2 + y2, so that x2 + y2 = z2, and

x2 + y2 + (z − 1)2 = z2 + (z − 1)2 = 1 ⇐⇒ 2z2 − 2z = 0
⇐⇒ 2z(z − 1) = 0
⇐⇒ z = 0, 1

So the surfaces intersect on the circle z = 1, x2 + y2 = 1 and

S =
{

(x, y, z)
∣∣ x, y ≥ 0, x2 +y2 ≤ 1,

√
x2 + y2 ≤ z ≤ 1+

√
1− x2 − y2

}
Here is a sketch of the y = 0 cross section of S.

x

z

π
4

S

z “ 1

x2 ` y2 ` pz ´ 1q2 “ 1
or z ´ 1 “ ˘a

1 ´ x2 ´ y2

z “ a
x2 ` y2

p1,0,1q

(a) In cylindrical coordinates

• the condition x, y ≥ 0 is 0 ≤ θ ≤ π
2 ,

• the condition x2 + y2 ≤ 1 is r ≤ 1, and

• the conditions
√
x2 + y2 ≤ z ≤ 1 +

√
1− x2 − y2 are r ≤ z ≤ 1 +√

1− r2, and

• dV = r dr dθ dz.

So

V =
∫∫∫

S

dV =
∫ 1

0
dr
∫ π/2

0
dθ
∫ 1+

√
1−r2

r

dz r

(b) In spherical coordinates,
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• the cone z =
√
x2 + y2 becomes

ρ cosϕ =
√
ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ = ρ sinϕ

⇐⇒ tanϕ = 1

⇐⇒ ϕ = π

4

• so that, on S, the spherical coordinate ϕ runs from ϕ = 0 (the positive
z -axis) to ϕ = π

4 (the cone z =
√
x2 + y2), which keeps us above

the cone,

• the condition x, y ≥ 0 is 0 ≤ θ ≤ π
2 ,

• the condition x2 + y2 + (z − 1)2 ≤ 1, (which keeps us inside the
sphere), becomes

ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ +
(
ρ cosϕ− 1

)2 ≤ 1
⇐⇒ ρ2 sin2 ϕ+ ρ2 cos2 ϕ− 2ρ cosϕ+ 1 ≤ 1
⇐⇒ ρ2 − 2ρ cosϕ ≤ 0
⇐⇒ ρ ≤ 2 cosϕ

• and dV = ρ2 sinϕdρdθ dϕ.

So

V =
∫∫∫

S

dV =
∫ π/4

0
dϕ
∫ π/2

0
dθ
∫ 2 cosϕ

0
dρ ρ2 sinϕ

(c) We’ll evaluate V using the spherical coordinate integral of part (b).

V =
∫ π/4

0
dϕ
∫ π/2

0
dθ
∫ 2 cosϕ

0
dρ ρ2 sinϕ

= 8
3

∫ π/4

0
dϕ
∫ π/2

0
dθ cos3 ϕ sinϕ

= 8
3
π

2

[
−cos4 ϕ

4

]π/4
0

= π

3

[
1− 1

(
√

2)4

]
= π

4
3.7.5.31. ∗. Solution. (a) In cylindrical coordinates, the density of is
δ = x2 + y2 = r2, the bottom of the solid is at z =

√
3x2 + 3y2 =

√
3 r

and the top of the solid is at z =
√

9− x2 − y2 =
√

9− r2. The top and
bottom meet when

√
3 r =

√
9− r2 ⇐⇒ 3r2 = 9− r2 ⇐⇒ 4r2 = 9 ⇐⇒ r = 3

2

The mass is

m =
∫ 2π

0
dθ
∫ 3/2

0
dr r

∫ √9−r2

√
3 r

dz

δ︷︸︸︷
r2
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r

z

3
2

π
6

z “ ?
3 r

z2 ` r2 “ 9

(b) In spherical coordinates, the density of is δ = x2 + y2 = ρ2 sin2 ϕ,
the bottom of the solid is at

z =
√

3 r ⇐⇒ ρ cosϕ =
√

3 ρ sinϕ ⇐⇒ tanϕ = 1√
3
⇐⇒ ϕ = π

6

and the top of the solid is at x2 + y2 + z2 = ρ2 = 9. The mass is

m =
∫ 2π

0
dθ
∫ π/6

0
dϕ
∫ 3

0
dρ
(
ρ2 sinϕ

) δ︷ ︸︸ ︷(
ρ2 sin2 ϕ

)
(c) Solution 1: Making the change of variables s = cosϕ, ds = − sinϕ dϕ,

in the integral of part (b),

m =
∫ 2π

0
dθ
∫ π/6

0
dϕ
∫ 3

0
dρ ρ4 sinϕ

(
1− cos2 ϕ

)
= 35

5

∫ 2π

0
dθ
∫ π/6

0
dϕ sinϕ

(
1− cos2 ϕ

)
= −35

5

∫ 2π

0
dθ
∫ √3/2

1
ds (1− s2)

= −35

5

∫ 2π

0
dθ
[
s− s3

3

]√3/2

1

= 2π 35

5

[
1− 1

3 −
√

3
2 +

√
3

8

]
= 2π 35

5

[
2
3 −

3
√

3
8

]
(c) Solution 2: As an alternate solution, we can also evaluate the inte-

gral of part (a).

m =
∫ 2π

0
dθ
∫ 3/2

0
dr r

∫ √9−r2

√
3 r

dz r2

=
∫ 2π

0
dθ
∫ 3/2

0
dr r3(√9− r2 −

√
3 r
)

= 2π
∫ 3/2

0
dr r3(√9− r2 −

√
3 r
)

The second term

−2π
∫ 3/2

0
dr
√

3 r4 = −2π
√

3 r
5

5

∣∣∣∣3/2
0

= −2π
√

3 35

5× 25
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For the first term, we substitute s = 9− r2, ds = −2r dr.

2π
∫ 3/2

0
dr r3

√
9− r2 = 2π

∫ 27/4

9

r dr︷︸︸︷
ds
−2

r2︷ ︸︸ ︷
(9− s)

√
s = −π

[
6s3/2 − 2

5s
5/2
]27/4

9

= −π
[

35√3
4 − 2× 34 − 37

245
√

3 + 235

5

]
Adding the two terms together,

m = −2π 35

5

√
3

32 − 2π 35

5
5
√

3
8 + 2π 35

5
5
3 + 2π 35

5
9
√

3
32 − 2π 35

5

= 2π 35

5

[(
5
3 − 1

)
−
√

3
(

1
32 + 5

8 −
9
32

)]
= 2π 35

5

[
2
3 −

3
√

3
8

]


	Preface
	Feedback about the text
	Vectors and Geometry in Two and Three Dimensions
	Points
	Vectors
	Equations of Lines in 2d
	Equations of Planes in 3d
	Equations of Lines in 3d
	Curves and their Tangent Vectors
	Sketching Surfaces in 3d
	Cylinders
	Quadric Surfaces

	Partial Derivatives
	Limits
	Partial Derivatives
	Higher Order Derivatives
	The Chain Rule
	Tangent Planes and Normal Lines
	Linear Approximations and Error
	Directional Derivatives and the Gradient
	A First Look at Partial Differential Equations
	Maximum and Minimum Values
	Lagrange Multipliers

	Multiple Integrals
	Double Integrals
	Double Integrals in Polar Coordinates
	Applications of Double Integrals
	Surface Area
	Triple Integrals
	Triple Integrals in Cylindrical Coordinates
	Triple Integrals in Spherical Coordinates
	Optional— Integrals in General Coordinates

	Appendices
	Trigonometry
	Powers and Logarithms
	Table of Derivatives
	Table of Integrals
	Table of Taylor Expansions
	3d Coordinate Systems
	ISO Coordinate System Notation
	Conic Sections and Quadric Surfaces

	Hints for Exercises
	Answers to Exercises
	Solutions to Exercises

