PLP - 1
 TOPIC 1 - INTRODUCTION TO SETS

Demirbaş \& Rechnitzer

INTRODUCTION TO SETS

GETTING STARTED WITH SETS

We need tools to understand collections of objects

DEFINITION: (A NOT SO FORMAL DEFINITION OF SETS).

A set is a collection of objects.
The objects are referred to as elements or members of the set.

Informal because

- is simple and intuitive
- rigorous definition is way harder than we need
- we just want to get on with things

Mathematics has many conventions / traditions

- not firm rules, but
- make it easier for the reader to understand

Use

- Capitals for sets: A, B, C, X, Y
- Lowercase for elements: a, b, c, x, y

Similarly, use

- i, j, k, ℓ, m, n to denote integers
- x, y, z, w to denote real numbers

A SET ANSWERS ONLY ONE QUESTION

- There is only one question we can ask a set:
"Is this object in the set"
and the set will answer
"yes" or "no"
- Example: let E be the set of all positive even numbers.

$$
\text { The number } 4 \text { is in } E \text {, but } 3 \text { is not in } E \text {. }
$$

- The set E does no know anything else about 3,4 .

SOME NOTATION

Mathematicians use a lot of shorthand and notation - please use standard notation.

DEFINITION: (SOME SHORTHAND NOTATION).

- If a is an element of the set A we write $a \in A$.
- If b is not an element of the set B we write $b \notin B$

Note " ε " is not the same as " \in "

- Back to E. We know that

$$
4 \in E \quad \text { and } \quad 3 \notin E
$$

but " $4 \varepsilon E$ " is the product of $4, \varepsilon$ and $E-$ garbage!

When we define a set it must be very clear.

- "Let A be the set of even integers between 1 and 13 ." - nice and clear.
- "Let B be the set of tall people at UBC." - not clear.

If only a few elements - just list them all inside braces

$$
\text { Let } C=\{1,2,3,4\} \text {. }
$$

- Since a set only cares about membership, the order does not matter:

$$
C=\{1,2,3,4\}=\{2,3,1,4\}=\{4,1,2,3\}
$$

- Repetition does not matter

$$
\{1,2,3,4\}=\{1,2,2,3,4,1,4,2,2,1\}
$$

- Be nice to the reader - ordered and no repeats.

Use ". . ." as shorthand for the skipped elements:

- $C=\{1,2,3, \ldots, 40\}$ the set of all integers between 1 and 40 (inclusive).
- $A=\{1,4,9,16, \ldots\}$ the set of all positive square integers

Be careful $-B=\{3,5,7, \ldots\}$ is what set?

- all odd primes, or
- all odd numbers bigger than 1, or
- primes that are 1 less than a power of 2, or . . . ???

Definitions must be precise

- If the definition is vague then it is not a set
- Help your reader - don't assume that "they get what I mean"

DEFINITION: (EMPTY SET).

- The empty set is the set which contains no elements.
- It is denoted \varnothing and $\varnothing=\{ \}$
- For any object x we know $x \notin \varnothing$
- The empty set is like an empty bag - it is not nothing.
- The set $A=\{\varnothing\}$ is not empty, it contains 1 element.
- The set $B=\{\varnothing,\{\varnothing\}\}$ contains 2 elements.

DEFINING SETS BY A RULE

For larger, complicated sets easier to define them using a rule.

- All even numbers $E=\{x$ so that x is even $\}$
- "so that" shortened $\{x$ s.t. x is even $\}=\{x \mid x$ is even $\}=\{x: x$ is even $\}$ This is set builder notation

$$
S=\{\text { expression : rule }\}
$$

- $A=\left\{n^{2} \mid n\right.$ is a whole number $\}=\{0,1,4,9,36, \ldots\}$
- $B=\{a \in A \mid a<12\}=\{0,1,4,9\}$
- $C=\{a \in A \mid$ and $a+1$ is prime $\}=\{1,4,16,36,100, \ldots\}$

It is important that the rule is clear - help your reader.

A TOUR OF OTHER IMPORTANT SETS

DEFINITION: (IMPORTANT SETS OF NUMBERS).

- Natural numbers (or positive integers) $\mathbb{N}=\{1,2,3, \ldots\}$ - note $0 \notin \mathbb{N}$
- Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational numbers (fractions) $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{N}\right\}$
- Real numbers \mathbb{R}

All are denoted using blackboard bold letters

Please use correct notation: $N \neq \mathbb{N}, Z \neq \mathbb{Z}$.
We might also see

- Irrational numbers $\mathbb{I}=$ real numbers that are not rational.

We will prove that $\sqrt{2} \in \mathbb{I}$.

CARDINALITY

DEFINITION:

- We write $|S|$ to denote the cardinality of S.
- For a finite set S, the cardinality is the number of elements in S.

Examples

$$
|\varnothing|=0 \quad|\{1,2,3\}|=3 \quad|\{\varnothing,\{1,2\}\}|=2
$$

For infinite sets things become very strange.

- $|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|$
- $|\mathbb{Z}|<|\mathbb{R}|$

We will prove these.

