PLP - 2
 TOPIC 2 - LOGICAL STATEMENTS

Demirbaş \& Rechnitzer

LOGICAL STATEMENTS

A big part of mathematics is proving that statements are true.

> The square of an even number is even.

We do this by

- starting from known facts - axioms, lemmas, theorems
- combine those facts using logic to build new facts

So we need to introduce and understand

- mathematical sentences that can carry a truth value
- the rules for combining those sentences

STATEMENTS

DEFINITION: (A NOT SO FORMAL DEFINITION OF STATEMENTS).

A statement is a sentence that is either true or false.
A statement has exactly one of those truth values.
Note:

- A rigorous definition is way too hard for this course.
- Typically use P, Q, R to denote statements

The number $\sqrt{2}$ is not a rational number.

The number 17 is even.

Sentences like

$$
\text { The 100th decimal digit of } \pi \text { is } 7 \text {. }
$$

and

Every even integer greater than 2 is the sum of two primes.
are statements since we can determine their truth value

1. $\pi=3.1415 \ldots-$ we can just keep computing and check.
2. This is Goldbach's conjecture - truth value unknown, but it must be true or false.

NON-STATEMENTS

Sentences like
I am tall
and

This sentence is false

are not statements since we cannot decide their truth value

1. Who is "l"? What is "tall"?
2. This cannot be true or false

- If it is true, then it must be false!
- If it s false, then it must be true!

OPEN SENTENCES

Some sentences contain variables
If the integer x is a multiple of 6 then it is even.

The integer x is even.

1. This is a statement since it is always true
2. The truth value depends on the variable x

DEFINITION:

An open sentence is a sentence whose truth value depends on the variable(s) it contains. Typically denote it by $P(x)$ and similar.

