PLP - 3
 TOPIC 3 - AND, OR \& NOT

Demirbaş \& Rechnitzer

AND, OR \& NOT

NEGATION

Given P we can form a new statement with the opposite truth value.
It is not the case that P

DEFINITION:

The negation of a statement P is denoted $\sim P$.

- When P is true, the negation $\sim P$ is false.
- When P is false, the negation $\sim P$ is true.

The negation is also denoted $!P$ and $\neg P$.

- The negation of "It is tuesday" is "It is not Tuesday"
- The negation of " $4 \in A$ " is " $4 \notin A$ "
- The negation of " 4 is even" is " 4 is not even" or better " 4 is odd".

We can summarise what negation does to truth values via a truth table

P	$\sim P$	$\sim(\sim P)$
T	F	T
F	T	F

Note

- the double negation of P has the same truth value as P
- the law of the excluded middle: exactly one of P or $(\sim P)$ is true.

CONJUNCTION, AND, DISJUNCTION, \& OR

We combine statements using and \& or to make new statements.
The words "and", "or" have precise mathematical meanings

DEFINITION:

Let P and Q be statements.

- The disjunction of P and Q is " P or Q " and is denoted $P \vee Q$.
$P \vee Q$ is true when at least one of P, Q is true, else false.
- The conjunction of P and Q is " P and Q " and is denoted $P \wedge Q$.
$P \wedge Q$ is true when both P, Q are true, else false.

Note: colloquial use of "or" is often different from this mathematical "or"

Let P be " 8 is even" and let Q be " 15 is prime", then

- $P \vee Q$ is " 8 is even or 15 is prime"
- $P \wedge Q$ is " 8 is even and 15 is prime"

The first is true since P is true, the second is false since Q is false.
A truth table helps summarise:

P	Q	$P \vee Q$	$P \wedge Q$
T	T	T	T
T	F	T	F
F	T	T	F
F	F	F	F

Mathematical "or"or is inclusive $-P \vee Q$ is true when at least one statement is true.
Colloquial "or" is often exclusive $-P$ xor Q is true when exactly one statement is true.
Would you like chicken or beef for dinner?

P	Q	$P \vee Q$	P xor Q
T	T	T	F
T	F	T	T
F	T	T	T
F	F	F	F

For exclusive-or write "Exactly one of P or Q " or " P or Q but not both".

