PLP - 6 TOPIC 6 — CONVERSE, CONTRAPOSITIVE AND BICONDITIONAL

Demirbaş & Rechnitzer

CONVERSE, CONTRAPOSITIVE AND BICONDITIONAL

CONVERSE AND CONTRAPOSITIVE

DEFINITION: (CONVERSE & CONTRAPOSITIVE).

Given the implication $P \implies Q$ we can form

- the converse: $Q \implies P$, and
- the contrapositive: $(\sim Q) \implies (\sim P)$

P	Q	$P \implies Q$	$Q\implies P$	$(\sim Q$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

DEATH AND SHAKESPEARE

If he is Shakespeare then he is dead

The **contrapositive** is the same as the original

If he is not dead then he is not Shakespeare

The **converse** is *not* the same as the original

If he is dead then he is Shakespeare

Frequent source of bad logic — be careful!

The converse can lead to interesting results. Once we prove

If n is even then n^2 is even

It makes sense to ask if the converse is true

If n^2 is even then n is even

Much interesting mathematics comes from considering whether the converse is also true.

BICONDITIONAL

We use the **biconditional** to express $(P \implies Q)$ and $(Q \implies P)$ both true

DEFINITION: (BICONDITIONAL).

The biconditional is the statement "P if and only if Q" and is denoted " $P \iff Q$ " and "P iff Q".

The biconditional is true when P and Q have the same truth value and otherwise false.

P	Q	$P\implies Q$	$Q\implies P$	P
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Ţ

