PLP - 7
 TOPIC 7 -STATEMENT TYPES AND SOME DEFINITIONS

Demirbaş \& Rechnitzer

AFTER LOGIC BUT BEFORE PROOFS

TYPES OF STATEMENTS

axiom

Statements we accept as true without proof.
fact
Statements we accept as true, but we won't bother proving for this course

AXIOM 1.

Let m, n be integers then $-n, m+n, m-n$ and $m \cdot n$ are also integers.

FACT:

Let $x \in \mathbb{R}$. Then $x^{2} \geq 0$.

TYPES OF STATEMENTS

theorem

An important true statement - Pythagorous' theorem
corollary
A true statement that follows from a previous theorem

lemma

A true statement that helps us prove a more important result
result, proposition
True statements we prove (esp as exercises) we'll call results, or propositions (if more important)

DEFINITION: EVEN AND ODD NUMBERS.

An integer n is even if $n=2 k$ for some $k \in \mathbb{Z}$.
An integer n is odd if $n=2 \ell+1$ for some $\ell \in \mathbb{Z}$.
If two integers are both even or both odd odd, then they have the same parity, else opposite parity.

Note:

- The use of if in a definition is really iff.

We mean " n is even" if and only if " $n=2 k$ for some $k \in \mathbb{Z}$ "

- The number 0 is even (some students are taught otherwise).

SOME MORE USEFUL DEFINITIONS

DEFINITION: (DIVISIBILITY).

Let $n, k \in \mathbb{Z}$. We say k divides n if there is $\ell \in \mathbb{Z}$ so that $n=\ell k$. In this case we write $k \mid n$ and say that k is a divisor of n and that n is a multiple of k.

DEFINITION: (PRIME, COMPOSITE AND 1).

Let $n \in \mathbb{N}$. We say that n is prime when it has exactly two positive divisors, 1 and itself.
If n has more than two positive divisors then we say that it is composite.
Finally, the number 1 is neither prime nor composite.

DEFINITION: (GCD AND LCM).

Let a, b be integers

- The greatest common divisor of a, b is the largest positive integer that divides both a, b
- The least common multiple of a, b is the smallest positive integer divisible by both a, b
- We denote these $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$

FACT: (EUCLIDEAN DIVISION).

Let $a, b \in \mathbb{Z}$ with $b>0$, then there exist unique $q, r \in \mathbb{Z}$ so that

$$
a=b q+r \quad \text { with } 0 \leq r<b
$$

DEFINITION:

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.
We say that a is congruent to b modulo n when $n \mid(a-b)$.
The " n " is refered to as the modulus and we write the congruence as $a \equiv b(\bmod n)$.
When $n \nmid(a-b)$ we say that a is not congruent to b modulo n, and write $a \not \equiv b(\bmod n)$.

For example:

$$
5 \equiv 1(\bmod 4) \quad 17 \equiv 1(\bmod 4) \quad 3 \not \equiv 9(\bmod 4)
$$

