PLP - 8

TOPIC 8 -A FIRST PROOF

Demirbaş \& Rechnitzer

A FIRST PROOF

A FIRST RESULT

Our very first result will be

PROPOSITION:

Let n be an integer. If n is even then n^{2} is even

We want to show this implication is always true.

- When hypothesis is false (n is not even) then implication is true - no work required!
- So assume hypothesis is true $-n$ is an even number.
- ...
- So n^{2} must be an even number

Clearly we need to understand even - we need the definition.
Important - memorise definitions

CONTINUING

PROPOSITION:

Let n be an integer. If n is even then n^{2} is even

- Start by assuming the hypothesis is true: so we assume that n is even.
- By the definition of even we know that $n=2 k$ for some integer k.
- But then, $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
- Since $k \in \mathbb{Z}$ we know by an axiom that $2 k^{2} \in \mathbb{Z}$.
- So by the definition of even we know that n^{2} is even

What have we done? We showed all these implications

- $(n$ is even $) \Longrightarrow(n=2 k$ for some integer $k)$
- $(n=2 k$ for some integer $k) \Longrightarrow\left(n^{2}=4 k^{2}\right)$
- $\left(n^{2}=4 k^{2}\right) \Longrightarrow\left(n^{2}\right.$ is two times an integer)
- (n^{2} is two times an integer) \Longrightarrow (n^{2} is even)

So when we assume n is even, we can use modus ponens to see that

- $(n=2 k)$ is true
- $\left(n^{2}=4 k^{2}\right)$ is true
- (n^{2} is two times an integer) is true
- (n^{2} is even) is true

So when the hypothesis is true, the conclusion must be true, and so the implication is true!
Our first proof! - nearly.

CLEANING UP

When "doing" proofs we nearly always separate scratch work from the proof.

Scratch work

All our draft work - the reader doesn't need to see this.

The proof

The cleaned up work, neatly formatted, so easy for the reader to follow

PROOF.

- Assume that n is an even number.
- Hence we know that $n=2 k$ for some $k \in \mathbb{Z}$.
- It follows that $n^{2}=4 k^{2}=2\left(2 k^{2}\right)$
- Since $2 k^{2}$ is an integer, it follows that n^{2} is even

