PLP - 9 TOPIC 9 – MORE PROOF EXAMPLES

Demirbaş & Rechnitzer

MORE EXAMPLES

PROPOSITION:

Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$ then $a \mid c$.

We start with scratch work and assume the hypothesis is true.

- So $a \mid b$ and $b \mid c$
- By definition of divisibility, b=ka and $c=\ell b$ for some $k,\ell\in\mathbb{Z}$.
- We want to show that $a \mid c$. That is c = na for some $n \in \mathbb{Z}$.
- Since $c = \ell b$ and b = ka we know $c = \ell ka$
- Since $k, \ell \in \mathbb{Z}$ we know that $k\ell \in \mathbb{Z}$ so we are done!

After scratch work we have to write the proof *nice and neat* for our reader

CLEANING IT UP

We need to clean up our scratch work

- make sure logic flows correctly
- no dead-ends, no scribbles, keep presentation neat and tidy
- skip very obvious steps only if very obvious to the reader (not you)
- make the text easy to read we add "hence", "we know that", "it follows that", etc.
- dot-point form is okay when you are learning how to write proofs

PROOF.

We start by assuming the hypothesis to be true.

- Assume that $a \mid b$ and $b \mid c$, so that b = ka and $c = \ell b$ for some $k, \ell \in \mathbb{Z}$.
- It follows that $c = k\ell a$
- Since $k\ell \in \mathbb{Z}$, we know that $a \mid c$ as required.

AN INEQUALITY

PROPOSITION:

Let
$$x,y\in \mathbb{R}$$
 then $x^2+y^2\geq 2xy.$

Scratch work:

- The implication hiding here is $(x,y\in\mathbb{R})\implies \overline{(x^2+y^2\geq 2xy)}$
- We don't know much about inequalities, except $(x \in \mathbb{R}) \implies (x^2 \ge 0).$
- Rearrange inequality to make it look like a square?

$$x^2+y^2-2xy\geq 0$$
 so $(x$

• This is what we want. The square of something is non-negative.

 $(-y)^2 \geq 0$

BE CAREFUL OF FLOW OF LOGIC

Logic flow in scratch work doesn't always match logic needed for proof.

- We started from conclusion $x^2 + y^2 > 2xy$
- Reached the fact that $(x y)^2 \ge 0$

This is backwards — very common for proofs of inequalities.

PROOF.

- Assume that $x,y\in\mathbb{R}$
- Since the square of any real is non-negative, we know that $(x-y)^2 \geq 0$
- This implies that $x^2 2xy + y^2 \geq 0$
- From this $x^2 + y^2 \ge 2xy$ as required.