PLP - 10 TOPIC 10 — LOGICAL EQUIVALENCE

Demirbaş & Rechnitzer

TAUTOLOGIES AND LOGICAL EQUIVALENCE

TAUTOLOGIES AND CONTRADICTIONS

Statements that are always true turn out to be very useful.

DEFINITION: TAUTOLOGIES AND CONTRADICTIONS.

A tautology is a statement that is always true

A **contradiction** is a statement that is always false.

The following are examples of tautologies

 $P \lor (\sim P) \qquad \qquad \sim (P \lor Q) \iff ((\sim P) \land (\sim Q))$

The following are examples of contradictions

 $P \wedge (\sim P) \qquad \qquad (P \wedge Q) \wedge ((\sim P) \lor (\sim Q))$

A VERY USEFUL TAUTOLOGY

- The statements $P \lor Q$ and $Q \lor P$ have the same truth-tables.
- The are not the same but they are equivalent
- We can express this by saying " $(P \lor Q) \iff (Q \lor P)$ is a tautology"

DEFINITION:

Two statements R and S are logically equivalent when " $R \iff S$ " is a tautology.

In this case we write $R\equiv S.$

Showing logical equivalence

- build the truth tables, or
- think about when each side is true and false

A USEFUL EQUIVALENCE

Consider $(P \implies Q) \equiv (\sim P) \lor Q$.

Why are these equivalent — when true, when false?

- Know your truth-tables!
- LHS is false only when (P, Q) = (T, F). Otherwise true.
- **RHS** is false when both $(\sim P), Q$ are false, that is (P, Q) = (T, F). Otherwise false.

True at same time, false at same time. So equivalent.

Can also build the truth-tables — tedious but works.

P	Q	$P \implies Q$	$(\sim P)$ \lor
Т	Т	Т	Τ
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Q

USEFUL LOGICAL EQUIVALENCES

THEOREM: LOGICAL EQUIVALENCES.

Let ${\cal P}$ and ${\cal Q}$ be statements. Then

Implication

$$(P \implies Q) \equiv ((\sim P) \lor Q))$$

Contrapositive

$$(P \implies Q) \equiv ((\sim Q) \implies (\sim P))$$

Biconditional

 $(P \iff Q) \equiv ((P \implies Q) \land (Q \implies P))$ Double negation

 $\sim (\sim (P)) \equiv P$

Commutative laws

 $P \lor Q \equiv Q \lor P$ and $P \land Q \equiv Q \land P$

USEFUL LOGICAL EQUIVALENCES 2

THEOREM: LOGICAL EQUIVALENCES.

Let P, Q and R be statements. Then

Associative laws

 $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$ $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ and

Distributive laws

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$
 and $P \land (Q \lor R)$

DeMorgan's laws

$$\sim (P \lor Q) \equiv (\sim P) \land (\sim Q)$$
 and $\sim (P \land Q) \equiv (Q \land Q)$

$ee R) \equiv (P \wedge Q) ee (P \wedge R)$

 $(\overline{\sim P}) \overline{\lor (\sim Q)}$

BACK TO THE CONTRAPOSITIVE

Show that $(P \implies Q) \equiv (\sim Q \implies \sim P)$ using equivalences

$$\equiv (\sim \sim Q \lor \sim P)$$
 do

$$\equiv (\sim Q \implies \sim P)$$
 or

Why is this useful a useful equivalence?

- Contrapositive is *equivalent* to the original implication
- Proving one is true is *equivalent* as proving the other is true
- Sometimes the contrapositive is *easier* to prove than the original

plication as or commutes ouble negative as implication