PLP - 11
 TOPIC 11 -CONTRAPOSITIVE PROOF

Demirbaş \& Rechnitzer

CONTRAPOSITIVE PROOF

TRY THE CONTRAPOSITIVE

PROPOSITION:

Let $n \in \mathbb{Z}$. If n^{2} is even then n is even.

Scratch work

- Assume hypothesis is true so n^{2} is even
- Hence $n^{2}=2 k$ for some integer k
- So $n=\sqrt{2 k}$ and so ...

Not sure where to go? Try the contrapositive

```
Let }n\in\mathbb{Z}\mathrm{ . If n}\mp@subsup{n}{}{2}\mathrm{ is even then }n\mathrm{ is even.
```


Scratch work

- Form the contrapositive: If n is not even then n^{2} is not even
- Since $n \in \mathbb{Z}$: If n is odd then n^{2} is odd
- Now we know what to do - just tell the reader that you are proving the contrapositive.

PROOF.

We prove the contrapositive: if n is odd then n^{2} is odd.

- Assume that n is odd.
- Hence $n=2 \ell+1$ and so $n^{2}=4 \ell^{2}+4 \ell+1=2\left(2 \ell^{2}+2 \ell\right)+1$.
- Since $2 \ell^{2}+2 \ell \in \mathbb{Z}$, it follows that n^{2} is odd.

Since the contrapositive it true, the original statement is true.

ANOTHER EXAMPLE

PROPOSITION:

Let $n \in \mathbb{Z}$. If $3 n+7$ is odd then n is even.

Scratch work

- Assume $3 n+7$ is odd, so $3 n+7=2 \ell+1$
- Then $3 n=2 \ell-6$ and $n=\frac{2 \ell-6}{3}$ which is... stuck
- Start again with contrapositive: If n is odd then $3 n+7$ is even.
- Then $n=2 k+1$ so $3 n+7=6 k+3+7=2(3 k+5)$ which is even. Write it up nicely.

WRITE UP THE PROOF

PROOF.

We prove the contrapositive. Assume that n is odd, so $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $3 n+7=2(3 k+5)$ and since $3 k+5 \in \mathbb{Z}$ it follows that $3 n+7$ is even.

Since the contrapositive is true, the result holds.
Usually more than 1 way to prove things. A direct proof:

PROOF.

Let $3 n+7$ be odd, so $3 n+7=2 k+1$ for some $k \in \mathbb{Z}$. But then

$$
3 n=2 k-6 \quad \text { and so } \quad n=2 k-6-2 n=2(k-3-n)
$$

Now since $k-3-n \in \mathbb{Z}$ it follows that n is even.

