PLP - 11 TOPIC 11 -- CONTRAPOSITIVE PROOF

Demirbaş & Rechnitzer

CONTRAPOSITIVE PROOF

TRY THE CONTRAPOSITIVE

PROPOSITION:

Let $n \in \mathbb{Z}$. If n^2 is even then n is even.

Scratch work

- Assume hypothesis is true so n^2 is even
- ullet Hence $n^2=2k$ for some integer k
- So $n = \sqrt{2k}$ and so ...

Not sure where to go? Try the **contrapositive**

TRY THE CONTRAPOSITIVE 2

Let $n \in \mathbb{Z}$. If n^2 is even then n is even.

Scratch work

- Form the contrapositive: If n is not even then n^2 is not even
- Since $n\in\mathbb{Z}$: If n is odd then n^2 is odd
- Now we know what to do just tell the reader that you are proving the contrapositive.

PROOF.

We prove the contrapositive: if n is odd then n^2 is odd.

- Assume that *n* is odd.
- Hence $n = 2\ell + 1$ and so $n^2 = 4\ell^2 + 4\ell + 1 = 2(2\ell^2 + 2\ell) + 1$.
- Since $2\ell^2 + 2\ell \in \mathbb{Z}$, it follows that n^2 is odd.

Since the contrapositive it true, the original statement is true.

PROPOSITION:

Let $n \in \mathbb{Z}$. If 3n + 7 is odd then n is even.

Scratch work

- Assume 3n+7 is odd, so $3n+7=2\ell+1$
- Then $3n = 2\ell 6$ and $n = \frac{2\ell 6}{3}$ which is... stuck
- Start again with *contrapositive*: If n is odd then 3n + 7 is even.
- Then n = 2k + 1 so 3n + 7 = 6k + 3 + 7 = 2(3k + 5) which is even. Write it up nicely.

WRITE UP THE PROOF

PROOF.

We prove the contrapositive. Assume that n is odd, so n=2k+1 for some $k\in\mathbb{Z}.$ Then 3n+7=2(3k+5) and since $3k+5\in\mathbb{Z}$ it follows that 3n+7 is even.

Since the contrapositive is true, the result holds.

Usually more than 1 way to prove things. A direct proof:

PROOF.

Let 3n+7 be odd, so 3n+7=2k+1 for some $k\in\mathbb{Z}$. But then

$$3n=2k-6$$
 and so $n=2k-6-2$

Now since $k-3-n\in\mathbb{Z}$ it follows that n is even.

2n = 2(k - 3 - n)