PLP - 12
TOPIC 12 -PROOF BY CASES
Demirbaş \& Rechnitzer

PROOF BY CASES

ANOTHER EQUIVALENCE

PROPOSITION:

$$
(P \vee Q) \Longrightarrow R \equiv(P \Longrightarrow R) \wedge(Q \Longrightarrow R)
$$

You can prove this with a truth-table (tedious) or via equivalences (good exercise). Useful because we can split the hypothesis into cases.

$$
\begin{aligned}
& (n \in \mathbb{N}) \Longrightarrow\left(n^{2}+5 n-7 \text { is odd }\right) \\
& (n \text { is even }) \vee(n \text { is odd }) \Longrightarrow\left(n^{2}+5 n-7 \text { is odd }\right) \\
& \underbrace{(n \text { is even }) \Longrightarrow\left(n^{2}+5 n-7 \text { is odd }\right)} \text { and } \underbrace{(n \text { is odd }) \Longrightarrow\left(n^{2}+5 n-7 \text { is odd }\right)}
\end{aligned}
$$

We can prove each case in turn - proof by cases

PROPOSITION:

Let $n \in \mathbb{Z}$ then $n^{2}+5 n-7$ is odd.

PROOF.

Assume the hypothesis is true, so that $n \in \mathbb{Z}$. Hence n is even or odd.

- Case 1: Assume that n is even, so that $n=2 k$ for some $k \in \mathbb{Z}$. Hence $n^{2}+5 n-7=4 k^{2}+10 k-7=2\left(2 k^{2}+5 k-4\right)+1$. Thus $n^{2}+5 n-7$ is odd.
- Case 2: Assume that n is odd, so that $n=2 \ell+1$ for some $\ell \in \mathbb{Z}$. Hence $n^{2}+5 n-7=4 \ell^{2}+4 \ell+1+10 \ell+5-7=2\left(2 \ell^{2}+7 \ell-1\right)+1$. Thus $n^{2}+5 n-7$ is odd. Since $n^{2}+5 n-7$ is odd in both cases, the result holds.

Proof by cases can be tricky

- tell the reader that you are doing case analysis
- make sure you get all the cases - a common mistake
- cases are often very similar - be very careful of skipping steps.
without loss of generality or WLOG is a good source of errors
Dangerous phrases in mathematics
- Without loss of generality...
- Clearly...
- Obviously...
- A quick calculation shows that...
- It is easy to show that...

ANOTHER EXAMPLE

PROPOSITION:

Let $n \in \mathbb{Z}$. If $3 \mid n^{2}$ then $3 \mid n$.

Scratch work -This smells of the contrapositive: $(3 \nmid n) \Longrightarrow\left(3 \nmid n^{2}\right)$.

- Recall Euclidean division - every integer n can be written uniquely as

$$
n=3 a \quad n=3 a+1 \quad n=3 a+2 \quad \text { for some } a \in \mathbb{Z}
$$

- If $3 \nmid n$ we must have either $n=3 a+1$ or $=3 a+2$ - our cases.
- If $n=3 a+1$ then $n^{2}=9 a^{2}+6 a+1=\ldots$.
- If $n=3 a+2$ then $n^{2}=9 a^{2}+12 a+4=\ldots$.

Time to write up.

```
Let n }\in\mathbb{Z}\mathrm{ . If }3|\mp@subsup{n}{}{2}\mathrm{ then }3|n\mathrm{ .
```


PROOF.

We prove the contrapositive, so assume that $3 \nmid n$. By Euclidean division, we know that $n=3 a+1$ or $n=3 a+2$.

- Case 1: Let $n=3 a+1$, then $n^{2}=9 a^{2}+6 a+1=3\left(3 a^{2}+2 a\right)+1$ and so is not divisible by 3.
- Case 2: Let $n=3 a+2$, then $n^{2}=9 a^{2}+12 a+4=3\left(3 a^{2}+4 a+1\right)+1$ and so is not divisible by 3 . Since $3 \nmid n^{2}$ in both cases, the result holds.

