PLP - 13 **TOPIC 13—QUANTIFIERS**

Demirbaş & Rechnitzer

QUANTIFIERS

BACK TO OPEN SENTENCES

The number x^2 is non-negative

This is an *open sentence*. One can prove this to be true for *all real* x.

For every $x \in \mathbb{R}$, the number x^2 is non-negative.

- The extra text "*For every* $x \in \mathbb{R}$ " adds scope.
- It is an example of a **quantifier**
- Adding quantifiers to an open sentence turns it into a statement

AN EXAMPLE

Consider the open sentence " $P(x): x^2 - 5x + 4 = 0$ " — when is it true?

- P(0) is false
- P(1) is true
- P(2) is false, and so on

To decide truth values we need to decide *from what set do we take x*?

Eg. consider the truth values of P(x) over the set $S = \{0, 1, 2, 3, 4\}$.

P(1), P(4) are true, but P(0), P(2), P(3) are false

Summarise this as

- ullet P(x) is true for some $x\in \overline{S}$
- P(x) is not true for all $x \in S$

the extra text "*for some*" and "*for all*" are **quantifiers**.

DEFINITION:

- The universal quantifier is denoted \forall and is read as "for all" or "for every". " $\forall x \in A, P(x)$ " is true provided P(x) is true for every $x \in A$ and otherwise false.
- The existential quantifier is denoted \exists and is read as "there exists".
 - " $\exists x \in A$ so that P(x)" is true when at least one $x \in A$ makes P(x) true, and otherwise false.

So our example becomes

$$egin{aligned} \exists x \in S ext{ s.t. } x^2 - 5x + 4 &= 0 \ orall x \in S, x^2 - 5x + 4 &= 0 \end{aligned}$$

The "s.t." and "," separate the quantifier and open sentence — helps the reader

- true false

EXAMPLES — TRUE

• $\exists n \in \mathbb{Z} ext{ s.t. } rac{7n-6}{3} \in \mathbb{Z}$

True — set n = 3. Then $n \in \mathbb{Z}$, $\frac{7n-6}{3} = \frac{21-6}{3} = 5 \in \mathbb{Z}$.

To show \exists is true we just need 1 value that makes it true.

ullet $orall n\in\mathbb{Z}, n^2+1\in\mathbb{N}$.

True. Let n be any integer. Hence $n^2 + 1 \in \mathbb{Z}$. Since n is real, we know $n^2 + 1 \ge 1$. Hence $n^2 + 1 \in \mathbb{N}$.

To show \forall is true we must show it is true *generically*.

You cannot prove universal quantifiers using examples

EXAMPLES — FALSE

• $orall n\in\mathbb{Z}$ s.t. $rac{7n-6}{3}\in\mathbb{Z}$

False — set n = 1. Then $n \in \mathbb{Z}$, but $\frac{7n-6}{3} = \frac{1}{3} = \notin \mathbb{Z}$.

To show \forall is false we just need 1 value that makes it false.

• $\exists n \in \mathbb{Z}$ s.t. $-n^2 \in \mathbb{N}$

False. Let n be any integer. Then since $n \in \mathbb{R}$ we know that $n^2 \ge 0$, so $-n^2 \le 0$. Hence $-n^2
ot\in \mathbb{N}$. To show \exists is false we must show it is false *generically*.

You cannot disprove existential quantifiers using examples

READING QUANTIFIERS

$\exists x \in A, P(x)$

- There exists x in A so that P(x) is true.
- There is at least one x in A so that P(x) is true.
- P(x) is true for at least one value of x from A
- We can find an x in A so that P(x) is true.
- . . .

$orall x \in A, P(x)$

- For all x in A, P(x) is true.
- For every x in A, P(x) is true.
- No matter which x we choose from A, P(x) is true.
- Every choice of x from A makes P(x) true.
- $\bullet \ (x \in A) \implies P(x)$
- •