PLP - 14 TOPIC 14—NEGATING QUANTIFIERS

Demirbaş & Rechnitzer

NEGATING QUANTIFIERS

NEGATING A QUANTIFIED STATEMENT

$orall n \in \mathbb{N}, n^2+1$ is prime

- n=1 gives $n^2+1=2$ is prime.
- n=2 gives $n^2+1=5$ is prime.
- n=3 gives $n^2+1=10=2 imes 5$ is *not* prime.

So statement is false. We actually proved that its **negation** is true:

 $\exists n \in \mathbb{N}, n^2+1 ext{ is not prime}$

NEGATING A QUANTIFIED STATEMENT

 $\exists \overline{n \in \mathbb{N}} ext{ s.t. } n^2 < n$

- $| ullet \ n = 1$ gives $n^2 = 1 = 1$
- ullet n=2 gives $n^2=4>2$
- n=3 gives $n^2=9>3$

Looks false, but examples are not enough.

We need to show that $n^2 \geq n$ for every single $n \in \mathbb{N}$.

$$orall n \in \mathbb{N}, n^2 \geq n$$

NEGATIONS

THEOREM:

Let P(x) be an open sentence over the domain A, then

$$egin{array}{lll} &\sim (orall x \in A, P(x)) &\equiv & \exists x \in A ext{ s.t. } \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & orall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & orall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & orall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & orall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & orall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\sim (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ &\propto (\exists x \in A ext{ s.t. } P(x)) &\equiv & \forall x \in A, \ & \forall x \in$$

Note that the negated statement still has the same **domain**.

Be careful of domains:

 $x \sim (orall x \in A, P(x))
ot\equiv orall x
ot\in A, P(x)$ $\overline{P} \sim (\exists x \in A ext{ s.t. } P(x))
eq \exists x
ot \in A ext{ s.t. } P(x)$

s.t. $\sim (P(x))$ $\sim (P(x))$

PROVE OR DISPROVE

$\exists n \in \mathbb{N} ext{ s.t. } 4 \mid (n^2+1)$

- To prove it true show the reader value of n
- To prove it false show that its negation is true

scratch work — explore some values

- n = 1 gives $n^2 + 1 = 2$ —nope
- n=2 gives $n^2+1=5$ —nope
- n = 3 gives $n^2 + 1 = 10$ —nope
- n = 4 gives $n^2 + 1 = 17$ --nope

Smells false (esp for even n) — look at negation

 $orall n \in \mathbb{N}$ s.t. $4
mid (n^2 + 1)$

PROVE OR DISPROVE — CONTINUED

$$orall n \in \mathbb{N}$$
 s.t. $4
mid (n^2 + 1)$

scratch work:

- If n is even, then n=2k so $n^2+1=4k^2+1-$ not divisible by 4.
- If n is odd then $n=2\ell+1$ so $n^2+1=4\ell^2+4\ell+2$ not divisible by 4. **PROOF.**

We show the statement is false by proving its negation is true. Since $n \in \mathbb{N}$ it is either even or odd.

- ullet Assume that n is even, so n=2k and thus $n^2+1=4k^2+1$
- Now assume that n is odd, so $n=2\ell+1$ and thus $n^2+1=4\ell^2+4\ell+2$ In both cases, by Euclidean division, the result is not divisible by 4.