PLP - 14

TOPIC 14-NEGATING QUANTIFIERS
Demirbaş \& Rechnitzer

NEGATING QUANTIFIERS

NEGATING A QUANTIFIED STATEMENT

$$
\forall n \in \mathbb{N}, n^{2}+1 \text { is prime }
$$

- $n=1$ gives $n^{2}+1=2$ is prime.
- $n=2$ gives $n^{2}+1=5$ is prime.
- $n=3$ gives $n^{2}+1=10=2 \times 5$ is not prime.

So statement is false. We actually proved that its negation is true:

$$
\exists n \in \mathbb{N}, n^{2}+1 \text { is not prime }
$$

NEGATING A QUANTIFIED STATEMENT

$$
\exists n \in \mathbb{N} \text { s.t. } n^{2}<n
$$

- $n=1$ gives $n^{2}=1=1$
- $n=2$ gives $n^{2}=4>2$
- $n=3$ gives $n^{2}=9>3$

Looks false, but examples are not enough.
We need to show that $n^{2} \geq n$ for every single $n \in \mathbb{N}$.

$$
\forall n \in \mathbb{N}, n^{2} \geq n
$$

NEGATIONS

THEOREM:

Let $P(x)$ be an open sentence over the domain A, then

$$
\begin{aligned}
\sim(\forall x \in A, P(x)) & \equiv \exists x \in A \text { s.t. } \sim(P(x)) \\
\sim(\exists x \in A \text { s.t. } P(x)) & \equiv \forall x \in A, \sim(P(x))
\end{aligned}
$$

Note that the negated statement still has the same domain.

Be careful of domains:

$$
\begin{gathered}
\sim(\forall x \in A, P(x)) \not \equiv \forall x \notin A, P(x) \\
\sim(\exists x \in A \text { s.t. } P(x)) \not \equiv \exists x \notin A \text { s.t. } P(x)
\end{gathered}
$$

$$
\exists n \in \mathbb{N} \text { s.t. } 4 \mid\left(n^{2}+1\right)
$$

- To prove it true - show the reader value of n
- To prove it false - show that its negation is true
scratch work - explore some values
- $n=1$ gives $n^{2}+1=2$-nope
- $n=2$ gives $n^{2}+1=5$-nope
- $n=3$ gives $n^{2}+1=10$-nope
- $n=4$ gives $n^{2}+1=17$-nope

Smells false (esp for even n) - look at negation

$$
\forall n \in \mathbb{N} \text { s.t. } 4 \nmid\left(n^{2}+1\right)
$$

$$
\forall n \in \mathbb{N} \text { s.t. } 4 \nmid\left(n^{2}+1\right)
$$

scratch work:

- If n is even, then $n=2 k$ so $n^{2}+1=4 k^{2}+1-$ not divisible by 4 .
- If n is odd then $n=2 \ell+1$ so $n^{2}+1=4 \ell^{2}+4 \ell+2-$ not divisible by 4 .

PROOF.
We show the statement is false by proving its negation is true. Since $n \in \mathbb{N}$ it is either even or odd.

- Assume that n is even, so $n=2 k$ and thus $n^{2}+1=4 k^{2}+1$
- Now assume that n is odd, so $n=2 \ell+1$ and thus $n^{2}+1=4 \ell^{2}+4 \ell+2$ In both cases, by Euclidean division, the result is not divisible by 4.

