PLP - 15 TOPIC 15—NESTED QUANTIFIERS

Demirbaş & Rechnitzer

NESTED QUANTIFIERS

NESTED QUANTIFIERS

Quantifiers do not commute

$$orall x, \exists y ext{ s.t. } P(x,y) \quad
ot \equiv \quad \exists y ext{ s.t. } orall x$$

Consider:

$$orall z \in \mathbb{Z}, \exists w \in \mathbb{N} ext{ s.t. } z^2 < w$$

Must do quantifiers *in order* — like a 2 player game:

- Player 1: picks the value of *z* first
- Player 2: knows what Player 1 did, and chooses w So
- Player 1 picks some integer z
- Player 2 needs w to be big enough so that $w>z^2-{
 m pick}\,w=z^2+1$

$\forall x, P(x,y)$

NESTED QUANTIFIERS

$$orall z \in \mathbb{Z}, \exists w \in \mathbb{N} ext{ s.t. } z^2 < w$$

PROOF.

- Let z be any integer.
- Now choose $w = z^2 + 1$.
- We know that $w \in \mathbb{Z}$ and that $w \geq 1$, so $w \in \mathbb{N}$.
- Further we know that $w > z^2$ so the statement is true.
- Player 1 picks any $z \in \mathbb{Z}$ universal quantifier
- Player 2 picks *a single w* based on that choice existential quantifier
- We verify that $w \in \mathbb{N}$.
- We confirm that the inequality holds.

THE OTHER WAY AROUND

$\exists w \in \mathbb{N} ext{ s.t. } orall z \in \mathbb{Z}, z^2 < w$

Must do quantifiers *in order* — like a 2 player game:

- Player 1: chooses *one* value of *w* first
- Player 2: knows what Player 1 did, but must check all z

Scratch work

- P1 picks w = 1, but then z = 2 is too big
- P1 picks w = 2, but then z = 3 is too big
- P1 picks w = 3, but then z = 4 is too big

Smells false, so check the negation.

LOOK AT NEGATION

$orall w \in \mathbb{N}, \exists z \in \mathbb{Z} ext{ s.t. } z^2 \geq w$

- Player 1 picks any $w \in \mathbb{N}$
- Player 2 chooses one $z \in \mathbb{Z}$. What worked above?

PROOF.

We prove the statement is false by showing the negation is true.

- Let $w \in \mathbb{N}$.
- Now choose $z=w+1\in\mathbb{Z}$
- Then $z^2 = w^2 + 2w + 1 > w$ since $w^2 \ge 0$ and $w \ge 1$.

Since the negation is true, the original statement is false.

ANOTHER NESTED EXAMPLE

$$orall x \in \mathbb{R}, \exists y \in \mathbb{R} ext{ s.t. } xy = x + y$$

Scratch work

- P1 picks any x they want.
- P2 needs to pick y so that xy = x + y
- We can solve that $xy \overline{y} = x$ so $y = rac{\overline{x}}{\overline{x-1}}$ So is this true?

What happens when x = 1?

ANOTHER NESTED EXAMPLE — NEGATION

$\exists x \in \mathbb{R} ext{ s.t. } orall y \in \mathbb{R}, xy eq x+y$

Scratch work. Failed last time when x = 1.

- P1 picks x = 1.
- Then no matter what $y \in \mathbb{R}$ we have $y \neq y+1$.

PROOF.

The statement is false. Pick x=1. Then no matter what $y\in\mathbb{R}$ we choose, we have y
eq y+1 as required. Since the negation is true, the original statement is false.

ANOTHER ONE

$orall x \in \mathbb{R}, \exists y \in \mathbb{R} ext{ s.t. } (y eq 0) \implies xy = 1$

Scratch work

- P1 *first* picks one value of x
- P2 then picks y to make the implication true.
- If the hypothesis is false, implication is true. P2 just picks y = 0. **PROOF.**

We prove the statement is true. Pick any $x \in \mathbb{R}$, and then set y = 0. Since the hypothesis of the implication is false, the implication is always true.

A SIMILAR ONE

$\exists x \in \mathbb{R} ext{ s.t. } orall y \in \mathbb{R}, (y eq 0) \implies xy = 1$

Scratch work

- P1 *first* picks one value of x
- P2 then picks y to make the implication true.
- Implication is false when (H,C) = (T,F) can that happen?
- Sure x = 1 then pick y = 2

Better look at the negation.

Recall: $\sim (P \implies Q) \equiv (P \land \sim (Q))$

A SIMILAR ONE – NEGATED

$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} ext{ s.t. } (y eq 0) \land xy eq 1$

Scratch work

- P1 picks any x
- P2 knows x, so based on that picks $y \neq 0$ so that $xy \neq 1$.
- If P2 picks y = 1 that will work nicely unless x = 1
- If P1 has picked x = 1 then P2 can pick x = 2

PROOF.

We show the statement is false by proving the negation is true. Pick any $x\in\mathbb{R}$. Either x=1 or x
eq 1

- If x = 1 then set y = 2.
- If $x \neq 1$ then set y = 1.

In both cases, $y \neq 0$ and $xy \neq 1$ as required.

