PLP - 16

TOPIC 16—EXISTENCE PROOFS

Demirbaş \& Rechnitzer

EXISTENCE PROOFS

AN EXAMPLE

There exist integers x, y so that $x^{3}-y^{2}=13$.

PROOF.

Consider $x=17$ and $y=70$. Since $17^{3}-70^{2}=4913-4900=13$ we are done.
Why is this sufficient?

- The statement is " $\exists x, y \in \mathbb{N}$ s.t. $x^{3}-y^{2}=13$ "
- So to prove it true we only need to give at least one instance that makes it true
- We do not have to explain how we found that example This is a constructive proof.

ANOTHER EXAMPLE

$$
\text { There exists } x \in\left[0, \frac{\pi}{2}\right] \text { so that } \cos (x)=x
$$

PROOF.

Let $f(x)=\cos (x)-x$. Note that $f(0)=1>0$ and $f\left(\frac{\pi}{2}\right)=-\frac{\pi}{2}<0$ and that $f(x)$ is a continuous function. Then by the Intermediate Value Theorem, we know that there exists a point $c \in\left(0, \frac{\pi}{2}\right)$ so that $f(c)=0$. From this we know that $\cos (c)=c$ as required.
Why is this sufficient?

- To prove this we only need to infer that an example exists
- We do not have to give the example explicitly

This is a non-constructive proof.

EXISTENCE PROOFS

Proofs of existence results fall into 2 broad categories
constructive proofs
in which a specific example is given explicitly and verified
an explanation of how the example was found is not required
non-constructive proofs
in which the existence is inferred but an example is not explicitly stated

UNIQUENESS PROOF

After demonstrating that a required object exists, one often also wants uniqueness

There exists a unique x so that $P(x)$

A simple way to approach such proofs is

- Let x, y be objects so that $P(x)$ and $P(y)$ are true
- Do stuff to show that $x=y$

The fun is in working out what stuff is.

AN EXAMPLE

The equation $a x=b$ with $a, b \in \mathbb{R}$ and $a \neq 0$ has a unique real solution.

PROOF.

First note that since $a \neq 0$, we can solve the equation by choosing $x=\frac{b}{a} \in \mathbb{R}$. Thus a solution exists. Now assume that numbers r, s both satisfy the equation. Hence

$$
\begin{array}{lrr}
a r=b & a s=b & \text { and so } \\
a r=a s & & \text { and since } a \neq 0
\end{array}
$$

So both solutions are in fact equal and the solution must be unique.

