TOPIC 17—DISPROOFS

Demirbaş \& Rechnitzer

DISPROOFS

To disprove the statement P, we prove that $(\sim P)$ is true.
universal quantifier
Since

$$
\sim(\forall x, P(x)) \quad \equiv \quad \exists x \text { s.t. } \sim P(x)
$$

our disproof can be a counter example
existential quantifier
Since

$$
\sim(\exists x \text { s.t. } P(x)) \quad \equiv \quad \forall x, \sim P(x)
$$

we have to work harder to show that $(\sim P(x))$ is true for all x.
Counter examples do not disprove existential quantifiers

$$
\text { For every } n \in \mathbb{N}, 2^{n}-1 \text { or } 2^{n}+1 \text { is prime. }
$$

scratch work - smells false

- $n=1$ gives $1,3 \quad$ and $\quad n=2$ gives 3,5
- $n=3$ gives $7,9 \quad$ and $\quad n=4$ gives 15,17
- $n=5$ gives $31,33 \quad$ and $\quad n=6$ gives 63,65

PROOF.
Pick $n=6$. Since neither $2^{n}-1=63$ or $2^{n}+1=65$ are prime, the statement is false. Our counter-example proves " $\exists n \in \mathbb{N}$ s.t. neither $2^{n}-1,2^{n}+1$ are prime."

ANOTHER EXAMPLE

$$
\text { For all } a, b, c \in \mathbb{N} \text {, if }(a \mid b c) \text { then }(a \mid c) \text { or }(a \mid b)
$$

scratch work - again smells false.

- Since is universal quantifier, a counter example is sufficient
- Negation is " $\exists a, b, c$ s.t. $(a \mid b c) \wedge(a \nmid b \wedge a \nmid c)$ "
- Something about prime-factors feels like the right thing here
- Pick $a=4$ and $b=2, c=2$. Then $(4 \mid 2 \cdot 2)$ but $4 \nmid 2$.

PROOF.
The statement is false. Let $a=4$ and $b=c=2$. Then $a \mid b c$ but $a \nmid b$ and $a \nmid c$.

There exist prime numbers p, q so that $p-q=999$

Typically this is much harder. Sometimes we can reduce to a finite number of cases.

scratch work

- Since odd-odd = even, we must have that $q=2$
- Then since $1001=7 \times 11 \times 13$, no such primes exist

PROOF.

This is false. Either q is even or odd.

- If q is even, then $q=2$. Since $999+2=1001$ is divisible by 7 it is not prime.
- Now assume that q is odd. Then we must have that $q=2 k+1$ for some $k \in \mathbb{Z}$. But then $p=2 k+1000$ which is divisible by 2 and so not prime.
Hence no such primes exist.

