PLP - 18

TOPIC 18—INDUCTION
Demirbaş \& Rechnitzer

INDUCTION

INDUCTION

Mathematical induction is a specialised technique for proving

$$
\forall n \in \mathbb{N}, P(n)
$$

It breaks the proof into 2 simpler steps
base case
prove that $P(1)$ is true
inductive step
show that $P(k) \Longrightarrow P(k+1)$

- base case = step onto bottom rung of ladder
- inductive step = from the current rung you can reach the next rung
- so you can climb the ladder as high as you want

AN EXAMPLE

PROPOSITION:

For all $n \in \mathbb{N}, n^{2}+5 n-7$ is odd

scratch work

- base case when $n=1$ we have $1+5-7=-1$ which is odd
- inductive step need to prove

$$
\left(k^{2}+5 k-7 \text { is odd }\right) \Longrightarrow\left((k+1)^{2}+5(k+1)-7 \text { is odd }\right)
$$

- The inductive step is a sub-proof inside our proof

INDUCTIVE STEP "SUB PROOF"

$$
\forall k \in \mathbb{N},\left(k^{2}+5 k-7 \text { is odd }\right) \Longrightarrow\left((k+1)^{2}+5(k+1)-7 \text { is odd }\right)
$$

scratch work

- so we assume $k^{2}+5 k-7=2 \ell+1$
- need to show $\left(k^{2}+2 k+1\right)+5(k+1)-7=\underbrace{\left(k^{2}+5 k-7\right)}_{2 \ell+1}+(2 k+6)$ is odd.
- Since $k^{2}+5 k-7=2 \ell+1$ we know

$$
(k+1)^{2}+5(k+1)-7=2(\ell+k+3)+1
$$

and since $\ell+k+3 \in \mathbb{Z}$ we are done.
Of course we still need to put the two parts of the proof together.

THEOREM: MATHEMATICAL INDUCTION.

For all $n \in \mathbb{N}$ let $P(n)$ be a statement. Then if

- $P(1)$ is true, and
- $P(k) \Longrightarrow P(k+1)$ is true for all $k \in \mathbb{N}$ then $P(n)$ is true for all $n \in \mathbb{N}$.

Warnings

- Induction is not "adding the next term to both sides"
- Induction does not prove all statements - the law of the instrument
- Tell your reader if you use induction in your proof

COMPLETING OUR PROOF

For all $n \in \mathbb{N}, n^{2}+5 n-7$ is odd

PROOF.

We prove the result by induction.

- Base case: When $n=1$ we have $1+5-7=-1$ which is odd.
- Inductive step: Assume that $k^{2}+5 k-7$ is odd, so we can write

$$
\begin{aligned}
k^{2}+5 k-7 & =2 \ell+1 \text { for some } \ell \in \mathbb{Z} \text { and so } \\
(k+1)^{2}+5(k+1)-7 & =2(\ell+k+3)+1
\end{aligned}
$$

and since $\ell+k+3 \in \mathbb{Z}$, it follows that $(k+1)^{2}+5(k+1)-7$ is odd.
Since the base case and inductive step hold, the result follows by induction.

ANOTHER EXAMPLE

PROPOSITION:

For every natural number $n, 3 \mid\left(4^{n}-1\right)$

Scratch work

- When $n=1$, easy $3 \mid(4-1)$
- Assume $3 \mid\left(4^{k}-1\right)$, so $4^{k}-1=3 \ell$.
- Writing $4^{k}=3 \ell+1$ shows

$$
4^{k+1}=12 \ell+4 \quad \text { so } \quad 4^{k+1}-1=12 \ell+3
$$

done!

For every natural number $n, 3 \mid\left(4^{n}-1\right)$

PROOF.

We prove the result by induction.

- Base case: When $n=1$ we have $3 \mid(4-1)$, so the result holds.
- Inductive step: Assume that $3 \mid\left(4^{k}-1\right)$, so $4^{k}=3 \ell+1$ for some $\ell \in \mathbb{Z}$. Then

$$
4^{k+1}-1=4(3 \ell+1)-1=3(4 \ell+1)
$$

and so $3 \mid\left(4^{k+1}-1\right)$ as required.
Since the base case and inductive step hold, the result follows by induction.

