PLP - 18 TOPIC 18—INDUCTION

Demirbaş & Rechnitzer

INDUCTION

INDUCTION

Mathematical induction is a specialised technique for proving

 $orall n \in \mathbb{N}, P(n)$

It breaks the proof into 2 simpler steps

base case

prove that P(1) is true

inductive step

show that $P(k) \implies P(k+1)$

- **base case** = step onto bottom rung of ladder
- **inductive step** = from the current rung you can reach the next rung
- so you can climb the ladder as high as you want

PROPOSITION:

For all $n\in\mathbb{N}$, n^2+5n-7 is odd

scratch work

- base case when n = 1 we have 1 + 5 7 = -1 which is odd
- inductive step need to prove

$$(k^2+5k-7 ext{ is odd}) \implies ((k+1)^2+5(k+1)^2)$$

• The inductive step is a sub-proof inside our proof

$\overline{(k+1)}-7 ext{ is odd})^{\dagger}$

INDUCTIVE STEP "SUB PROOF"

 $orall k \in \mathbb{N}, (k^2 + 5k - 7 ext{ is odd}) \implies ((k+1)^2 + 5(k+1) - 7 ext{ is odd})$

scratch work

- so we assume $k^2+5k-7=2\ell+1$
- need to show $(k^2 + 2k + 1) + 5(k + 1) 7 = (k^2 + 5k 7) + (2k + 6)$ is odd.

• Since
$$k^2 + 5k - 7 = 2\ell + 1$$
 we know

$$(k+1)^2 + 5(k+1) - 7 = 2(\ell + k)$$

 $2\ell+1$

and since $\ell + k + 3 \in \mathbb{Z}$ we are done.

Of course we still need to put the two parts of the proof together.

(k+3) + 1

PRINCIPLE OF MATHEMATICAL INDUCTION

THEOREM: MATHEMATICAL INDUCTION.

For all $n \in \mathbb{N}$ let P(n) be a statement. Then if

- P(1) is true, and
- $P(k) \implies P(k+1)$ is true for all $k \in \mathbb{N}$

then P(n) is true for all $n \in \mathbb{N}$.

Warnings

- Induction *is not* "adding the next term to both sides"
- Induction *does not* prove all statements the law of the instrument
- Tell your reader if you use induction in your proof

COMPLETING OUR PROOF

For all
$$n\in\mathbb{N}$$
 , n^2+5n-7 is odd

PROOF.

We prove the result by induction.

- Base case: When n = 1 we have 1 + 5 7 = -1 which is odd.
- Inductive step: Assume that $k^2 + 5k 7$ is odd, so we can write

 $k^2 + \overline{5k - 7} = 2\overline{\ell + 1}$ for some $\ell \in \mathbb{Z}$ and so $(k+1)^2 + 5(k+1) - 7 = 2(\ell + k + 3) + 1$

and since $\ell + k + 3 \in \mathbb{Z}$, it follows that $(k+1)^2 + 5(k+1) - 7$ is odd. Since the base case and inductive step hold, the result follows by induction.

ANOTHER EXAMPLE

PROPOSITION:

For every natural number n, $3 \mid (4^n-1)$

Scratch work

- ullet When n=1, easy $3\mid (4-1)$
- Assume $3 \mid (4^k 1)$, so $4^k 1 = 3\ell$.
- Writing $4^k = 3\ell + 1$ shows

$$4^{k+1}=12\ell+4$$
 so 4^{k+1} -

done!

 $-1=12\ell+3$

WRITE IT UP NICELY

For every natural number $n,3 \mid (4^n-1)$

PROOF.

We prove the result by induction.

- Base case: When n=1 we have $3 \mid (4-1)$, so the result holds.
- Inductive step: Assume that $3 \mid (4^k-1)$, so $4^k = 3\ell + 1$ for some $\ell \in \mathbb{Z}.$ Then

$$4^{k+1} - 1 = 4(3\ell + 1) - 1 = 3(4\ell + 1)$$

and so $3 \mid (4^{k+1} - 1)$ as required.

Since the base case and inductive step hold, the result follows by induction.

he $\ell \in \mathbb{Z}.$ Ther $(4\ell+1)$