PLP - 19 TOPIC 19—PROOF OF INDUCTION

Demirbaş & Rechnitzer

PROOF OF INDUCTION

THEOREM: MATHEMATICAL INDUCTION.

For all $n \in \mathbb{N}$ let P(n) be a statement. Then if

- P(1) is true, and
- $\overline{P(k)} \implies \overline{P(k+1)}$ is true for all $k \in \mathbb{N}$

then P(n) is true for all $n \in \mathbb{N}$.

We won't give a rigorous proof, but will give a "proof sketch"

A GOOD SET AND A BAD SET

Assume, P(1) is true, and $P(k) \implies P(k+1)$ is true.

Define two sets

- Good set Let $G = \{n \text{ s.t. } P(n) \text{ is true}\}$. We know $1 \in G$.
- Bad set Let $B = \{n \text{ s.t. } P(n) \text{ is false}\}$

Now either $B = \varnothing$ or $B \neq \varnothing$.

- If $B \neq \varnothing$, let q be the smallest element of B
- Then P(q) is first number that makes P(n) false.
- We must have P(q-1) is true
- But by assumption $P(q-1) \implies P(q)$, so P(q) is true.
- But then $q \notin B$.
- So there cannot be such an element q

So B = arnothing , so P(n) is true for all $n \in \mathbb{N}$

We are doing two sneaky things here

- This is a **proof by contradiction** in disguise
- We are using the well ordering principle of \mathbb{N}

DEFINITION: (THE WELL ORDERING PRINCIPLE).

A set A is well ordered if every non-empty subset $B \subseteq A$ has a smallest element

Notice that \mathbb{N} is well ordered, but $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are not.