PLP - 20
TOPIC 20—MORE INDUCTION
Demirbaş \& Rechnitzer

MORE EXAMPLES

PROPOSITION:

Let $x>-1$, then for all $n \in \mathbb{N},(1+x)^{n} \geq 1+n x$

Scratch work

- When $n=1$ we have $(1+x)=1+x$, so all good
- Assume that $(1+x)^{k} \geq(1+k x)$, so

$$
\begin{aligned}
(1+x)^{k+1} & =(1+x) \cdot(1+x)^{k} \\
& \geq(1+x)(1+k x)=1+(k+1) x+k x^{2} \\
& \geq 1+(k+1) x
\end{aligned}
$$

$$
\text { since } x^{2} \geq 0
$$

Where did we use $x>-1$?

PROOF.

We proceed by induction. Assume that $x>-1$.

- Base case: When $n=1$ we have $(1+x)=(1+x)$, as required
- Inductive step: Assume that the result holds for $n=k$, so $(1+x)^{k} \geq(1+k x)$. Then

$$
\begin{aligned}
(1+x)^{k+1} & \geq(1+x)(1+k x) & & \text { since } 1+x>0 \\
& =1+(k+1) x+k x^{2} & & \\
& \geq 1+(k+1) x & & \text { since } k x^{2} \geq 0
\end{aligned}
$$

and so the result holds for $n=k+1$

ANOTHER EXAMPLE

PROPOSITION:

For all $n \in \mathbb{N}, 1+3+\cdots+(2 n-1)=n^{2}$.

Scratch work

- Base case: When $n=1$ we have $(2-1)=1^{2}$.
- Inductive step: Assume $1+3+\cdots+(2 k-1)=k^{2}$ then

$$
\begin{aligned}
1+3+\cdots+(2 k-1)+(2 k+1) & =k^{2}+(2 k+1) \\
& =(k+1)^{2}
\end{aligned}
$$

as required.
Warning do not think "add the next term". It is " $P(k) \Longrightarrow P(k+1)$ "

PROOF.

We prove the result by induction.

- Base case: when $n=1$, we have $(2-1)=1^{2}$, as required.
- Inductive step: assume that $1+3+\cdots+(2 k-1)=k^{2}$, but then

$$
1+3+\cdots+(2 k-1)+(2 k+1)=k^{2}+2 k+1=(k+1)^{2}
$$

Hence the inductive step holds.
So by induction the result holds for all $n \in \mathbb{N}$.
Warning inductive step is not "add the next term". It is " $P(k) \Longrightarrow P(k+1)$ "

