PLP - 22
 TOPIC 22-SUBSETS AND POWER SETS

Demirbaş \& Rechnitzer

SUBSETS

DOING MORE WITH SETS

Is the set A contained in the set B ?

DEFINITION: SUBSET.

Let A, B be sets

- We say that A is a subset of B when every element of A is also an element of B.
- We denote this $A \subseteq B$ and also call B a superset of A. We can also write $B \supseteq A$.
- A is a proper subset of B when $A \subseteq B$, but B contains at least one element that is not in A.
- Finally, two A and B are equal when they are subsets of each other. That is

$$
A=B \Longleftrightarrow((A \subseteq B) \wedge(B \subseteq A))
$$

NOTES AND EXAMPLES

Note that

- For all sets $A, \varnothing \subseteq A$ and $A \subseteq A$
- $A \subseteq B \equiv \forall a \in A, a \in B \equiv(a \in A) \Longrightarrow(a \in B)$
- $A \nsubseteq B \equiv \exists a \in A$ s.t. $a \notin B$

Some examples

- $\{1,2,7\} \nsubseteq\{1,2,3,4,5\}$
- $\{2 n: n \in \mathbb{Z}\} \subseteq \mathbb{Z}$
- The subsets of $\{0,1\}$ are $\varnothing,\{0\},\{1\},\{0,1\}$

DEFINITION:

Let A be a set. The power set of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

$$
\begin{aligned}
\mathcal{P}(\varnothing) & =\{\varnothing\} \\
\mathcal{P}(\{1\}) & =\{\varnothing,\{1\}\} \\
\mathcal{P}(\{0,1\}) & =\{\varnothing,\{0\},\{1\},\{0,1\}\} \\
\mathcal{P}(\{0,1,2\}) & =\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}
\end{aligned}
$$

Not hard to prove that if $|A|=n$ then $|\mathcal{P}(A)|=2^{n}$.
Near end of course we'll prove a very interesting result for infinite sets A and their power sets.

