PLP - 23 TOPIC 23—SET OPERATIONS

Demirbaş & Rechnitzer

SET OPERATIONS

UNION AND INTERSECTION

DEFINITION:

Let A, B be sets. The union of A and B is

 $A\cup B=\{x\ :\ x\in A \text{ or } x\in B\}$

DEFINITION:

The intersection of sets A and B, is

 $A \cap B = \{x : x \in A \text{ and } x \in B\}$

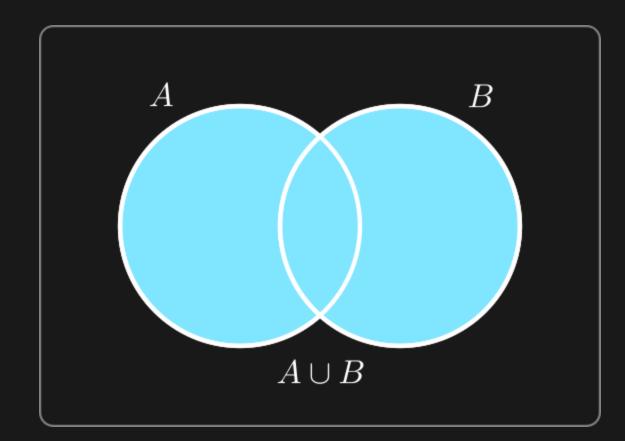
If the intersection $A \cap B = \emptyset$, then we say that A and B are disjoint.

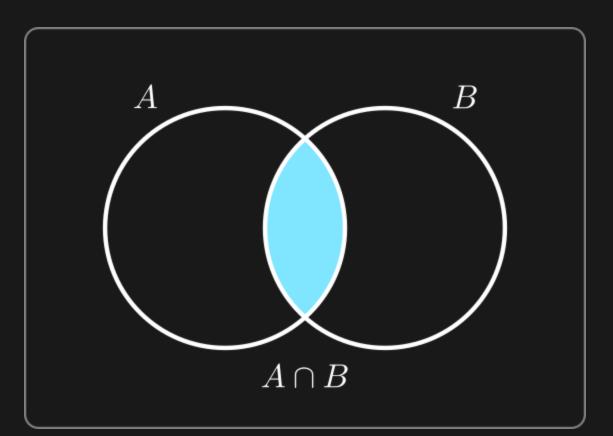
NOTES AND EXAMPLES

• Please use correct notation

 $A \cup B =$ unions of sets $P \lor Q = disjunction$ of statements $P \land Q = conjunction$ of statements

- There are *parallels* between set operations and logical operations but they are *not* the same
- Let $A = \{1, 2, 3, 4\}, B = \{p : p \text{ is prime}\} \text{ and } C = \{4, 5, 6, 7\}$

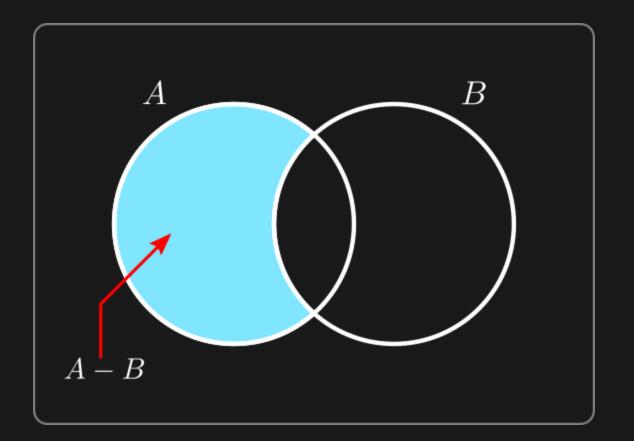

$$A\cup C=\{1,2,3,4,5,6,7\} \qquad A\cap B=\{2,3\}$$


 $A \cap B =$ intersection of sets

 $B\cap C=\{5,7\}$ **}** }

VISUALISING THINGS

We can picture union and intersection using Venn diagrams

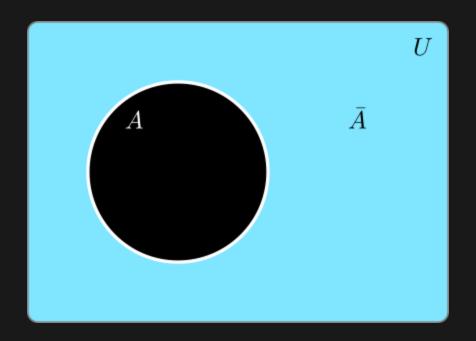


ANOTHER OPERATION

DEFINITION:

Let A and B be sets. Then the difference, A - B is

$$A-B=\{x\in A\;:\;x
ot\in B\}$$


UNIVERSALS AND COMPLEMENTS

DEFINITION:

Given a universal set U and $A \subset U$, the complement of A is

$$ar{A}=\{x\in U\ :\ x
ot\in A\}$$
 or equivalently

The universal set is the set from which we draw elements in the current *context*

$x\in ar{A}\iff x ot\in A$

NOTES AND EXAMPLES

- Compl-e-ment vs Compl-i-ment
- A B also written $A \setminus B$ and is called the relative complement of B in A
- We have $A B = A \cap B$
- Let $U = \mathbb{N}, A = \{1, 2, 3, 4\}, B = \{p : p \text{ is prime}\} \text{ and } C = \{4, 5, 6, 7\}$

$$A-C=\{1,2,3\} \qquad A-B=\{1,4\} \qquad A$$

 $ar{A}=\{n\in\mathbb{N}\ :\ n\geq5\}$

ORDERED PAIRS

Sets don't care about order, but many applications need pairs of objects.

DEFINITION:

An ordered pair of elements is an ordered list of two elements.

The ordered pair of two elements a, b is written (a, b) and satisfies

(a,b) = (c,d) only when (a = c) and (b = d), and ightarrow

•
$$(a,b)
eq (b,a)$$
 unless $(a=b)$.

Warning

- use correct notation: $\{1,3\}$ is a set, (1,3) is an ordered pair
- we sometimes use $(1,3) = \{x \in \mathbb{R} : 1 < x < 3\}$ give your reader context

CARTESIAN PRODUCT

DEFINITION: CARTESIAN PRODUCT.

The Cartesian product of sets A, B is

 $A imes B=\{(a,b)\ :\ a\in A,b\in B\}$

Note for A, B
eq arnothing , A imes B
eq B imes A unless A = B.

Let $A = \{a, b, c\}$ and $B = \{1, 2\}$ then

 $A imes B = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$