PLP - 23
 TOPIC 23-SET OPERATIONS

Demirbaş \& Rechnitzer

SET OPERATIONS

DEFINITION:

Let A, B be sets. The union of A and B is

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

DEFINITION:

The intersection of sets A and B, is

$$
A \cap B=\{x: x \in A \text { and } x \in B\}
$$

If the intersection $A \cap B=\varnothing$, then we say that A and B are disjoint.

NOTES AND EXAMPLES

- Please use correct notation

$$
\begin{array}{ll}
A \cup B=\text { unions of sets } & A \cap B=\text { intersection of sets } \\
P \vee Q=\text { disjunction of statements } & P \wedge Q=\text { conjunction of statements }
\end{array}
$$

- There are parallels between set operations and logical operations but they are not the same
- Let $A=\{1,2,3,4\}, B=\{p: p$ is prime $\}$ and $C=\{4,5,6,7\}$

$$
A \cup C=\{1,2,3,4,5,6,7\} \quad A \cap B=\{2,3\} \quad B \cap C=\{5,7\}
$$

VISUALISING THINGS

We can picture union and intersection using Venn diagrams

DEFINITION:

Let A and B be sets. Then the difference, $A-B$ is

$$
A-B=\{x \in A: x \notin B\}
$$

UNIVERSALS AND COMPLEMENTS

DEFINITION:

Given a universal set U and $A \subset U$, the complement of A is

$$
\bar{A}=\{x \in U: x \notin A\} \quad \text { or equivalently } \quad x \in \bar{A} \Longleftrightarrow x \notin A
$$

The universal set is the set from which we draw elements in the current context

NOTES AND EXAMPLES

- Compl-e-ment vs Compl-i-ment
- $A-B$ also written $A \backslash B$ and is called the relative complement of B in A
- We have $A-B=A \cap \bar{B}$
- Let $U=\mathbb{N}, A=\{1,2,3,4\}, B=\{p: p$ is prime $\}$ and $C=\{4,5,6,7\}$

$$
A-C=\{1,2,3\} \quad A-B=\{1,4\} \quad \bar{A}=\{n \in \mathbb{N}: n \geq 5\}
$$

ORDERED PAIRS

Sets don't care about order, but many applications need pairs of objects.

DEFINITION:

An ordered pair of elements is an ordered list of two elements.
The ordered pair of two elements a, b is written (a, b) and satisfies

- $(a, b)=(c, d)$ only when $(a=c)$ and $(b=d)$, and
- $(a, b) \neq(b, a)$ unless $(a=b)$.

Warning

- use correct notation: $\{1,3\}$ is a set, $(1,3)$ is an ordered pair
- we sometimes use $(1,3)=\{x \in \mathbb{R}: 1<x<3\}$ - give your reader context

CARTESIAN PRODUCT

DEFINITION: CARTESIAN PRODUCT.

The Cartesian product of sets A, B is

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Note for $A, B \neq \varnothing, A \times B \neq B \times A$ unless $A=B$.

Let $A=\{a, b, c\}$ and $B=\{1,2\}$ then

$$
A \times B=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}
$$

