PLP - 24 TOPIC 24—SET PROOFS

Demirbaş & Rechnitzer

PROVING THINGS

WRITING SET OPERATIONS AS STATEMENTS

Let A, B be sets.

Subset and equality

 $ullet (A\subseteq B) \quad \equiv \quad (orall x\in A, x\in B) \quad \equiv \quad (x\in A \implies x\in B).$ $\bullet \ (A=B) \quad \equiv \quad ((A\subseteq B) \land (B\subseteq A)) \quad \equiv \quad ((x\in A) \iff (x\in B))$

Intersection and union

- $ullet \, (x \in A \cap B) \quad \equiv \quad (x \in A \wedge x \in B)$
- $ullet (x\in A\cup B) \quad \equiv \quad (x\in Aee x\in B)$

Complement and difference

 $ullet (x\in A) \quad \equiv \quad (x
otin A) \quad \equiv \quad \sim (x\in A)$ $ullet (x\in A-B) \quad \equiv \quad ((x\in A)\wedge (x
otin B)) \quad \equiv \quad ((x\in A)\wedge \sim (x\in B))$

A SUBSET EXAMPLE

PROPOSITION:

Let $A=\{n\in\mathbb{Z}\ :\ 6\mid n\}$ and $B=\{n\in\mathbb{Z}\ :\ 2\mid n\}$, then $A\subseteq B$

Scratch work

- We need to prove $a \in A \implies a \in B$
- So assume that $a \in A$. Hence a is an integer divisible by 6
- This means a = 6k for some $k \in \mathbb{Z}$.
- We need to show that $a \in B$ which means we need to show that $2 \mid a$
- But since a = 6k, we know $a = 2 \cdot 3k$ so, $2 \mid a$ as required.

WRITE IT UP NICELY

$A=\{n\in\mathbb{Z}\ :\ 6\mid n\}\subseteq\{n\in\mathbb{Z}\ :\ 2\mid n\}=B$

PROOF.

- Let the sets A,B be as stated and assume that $a\in A.$
- Hence we know that $6 \mid a ext{ and so } a = 6k$
- This implies that a=2(3k) and so $2\mid a$
- By the definition of the set B, $a\in B$
- So $A \subseteq B$ as required

PROPOSITION:

Let A, B, C be sets. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Scratch work

- What do we assume? That $A \subseteq B$ and $B \subseteq C$.
- What do we need to prove? $A \subseteq C$, that is $(x \in A) \implies (x \in C)$
- A problem what do we assume? Either $x \in A$ or $x \notin A$.
 - \circ If $x \in A$ then since $A \subseteq B$, $x \in B$.

Then since $x \in B$ and $B \subseteq C$, $x \in C$

 \circ If $x \notin A$ then the implication " $(x \in A) \implies (x \in C)$ " is true.

WRITE IT UP

$(A\subseteq B)\wedge (B\subseteq C)\implies (A\subseteq C)$

PROOF.

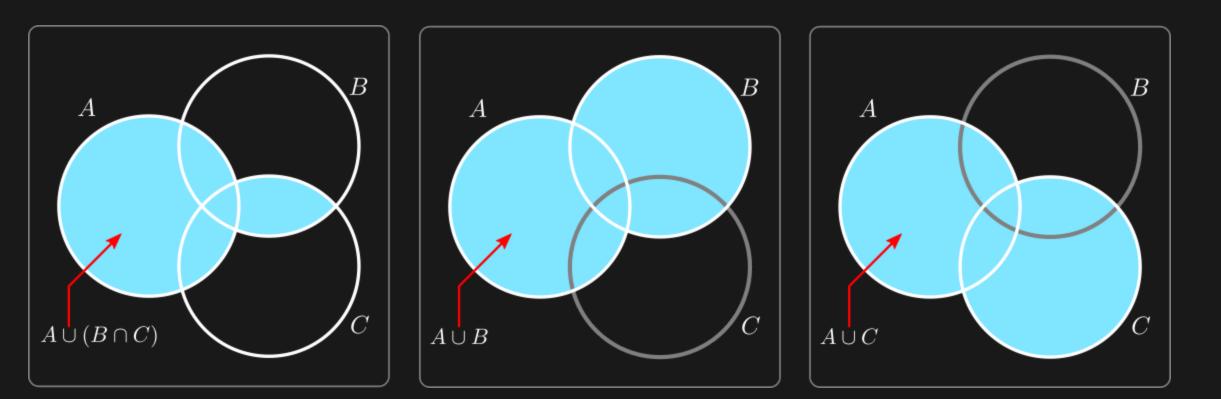
- Assume that $A \subseteq B$ and $B \subseteq C$.
- Further let $x \in A$
- Since $A\subseteq B$, we know that $x\in B$
- Then similarly, since $B\subseteq C$, we know that $x\in C$
- Hence $A \subseteq C$ as required

A DISTRIBUTIVE RESULT

PROPOSITION:

Let A, B, C be sets, then $A \cup (B \cap C) = (A \cup C) \cap (A \cup B)$.

Scratch work



JUST DO ONE INCLUSION

$A\cup (B\cap C)\subseteq (A\cup C)\cap (A\cup B)$

- We have to prove LHS is a subset of RHS
- Let $x \in \mathsf{LHS}$. Hence $x \in A$ or $x \in B \cap C$.
- So we have 2 cases to consider
 - \circ Assume $x \in A$. Then $x \in A \cup C$ and $x \in A \cup B$
 - \circ Now assume $x \in B \cap C$, then $x \in B$ and $x \in C$ Since $x \in B$, we know $x \in B \cup A$. Similarly $x \in C$, so $x \in C \cup A$.
- In both cases, $x \in A \cup B$ and $x \in A \cup C$, so $x \in \mathsf{RHS}$ as required

WRITE IT UP

$A\cup (B\cap C)\subseteq (A\cup C)\cap (A\cup B)$

PROOF.

Let $x \in A \cup (B \cap C)$, so that $x \in A$ or $x \in B \cap C$. We consider each case separately.

- Assume that $x \in A$, then we know that $x \in A \cup B$. Simiarly, we have $x \in A \cup C$.
- Now assume that $x \in B \cap C$, so that $x \in B$ and $x \in C$. Since $x \in B$ it follows that $x \in B \cup A$. Similarly, because $x \in C$, $x \in C \cup A$. In both cases, $x \in (A \cup B)$ and $x \in (A \cup C)$. Hence $x \in (A \cup C) \cap (A \cup B)$ as required.