PLP - 24
 TOPIC 24-SET PROOFS

Demirbaş \& Rechnitzer

PROVING THINGS

Let A, B be sets.
Subset and equality

- $(A \subseteq B) \equiv(\forall x \in A, x \in B) \equiv(x \in A \Longrightarrow x \in B)$.
- $(A=B) \equiv((A \subseteq B) \wedge(B \subseteq A)) \equiv((x \in A) \Longleftrightarrow(x \in B))$

Intersection and union

- $(x \in A \cap B) \equiv(x \in A \wedge x \in B)$
- $(x \in A \cup B) \equiv(x \in A \vee x \in B)$

Complement and difference

- $(x \in \bar{A}) \equiv(x \notin A) \equiv \sim(x \in A)$
- $(x \in A-B) \equiv((x \in A) \wedge(x \notin B)) \equiv((x \in A) \wedge \sim(x \in B))$

PROPOSITION:

Let $A=\{n \in \mathbb{Z}: 6 \mid n\}$ and $B=\{n \in \mathbb{Z}: 2 \mid n\}$, then $A \subseteq B$

Scratch work

- We need to prove $a \in A \Longrightarrow a \in B$
- So assume that $a \in A$. Hence a is an integer divisible by 6
- This means $a=6 k$ for some $k \in \mathbb{Z}$.
- We need to show that $a \in B$ which means we need to show that $2 \mid a$
- But since $a=6 k$, we know $a=2 \cdot 3 k$ so, $2 \mid a$ as required.

$$
A=\{n \in \mathbb{Z}: 6 \mid n\} \subseteq\{n \in \mathbb{Z}: 2 \mid n\}=B
$$

PROOF.

- Let the sets A, B be as stated and assume that $a \in A$.
- Hence we know that $6 \mid a$ and so $a=6 k$
- This implies that $a=2(3 k)$ and so $2 \mid a$
- By the definition of the set $B, a \in B$
- So $A \subseteq B$ as required

ANOTHER EXAMPLE

PROPOSITION:

Let A, B, C be sets. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Scratch work

- What do we assume? That $A \subseteq B$ and $B \subseteq C$.
- What do we need to prove? $A \subseteq C$, that is $(x \in A) \Longrightarrow(x \in C)$
- A problem - what do we assume? Either $x \in A$ or $x \notin A$.
- If $x \in A$ then since $A \subseteq B, x \in B$.

Then since $x \in B$ and $B \subseteq C, x \in C$

- If $x \notin A$ then the implication " $(x \in A) \Longrightarrow(x \in C)$ " is true.

$$
(A \subseteq B) \wedge(B \subseteq C) \Longrightarrow(A \subseteq C)
$$

PROOF.

- Assume that $A \subseteq B$ and $B \subseteq C$.
- Further let $x \in A$
- Since $A \subseteq B$, we know that $x \in B$
- Then similarly, since $B \subseteq C$, we know that $x \in C$
- Hence $A \subseteq C$ as required

A DISTRIBUTIVE RESULT

PROPOSITION:

Let A, B, C be sets, then $A \cup(B \cap C)=(A \cup C) \cap(A \cup B)$.

Scratch work

JUST DO ONE INCLUSION

$A \cup(B \cap C) \subseteq(A \cup C) \cap(A \cup B)$

- We have to prove LHS is a subset of RHS
- Let $x \in$ LHS. Hence $x \in A$ or $x \in B \cap C$.
- So we have 2 cases to consider
- Assume $x \in A$. Then $x \in A \cup C$ and $x \in A \cup B$
- Now assume $x \in B \cap C$, then $x \in B$ and $x \in C$

Since $x \in B$, we know $x \in B \cup A$.
Similarly $x \in C$, so $x \in C \cup A$.

- In both cases, $x \in A \cup B$ and $x \in A \cup C$, so $x \in$ RHS as required

$A \cup(B \cap C) \subseteq(A \cup C) \cap(A \cup B)$

PROOF.

Let $x \in A \cup(B \cap C)$, so that $x \in A$ or $x \in B \cap C$. We consider each case separately.

- Assume that $x \in A$, then we know that $x \in A \cup B$. Simiarly, we have $x \in A \cup C$.
- Now assume that $x \in B \cap C$, so that $x \in B$ and $x \in C$.

Since $x \in B$ it follows that $x \in B \cup A$. Similarly, because $x \in C, x \in C \cup A$. In both cases, $x \in(A \cup B)$ and $x \in(A \cup C)$. Hence $x \in(A \cup C) \cap(A \cup B)$ as required.

