PLP - 25 TOPIC 25-MORE SET PROOFS

Demirbaş & Rechnitzer

CARTESIAN AND POWER SET PROOFS

A CARTESIAN EXAMPLE

PROPOSITION:

Let $\overline{A,B,C}$ be sets, then $A imes (B\cup \overline{C})=(\overline{A imes B}) \overline{\cup (A imes \overline{C})}.$

- We'll start with $A imes (B \cup C) \supseteq (A imes B) \cup (A imes C)$
- Since cartesian product, assume $(x,y) \in \mathsf{RHS}$
- So $(x,y)\in A imes B$ or $(x,y)\in A imes C$
 - $\circ\,$ Case 1: When $(x,y)\in A imes B$, $x\in A$ and $y\in B$. Hence $y\in B\cup C$
 - \circ Case 2: When $(x,y) \in A imes C$, $x \in A$ and $y \in C$. Hence $y \in C \cup B$
- In both cases, $x \in A$ and $y \in B \cup C$, so $(x,y) \in \mathsf{LHS}$.

CONTINUING CARTESIAN EXAMPLE

$A \times (B \cup C) = (A \times B) \cup (A \times C)$

Scratch work continued

- No do $A imes (B \cup C) \subseteq (A imes B) \cup (A imes C)$
- Assume $(x,y) \in \mathsf{LHS}$
- Then $x \in A$ and $y \in B \cup C$, so $y \in B$ or $y \in C$
 - $egin{array}{ll} \circ \ {\sf Case} \ 1: {\sf When} \ y \in B, \ {\sf we} \ {\sf know} \ {\sf that} \ (x,y) \in A imes B, \ {\sf so} \ (x,y) \in (A imes B) \cup (A imes C) \ (X imes C) \ (X$ $\circ\,$ Case 2: When $y\in C$, we know that $(x,y)\in A imes C$, so $(x,y)\in (A imes C)\cup (A imes B)$
- In both cases, $(x,y) \in \mathsf{RHS}$

You can write this up nicely.

POWER SET WARM-UP

PROPOSITION:

$X\subseteq A \implies X\subseteq A\cup B$ $X \subseteq A \cap B \implies X \subseteq A$ $\overline{(X\subseteq A)}\wedge (X\subseteq B) \iff X\subseteq A\cap B$

PROOF.

- Let $X \subseteq A$. Assume that $x \in X$, which implies that $x \in A$. Hence $x \in A \cup B$.
- Now let $X \subseteq A \cap B$ and assume $x \in X$. Hence $x \in A \cap B$ and so $x \in A$.
- Let $X \subseteq A$ and $X \subseteq B$, and assume $x \in X$. Then $x \in A$ and $x \in B$, so $x \in A \cap B$.
- Finally let $X \subseteq A \cap B$. Since $A \cap B \subseteq A$ we know $X \subseteq A$. Similar reasoning gives $X \subseteq B$.

A POWER SET EXAMPLE

PROPOSITION:

Let A, B be sets then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. The reverse inclusion does not hold.

- There are two things to prove here. Start with the inclusion.
- Is equivalent to $X \in \mathcal{P}(A) \cup \mathcal{P}(B) \implies X \in \mathcal{P}(A \cup B)$.
- So let $X\in\mathcal{P}\left(A
 ight)\cup\mathcal{P}\left(B
 ight)$. Means $X\subseteq A$ or $X\subseteq B$
- Now if $X \subseteq A$ then $X \subseteq A \cup B$ and so $X \in \mathcal{P}\left(A \cup B
 ight)$.
- The case $X \subseteq B$ will be similar.

DISPROOF OF REVERSE INCLUSION

$\mathcal{P}\left(A\cup B ight)\subseteq\mathcal{P}\left(A ight)\cup\mathcal{P}\left(B ight)$

- Since this is really "For all sets A, B ..." so disproof can be counter-example
- Notice that $X \in RHS$ then $X \subseteq A$ or $X \subseteq B$.
- While a set in LHS could could contain elements from both A, B
- Try to construct very small A, B to illustrate this.
- Let $A = \{1\}, B = \{2\}$, then $\{1, 2\} \in LHS$ but not in RHS.

PROOF OF RESULT

PROOF.

We first prove the inclusion and then show the reverse inclusion does not hold.

- Let $X\in\mathcal{P}\left(A
 ight)\cup\mathcal{P}\left(B
 ight)$. Hence $X\subseteq A$ or $X\subseteq B$. If $X\subseteq A$ then (as shown previously) $X\subseteq A\cup B$. Similarly if $X \subseteq B$ then $X \subseteq B \cup A$. This implies that $X \in \mathcal{P}(A \cup B)$ as required.
- We disprove the reverse inclusion with a counter example. Let $A = \{1\}, B = \{2\}$ and $X = \{1, 2\}$. Then $X \in \mathcal{P}\left(A \cup B\right)$, however $X \notin \mathcal{P}\left(A\right) \cup \mathcal{P}\left(B\right)$. Hence $\mathcal{P}\left(A \cup B\right) \nsubseteq \mathcal{P}\left(A\right) \cup \mathcal{P}\left(B\right)$.

ANOTHER POWER SET RESULT

PROPOSITION:

Let A,B be sets, then $\mathcal{P}\left(A
ight)\cap\mathcal{P}\left(B
ight)=\mathcal{P}\left(A\cap B
ight)$.

- There are two inclusions to prove here.
- Assume that $X\in LHS$, then $X\in\mathcal{P}\left(A
 ight)$ and $X\in\mathcal{P}\left(B
 ight)$.
- Hence $X \subseteq A$ and $X \subseteq B$ and we showed this means $X \subseteq A \cap B$
- Thus $X \in RHS$
- Now let $Y \in RHS$, so $Y \subseteq A \cap B$ we showed this means $Y \subseteq A$ and $Y \subseteq B$
- So $Y \in LHS$ as required.

WRITE IT UP NICELY

$$\mathcal{P}\left(A
ight)\cap\mathcal{P}\left(B
ight)=\mathcal{P}\left(A\cap B
ight)$$

PROOF.

We prove each inclusion in turn.

- Assume that $X\in LHS$. Then $X\in\mathcal{P}\left(A
 ight)$ and $X\in\mathcal{P}\left(B
 ight)$, and so $X\subseteq A$ and $X\subseteq B$. Hence $X \subseteq A \cap B$, and thus $X \in RHS$.
- Now assume that $Y\in RHS$. Then $Y\in \mathcal{P}\left(A\cap B
 ight)$ and so $Y\subseteq A\cap B$. This means that $Y\subseteq A$ and $Y \subseteq B$. Hence $Y \in \mathcal{P}(A)$ and $Y \in \mathcal{P}(B)$ and thus $Y \in LHS$.