PLP - 25
 TOPIC 25-MORE SET PROOFS

Demirbaş \& Rechnitzer

CARTESIAN AND POWER SET PROOFS

A CARTESIAN EXAMPLE

PROPOSITION:

Let A, B, C be sets, then $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

Scratch work

- We'll start with $A \times(B \cup C) \supseteq(A \times B) \cup(A \times C)$
- Since cartesian product, assume $(x, y) \in \mathrm{RHS}$
- So $(x, y) \in A \times B$ or $(x, y) \in A \times C$
- Case 1: When $(x, y) \in A \times B, x \in A$ and $y \in B$. Hence $y \in B \cup C$
- Case 2: When $(x, y) \in A \times C, x \in A$ and $y \in C$. Hence $y \in C \cup B$
- In both cases, $x \in A$ and $y \in B \cup C$, so $(x, y) \in$ LHS.

CONTINUING CARTESIAN EXAMPLE

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

Scratch work continued

- No do $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$
- Assume $(x, y) \in$ LHS
- Then $x \in A$ and $y \in B \cup C$, so $y \in B$ or $y \in C$
- Case 1: When $y \in B$, we know that $(x, y) \in A \times B$, so $(x, y) \in(A \times B) \cup(A \times C)$
- Case 2: When $y \in C$, we know that $(x, y) \in A \times C$, so $(x, y) \in(A \times C) \cup(A \times B)$
- In both cases, $(x, y) \in$ RHS

You can write this up nicely.

PROPOSITION:

$$
\begin{aligned}
X \subseteq A & \Longrightarrow X \subseteq A \cup B \\
X \subseteq A \cap B & \Longleftrightarrow X \subseteq A \\
(X \subseteq A) \wedge(X \subseteq B) & \Longleftrightarrow X \subseteq A \cap B
\end{aligned}
$$

PROOF.

- Let $X \subseteq A$. Assume that $x \in X$, which implies that $x \in A$. Hence $x \in A \cup B$.
- Now let $X \subseteq A \cap B$ and assume $x \in X$. Hence $x \in A \cap B$ and so $x \in A$.
- Let $X \subseteq A$ and $X \subseteq B$, and assume $x \in X$. Then $x \in A$ and $x \in B$, so $x \in A \cap B$.
- Finally let $X \subseteq A \cap B$. Since $A \cap B \subseteq A$ we know $X \subseteq A$. Similar reasoning gives $X \subseteq B$.

A POWER SET EXAMPLE

PROPOSITION:

Let A, B be sets then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. The reverse inclusion does not hold.

Scratch work

- There are two things to prove here. Start with the inclusion.
- Is equivalent to $X \in \mathcal{P}(A) \cup \mathcal{P}(B) \Longrightarrow X \in \mathcal{P}(A \cup B)$.
- So let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Means $X \subseteq A$ or $X \subseteq B$
- Now if $X \subseteq A$ then $X \subseteq A \cup B$ and so $X \in \mathcal{P}(A \cup B)$.
- The case $X \subseteq B$ will be similar.

$$
\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)
$$

Scratch work

- Since this is really "For all sets $A, B \ldots$ " so disproof can be counter-example
- Notice that $X \in R H S$ then $X \subseteq A$ or $X \subseteq B$.
- While a set in $L H S$ could could contain elements from both A, B
- Try to construct very small A, B to illustrate this.
- Let $A=\{1\}, B=\{2\}$, then $\{1,2\} \in L H S$ but not in $R H S$.

PROOF OF RESULT

PROOF.

We first prove the inclusion and then show the reverse inclusion does not hold.

- Let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Hence $X \subseteq A$ or $X \subseteq B$. If $X \subseteq A$ then (as shown previously) $X \subseteq A \cup B$. Similarly if $X \subseteq B$ then $X \subseteq B \cup A$. This implies that $X \in \mathcal{P}(A \cup B)$ as required.
- We disprove the reverse inclusion with a counter example. Let $A=\{1\}, B=\{2\}$ and $X=\{1,2\}$. Then $X \in \mathcal{P}(A \cup B)$, however $X \notin \mathcal{P}(A) \cup \mathcal{P}(B)$. Hence $\mathcal{P}(A \cup B) \nsubseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.

ANOTHER POWER SET RESULT

PROPOSITION:

Let A, B be sets, then $\mathcal{P}(A) \cap \mathcal{P}(B)=\mathcal{P}(A \cap B)$.

Scratch work

- There are two inclusions to prove here.
- Assume that $X \in L H S$, then $X \in \mathcal{P}(A)$ and $X \in \mathcal{P}(B)$.
- Hence $X \subseteq A$ and $X \subseteq B$ - and we showed this means $X \subseteq A \cap B$
- Thus $X \in R H S$
- Now let $Y \in R H S$, so $Y \subseteq A \cap B$ - we showed this means $Y \subseteq A$ and $Y \subseteq B$
- So $Y \in L H S$ as required.

$$
\mathcal{P}(A) \cap \mathcal{P}(B)=\mathcal{P}(A \cap B)
$$

PROOF.

We prove each inclusion in turn.

- Assume that $X \in L H S$. Then $X \in \mathcal{P}(A)$ and $X \in \mathcal{P}(B)$, and so $X \subseteq A$ and $X \subseteq B$. Hence $X \subseteq A \cap B$, and thus $X \in R H S$.
- Now assume that $Y \in R H S$. Then $Y \in \mathcal{P}(A \cap B)$ and so $Y \subseteq A \cap B$. This means that $Y \subseteq A$ and $Y \subseteq B$. Hence $Y \in \mathcal{P}(A)$ and $Y \in \mathcal{P}(B)$ and thus $Y \in L H S$.

