PLP - 26 **TOPIC 26—RELATIONS**

Demirbaş & Rechnitzer

RELATIONS

RELATIONSHIPS

- Many expressions in mathematics describe *relationships* between objects
 - a = b the objects a and b are equal.
 - a < b b the number a is strictly less than the number b.
 - $a \in B$ the object a is a member of the set B.
 - $\circ A \subseteq B$ the set A is a subset of the set B.
 - $\circ a \mid b$ the number a is a divisor of the number b.
- Focus on (say) divisibility we can think of the symbol "|" as an operator on *pairs* of integers.
 - \circ we write $a \mid b$ when a divides b
 - \circ and write $a \nmid b$ when a does not divide b
- Divisibility naturally defines a subset of $\mathbb{N} \times \mathbb{N}$:

 $R = \{(a, b) \in \mathbb{N} \times \mathbb{N} : a \text{ divides } b\}$

RELATION AS SUBSET OF CARTESIAN PRODUCT

Consider divisibility on the set $A = \{1, 2, 4, 8\}$

 $4 \mid 1$ $4 \mid 2$ $4 \mid 4$ $4 \mid 8$ $8 \nmid 1$ $8 \nmid 2$ $8 \nmid 4$ $8 \mid 8$

Can *define* the relation as subset of $A \times A$:

 $R = \{(1,1), (1,2), (1,4), (1,8), (2,2), (2,4), (2,8), (4,4), (4,8), (8,8)\}$

And we can write $x \mathrel{R} y$ when $(x,y) \in R$

RELATIONS

DEFINITION:

Let A be a set.

- A relation, R, on A is a subset $R \subseteq A imes A$.
- If $(x,y)\in R$ we write $x \; R \; y$, and otherwise write $x \; R \; y$

Examples

- $R = \{(x,x) \; : \; x \in \mathbb{R}\}$ is "=" on the reals
- $S=ig\{(x,y)\in\mathbb{Z}^2\ :\ x-y\in\mathbb{N}ig\}$ is ">" on integers.
- Let *B* be a set, then
 - $\circ R = arnothing$ is the trivial relation on B
 - $\circ \; S = B imes B$ is the universal relation on B

DRAW THE RELATION

- Consider the set $A = \{1, 2, 4, 8\}$ and divisibility.
- Draw node for each $a \in A$.
- If $a \mathrel{R} b$ then draw arrow a
 ightarrow b

