PLP - 27 TOPIC 27—PROPERTIES & CONGRUENCE

Demirbaş & Rechnitzer

PROPERTIES OF RELATIONS

TOO GENERAL

- Definiton of relation is too(?) general
- Usually require additional properties to be interesting
- Consider "is divisible by" on integers. Has useful properties
 - $\circ\,$ For all $n\in\mathbb{Z}$, we know $n\mid n$
 - \circ For all $a, b, c \in \mathbb{Z}$, if $a \mid b$ and $b \mid c$ then $a \mid c$
- Notice that \leq on reals has *similar* properties
 - \circ For all $x \in \mathbb{R}$, we know x < x
 - $x \circ \mathsf{For} \ \mathsf{all} \ x, y, z \in \mathbb{R}$, $x \leq y \ \mathsf{and} \ y \leq z \ \mathsf{then} \ x \leq z$

Such additional *structure* make those relations more interesting and useful

3 USEFUL PROPERTIES

DEFINITION:

Let \overline{R} be a relation on a set A. Then \overline{R} is

- reflexive when $orall a \in A, a \mathrel{R} a$
- symmetric when $orall a, b, a \mathrel{R} b \implies b \mathrel{\overline{R}} a$
- transitive when $orall a, b, c, (a \; R \; b) \land (b \; \overline{R \; c}) \implies a \; \overline{R \; c}$

Relations on $\mathbb Z$	<	\leq	=	\neq
reflexive	F	Т	Т	F
symmetric	F	F	Т	Т
transitive	Т	Т	Т	F

ΤF FF Τ F

PICTURES

symmetric

transitive

EXAMPLES — GOOD FOR CLASS

Let R be the relation "is a subset of" on $\mathcal{P}\left(\mathbb{Z}
ight)$

Let R be the relation "lives within 10km of" on the set of people watching now.

CONGRUENCE

CONGRUENCE MODULO n

THEOREM:

Let $n \in \mathbb{N}$ then the relation of congruence modulo n is reflexive, symmetric and transitive.

Scratch work

- Let *n* be a fixed real number.
- Recall that $a \equiv b \pmod{n}$ when $n \mid (a b) must$ know definitions
- Three things to prove, so three sub-proofs
- This uses

$$P \implies (Q \wedge R \wedge S) \equiv (P \implies Q) \wedge (P =$$

$\implies R) \land (P \implies S)$

REFLEXIVE

congruence modulo n is reflexive

Scratch work

- Need to show $orall a \in \mathbb{Z}, n \mid (a-a)$
- So let a be any integer, then $a a = 0 = n \cdot 0$
- Hence $n \mid (a a)$.

PROOF.

Fix $n \in \mathbb{N}$, and let $a \in \mathbb{Z}$. Then since $(a - a) = n \cdot 0$, it follows that $n \mid (a - a)$. Hence $a \equiv a \pmod{n}$ as required.

SYMMETRIC

congruence modulo *n* is symmetric

Scratch work

- Need to show $\forall a, b \in \mathbb{Z}, (n \mid (a b)) \implies (n \mid (b a))$
- So let a, b be any integers, and assume that $n \mid (a b)$
- Hence $a b = n \cdot k$ and thus b a = n(-k)

PROOF.

Fix $n \in \mathbb{N}$, and let $a, b \in \mathbb{Z}$. Assume that $a \equiv b \pmod{n}$, and so $(a - b) = n \cdot k$ for some $k \in \mathbb{Z}$. This tells us that (b - a) = n(-k) and so $n \mid (b - a)$ and thus $b \equiv a \pmod{n}$ as we needed.

TRANSITIVE

congruence modulo n is transitive

Scratch work

- $\bullet \ \mathsf{Need} \ \mathsf{to} \ \mathsf{show} \ \forall a, b, c \in \mathbb{Z}, (n \ \mid (a-b)) \land \overline{(n \mid (b-c))} \implies (n \mid (a-c))$ • So let a, b, c be any integers, and assume that $n \mid (a - b)$ and $n \mid (b - c)$
- Hence $a b = n \cdot k$ and $b c = n \cdot \ell$
- We need to say something about a c easy! $a c = n(k + \ell)$

PROOF.

Fix $n \in \mathbb{N}$, and let $a, b, c \in \mathbb{Z}$. Assume that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. So $a-b=nk, b-c=n\ell$ for some $k,\ell\in\mathbb{Z}$.

Hence $(a - c) = n(k + \ell)$ and so $n \mid (a - c)$ and thus $a \equiv c \pmod{n}$ as we needed.