PLP - 27
 TOPIC 27-PROPERTIES \& CONGRUENCE

Demirbaş \& Rechnitzer

PROPERTIES OF RELATIONS

- Definiton of relation is too(?) general
- Usually require additional properties to be interesting
- Consider "is divisible by" on integers. Has useful properties
- For all $n \in \mathbb{Z}$, we know $n \mid n$
- For all $a, b, c \in \mathbb{Z}$, if $a \mid b$ and $b \mid c$ then $a \mid c$
- Notice that \leq on reals has similar properties
- For all $x \in \mathbb{R}$, we know $x \leq x$
- For all $x, y, z \in \mathbb{R}, x \leq y$ and $y \leq z$ then $x \leq z$

Such additional structure make those relations more interesting and useful

3 USEFUL PROPERTIES

DEFINITION:

Let R be a relation on a set A. Then R is

- reflexive when $\forall a \in A, a R a$
- symmetric when $\forall a, b, a R b \Longrightarrow b a$
- transitive when $\forall a, b, c,(a R b) \wedge(b R c) \Longrightarrow a R c$

Relations on \mathbb{Z}	$<$	\leq	$=$	\neq	\mid
reflexive	F	T	T	F	T

PICTURES

symmetric

transitive

EXAMPLES - GOOD FOR CLASS

Let R be the relation "is a subset of" on $\mathcal{P}(\mathbb{Z})$
Let R be the relation "lives within 10km of" on the set of people watching now.

CONGRUENCE

THEOREM:

Let $n \in \mathbb{N}$ then the relation of congruence modulo n is reflexive, symmetric and transitive.

Scratch work

- Let n be a fixed real number.
- Recall that $a \equiv b(\bmod n)$ when $n \mid(a-b)$ - must know definitions
- Three things to prove, so three sub-proofs
- This uses

$$
P \Longrightarrow(Q \wedge R \wedge S) \equiv(P \Longrightarrow Q) \wedge(P \Longrightarrow R) \wedge(P \Longrightarrow S)
$$

Scratch work

- Need to show $\forall a \in \mathbb{Z}, n \mid(a-a)$
- So let a be any integer, then $a-a=0=n \cdot 0$
- Hence $n \mid(a-a)$.

PROOF.
Fix $n \in \mathbb{N}$, and let $a \in \mathbb{Z}$. Then since $(a-a)=n \cdot 0$, it follows that $n \mid(a-a)$. Hence $a \equiv a(\bmod n)$ as required.

Scratch work

- Need to show $\forall a, b \in \mathbb{Z},(n \mid(a-b)) \Longrightarrow(n \mid(b-a))$
- So let a, b be any integers, and assume that $n \mid(a-b)$
- Hence $a-b=n \cdot k$ and thus $b-a=n(-k)$

PROOF.

Fix $n \in \mathbb{N}$, and let $a, b \in \mathbb{Z}$. Assume that $a \equiv b(\bmod n)$, and so $(a-b)=n \cdot k$ for some $k \in \mathbb{Z}$. This tells us that $(b-a)=n(-k)$ and so $n \mid(b-a)$ and thus $b \equiv a(\bmod n)$ as we needed.

Scratch work

- Need to show $\forall a, b, c \in \mathbb{Z},(n \mid(a-b)) \wedge(n \mid(b-c)) \Longrightarrow(n \mid(a-c))$
- So let a, b, c be any integers, and assume that $n \mid(a-b)$ and $n \mid(b-c)$
- Hence $a-b=n \cdot k$ and $b-c=n \cdot \ell$
- We need to say something about $a-c-$ easy! $a-c=n(k+\ell)$

PROOF.

Fix $n \in \mathbb{N}$, and let $a, b, c \in \mathbb{Z}$. Assume that $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$. So $a-b=n k, b-c=n \ell$ for some $k, \ell \in \mathbb{Z}$
Hence $(a-c)=n(k+\ell)$ and so $n \mid(a-c)$ and thus $a \equiv c(\bmod n)$ as we needed.

