PLP-28

TOPIC 28-EQUIVALENCE RELATIONS \& CLASSES

Demirbaş \& Rechnitzer

EQUIVALENCE RELATIONS

Important class of relations are those that are similar to "="

DEFINITION:

Let R be a relation on the set A.
We call R an equivalence relation when it is reflexive, symmetric and transitive.

Examples

- "has same parity as"
- "is congruent to"
- "has same birthday as"

Weaker than equality - can be equivalent without being equal

PICTURES

Let $A=\{0,1,2, \ldots, 10\}$ and consider congruence modulo 4 .
And similarly with "has the same parity as"

Notice that elements of A fall into connected subsets - equivalence classes

EQUIVALENCE CLASSES

DEFINITION:

Let R be an equivalence relation on A.
The equivalence class of $x \in A$ (with respect to R) is

$$
[x]=\{a \in A: a R x\}
$$

In our congruent modulo 4 example

$$
\begin{array}{ll}
{[0]=\{0,4,8\}=[4]=[8]} & {[1]=\{1,5,9\}=[5]=[9]} \\
{[2]=\{2,6,10\}=[6]=[10]} & {[3]=\{3,7\}=[7]}
\end{array}
$$

NO EQUIVALENCE CLASS IS EMPTY

LEMMA:

Let R be an equivalence relation on A.
For any $a \in A, a \in[a]$

PROOF.

Assume R is an equivalence relation on A, and let $a \in A$.
Since R is reflexive, we know that $a R a$. Hence (by definition), $a \in[a]$ as required.

THEOREM:

Suppose R is an equivalence relation on A, and let $a, b \in A$. Then

$$
[a]=[b] \Longleftrightarrow a R b
$$

Scratch work

- Have to prove both directions
- Assume $[a]=[b]$, then we need to show $a R b$
- We know (from above lemma) that $a \in[a]$, so $a \in[b]$
- Definition of $[b]=\{x \in A: x R b\}$, so $a R b$

CONTINUING

$$
[a]=[b] \Longleftrightarrow a R b
$$

Scratch work continued

- Now assume that $a R b$. We need to show $[a] \subseteq[b]$ and $[b] \subseteq[a]$
- So let $x \in[a]$, which tells us that $x R a$
- We know that R is transitive, so

$$
(x R a) \wedge(a R b) \Longrightarrow(x R b)
$$

so $x \in[b]$

- The other inclusion is similar, but we use symmetry of R to get $b R a$.

PROOF

PROOF.

We prove each implication in turn

- Assume $a R b$. We prove that $[a] \subseteq[b]$ and leave the other inclusion to the reader. Let $x \in[a]$, so that $x R a$. Since R is transitive, and $a R b$, we know that $x R b$. Hence $x \in[b]$ as required. The other inclusion is similar, but also uses symmetry of R.
- Now assume that $[a]=[b]$. By the lemma above, we know that $a \in[a]$, and so $a \in[b]$. By definition of the equivalence class of b, this tells us that $a R b$.

