PLP - 28 TOPIC 28—EQUIVALENCE RELATIONS & CLASSES

Demirbaş & Rechnitzer

EQUIVALENCE RELATIONS

EQUIVALENCE RELATIONS

Important class of relations are those that are similar to "="

DEFINITION:

Let R be a relation on the set A.

We call R an equivalence relation when it is reflexive, symmetric and transitive.

Examples

- "has same parity as"
- "is congruent to"
- "has same birthday as"

Weaker than equality — can be equivalent without being equal

PICTURES

Let $A = \{0, 1, 2, \dots, 10\}$ and consider congruence modulo 4.

And similarly with "has the same parity as"

Notice that elements of A fall into connected subsets — equivalence classes

EQUIVALENCE CLASSES

DEFINITION:

Let R be an equivalence relation on A.

The equivalence class of $x \in A$ (with respect to R) is

$$[x] = \{ a \in A \; : \; a \; R \; x \}$$

In our congruent modulo 4 example

$$egin{aligned} [0] &= \{0,4,8\} = [4] = [8] & [1] = \{1,\ [2] &= \{2,6,10\} = [6] = [10] & [3] = \{3,\$$

$egin{aligned} &,5,9 \ &= [5] = [9] \ &,7 \ &= [7] \end{aligned}$

LEMMA:

Let R be an equivalence relation on A.

For any $a\in A$, $a\in [a]$

PROOF.

Assume R is an equivalence relation on A, and let $a \in A$.

Since R is reflexive, we know that a R a. Hence (by definition), $a \in [a]$ as required.

THEOREM:

Suppose R is an equivalence relation on A, and let $a, b \in A$. Then

$$[a] = [b] \iff a \mathrel{R} b$$

Scratch work

- Have to prove both directions
- Assume [a] = [b], then we need to show $a \mathrel{R} b$
- We know (from above lemma) that $a\in \overline{[a]}$, so $a\in \overline{[b]}$
- Definition of $[b] = \{x \in A \; : \; x \mathrel{R} b\}$, so $a \mathrel{R} b$

CONTINUING

$$[a] = [b] \iff a \mathrel{R} b$$

Scratch work continued

- Now assume that $a \ R \ b$. We need to show $[a] \subseteq [b]$ and $[b] \subseteq [a]$
- So let $x \in [a]$, which tells us that $x \mathrel{R} a$
- We know that *R* is transitive, so

$$(x \mathrel{R} a) \wedge (a \mathrel{R} b) \implies (x \mathrel{L}$$

so $x\in [b]$

• The other inclusion is similar, but we use symmetry of R to get b R a.

$R \ b)$

PROOF

PROOF.

We prove each implication in turn

- Assume $a \ R \ b$. We prove that $[a] \subseteq [b]$ and leave the other inclusion to the reader. Let $x \in [a]$, so that $x \ R \ a$. Since R is transitive, and $a \ R \ b$, we know that $x \ R \ b$. Hence $x \in [b]$ as required. The other inclusion is similar, but also uses symmetry of R.
- Now assume that [a] = [b]. By the lemma above, we know that $a \in [a]$, and so $a \in [b]$. By definition of the equivalence class of b, this tells us that a R b.