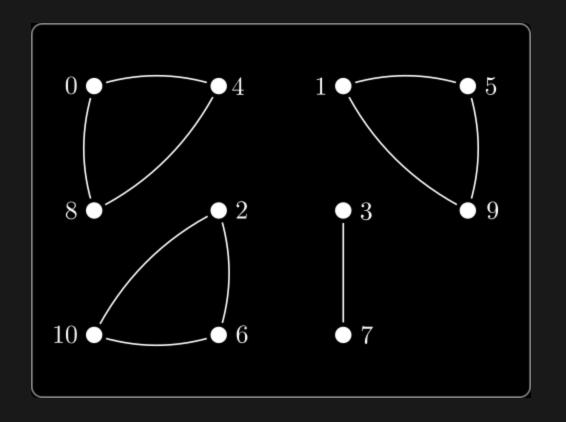
PLP - 29 **TOPIC 29—SET PARTITIONS**

Demirbaş & Rechnitzer

SET PARTITIONS

EQUIVALENCE CLASSES — EQUAL OR DISJOINT



COROLLARY:

Let R be an equivalence class on A and $a,b\in A.$ Then

$$[a] = [b]$$
 or $[a] \cap [b]$

 $= \emptyset$

EQUAL OR DISJOINT

$$[a] = [b] \ \textit{or} \, [a] \cap [b] = arnothing$$

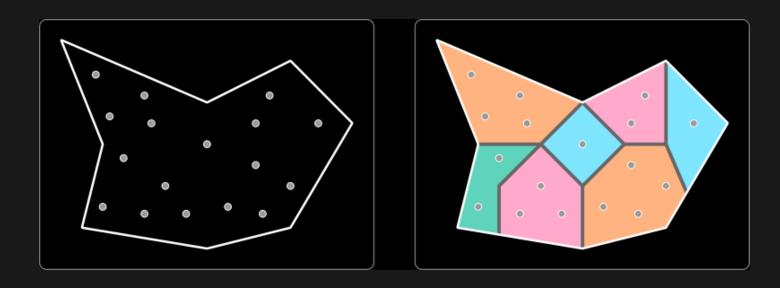
PROOF.

Let $a, b \in A$ and consider the intersection $C = [a] \cap [b]$. Either $C = \emptyset$ or $C \neq \emptyset$.

- If $C = \emptyset$ we are done.
- So now assume that C
 eq arnothing, which means there is some $c \in C$. Hence $c \in [a]$ and $c \in [b]$. Thus $c \mid R \mid a$ and c R b.

By symmetry we know a R c, and then transitivity gives a R b. The previous theorem then implies [a] = [b] as needed.

CUTTING UP A SET



DEFINITION:

A partition of the set A is a set, \mathcal{P} , of non-empty subsets of A so that

- if $x \in A$ then there is $X \in \mathcal{P}$ with $x \in X$
- if $X,Y\in \mathcal{P}$ then either $X\cap Y=arnothing$ or X=Y

Elements of \mathcal{P} are **parts** or **pieces** of the partition.

THEOREM:

Let R be an equivalence relation on A.

The set of equivalence classes of R forms a set partition.

Scratch work

- Let $\mathcal{P} = \{ [x] \; : \; x \in A \}$
- Need to show that every $x \in A$ belongs to some $X \in \mathcal{P}$ We already proved that each \overline{x} belongs to |x|.
- Need to show that for each $X, Y \in \mathcal{P}$, either $X \cap Y = \varnothing$ or X = YWe just proved this!

Equivalence classes form a set partition

PROOF.

- Let $\mathcal{P} = \{ [x] : x \in A \}$.
- Let $x\in A$ then we proved previously that $x\in [x]$. Since $[x]\in \mathcal{P}$, we know that x is in some piece of the partition.
- Let $X, Y \in \mathcal{P}$. By the previous corollary we know that either X = Y or $X \cap Y = \emptyset$. Thus \mathcal{P} forms a set partition.

We can go further — a set partition can define an equivalence relation.

A SET PARTITION GIVES AN EQUIVALENCE RELATION

THEOREM:

Let $\mathcal P$ be a set partition of A. Now define a relation by

- $x \mathrel{R} y \qquad \iff \qquad \exists X \in \mathcal{P} ext{ s.t. } x, y \in X$

then R is an equivalence relation.

Scratch work / proof sketch — a good exercise