PLP - 30 TOPIC 30—INTEGERS MODULO *n*

Demirbaş & Rechnitzer

INTEGERS MODULO n

PARTITION AND EQUIVALENCE CLASSES

• The equivalence relation " $\equiv \pmod{n}$ " gives a partition of \mathbb{Z} :

 $\{[0], [1], [2], \dots, [n-1]\}$

- These equivalence classes are called the integers mod *n*
- They have nice arithmetic properties

THEOREM:

Let $n \in \mathbb{N}$ and let $a, b \in \{0, 1, \dots, n-1\}$. If $x \in [a]$ and $y \in [b]$ then

$$x+y\in [a+b]$$
 and $x\cdot y$

}

 $y \in [a \cdot b]$

ARITHMETIC MODULO n

$$(x\in [a])\wedge (y\in [b])\implies (x+y\in [a+b])\wedge (x$$

Scratch work

• Since $x \in [a], y \in [b]$ we know that $n \mid (x-a)$ and $n \mid (y-b)$, so

$$x = a + nk$$
 and $y = b$

• This means that

$$x+y=a+b+n(k+\ell)$$
 $xy=ab+d$

• Which gives

$$n \mid ((x+y) - (a+b))$$
 and n

$oldsymbol{\cdot} y \in [a \cdot b])$

 $b+n\ell$

$n(bk+a\ell)+n^2k\ell$

 $\mid (x \cdot y - a \cdot b)$

PROOF

PROOF.

Let n,a,\overline{b},x,y be as stated. Then since $x\in [a]$ and $y\in [b]$, we know that

$$x=a+nk$$
 and $y=b+n\ell$ f

From this we have

$$x+y=a+b+n(k+\ell)$$
 $xy=ab+n$

and so

$$n \mid ((x+y)-(a+b))$$
 and n

This shows that $x+y\in [a+b]$ and $x\cdot y\in [a\cdot b]$ as required.

for some $k,\ell\in\mathbb{Z}$.

 $n(bk+a\ell)+n^2k\ell$

 $|\mid (x\cdot y-a\cdot b)|$

MODULAR ARITHMETIC

DEFINITION:

Let $n \in \mathbb{N}$ and consider the equivalence classes of congruence modulo n. The **integers modulo** *n* is the set

$$\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$$

The elements of \mathbb{Z}_n can be added and multiplied by the rule

$$[a]+[b]=[a+b]$$
 $[a]\cdot [b]=$

.]}

 $[a \cdot b]$