PLP - 30

TOPIC 30—INTEGERS MODULO n

Demirbaş \& Rechnitzer

INTEGERS MODULO n

PARTITION AND EQUIVALENCE CLASSES

- The equivalence relation " $\equiv(\bmod n)$ " gives a partition of \mathbb{Z} :

$$
\{[0],[1],[2], \ldots,[n-1]\}
$$

- These equivalence classes are called the integers $\bmod n$
- They have nice arithmetic properties

THEOREM:

Let $n \in \mathbb{N}$ and let $a, b \in\{0,1, \ldots, n-1\}$.
If $x \in[a]$ and $y \in[b]$ then

$$
x+y \in[a+b] \quad \text { and } \quad x \cdot y \in[a \cdot b]
$$

$$
(x \in[a]) \wedge(y \in[b]) \Longrightarrow(x+y \in[a+b]) \wedge(x \cdot y \in[a \cdot b])
$$

Scratch work

- Since $x \in[a], y \in[b]$ we know that $n \mid(x-a)$ and $n \mid(y-b)$, so

$$
x=a+n k \quad \text { and } \quad y=b+n \ell
$$

- This means that

$$
x+y=a+b+n(k+\ell) \quad x y=a b+n(b k+a \ell)+n^{2} k \ell
$$

- Which gives

$$
n \mid((x+y)-(a+b)) \quad \text { and } \quad n \mid(x \cdot y-a \cdot b)
$$

PROOF.

Let n, a, b, x, y be as stated. Then since $x \in[a]$ and $y \in[b]$, we know that

$$
x=a+n k \quad \text { and } \quad y=b+n \ell \quad \text { for some } k, \ell \in \mathbb{Z}
$$

From this we have

$$
x+y=a+b+n(k+\ell) \quad x y=a b+n(b k+a \ell)+n^{2} k \ell
$$

and so

$$
n \mid((x+y)-(a+b)) \quad \text { and } \quad n \mid(x \cdot y-a \cdot b)
$$

This shows that $x+y \in[a+b]$ and $x \cdot y \in[a \cdot b]$ as required.

MODULAR ARITHMETIC

DEFINITION:

Let $n \in \mathbb{N}$ and consider the equivalence classes of congruence modulo n.
The integers modulo n is the set

$$
\mathbb{Z}_{n}=\{[0],[1],[2], \ldots,[n-1]\}
$$

The elements of \mathbb{Z}_{n} can be added and multiplied by the rule

$$
[a]+[b]=[a+b] \quad[a] \cdot[b]=[a \cdot b]
$$

