PLP - 31 TOPIC 31—FUNCTIONS

Demirbaş & Rechnitzer

ESCAPE FROM FORMULAE

A FUNCTION IS NOT A FORMULA

We are used to thinking of functions as formulas or (perhaps) algorithms

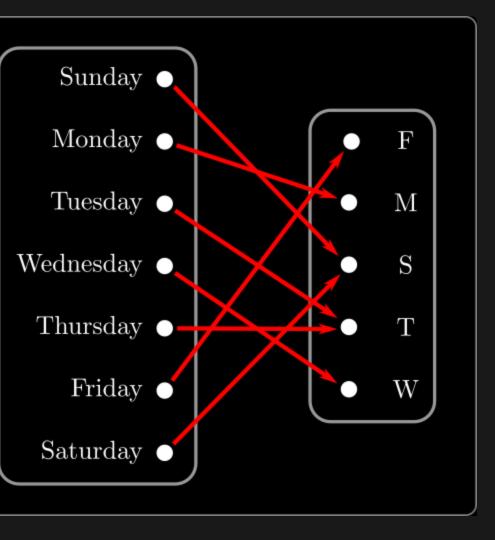
- Give me an input number x
- I do some arithmetic on x or use look-up tables
- I return to you a numerical result y

Can define functions on other objects (not just numbers):

- Input day of the week (in English)
- Return the first letter

But must be *well defined*

- Any legal input must have an output
- One input value gives only one output value



FUNCTION AS A LOOK-UP TABLE

We can summarise the previous function as

 $\Big\{ (\mathsf{Sunday}, S), (\mathsf{Monday}, M), (\mathsf{Tuesday}, T), (\mathsf{Wednesday}, W), \Big\}$

More generally a function f

- takes inputs from set A and gives outputs in set B
- can be written as a subset of $f \subseteq A \times B$ a type of relation

Not every subset of A imes B is a function — must be *well defined*

• Every input from A must have an output in B

 $orall a \in A, \exists b \in B ext{ s.t. } (a,b) \in f$

• Exactly one output for a given input

 $(a,b_1)\in f\wedge (a,b_2)\in f\implies b_1=b_2$

$(\mathsf{Thursday}, T), (\mathsf{Friday}, F), (\mathsf{Saturday}, S)$

A DEFINITION

DEFINITION:

Let A, B be non-empty sets

A function from A to B is a non-empty subset $f \subseteq A \times B$ so that

- ullet for every $a\in A$, there exists a $b\in B$ so that $(a,b)\in f$
- if $(a,b) \in f$ and $(a,c) \in f$ then b = cThe domain of f is A, and the codomain is B

If $(a,b) \in f$ we write f(a) = b and say that b is the image of a Finally, the range of f is

 $\operatorname{rng} f = \{b \in B ext{ s.t. } \exists a \in A ext{ s.t. } f(a) = b\}$

Note that the range is a subset of the codomain

AN EXAMPLE AND A NON-EXAMPLE

Consider the sets

 $f=\{(x,y)\in \mathbb{Z} imes \mathbb{Z}\ :\ 3x+2y=0\}$ $\overline{g} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : 3x + y = 0\}.$

The set *f* is *not a function*

- it is not defined on all of its domain \mathbb{Z}
- when x=1 there is no $y\in\mathbb{Z}$ so that 3x+2y=0

The set *q* is a function

- for every $x\in\mathbb{Z}$, pick $y=-3x\in\mathbb{Z}$, then $(x,y)\in g$
- if $(x,y) \in g$ and $(x,z) \in g$ then

$$3x+y=0$$
 and $3x-$

so y = z as required.

z = 0