PLP - 31
 TOPIC 31-FUNCTIONS

Demirbaş \& Rechnitzer

ESCAPE FROM FORMULAE

A FUNCTION IS NOT A FORMULA

We are used to thinking of functions as formulas or (perhaps) algorithms

- Give me an input number x
- I do some arithmetic on x or use look-up tables
- I return to you a numerical result y

Can define functions on other objects (not just numbers):

- Input day of the week (in English)
- Return the first letter

But must be well defined

- Any legal input must have an output
- One input value gives only one output value

We can summarise the previous function as

$$
\begin{array}{r}
\{(\text { Sunday }, S),(\text { Monday }, M),(\text { Tuesday }, T),(\text { Wednesday }, W) \\
\\
(\text { Thursday }, T),(\text { Friday }, F),(\text { Saturday }, S)\}
\end{array}
$$

More generally a function f

- takes inputs from set A and gives outputs in set B
- can be written as a subset of $f \subseteq A \times B$ - a type of relation

Not every subset of $A \times B$ is a function - must be well defined

- Every input from A must have an output in B

$$
\forall a \in A, \exists b \in B \text { s.t. }(a, b) \in f
$$

- Exactly one output for a given input

$$
\left(a, b_{1}\right) \in f \wedge\left(a, b_{2}\right) \in f \Longrightarrow b_{1}=b_{2}
$$

A DEFINITION

DEFINITION:

Let A, B be non-empty sets
A function from A to B is a non-empty subset $f \subseteq A \times B$ so that

- for every $a \in A$, there exists a $b \in B$ so that $(a, b) \in f$
- if $(a, b) \in f$ and $(a, c) \in f$ then $b=c$

The domain of f is A, and the codomain is B
If $(a, b) \in f$ we write $f(a)=b$ and say that b is the image of a
Finally, the range of f is

$$
\operatorname{rng} f=\{b \in B \text { s.t. } \exists a \in A \text { s.t. } f(a)=b\}
$$

Note that the range is a subset of the codomain

AN EXAMPLE AND A NON-EXAMPLE

Consider the sets

$$
\begin{aligned}
& f=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: 3 x+2 y=0\} \\
& g=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: 3 x+y=0\} .
\end{aligned}
$$

The set f is not a function

- it is not defined on all of its domain \mathbb{Z}
- when $x=1$ there is no $y \in \mathbb{Z}$ so that $3 x+2 y=0$

The set g is a function

- for every $x \in \mathbb{Z}$, pick $y=-3 x \in \mathbb{Z}$, then $(x, y) \in g$
- if $(x, y) \in g$ and $(x, z) \in g$ then

$$
3 x+y=0 \quad \text { and } \quad 3 x+z=0
$$

so $y=z$ as required.

