PLP - 32 TOPIC 32—IMAGES AND PREIMAGES

Demirbaş & Rechnitzer

IMAGES AND PREIMAGES

FUNCTIONS AND SUBSETS

How do functions interact with subsets of the domain and codomain?

DEFINITION:

Let f:A
ightarrow B be a function and let $C\subseteq A$ and $D\subseteq B$

- The image of C in B is $f(C) = \{f(x) ext{ s.t. } x \in C\}$
- The preimage of D in A is $f^{-1}(D) = \{x \in A \text{ s.t. } f(x) \in D\}$

WARNING — Be careful with preimages:

- $f^{-1}(x)$ is not $(f(x))^{-1}$ or $rac{1}{f(x)}$
- The preimage f^{-1} is *not* the inverse function.
- When extra conditions satisfied the inverse function exists and we use the same notation When you see f^{-1} think "preimage" — when you know inverse exists then "inverse function".

A SKETCH OF IMAGES AND PREIMAGES

AN EXAMPLE – IMAGES

Let $f:\mathbb{R} o\mathbb{R}$ be defined by $f(x)=x^2$. Then

- f([0,4]) = [0,16]
- $f([-3,-1]\cup [1,2])=[1,9]$

- ullet If $0 \leq x \leq 4$ then $0 \leq x^2 \leq 16$
- If $1 \le x \le 2$ then $1 \le x^2 \le 4$. And if $-3 \le x \le -1$ then $1 \le x^2 \le 9$. So if $x\in [-3,-1]\cup [1,2]$ then $x^2\in [1,9].$

AN EXAMPLE — PREIMAGES

Let $f:\mathbb{R} o\mathbb{R}$ be defined by $f(x)=x^2$. Then

• $f^{-1}(\{0,1\}) = \{-1,0,1\}$ $ig ullet \, ig \, f^{-1}([1,4]) = [-2,-1] \cup [1,2]$

- If $x^2 = \overline{0}$ then $x = \overline{0}$. And if $x^2 = 1$ then $x = \pm 1$ So if $x^2 \in \{0,1\}$ then $x \in \{-1,0,1\}$
- If $1 \leq x^2$ then $x \leq -1$ or $x \geq 1$. If $x^2 \leq 4$ then $-2 \leq x \leq 2$. So if $x^2 \in [1,4]$ then $x \in [-2,-1]$ or $x \in [1,2]$.

IMAGES, PREIMAGES AND SET OPERATIONS

Images and preimages interact (mostly) nicely with subset, intersection and union.

Make good problems — test lots of skills

$f(f^{-1}(D))\subseteq D$

$f(C_1\cup C_2)=f(C_1)\cup f(C_2)$

PROOF 1

$f^{-1}(D_1\cup D_2)=f^{-1}(D_1)\cup f^{-1}(D_2)$

We use $x \in f^{-1}(D) \iff f(x) \in D$ PROOF.

 $LHS\subseteq RHS$: Let $x\in f^{-1}(D_1\cup D_2)$, so $f(x)\in D_1\cup D_2$. Hence $f(x)\in D_1$ or $f(x)\in D_2$.

- ullet when $f(x)\in D_1$ we know $x\in f^{-1}(D_1)$
- when $f(x)\in D_2$ we know $x\in f^{-1}(D_2)$ In either case we know that $x\in f^{-1}(D_1)\cup f^{-1}(D_2).$

Other inclusion is similar.

 $f(C_1\cap C_2)\subseteq f(C_1)\cap f(C_2)$

We use

$$x\in C\implies f(x)\in f(C)$$
 and $y\in f(C)\implies$

PROOF.

Let $y\in f(C_1\cap C_2).$

This means that there is some $x \in C_1 \cap C_2$ so that f(x) = y. Then

• since $x\in C_1$, we know that $y=f(x)\in f(C_1)$

• since $x \in C_2$, we know that $y = f(x) \in f(C_2)$ Hence $y \in f(C_1) \cap f(C_2).$

$\exists x \in C ext{ s.t. } y = f(x) \in f(C)$

REVERSE INCLUSION IS FALSE

$f(C_1)\cap f(C_2) ot\subseteq f(C_1\cap C_2)$

Consider $f:\mathbb{R} o\mathbb{R}$ defined by $f(x)=x^2.$

- Let $C_1=\{-1\}$, so $f(C_1)=\{1\}$
- Let $C_2=\{1\}$, so $f(C_2)=\{1\}$
- Then $f(C_1) \cap f(C_2) = \{1\}$ but $f(C_1 \cap C_2) = f(arnothing) = arnothing$

Notice also that this shows $f(x)\in f(C)$ does not imply $x\in C$

- Set x = -1 and $C = \{1\}$
- Then $f(x)=1\in\{1\}=f(C)$ but $x
 ot\in C.$

These fail because there are $x_1
eq x_2$ so that $f(x_1) = f(x_2)$.

PROOF 3

$C\subseteq f^{-1}(f(C))$

PROOF.

Let $x \in C$.

- Since $x \in C$, we know that $f(x) \in f(C)$
- To make logic clearer we write D=f(C), so that $f(x)\in D$
- Since $f(x) \in D$, we know that $x \in f^{-1}(D)$
- But since D = f(C) this means that $x \in f^{-1}(f(C))$ as required.

Reverse inclusion is false. Let $f:\mathbb{R} o\mathbb{R}$ with $f(x)=x^2$.

- Let $C=\{2\}$. Then $f(C)=\{4\}$
- But $f^{-1}({4}) = {-2,2} \text{since } f(2) = f(-2) = 4.$
- Thus $f^{-1}(f(\{2\})) = \{-2,2\} \nsubseteq \{2\} = C$