# PLP - 32 <br> TOPIC 32—IMAGES AND PREIMAGES <br> Demirbaş \& Rechnitzer 

## IMAGES AND PREIMAGES

How do functions interact with subsets of the domain and codomain?

## DEFINITION:

Let $f: A \rightarrow B$ be a function and let $C \subseteq A$ and $D \subseteq B$

- The image of $C$ in $B$ is $f(C)=\{f(x)$ s.t. $x \in C\}$
- The preimage of $D$ in $A$ is $f^{-1}(D)=\{x \in A$ s.t. $f(x) \in D\}$

WARNING - Be careful with preimages:

- $f^{-1}(x)$ is $\operatorname{not}(f(x))^{-1}$ or $\frac{1}{f(x)}$
- The preimage $f^{-1}$ is not the inverse function.
- When extra conditions satisfied the inverse function exists and we use the same notation When you see $f^{-1}$ think "preimage" - when you know inverse exists then "inverse function".


## A SKETCH OF IMAGES AND PREIMAGES



## AN EXAMPLE - IMAGES

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Then

- $f([0,4])=[0,16]$
- $f([-3,-1] \cup[1,2])=[1,9]$

- If $0 \leq x \leq 4$ then $0 \leq x^{2} \leq 16$
- If $1 \leq x \leq 2$ then $1 \leq x^{2} \leq 4$. And if $-3 \leq x \leq-1$ then $1 \leq x^{2} \leq 9$.

So if $x \in[-3,-1] \cup[1,2]$ then $x^{2} \in[1,9]$.

## AN EXAMPLE - PREIMAGES

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Then

- $f^{-1}(\{0,1\})=\{-1,0,1\}$
- $f^{-1}([1,4])=[-2,-1] \cup[1,2]$

- If $x^{2}=0$ then $x=0$. And if $x^{2}=1$ then $x= \pm 1$

So if $x^{2} \in\{0,1\}$ then $x \in\{-1,0,1\}$

- If $1 \leq x^{2}$ then $x \leq-1$ or $x \geq 1$. If $x^{2} \leq 4$ then $-2 \leq x \leq 2$.

So if $x^{2} \in[1,4]$ then $x \in[-2,-1]$ or $x \in[1,2]$.

## IMAGES, PREIMAGES AND SET OPERATIONS

Images and preimages interact (mostly) nicely with subset, intersection and union.

## THEOREM:

Let $f: A \rightarrow B$ and $C \subseteq A$ and $D \subseteq B$. Then

$$
C \subseteq f^{-1}(f(C)) \quad \text { and } \quad f\left(f^{-1}(D)\right) \subseteq D
$$

Now let $C_{1}, C_{2} \subseteq A$ and $D_{1}, D_{2} \subseteq B$. Then

$$
\begin{array}{rlrl}
f\left(C_{1} \cap C_{2}\right) \subseteq f\left(C_{1}\right) \cap f\left(C_{2}\right) & f\left(C_{1} \cup C_{2}\right) & =f\left(C_{1}\right) \cup f\left(C_{2}\right) \\
f^{-1}\left(D_{1} \cap D_{2}\right) & =f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right) & f^{-1}\left(D_{1} \cup D_{2}\right) & =f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)
\end{array}
$$

Make good problems - test lots of skills

$$
f^{-1}\left(D_{1} \cup D_{2}\right)=f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)
$$

We use $x \in f^{-1}(D) \Longleftrightarrow f(x) \in D$
PROOF.

$$
L H S \subseteq R H S: \text { Let } x \in f^{-1}\left(D_{1} \cup D_{2}\right) \text {, so } f(x) \in D_{1} \cup D_{2}
$$

Hence $f(x) \in D_{1}$ or $f(x) \in D_{2}$.

- when $f(x) \in D_{1}$ we know $x \in f^{-1}\left(D_{1}\right)$
- when $f(x) \in D_{2}$ we know $x \in f^{-1}\left(D_{2}\right)$

In either case we know that $x \in f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$.
Other inclusion is similar.

## $f\left(C_{1} \cap C_{2}\right) \subseteq f\left(C_{1}\right) \cap f\left(C_{2}\right)$

We use

$$
x \in C \Longrightarrow f(x) \in f(C) \quad \text { and } \quad y \in f(C) \Longrightarrow \exists x \in C \text { s.t. } y=f(x) \in f(C)
$$

## PROOF.

Let $y \in f\left(C_{1} \cap C_{2}\right)$.
This means that there is some $x \in C_{1} \cap C_{2}$ so that $f(x)=y$. Then

- since $x \in C_{1}$, we know that $y=f(x) \in f\left(C_{1}\right)$
- since $x \in C_{2}$, we know that $y=f(x) \in f\left(C_{2}\right)$

Hence $y \in f\left(C_{1}\right) \cap f\left(C_{2}\right)$.

## $f\left(C_{1}\right) \cap f\left(C_{2}\right) \nsubseteq f\left(C_{1} \cap C_{2}\right)$

Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.

- Let $C_{1}=\{-1\}$, so $f\left(C_{1}\right)=\{1\}$
- Let $C_{2}=\{1\}$, so $f\left(C_{2}\right)=\{1\}$
- Then $f\left(C_{1}\right) \cap f\left(C_{2}\right)=\{1\}$ but $f\left(C_{1} \cap C_{2}\right)=f(\varnothing)=\varnothing$

Notice also that this shows $f(x) \in f(C)$ does not imply $x \in C$

- Set $x=-1$ and $C=\{1\}$
- Then $f(x)=1 \in\{1\}=f(C)$ but $x \notin C$.

These fail because there are $x_{1} \neq x_{2}$ so that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

## $C \subseteq f^{-1}(f(C))$

## PROOF.

Let $x \in C$.

- Since $x \in C$, we know that $f(x) \in f(C)$
- To make logic clearer we write $D=f(C)$, so that $f(x) \in D$
- Since $f(x) \in D$, we know that $x \in f^{-1}(D)$
- But since $D=f(C)$ this means that $x \in f^{-1}(f(C))$ as required.

Reverse inclusion is false. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{2}$.

- Let $C=\{2\}$. Then $f(C)=\{4\}$
- But $f^{-1}(\{4\})=\{-2,2\}-$ since $f(2)=f(-2)=4$.
- Thus $f^{-1}(f(\{2\}))=\{-2,2\} \nsubseteq\{2\}=C$

