PLP - 33 TOPIC 33—INJECTIONS, SURJECTIONS AND BIJECTIONS

Demirbaş & Rechnitzer

INJECTIONS, SURJECTIONS AND BIJECTIONS

DEFINITION:

Let $f: A \rightarrow B$ be a function.

The function f is injective when for all $a_1, a_2 \in A$

 $(a_1
eq a_2) \implies f(a_1)
eq f(a_2)$

Equivalently (by the contrapositive)

$$f(a_1)=f(a_2)\implies a_1=a_1$$

Injections are also called **one-to-one** functions.

Note: if f is injective then for every $\overline{b \in B, |f^{-1}(\{b\})|} \leq 1.$ This is consistent with $|A| \leq |B|$

 a_2

PROPOSITION:

The function $f:\mathbb{R} o\mathbb{R}$ defined by f(x)=7x-3 is injective

Use $f(a_1) = f(a_2) \implies a_1 = a_2$ to prove – equalities easier than inequalities. PROOF.

Let $x,z \in \mathbb{R}$ and assume that $f(x) = \overline{f(z)}$. Then we know that 7x - 3 = 7z - 37x = 7z

$$x = z$$

and hence the function is injective.

SURJECTIONS — EVERYTHING IS MAPPED TO BY SOMETHING

DEFINITION:

Let $q: A \rightarrow B$ be a function.

The function *q* is surjective when

 $orall b \in B, \exists a \in A ext{ s.t. } g(a) = b$

Surjections are also called **onto** functions.

Note: if g is surjective then for every $b \in B$, $|g^{-1}(\{b\})| \ge 1$. This is consistent with $|A| \geq |B|$

SURJECTION EXAMPLE

PROPOSITION:

The function $f:\mathbb{R} o\mathbb{R}$ defined by $\overline{f(x)}=7x-3$ is surjective

Given $y \in \mathbb{R}$, we need to find $x \in \mathbb{R}$ so that f(x) = y:

$$y=7x-3$$
 so $y+3=7x$ so

PROOF.

Let $y \in \mathbb{R}$ and set $x = rac{y+3}{7} \in \mathbb{R}.$ Then

$$f(x) = 7x - 3 = 7 \cdot rac{y+3}{7} - 3 = y - 3$$

as required. Hence the function is surjective.

 $x=rac{y+3}{7}.$

-3 - 3 = y

A NON-EXAMPLE

PROPOSITION:

The function $f:\mathbb{R} o\mathbb{R}$ defined by $f(x)=x^2$ is neither injective nor surjective.

not injective $\equiv \exists x_1, x_2 \in A$ s.t. $(x_1
eq x_2)$, not surjective $\equiv \exists b \in B \text{ s.t. } \forall a \in A, f(a) \neq d$

PROOF.

We prove each claim in turn.

- Now let x = 1, z = -1. Then since f(x) = 1 = f(z), the function is not an injection.
- Let y=-1. For any $x\in\mathbb{R}$ we know $f(x)=x^2\geq 0$, so there is no $x\in\mathbb{R}$ so that f(x)=y. So f is not a surjection.

$$egin{array}{l} \wedge \left(f(x_1)=f(x_2)
ight) \ b \end{array}$$

DEFINITION:

Let $h: A \to B$ be a function. The function h is **bijective** when it is both injective and surjective.

Bijections are also called **one-to-one correspondences**.

Note: if h is bijective then

- since h is injective we know that for every $b \in B, |h^{-1}(\{b\})| \leq 1$
- since h is surjective we know that for every $b \in B, |h^{-1}(\{b\})| \geq 1$ and so for every $b \in B, |h^{-1}(\{b\})| = 1$.

This is consistent with |A| = |B|

From work above $f:\mathbb{R} o \mathbb{R}$ defined by f(x) = 7x - 3 is bijective.

ANOTHER x^2 EXAMPLE

Consider the 4 functions

Then

- f is neither injective nor surjective
- g is surjective but not injective
- h is injective but not surjective
- ρ is both injective and surjective Let's prove the last one carefully.

INJECTIVE AND SURJECTIVE

 $ho:[0,\infty)
ightarrow [0,\infty)$ with $ho(x)=x^2$ is injective and surjective

PROOF.

We prove each in turn.

- Injection: Let $x,z\in[0,\infty)$ with ho(x)=
 ho(z). Then we know that $x^2=z^2$ and hence $x=\pm z.$ But since $x, z \geq 0$ we must have x = z as required.
- Surjection: Let $y \geq 0$ and then set $x = \sqrt{y}$. Since $y \geq 0$, we know that $x \in \mathbb{R}$. Then $ho(x)=x^2=(\sqrt{y})^2=y.$