PLP - 33
TOPIC 33-INJECTIONS, SURJECTIONS AND BIJECTIONS
Demirbaş \& Rechnitzer

INJECTIONS, SURJECTIONS AND BIJECTIONS

DEFINITION:

Let $f: A \rightarrow B$ be a function.
The function f is injective when for all $a_{1}, a_{2} \in A$

$$
\left(a_{1} \neq a_{2}\right) \Longrightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)
$$

Equivalently (by the contrapositive)

$$
f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}
$$

Injections are also called one-to-one functions.

Note: if f is injective then for every $b \in B,\left|f^{-1}(\{b\})\right| \leq 1$.
This is consistent with $|A| \leq|B|$

PROPOSITION:

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=7 x-3$ is injective

Use $f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}$ to prove - equalities easier than inequalities. PROOF.

Let $x, z \in \mathbb{R}$ and assume that $f(x)=f(z)$. Then we know that

$$
\begin{aligned}
7 x-3 & =7 z-3 \\
7 x & =7 z \\
x & =z
\end{aligned}
$$

and hence the function is injective.

DEFINITION:

Let $g: A \rightarrow B$ be a function.
The function g is surjective when

$$
\forall b \in B, \exists a \in A \text { s.t. } g(a)=b
$$

Surjections are also called onto functions.

Note: if g is surjective then for every $b \in B,\left|g^{-1}(\{b\})\right| \geq 1$.
This is consistent with $|A| \geq|B|$

SURJECTION EXAMPLE

PROPOSITION:

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=7 x-3$ is surjective

Given $y \in \mathbb{R}$, we need to find $x \in \mathbb{R}$ so that $f(x)=y$:

$$
y=7 x-3 \quad \text { so } \quad y+3=7 x \quad \text { so } \quad x=\frac{y+3}{7}
$$

PROOF.

Let $y \in \mathbb{R}$ and set $x=\frac{y+3}{7} \in \mathbb{R}$. Then

$$
f(x)=7 x-3=7 \cdot \frac{y+3}{7}-3=y+3-3=y
$$

as required. Hence the function is surjective.

PROPOSITION:

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is neither injective nor surjective.

$$
\begin{aligned}
\text { not injective } & \equiv \exists x_{1}, x_{2} \in A \text { s.t. }\left(x_{1} \neq x_{2}\right) \wedge\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \\
\text { not surjective } & \equiv \exists b \in B \text { s.t. } \forall a \in A, f(a) \neq b
\end{aligned}
$$

PROOF.

We prove each claim in turn.

- Now let $x=1, z=-1$. Then since $f(x)=1=f(z)$, the function is not an injection.
- Let $y=-1$. For any $x \in \mathbb{R}$ we know $f(x)=x^{2} \geq 0$, so there is no $x \in \mathbb{R}$ so that $f(x)=y$. So f is not a surjection.

BIJECTIONS - INJECTIVE AND SURJECTIVE

DEFINITION:

Let $h: A \rightarrow B$ be a function. The function h is bijective when it is both injective and surjective.
Bijections are also called one-to-one correspondences.

Note: if h is bijective then

- since h is injective we know that for every $b \in B,\left|h^{-1}(\{b\})\right| \leq 1$
- since h is surjective we know that for every $b \in B,\left|h^{-1}(\{b\})\right| \geq 1$ and so for every $b \in B,\left|h^{-1}(\{b\})\right|=1$.
This is consistent with $|A|=|B|$
From work above $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=7 x-3$ is bijective.

ANOTHER x^{2} EXAMPLE

Consider the 4 functions

$$
\begin{array}{ll}
f: \mathbb{R} \rightarrow \mathbb{R} & f(x)=x^{2} \\
g: \mathbb{R} \rightarrow[0, \infty) & g(x)=x^{2} \\
h:[0, \infty) \rightarrow \mathbb{R} & g(x)=x^{2} \\
\rho:[0, \infty) \rightarrow[0, \infty) & \rho(x)=x^{2}
\end{array}
$$

Then

- f is neither injective nor surjective
- g is surjective but not injective
- h is injective but not surjective
- ρ is both injective and surjective Let's prove the last one carefully.

INJECTIVE AND SURJECTIVE

$$
\rho:[0, \infty) \rightarrow[0, \infty) \text { with } \rho(x)=x^{2} \text { is injective and surjective }
$$

PROOF.

We prove each in turn.

- Injection: Let $x, z \in[0, \infty)$ with $\rho(x)=\rho(z)$. Then we know that $x^{2}=z^{2}$ and hence $x= \pm z$. But since $x, z \geq 0$ we must have $x=z$ as required.
- Surjection: Let $y \geq 0$ and then set $x=\sqrt{y}$. Since $y \geq 0$, we know that $x \in \mathbb{R}$. Then $\rho(x)=x^{2}=(\sqrt{y})^{2}=y$.

