PLP - 34

TOPIC 34—COMPOSITIONS

Demirbaş \& Rechnitzer

COMPOSITIONS

DEFINITION:

Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
The composition of f and g, denoted $g \circ f$, defines a new function

$$
g \circ f: A \rightarrow C \quad(g \circ f)(a)=g(f(a)) \quad \forall a \in A
$$

Note composition is associative: $h \circ(g \circ f)=(h \circ g) \circ f$.

COMPOSITIONS, INJECTIONS AND SURJECTIONS

Compositions play nicely with injections and surjections.

THEOREM:

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

- If f and g are injective then so is $g \circ f$.
- If f and g are surjective then so is $g \circ f$.

Consequently if f, g are bijective then so is $g \circ f$.

COMPOSITION OF INJECTIONS

Use injection property - different map to different

PROOF.

Let $a_{1}, a_{2} \in A$ so that $a_{1} \neq a_{2}$.
Since f is injective, we know that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. And thus since g is injective, we know that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.
Thus $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$ as required.

COMPOSITION OF SURJECTIONS

Use surjection property - everything is mapped to by something

PROOF.

Let $c \in C$.
Since g is surjective, we know that there is $b \in B$ so that $g(b)=c$. Then since f is surjective, we have some $a \in A$ so that $f(a)=b$.
Thus $g(f(a))=g(b)=c$, and so for any $c \in C$ we can find $a \in A$ so that $(g \circ f)(a)=c$ as required.

PARTIAL CONVERSE

THEOREM:

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions, then

- if $g \circ f$ is an injection then f is an injection.
- if $g \circ f$ is a surjection then g is a surjection.

The proofs of these statements make excellent exercises.
Note that you cannot extend this to a full converse. There exist f, g so that

- $g \circ f$ is an injection, but g is not injective
- $g \circ f$ is a surjection, but f is not surjective
- $g \circ f$ is an injection, but g is not injective
- $g \circ f$ is a surjection, but f is not surjective

PROOF.
Consider functions f, g defined by the diagram below.

- Since $g(f(1)) \neq g(f(2)), g \circ f$ is injective. But $g(4)=g(5)$, so g not an injection.
- Since $6=g(f(1)), 7=g(f(2)), g \circ f$ is surjective. But, $f(1), f(2) \neq 5$ so f is not a surjection.

