PLP - 35
TOPIC 35—INVERSE FUNCTIONS
Demirbaş \& Rechnitzer

INVERSE FUNCTIONS

INVERSES AND ONE-SIDED INVERSES

DEFINITION:

Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions.

- If $g \circ f=i_{A}$ then we say that g is a left-inverse of f.
- Similarly, if $f \circ g=i_{B}$ then we say that g is a right-inverse of f.
- If g is both a left-inverse and right-inverse, then we call it an inverse of f.

Note that one can prove that if an inverse exists, then it is unqiue.
So we can say the inverse and denote it f^{-1}.

Consider the functions f, g defined below

Notice that $g(f(1))=1$ and $g(f(2))=2$ so g is a left-inverse of f.
Then $f(g(4))=4, f(g(5))=5$ but $f(g(6))=5 \neq 6$ so g is not a right-inverse of f.
The non-injectiveness of g is to blame.
A similar example gives a right-inverse that is not a left-inverse (non-surjectiveness is to blame)

EXISTENCE OF ONE-SIDED INVERSES

LEMMA:

Let $f: A \rightarrow B$ be a function. Then

- f has a left-inverse iff f is injective.
- f has a right-inverse iff f is surjective.

The proofs of these statements make very good exercises. We'll do the forward implications.

If f has a left-inverse then it is injective

PROOF.

Assume that f has a left-inverse g, so that $g(f(x))=x$.
Now let $a_{1}, a_{2} \in A$ so that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then we know that $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$. But since g is a leftinverse, $a_{1}=g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=a_{2}$. Thus f is injective.

If f has a right-inverse then it is surjective

PROOF.

Assume that f has a right-inverse g, so that $f(g(y))=y$.
Let $b \in B$ and set $a=g(b)$. Then $f(a)=f(g(b))=b$, since g is a right-inverse. Thus f is surjective.

LEMMA:

Let $f: A \rightarrow B$ have a left-inverse g and a right-inverse h. Then $g=h$.

PROOF.

Let f, g and h be as stated. Thus $g \circ f=i_{A}$ and $f \circ h=i_{B}$. Then

$$
\begin{aligned}
g & =g \circ i_{B}=g \circ(f \circ h) \\
& =(g \circ f) \circ h \\
& =i_{A} \circ h=h
\end{aligned}
$$

$$
=(g \circ f) \circ h \quad \text { assoc of compositions }
$$

as required.

EXISTENCE OF INVERSE

THEOREM:

Let $f: A \rightarrow B$. Then f has an inverse iff f is bijective. Further, that inverse, if it exists, is unique.

PROOF.

- Assume that f has an inverse g. Then g is both a left-inverse and a right-inverse. Lemma: since f has a left-inverse, f is injective, and then since f has a right-inverse, f is surjective. Hence f is bijective.
- Now assume that f is bijective. Lemma: since f is injective, it has a left inverse, and since f is surjective, it has a right inverse. Lemma: those one-sided inverses are the same function, g. Hence g is an inverse of f.
- Finally, assume that g, h are inverses of f, then $g=g \circ(f \circ h)=(g \circ f) \circ h=h$. Thus the inverse function is unique.

PROPOSITION:

The function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=7 x-3$ is bijective and so has an inverse.

PROOF.

Previously we showed that f is injective and surjective, and so is bijective. Hence its inverse exists.
In this case we can find the inverse explicitly: $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f^{-1}(y)=\frac{y+3}{7}$
Since the function is bijective, enough to prove this is a left-inverse

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(7 x-3)=\frac{(7 x-3)+3}{7}=x
$$

as required.

