PLP - 36

TOPIC 36-PROOF BY CONTRADICTION

Demirbaş \& Rechnitzer

PROOF BY CONTRADICTION

HAMMERS AND WARNINGS

Warning 1: when you have a fancy new hammer, it is tempting to see nails everywhere.
Warning 2: do not use proof by contradiction for everything.
Warning 3: proof by contradiction can be confusing

- Assume garbage
- Deduce something that is always false and so definitely garbage
- Conclude truth

But two pieces of logic will help everything make sense.

MIDDLES AND TOLLENS

Proof by contradiction relies on the Law of the excluded middle and modus tollens

FACT: LAW OF THE EXCLUDED MIDDLE.

Let P be a statement. Then either P is true or its negation is true. That is

$$
P \vee(\sim P) \text { is a tautology }
$$

DEFINITION: (MODUS TOLLENS).

Modus tollens is the deduction:

$$
(P \Longrightarrow Q) \text { is true and } Q \text { is false so } P \text { must be false }
$$

The statement P is true

PROOF.

- We prove the result by contradiction, so assume that $(\sim P)$ is true
- We then prove a chain of implications

$$
\begin{aligned}
(\sim P) & \Longrightarrow P_{1} \\
P_{1} & \Longrightarrow P_{2} \\
\vdots & \\
P_{n-1} & \Longrightarrow P_{n} \\
P_{n} & \Longrightarrow \text { contradiction }
\end{aligned}
$$

- By modus tollens, $(\sim P)$ must be false, and so P is true.

A SIMPLE EXAMPLE

PROPOSITION:

There is no smallest positive real number.

PROOF.

- Assume, to the contrary, that there does exist a smallest positive real number. Denote it q
- Notice that the number $r=q / 2$ satisfies $0<r<q$
- Hence r is a positive real number that is smaller than q
- But this contradicts our assumption that q is the smallest positive real number
- Thus there is no smallest positive real number

There is no smallest positive real number.

Law of excluded middle tells that P is true or $(\sim P)$ is true.

- If $(\sim P)$ then we can find the smallest positive real q
- If we know q then we can construct a smaller positive real $r=q / 2$
- If we have a smaller real then (q is smallest) and (q is not smallest) Repeated modus tollens tells us that $(\sim P)$ is false, and so P is true.

