PLP - 37 TOPIC 37—PROOF BY CONTRADICTION — EXAMPLES

Demirbaş & Rechnitzer

EXAMPLES

NO INTEGER SOLUTIONS

PROPOSITION:

There are no integers a, b so that 2a + 4b = 1.

Scratchwork:

- The negation is $\exists a,b\in\mathbb{Z}$ s.t. 2a+4b=1
- If we assume the result is false, then we have some a, b so that 2a + 4b = 1
- But dividing this by 2 gives $a + 2b = \frac{1}{2}$
- This cannot happen, since $a,b\in\mathbb{Z}$ we must have $a+2b\in\mathbb{Z}$
- Contradiction!

PROOF

There are no integers a, b so that 2a + 4b = 1.

PROOF.

- Assume, to the contrary, that the result is false
- So there are $a,b\in\mathbb{Z}$ so that 2a+4b=1
- Dividing this by 2 gives $a + 2b = \frac{1}{2}$
- However this cannot happen since the sum of integers is an integer
- Hence there cannot be such integers *a*, *b* and so the result holds.

NO INTEGER SOLUTIONS #2

PROPOSITION:

There are no integers a, b so that $a^2 - 4b = 3$

Scratchwork

- Assume, to the contrary, that we can find $a,b\in\mathbb{Z}$ with $a^2-4b=3$
- Write as $a^2 = 3 + 4b$ and notice that the RHS is odd, so the LHS must also be odd
- But this means that a is odd (we proved this!)
- Hence we can write a = 2k + 1 and so we have

$$3=a^2-4b=(2k+1)^2-4b=4k^2+4k+1-2k^2+4k+1$$

• This implies that $3 \equiv 1 \mod 4 - \text{contradiction}!$

$-4b = 4(k^2 + k - b) + 1$

PROOF

There are no integers a, b so that $a^2 - 4b = 3$

PROOF.

Assume, to the contrary that there are integers a, b so that $a^2 - 4b = 3$.

Rewrite this as $a^2 = 4b + 3$. Since the RHS is odd, the LHS must be odd, and consequently a is odd. So write a=2k+1 for some $k\in\mathbb{Z}.$

Then notice that

$$3 = a^2 - 4b = 4(k^2 + k - b) +$$

which implies that $3 \equiv 1 \mod 4$ which is a contradiction. Thus the result follows.

+1

IRRATIONAL NUMBERS

DEFINITION:

Let q be a real number.

• We say that q is rational if we can write it $q = rac{a}{b}$ with $a, b \in \mathbb{Z}$ and b
eq 0.

 $\exists a \in \mathbb{Z} ext{ s.t. } \exists b \in \mathbb{Z} - \{0\} ext{ s.t. } q = rac{a}{b}$

• We say that q is irrational when it is not rational.

 $orall a \in \mathbb{Z}, orall b \in \mathbb{Z} - \left\{0
ight\}, q
eq rac{a}{b}$

• To denote the set of irrational numbers use $\mathbb{I} = \mathbb{R} - \mathbb{Q}$.

IRRATIONAL EXAMPLE

PROPOSITION:

If $x \in \mathbb{Q}$ and $y \in \mathbb{I}$ then $x + y \in \mathbb{I}$.

Scrathwork

- Assume negation: $\exists x \in \mathbb{Q} \text{ s.t. } \exists y \in \mathbb{I} \text{ s.t. } x + y \notin \mathbb{I}$
- But since $x,y\in\mathbb{R}$ we know $x+y\in\mathbb{R}$, so we have $x+y\in\mathbb{Q}$
- Now since $x, (x+y) \in \mathbb{Q}$, we can write x = a/b and (x+y) = c/d with $a, b, c, d \in \mathbb{Z}$.
- But this means $y = (x + y) x = rac{c}{d} rac{a}{b} = rac{bc-ad}{bd} \in \mathbb{Q}$
- So we have $y \in \mathbb{Q}$ and $y \notin \mathbb{Q}$ contradiction!

PROOF

If $x \in \mathbb{Q}$ and $y \in \mathbb{I}$ then $x + y \in \mathbb{I}$.

PROOF.

Assume, to the contrary, that there is $x \in \mathbb{Q}$ and $y \in \mathbb{I}$ so that $x + y \in \mathbb{Q}$. This implies that $x=rac{a}{b}$ and $(x+y)=rac{c}{d}$ with $a,b,c,d\in\mathbb{Z}$ and b,d
eq 0.From this we see that $y = (x + y) - x = rac{c}{d} - rac{a}{b} = rac{bc-ad}{bd}$ and hence $y \in \mathbb{Q}$. This contradicts our assumption that $y \in \mathbb{I}$, and so the result follows.