PLP - 38 TOPIC 38—TWO VERY FAMOUS PROOFS

Demirbaş & Rechnitzer

IRRATIONALITY OF $\sqrt{2}$

IRRATIONALITY OF $\sqrt{2}$

THEOREM: (HIPPASUS 500BC?).

The real number $\sqrt{2}$ is not rational

This is one of the most famous results in mathematics

- Existence of $\sqrt{2}$ as a real quantity follows from Pythagoras' Theorem
- This was first proof that there are reals that are not rational
- It was, and is, a big deal!

We'll need

Let $n \in \mathbb{N}$. Then n is even if and only if n^2 is even.

SCRATCHWORK

$\sqrt{2}$ is irrational

Scratchwork

- Do proof by contradiction, so we can write $\sqrt{2} = a/b$ with $a, b \in \mathbb{Z}$
- Rearrange this to get $a = \sqrt{2}b$
- Square it to get rid of the $\sqrt{\cdot}$ $a^2=2b^2$
- But this means a is even. So we can write a = 2c
- This tells us $2b^2 = 4c^2$ and so $b^2 = 2c^2$.
- This means that b is even
- Hold on can't we just make sure a, b have no common factors?

PROOF

$\sqrt{2}$ is irrational

PROOF.

Assume, to the contrary, that $\sqrt{2} \in \mathbb{Q}$. Hence we can write $\sqrt{2} = rac{a}{b}$, so that b
eq 0 and $\gcd(a,b) = 1$ Since $\sqrt{2}=rac{a}{b}$ and so $a^2=2b^2$. Thus a^2 is even, and so a is even. Hence write a=2c where $c\in\mathbb{Z}$ But now, since $a^2 = 2b^2$, we know that $4c^2 = 2b^2$ and so $b^2 = 2c^2$. Hence b^2 is even, and so b is even. This gives a contradiction since we assumed that gcd(a,b) = 1. Thus $\sqrt{2}$ is irrational.

PRIMES ARE INFINITE

PRIMES FOREVER

PROPOSITION: (EUCLID 300BC).

There are an infinite number of primes.

We prove this by contradiction, but need the following result along the way

LEMMA:

Let $n \in \mathbb{N}$. If $n \geq 2$ then n is divisible by a prime.

AT LEAST ONE PRIME DIVISIOR

Let $n \in \mathbb{N}$. If $n \geq 2$ then n is divisible by a prime.

PROOF.

We prove this by strong induction.

- Base case: Since 2 is prime and $2 \mid 2$, the result holds when n = 2.
- Inductive step: Let $k \in \mathbb{N}$ with $k \geq 2$, and assume that the result holds for all integers $2, 3, \ldots, k$.
 - $k \circ \mathsf{lf}\,k+1$ is prime then since $(k+1) \mid (k+1)$, the result holds at n=k+1 \circ If k+1 is not prime, then (k+1) = ab for integers $a, b \geq 2$. But, by assumption, both a, b have prime divisors, and so a = pc, b = qd where $c, d \in \mathbb{N}$ and p, q prime. Hence (k+1) = pqcd and so the result holds at n = k + 1

Since the base case and inductive step hold, the result follows by induction.

PROOF OF INFINITE PRIMES

There are an infinite number of primes.

PROOF.

- Assume, to the contrary, that there is finite list of primes: $\{p_1, p_2, \ldots, p_n\}$.
- Use this list to construct $N=p_1\cdot p_2\cdot p_3\cdots p_n\in\mathbb{N}$, and then consider (N+1).
- If (N+1) is prime, then we have found a new prime larger than all on our list contradiction!
- If it is not prime, then (by lemma) (N+1) has some p_k as a divisor. But then $p_k \mid N$ and $p_k \mid (N+1)$, and so

$$1 = (N+1) - N = (p_k b) - (p_k a) = p_k (b-a)$$

which implies that $p_k \mid 1 - \text{contradiction}!$

So the list cannot be finite.

-) for some $a,b\in\mathbb{N}$